Plumbing. Heating. Conditioning. Energy Efficiency.

Воздушный режим современного здания

(0) (6581)
Опубликовано в журнале СОК №11 | 2012

Газовый режим здания рассматривает распределение вредных примесей от источников вредных выбросов, различным образом расположенных в приземном слое атмосферы, вокруг здания и в помещениях [1]. Для расчета газового режима здания необходимо рассматривать воздушный и тепловой режимы здания. Это объясняется необходимостью защиты человека от воздействия вредных веществ, поступающих в воздух.

 

Существуют основные параметры воздушной среды, определяющие возможность существования человека на открытой местности и в жилище. В частности, это концентрация различных примесей в воздухе помещения, зависящая от воздушного, теплового и газового режимов здания. Вредные примеси в приземном слое атмосферы могут быть в виде аэрозолей, пылевидных частиц, различных газообразных веществ на молекулярном уровне.

При распространении в воздухе под действием коагуляции или различных химических реакций вредные примеси могут изменяться количественно и по химическому составу. Газовый режим здания состоит из трех взаимосвязанных частей. Внешняя часть — процессы распределения вредных примесей в приземном слое атмосферы c потоками воздуха, омывающими здание и перемещающие вредные вещества.

Краевая часть — процесс проникновения вредных примесей в здание через щели в наружных ограждающих конструкциях, открытые окна, двери, другие проемы и через системы приточной механической вентиляции, а также перемещение примесей по зданию. Внутренняя часть — процесс распределения вредных примесей в помещениях здания (газовые режимы помещений).

Для этого применяется многозонная модель вентилируемого помещения, на основании которой помещение рассматривается как совокупность элементарных объемов, взаимосвязь и взаимодействие между которыми происходит через границы элементарных объемов [2]. В рамках газового режима здания изучается конвективный и диффузионный перенос вредных примесей. Количество аэроионов в воздухе характеризуется их концентрацией в кубометре воздуха, а аэроионный режим является частью газового режима здания.

Аэроионы — это мельчайшие комплексы атомов или молекул, несущие положительный или отрицательный заряд. В зависимости от размеров и подвижности, различают три группы аэроионов: легкие, средние и тяжелые. Причины ионизации воздуха различны: присутствие радиоактивных веществ в коре Земли, наличие радиоактивных элементов в строительных и облицовочных материалах, естественная радиоактивность как воздуха и почвы (радон и торон), так и горных пород (изотопы К40, U238, Th232).

Главный ионизатор воздуха — это космическое излучение, а также распыление воды, атмосферное электричество, трение частиц песка, снега и пр. Ионизация воздуха происходит следующим образом: под действием внешнего фактора молекуле или атому газа сообщается энергия, необходимая для удаления одного электрона из ядра. Нейтральный атом становится положительно заряженным, а образовавшийся свободный электрон присоединяется к одному из нейтральных атомов, передавая ему отрицательный заряд, образуя отрицательный аэроион.

К таким положительно и отрицательно заряженным аэроионам в доли секунды присоединяется определенное число молекул и газов, входящих в состав воздуха. В результате образуются комплексы молекул, называемые легкими аэроионами. Легкие аэроионы, сталкиваясь в атмосфере с другими аэроионами и ядрами конденсации, образуют аэроионы крупных размеров — средние аэроионы, тяжелые аэроионы, ультратяжелые аэроионы.

Подвижность аэроионов зависит от газового состава воздуха, температуры и атмосферного давления. Размеры и подвижность положительных и отрицательных аэроионов зависят от относительной влажности воздуха — при увеличении влажности подвижность аэроионов уменьшается. Заряд аэроиона является основной его характеристикой. Если легкий аэроион теряет свой заряд, то он исчезает, а при потере заряда тяжелым или средним аэроионом распада такого аэроиона не происходит, и в дальнейшем он может приобретать заряд любого знака.

