Plumbing. Heating. Conditioning. Energy Efficiency.

Технологический расчет процесса ректификации бинарных жидких смесей

(0) (22814)
Опубликовано в журнале СОК №7 | 2014

Ректификацию применяют в промышленности, например, для отделения от воды органических растворителей, а также бензинов, керосинов и других продуктов. В статье приведен технологический расчет процесса ректификации бинарных жидких смесей.

Рис. 1. t–x,y-диаграмма равновесия «жидкость–пар» для идеальных смесей

Рис. 1. t–x,y-диаграмма равновесия «жидкость–пар» для идеальных смесей

Рис. 2. Принципиальная схема ректификации для составления материального и теплового балансов ректификации

Рис. 2. Принципиальная схема ректификации для составления материального и теплового балансов ректификации

Рис. 3. Схема построения рабочих линий ректификации

Рис. 3. Схема построения рабочих линий ректификации

Рис. 4. Изображение рабочих линий при периодической ректификации

Рис. 4. Изображение рабочих линий при периодической ректификации

Рис. 5. К расчету числа ректификационных тарелок

Рис. 5. К расчету числа ректификационных тарелок

Рис. 6. Определение числа теоретических тарелок по x–y-диаграмме

Рис. 6. Определение числа теоретических тарелок по x–y-диаграмме

Рис. 7. Основные типы ректификационных колонных установок

Рис. 7. Основные типы ректификационных колонных установок

Ректификация — процесс многократного противоточного разделения бинарных или многокомпонентных смесей за счет противоточного массои теплообмена между паром и жидкостью, осуществляемый в противоточных колонных аппаратах с контактными элементами (насадки, тарелки). Ректификацию применяют в промышленности, например, для отделения от воды органических растворителей, а также бензинов, керосинов и других продуктов. В статье приведен технологический расчет процесса ректификации бинарных жидких смесей.

Ректификация. Общие сведения

Ректификация представляет собой разделение жидкой смеси на составляющие ее компоненты в результате многократного частичного испарения жидкости и конденсации образующегося пара [1]. В этом заключается основное отличие ректификации от дистилляции, при которой в результате однократного цикла частичное испарение-конденсация достигается лишь предварительное (грубое) разделение жидких смесей [2].

Ректификацию проводят в противоточных колонных аппаратах, снабженных контактными элементами (тарелками различной конструкции) для увеличения поверхности массообмена, либо заполненных насадкой, изготовленной из различных материалов (керамика, металл, пластмассы, кольца Рашига, кольца Палля, седла Берля, насадки «Инталлокс», «Хай-Пэк», «Лева-Пэк» и др.).

При применении насадки контакт между паром (газом) и жидкостью осуществляется на поверхности специальных насадочных элементов, а также в свободном пространстве между ними, в случае применения тарелок пар проходит через слой жидкости на поверхности тарелок, и контакт между фазами происходит при прохождении пара (газа) сквозь слой жидкости, находящейся на контактном устройстве (тарелке). В пленочной колонне фазы контактируют на поверхности тонкой пленки жидкости, стекающей по вертикальной или наклонной поверхности.

Тарелки классифицируются по способу передачи жидкости с тарелки на тарелку (переточные и провальные тарелки), по способу взаимодействия жидкой и паровой (газовой) фаз (прямоточные, противоточные и перекрестноточные тарелки), по характеру диспергирования взаимодействующих фаз (тарелки барботажного и струйного типов), по конструкции устройства для ввода пара (газа) в жидкость (клапанные, эжекционные, струйные и ситчатые тарелки).

Процесс взаимодействия пара с жидкостью происходит в противотоке, и в каждом контактном устройстве пары конденсируются, а жидкость частично испаряется за счет теплоты конденсации пара. За счет этого пар обогащается легколетучим компонентом (ЛЛК), а жидкость, стекающая в низ колонны, — труднолетучим компонентом (ТЛК). В результате многократного взаимодействия пара и жидкости в дистиллят переходит легколетучий, а в кубовый остаток — труднолетучий компоненты.

Ректификационная установка состоит из колонной части, в которой расположены тарелки или насадка, и кипятильника (куба) — кожухотрубчатыго или змеевикового теплообменника. Кипятильник может быть встроенным в нижнюю колонную часть либо вынесенным за пределы колонны. Наибольшее распространение получили тарельчатые и насадочные ректификационные колонны.

В теоретических расчетах принимается, что: при конденсации 1 кмоль пара испаряется 1 кмоль жидкости, поэтому количество пара, движущегося в ректификационной колонне, одинаково в любом ее сечении; при конденсации пара в дефлегматоре не происходит изменения состава пара, поэтому состав пара, уходящего из ректификационной колонны, равен составу дистиллята (yd = xd); при испарении жидкости не происходит изменения ее состава, поэтому состав пара, образующегося при испарении, равен составу кубового остатка (yw = xw).

Процесс ректификации характеризуется диаграммам равновесия «жидкость– пар» для идеальных смесей. Обычно процессы ректификации проводят в изобарических условиях [3], поэтому расчет идеальной бинарной смеси производят при постоянном давлении (Р = const). В этом случае равновесную зависимость можно представить в координатах t–х,у (рис. 1). Учитывая температуры, после расчета величин х и у строится диаграмма, характеризующая равновесие в системе «жидкость–пар».

Нижняя кривая на диаграмме (рис. 1) определяет температуры кипения жидкой смеси, верхняя — температуры конденсации паровой смеси. Отрезки, отложенные по осям ординат при х = 0 и x = 1, определяют температуры кипения труднои легколетучего компонентов tA и tB. При нагревании жидкой смеси состава х1 до температуры кипения t1 получается пар равновесного состава, после конденсации которого образуется жидкость состава х2, обогащенная легколетучим компонентом.

В результате последующего нагревания этой жидкости до температуры кипения t2 и конденсации паров получается жидкость состава х3. За счет многократного испарения жидкости и конденсации паров можно разделить исходную смесь на чистые легколетучий и труднолетучий компоненты.

Материальный баланс ректификационной колонны

Расчет ректификационной колонны производится для заданных составах исходной смеси, кубового остатка, дистиллята, производительности и рабочем давлении в колонне [4]. В начале определяется материальный баланс колонны и рабочее флегмовое число. Для этого используется y–x-диаграмма. Затем подбирается тип тарелок, определяется скорость пара, диаметр колонны, коэффициент массопередачи, высота колонны, гидравлическое сопротивление тарелок.

После этого проводится расчет эксплуатационных свойств, а также экономические показатели ее использования. Материальный и тепловой балансы ректификации составляют по принципиальной схеме, показанной на рис. 2. В колонну ректификационной установки поступает исходная смесь, которая в результате ректификации разделяется на дистиллят и кубовый остаток.

Выходящие из колонны пары конденсируются в дефлегматоре и попадают в разделительный приемник 3, где разделяются на две части: одна часть, так называемая флегма Ф, направляется на орошение колонны, а другая отбирается в виде продукта — дистиллята. Материальный баланс ректификации описывается следующими уравнениями, общий материальный баланс:

Gf = Gd + Gw, (1)

по легколетучему компоненту:

Gfxf = Gdxd + Gwxw, (2)

где Gf , Gd и Gw — массы, соответственно, смеси, поступающей на ректификацию, дистиллята и получаемого остатка, кмоль; xf , xd и xw — концентрации легколетучего компонента, соответственно, в исходной смеси, дистилляте и в остатке, мольные доли. Массы дистиллята и кубового остатка определяются как:

Расчеты производятся для легкок ипящего компонента х. Для дальнейших расчетов необходимо пересчитать составы фаз из массовых в мольные по соотношению:

где x — мольная доля компонента А, кмоль/(кмоль смеси); x- — массовая доля компонента А, % (масс.); МА — мольная масса компонента А, кг/моль; МВ — мольная масса компонента В, кг/моль.