Концентрация аэроионов измеряется в количестве элементарных зарядов в кубометре воздуха: е = +1,6 × 10–19 Кл/м3 (е/м3). Под воздействием ионизации в воздушной среде происходят физико-химические процессы возбуждения главных составляющих воздуха — кислорода и азота. Наиболее устойчивые отрицательные аэроионы могут образовывать следующие элементы химических веществ и их соединений: атомы углерода, молекулы кислорода, озона, углекислого газа, диоксида азота, диоксида серы, молекулы воды, хлора и другие.

Химический состав легких аэроионов зависит от химического состава воздушной среды. Это как влияет на газовый режим здания и помещения, так и приводит к увеличению в воздухе концентрации стабильных молекулярных аэроионов. На вредные примеси установлены нормы предельно допустимой концентрации (ПДК), как на нейтральные незаряженные молекулы. Вредное воздействие заряженных молекул примесей на организм человека увеличивается. «Вклад» каждого вида молекулярных ионов в дискомфорт или в комфорт окружающей человека воздушной среды различен.

Чем чище воздух, тем дольше время жизни легких аэроионов, и наоборот — при загрязненности воздуха время жизни легких аэроионов мало. Положительные аэроионы менее подвижны и дольше живут в сравнении с отрицательными аэроионами. Другим фактором, характеризующим аэроионный режим помещения здания, является коэффициент униполярности, показывающий количественное преобладание отрицательных аэроионов над положительными для какой-либо группы аэроионов.

Для приземного слоя атмосферы коэффициент униполярности равен 1,1–1,2, показывающий превышение количества отрицательных аэроионов над количеством положительных. Коэффициент униполярности зависит от следующих факторов: времени года, рельефа местности, географического положения и электродного эффекта от воздействия отрицательного заряда поверхности Земли, при котором положительное направление электрического поля вблизи поверхности Земли создает преимущественно положительные аэроионы.

В случае противоположного направления электрического поля преимущественно образуются отрицательные аэроионы. Для гигиенической оценки аэроионного режима помещения принят показатель загрязненности воздуха, который определяется отношением суммы тяжелых аэроионов положительной и отрицательной полярности к сумме положительных и отрицательных легких аэроионов. Чем меньше величина показателя загрязненности воздуха, тем более благоприятен аэроионный режим.

Концентрация легких аэроионов обеих полярностей значительно зависит от степени урбанизации местности и от экологического состояния окружающей человека среды обитания. Легкие аэроионы оказывают лечебное и профилактическое действие на организм человека в концентрации: 5 × 108–1,5 × 109 е/м3. В сельских районах концентрация легких аэроионов находится в пределах полезной для человека нормы.

На курортах и в горной местности концентрация легких аэроионов несколько выше нормы, но полезное действие остается, а в крупных городах на улицах с интенсивным движением транспорта концентрация легких аэроионов ниже нормы и может приближаться к нулю. Это однозначно свидетельствует о загрязненности атмосферного воздуха. Отрицательные аэроионы более чувствительны к примесям в сравнении с положительными аэроионами.

Большое влияние на аэроионный режим оказывает растительность. Летучие выделения растений, называемые фитонцидами, позволяют качественно и количественно улучшить аэроионный режим окружающей среды. В сосновом лесу растет концентрация легких аэроионов и уменьшается концентрация тяжелых аэроионов. Среди растений, способных благоприятно повлиять на аэроионный режим, можно выделить следующие: подснежник, сирень, белая акация, герань, олеандр, ель сибирская, пихта.

Фитонциды влияют на аэроионный режим процессами перезарядки аэроионов, за счет чего возможна трансформация средних и тяжелых аэроионов в легкие. Ионизованность воздуха имеет значение для здоровья и самочувствия человека. Пребывание людей в вентилируемом помещении с высокой влажностью и запыленностью воздуха при недостаточном воздухообмене значительно уменьшает число легких аэроионов. При этом растет концентрация тяжелых аэроионов, а заряженная ионами пыль задерживается в дыхательных путях человека на 40 % больше.