Массы исходной смеси, кубового остатка и флегмы теоретически соотносят к 1 кмоль дистиллята и обозначаются соотношениями:

Gf/Gd = F, (6)

Gw/Gd = W, (7)

Ф/Gd = R. (8)

Последнее отношение называется флегмовым числом и принимается равным от 1,5 до 2,0. При минимальном флегмовом числе можно получить максимальное количество дистиллята, но число тарелок становится бесконечно большим. Если флегмовое число принять равным бесконечности, то колонна работает сама на себя. При флегмовом числе меньше минимального ни при каких условиях невозможно отогнать чистый продукт с заданной степенью чистоты.

 

 

Ректификационная колонна разделяется на две части: верхнюю, или укрепляющую (в ней пар укрепляется, то есть обогащается ЛЛК), и нижнюю — исчерпывающую (где происходит исчерпывание жидкой смеси, то есть извлечение ЛЛК и обогащение ее ТЛК). Уравнение материального баланса для верхней и нижней частей колонны составляется на основании следующего общего уравнения:

Gdy = L(–dx). (9)

Количество жидкости, стекающей в укрепляющей части колонны:

L = RGd. (10)

Количество паров, поднимающихся по колонне:

G = Gd + Ф = Gd + RGd = Gd(1 + R). (11)

Для укрепляющей части колонны используется уравнение:

(R + 1)dy = R(–dx). (12)

для исчерпывающей части колонны:

(R + 1)dy = (F + R)(–dx). (13)

Уравнение (19) для произвольного сечения верхней части колонны для концентраций х, у, xd и yd, согласно принятому допущению xd = yd:

(R + 1)(yd – y) = (R + 1)(xd – y) = (14) = R(xd – x), откуда

Для произвольного сечения нижней части колонны, где концентрации х и у, и куба, где концентрации жидкости и пара xw и yw, из уравнения (14) с учетом, что xw = yw:

(R + 1)(y – yw) = (R + 1)(y – xw) = (F + R)(x – xw), (16) откуда

Средние массовые расходы по жидкости для верхней и нижней частей колонны определяются из соотношений:

где МP и МF — мольные массы дистиллята и исходной смеси, кг/кмоль; Мв и Мн — мольные массы жидкости в верхней и нижней частях, соответственно, г/кмоль. Средние массовые потоки пара в верхней и нижней частях колонны равны, соответственно:

где М-в и М-н — средние мольные массы паров в верхней и нижней частях колонны. Уравнения (15) и (17) являются уравнениями рабочих линий для укрепляющей и исчерпывающей частей ректификационной колонны. Зависимости (15) и (17) представляют собой прямые линии на y–х-диаграмме (рис. 3). В уравнении (21) соотношение R/(R + 1) определяет тангенс угла наклона рабочей линии к оси абсцисс, a xd/(R + 1) — отрезок, отсекаемый рабочей линией на оси ординат y– х-диаграммы (рис. 3).

В случае периодической ректификации процесс описывается рабочей линией для верхней исчерпывающей части колонны. Из уравнения (18) для сечения нижней части колонны по тарелке питания (xf , yf) и верхней части колонны (xd, yd) получим:

(R + 1)(xd – yf ) = R(xd – xf ), (22) откуда

где yf — мольная доля низкокипящего компонента в паре, находящемся в равновесии с исходной смесью, определяемая по y–x-диаграмме. Рабочее значение флегмового числа принимается равным 1,5–2,0. Для определения рабочего флегмового числа в научной литературе существует множество рекомендаций [5].

Тепловой баланс ректификационной колонны

Тепловой баланс ректификационной колонны непрерывного действия выражается равенством:

Q1 + Gfcf tf + RGdcdtd = Gd(R + 1)(rd – cdtd) + Gwcwtw + Qп, (24)

где Q1 — расход теплоты в кубе, Дж/ч; cf, cd и cw — удельные теплоемкости, соответственно, исходной смеси, дистиллята и кубового остатка, Дж/(кг⋅К); tf, td и tw — температуры, соответственно, исходной смеси, дистиллята и кубового остатка, К; rd — теплота парообразования дистиллята, Дж/кг; Qп — потери теплоты в окружающее пространство, Дж/ч.

Далее из уравнения (24) определяется расход теплоты в кубе ректификационной колонны:

Q1 = Gd(R + 1)rd + Gdcdtd + Gwcwtw + Gfcftf + Qп, (25)

Если кипятильник нагревается водяным паром, его расход на проведение процесса определяется как:

где iʺ и iʹ — энтальпия, соответственно, водяного пара и конденсата, кДж/кг. Работа ректификационной колонны связана с обменом энергии между фазами. В колонне тепло подводится с сырьем и нагревателем, а уходит с дистиллятом, кубовым остатком и холодильником. Общий тепловой баланс ректификационной колонны:

Qf + Qн = Qd + Qw + Qх. (27)

где Qf — количества тепла, вносимого с сырьем; Qн — количество тепла, вносимого нагревателем; Qd — количество тепла, уходящего с дистиллятом; Qw — количество тепла, уносимого с кубовым остатком; Qх — количество тепла, отводимое холодильником-конденсатором. При заданных составах и отборах дистиллята и остатка величины Qd и Qw — постоянная величина:

Qf + (Qн – Qх) = Qd + Qw = const. (28)

При неизменной температуре и составе сырья Qf = const, тогда величина (Qн – Qх) = const.

Расчет процесса ректификации

Разработка оптимальной схемы разделения — сложная проблема теории ректификации. Постановка задачи включает перечень продуктов разделения и требования к ним по составу целевых компонентов в дистилляте, кубового остатка и примесей. При разработке наиболее оптимальной схемы разделения сначала производится анализ физико-химических свойств компонентов исходной смеси, условий фазового равновесия в многокомпонентной системе, материального и теплового баланса, и только потом можно рассчитывать варианты схемы разделения.

Затем на основе анализа фазовых равновесий выясняется принципиальная возможность разделения и выявляются ограничения, обусловленные, например, образованием азеотропов и наличием близкокипящих компонентов. В этом случае возникает необходимость применения азеотропной или экстрактивной ректификации. Расчет процесса ректификации производится графоаналитическим методом [6].

Для построения рабочей линии на оси абсцисс на у–x-диаграмме (рис. 3) откладывают концентрации, характеризующие составы жидкостей: xw, xf и xd. Учитывая, что xd = yd, из точки xd проводят перпендикуляр и на пересечении его с диагональю находят точку А с координатами xd = yd. Зная флегмовое число R, определяют отрезок B = xd/(R + 1) и откладывают его на оси ординат диаграммы.

Соединяют конец отрезка В (точка B) с точкой А. Затем из точки xf, соответствующей заданному составу исходной смеси, проводят вертикаль до пересечения с линией А–b в точке В. Образующая прямая А–В является рабочей линией укрепляющей части колонны. Далее из точки xw восстанавливают перпендикуляр и на пересечении его с диагональю находят точку С. Соединяя точки С и В, получают рабочую линию для исчерпывающей части колонны.

Точка В является общей для рабочих линий и характеризует рабочие концентрации в жидкости и паре на тарелке питания. Положение рабочих линий при заданных концентрациях жидкости xw, хf и xd зависит только от величины отрезка В, определяемого значением рабочего флегмового числа R [см. уравнение (23)]. С уменьшением флегмового числа отрезок В увеличивается, и рабочая линия стремится к своему предельному верхнему положению А–b, соответствующему пересечению рабочей и равновесной линий в точке B1.

Очевидно, что в этой точке движущая сила Δy = yp – y = 0, следовательно, ректификационная колонна должна иметь бесконечно большую поверхность фазового контакта. В этом случае число теоретических ступеней изменения концентраций будет бесконечным и разделение смеси возможно только в условной колонне бесконечной высоты. При этом расход греющего пара и диаметр колонны будут минимальными. Флегмовое число при этом также будет минимальным и равным:

Второму нижнему предельному положению рабочей линии соответствует бесконечно большое флегмовое число и соответственно отрезок В = 0. В этом случае обе рабочие линии совпадают с диагональю. Бесконечно большому флегмовому числу соответствует максимальная движущая сила процесса Δymax = yp – y, и, следовательно, наименьшее число теоретических ступеней изменения концентрации и минимальная высота колонны.

 

 

Однако расход пара в колонне, расход греющего пара в кипятильнике, диаметр колонны, а также расход охлаждающей воды в дефлегматоре будут максимальными. Здесь ректификационная колонна работает без отбора дистиллята, «сама на себя», что имеет место только при выводе колонны на рабочий режим. Рациональный выбор рабочего флегмового числа является важной технологической задачей, поскольку от флегмового числа зависят размеры (высота, диаметр) ректификационной колонны, а следовательно, капитальные и эксплуатационные расходы, а также энергозатраты [7]. Эксплуатационные расходы, определяемые в основном расходом пара и воды, возрастают прямо пропорционально величине флегмового числа.

Зависимость капитальных затрат от величины флегмового числа обратно пропорциональна высоте и диаметру колонны. Оптимальному значению флегмового числа соответствует минимум капитальных затрат. Зависимость суммарных затрат от флегмового числа также имеет минимум. Этому минимуму соответствует оптимальное значение рабочего флегмового числа, определяемое по формуле:

Rp = sRmin, (30)

где s — коэффициент избытка флегмы. Во многих случаях коэффициент избытка флегмы принимается в пределах s = 1,1–1,4 [8]. При периодической ректификации рабочие линии процесса изображаются на у–x-диаграмме, как показано на рис. 4. Процессы периодической ректификации могут проводиться при постоянном флегмовом числе либо при постоянном составе дистиллята. В случае ректификации при постоянном флегмовом числе содержание легколетучего компонента в кубе и дистилляте постепенно уменьшается.

В результате, как и в случае фракционной перегонки, получают дистиллят в виде нескольких фракций. Однако при постоянном флегмовом числе наклон рабочих линий не зависит от концентраций. Если в первый момент ректификации концентрация летучего компонента в кубовой жидкости xf, а в дистилляте — xd, то в результате ректификации концентрация летучего компонента в кубе будет уменьшаться и принимать значения x1, x2 и т.д. вплоть до конечной концентрации xw.

Соответственно, будет уменьшаться и концентрация легколетучего компонента в дистилляте: xd1, xd2 и хd3 и т.д. В итоге образуется дистиллят среднего состава: Для получения постоянного состава дистиллята процесс ректификации проводят при изменяющемся флегмовом числе: минимальном в начале процесса и максимальном в конце. Увеличение флегмового числа соответствует уменьшению отрезка В и, следовательно, увеличению наклона рабочей линии. При этом рабочая линия будет занимать последовательно положения А–В1, А–В2, А–В3 и т.д. (рис. 4б).

Расчет числа тарелок ректификационной колонны

Расчет производится по числу теоретических или действительных ступеней (тарелок) изменения концентраций. При этом предполагается, что в теоретической ступени достигается равновесие между паром, уходящим на вышерасположенную ступень (тарелку), и жидкостью, стекающей со ступени (тарелки) на нижерасположенную. Принцип работы ректификационной тарелки показан на рис. 5а.

На n-ю тарелку поступает с вышерасположенной жидкость концентрацией xn+1, а с нижерасположенной тарелки — пар концентрацией yn–1, в результате массообмена легколетучий компонент из жидкости переходит в пар, а труднолетучий — из пара в жидкость. При этом концентрация легколетучего компонента в паре возрастает до уn, а в жидкости уменьшается с хn+1 до хn.

При расчете ректификационной тарелки принимается, что жидкость на тарелке идеально перемешана и имеет постоянную концентрацию хn, а пар меняет свою концентрацию в слое жидкости от уn–1 до уn в режиме идеального вытеснения. В случае достижения равновесия процесс изменения концентрации в паре от уn–1 до уn = у изображается вертикальным отрезком А–В, а изменение концентрации в жидкости от xn+1 до хn — горизонтальным отрезком B–D (рис. 5б).

Таким образом, ступень A–B–D изображает процесс, происходящий на одной теоретической тарелке. Чтобы определить число теоретических тарелок в колонне для разделения исходной смеси в заданных пределах от xf до xw и от xf до xd, проводят ступенчатую линию между линией равновесия и рабочими линиями между точками A и С. Число полученных ступеней определяет число теоретических тарелок. На реальной ступени (тарелке) изменения концентрацией идеальное равновесие не достигается, то есть уп < упр (рис. 5).

Поэтому для определения числа действительных тарелок используют коэффициент полезного действия (КПД), величина которого определяется опытным путем. Аналогичным графоаналитическим способом рассчитывается количество тарелок в верхней и нижней части колонны [9]. Метод сводится к построению ступеней на y–x-диаграмме. Каждая ступень представляет собой одну теоретическую тарелку.

При построении предполагается, что на каждой тарелке достигается равновесие между жидкой и паровой фазой. Реализация этого метода показана на рис. 6. В данном примере число теоретических тарелок составляет 8 для нижней части колонны и 7 для верхней, в сумме — 15. Для определения действительного числа тарелок это число необходимо поделить на КПД отдельной тарелки. Несмотря на то, что существуют методы оценки КПД тарелок [10], этот метод не является точным, поскольку для каждой тарелки КПД может отличаться от среднего.

Из приведенных графических построений следует, что число тарелок в верхней и нижней частях колонны зависит от флегмового числа и от положения рабочей линии. Увеличение флегмового и парового числа приближает рабочие линии к диагонали О–А (рис. 5в), что связано с уменьшением числа тарелок. Наоборот, когда флегмовое и паровое числа уменьшается, рабочие линии приближаются к кривой равновесия и число тарелок увеличивается.

При режиме полного орошения (то есть отсутствии выхода дистиллята и остатка) число тарелок минимальное. Таким образом, при сокращении нагрузки в колонне четкость разделения увеличивается. Чем меньше флегмовое число, тем больше производительность, тем четкость разделения меньше. Также в исследовательской практике режим полного орошения используется для определения числа теоретических (равновесных) тарелок. Допустимая скорость в верхней и нижней части колонны определяется по формуле:

Средняя плотность пара для нижней и для верхней части колонны рассчитывается по формуле:

где t — температура для верхней или для нижней части колонны. Температура в колонне определяется по t–x,y-диаграмме. Скорость пара в рабочем сечении тарелки выражается как:

где d — диаметр отверстий в тарелке; Sт — рабочее сечение тарелки. Высота колонны определяется исходя из числа действительных тарелок и расстояния между тарелками. Обычно расстояние между тарелками стандартизовано и выбирается из специальных таблиц.

Типы ректификационных установок

Для контактирования потоков пара и жидкости в процессах ректификации применяются ректификационные установки различных конструкций, среди которых наибольшее распространение получили вертикальные установки колонного типа. Установки этого типа могут быть классифицированы в зависимости от рабочего давления, технологического назначения, типа контактных устройств и технологической схемы.

В зависимости от рабочего давления колонные ректификационные установки подразделяются на атмосферные, вакуумные и работающие под давлением. К атмосферным ректификационным установкам обычно относят установки, в верхней части которых рабочее давление незначительно превышает атмосферное и определяется сопротивлением коммуникаций и аппаратуры, расположенных на потоке движения паров ректификата после колонны. 

Давление в нижней части колонны зависит в основном от сопротивления ее внутренних устройств и может значительно превышать атмосферное. В вакуумных ректификационных установках рабочее давление ниже атмосферного (создано разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта. Величина остаточного давления в колонне определяется физико-химическими свойствами разделяемых продуктов и допустимой максимальной температурой их нагрева без заметного разложения.

В ректификационных установках, работающих под давлением (1–4 МПа), величина рабочего давления может существенно превышать атмосферное. По технологической схеме различают ректификационные установки непрерывного и периодического действия. Установки непрерывного действия применяются в крупнотоннажных, а установки периодического действия — в малотоннажных производствах. Для непрерывной ректификации применяют колонны, состоящие из двух ступеней: верхней — укрепляющей и нижней — исчерпывающей.

При периодической ректификации в колонне производится только укрепление пара. По типу внутренних контактных устройств различают тарельчатые, насадочные и пленочные ректификационные колонные установки. В тарельчатых ректификационных установках (рис. 7а) контакт между фазами происходит при прохождении пара (газа) сквозь слой жидкости, находящейся на контактном устройстве (тарелке).

В ректификационных и абсорбционных колоннах применяются тарелки различных конструкций (колпачковые, клапанные, струйные, провальные и т.п.), существенно различающиеся по своим рабочим характеристикам и технико-экономическим данным. Данные установки используются главным образом в пищевой и фармацевтической, а также в других областях промышленности. В насадочных ректификационных колоннах (рис. 7б) контакт между газом (паром) и жидкостью осуществляется на поверхности специальных насадочных тел, а также в свободном пространстве между ними.

Однако в последние годы в связи с созданием эффективных насадок возрос интерес к насадочным колоннам, особенно в вакуумных процессах, приобретающих в этом случае ряд положительных характеристик: низкое гидравлическое сопротивление, малая задержка жидкости, высокая эффективность в широком интервале изменения нагрузок по пару (газу) и жидкости и др. В пленочной колонне (рис. 7в) фазы контактируют на поверхности тонкой пленки жидкости, стекающей по вертикальной или наклонной поверхности ректификационной колонны.

Выводы

Ректификация — один из самых энергоемких химико-технологических процессов. Эксплуатационные затраты, связанные с расходом энергии, могут достигать при ректификации 70 % общей стоимости разделения, поэтому при проектировании ректификационных установок необходимо решать задачу рационального сочетания флегмового числа, от которого зависит расход энергии, диаметра и высоты колонны, определяющей капитальные затраты.

Оптимальная схема разделения должна отвечать минимуму затрат. При выборе схемы, состоящей из ряда колонн, снижение энергетических затрат возможно за счет рекуперации тепловых потоков благодаря различию температур кипения продуктов разделения (например, высококипящие компоненты можно использовать для подогрева низкокипящих). Большая экономия энергии может быть достигнута путем применения схемы с тепловым насосом.

В данном случае пары дистиллята, выходящие из колонны, сжимаются компрессором до давления, соответствующего требуемой температуре его конденсации в перегонном кубе колонны; при этом отпадает необходимость в дефлегматоре и сокращаются расходы пара и воды. С целью экономии капитальных затрат иногда выгодно использовать вместо нескольких простых колонн одну сложную колонну с отпарными секциями и боковыми отборами отдельных фракций.

Несмотря на все большее распространение других альтернативных процессов и методов разделения жидких бинарных смесей (испарение через мембрану, противоточная кристаллизация с непрерывным массообменом, экстракция), ректификация по-прежнему сохраняет свое лидирующее значение.

(0) (22814)
Comments
  • В этой теме еще нет комментариев
Add a comment

Your name *

Your e-mail *

Your message