Люди часто жалуются на недостаток свежего воздуха, быстрое утомление, головные боли, пониженное внимание и раздражительность. Это связано с тем, что параметры теплового комфорта хорошо изучены, а параметры воздушного комфорта изучены недостаточно. Воздух, проходящий обработку в кондиционере, в приточной камере, в системе воздушного отопления, практически полностью теряет аэроионы, и аэроионный режим в помещении ухудшается в десятки раз.

Легкие аэроионы оказывают лечебное и профилактическое действие на организм человека в концентрации 5 × 108– 1,5 × 109 е/м3. При искусственной ионизации воздуха образующиеся легкие аэроионы обладают такими же полезными свойствами, что и аэроионы, образовавшиеся естественным образом [3]. В соответствии с нормами повышенная и пониженная концентрации легких аэроионов в воздухе отнесены к группе физически вредных факторов.

Существует несколько типов аппаратов для искусственной ионизации воздуха в помещениях, среди которых можно выделить ионизаторы следующего типа: коронарные, радиоизотопные, термоэлектронные, гидродинамические и фотоэлектрические. Ионизаторы могут быть местные и общие, стационарные и переносные, регулируемые и нерегулируемые, генерирующие униполярные и биполярные легкие аэроионы.

Выгодно совмещать аэроионизаторы с системами приточной вентиляции и кондиционирования воздуха, при этом необходимо, чтобы аэроионизаторы были расположены как можно ближе к обслуживаемой зоне помещения, чтобы снизить потери аэроионов при их транспортировке. Подогрев воздуха ведет к увеличению числа легких аэроионов, но взаимодействие аэроионов с металлическими частями калориферов и воздухоподогревателей уменьшает их концентрацию, охлаждение воздуха ведет к заметному уменьшению концентрации легких аэроионов, осушение и увлажнение приводит к уничтожению всех легких подвижных аэроионов и образованию тяжелых аэроионов за счет распыления воды.

Применение пластмассовых деталей систем вентиляции и кондиционирования воздуха позволяет снизить адсорбцию легких аэроионов и увеличить их концентрацию в помещении. Отопление благоприятно действует на увеличение концентрации легких аэроионов в сравнении с концентрацией легких аэроионов в наружном воздухе. Рост легких аэроионов при работе системы отопления зимой компенсируется убылью этих аэроионов в результате жизнедеятельности человека.

После камеры орошения снижение легких отрицательных аэроионов на основе молекулы озона, кислорода и оксида азота происходит в десятки раз, а вместо этих аэроионов появляются аэроионы паров воды. В подземных помещениях с ограниченной вентиляцией снижение количества легких отрицательных аэроионов на основе молекулы озона и кислорода происходит в сотни раз, а на основе молекулы оксида азота — до 20 раз.

От систем кондиционирования воздуха концентрация тяжелых аэроионов возрастает незначительно, а в присутствии людей концентрация тяжелых аэроионов возрастает в разы. Баланс образования и уничтожения легких аэроионов можно характеризовать следующими существенными обстоятельствами: поступление легких аэроионов с притоком наружного воздуха в обслуживаемые помещения (при наличии легких аэроионов снаружи), изменение концентрации легких аэроионов при прохождении воздуха в обслуживаемые помещения (механическая вентиляция и кондиционирование воздуха уменьшают концентрацию аэроионов), понижение концентрации легких аэроионов при большом количестве людей в помещении, высокой запыленности, сжигании газа и пр.

Рост концентрации легких аэроионов происходит при хорошей вентиляции, наличии фитонцидообразующих растений, искусственных ионизаторов воздуха, хорошей экологии жилища и успешных мерах по охране и улучшению состояния окружающей среды в населенных пунктах. Характер изменения концентрации легких положительных и отрицательных аэроионов в приземном слое атмосферы в годовом режиме совпадает с колебанием температуры наружного воздуха, видимости в атмосфере, продолжительности инсоляции территории в годовом режиме.

С ноября по март происходит рост концентрации тяжелых аэроионов и уменьшение концентрации легких аэроионов, весной и летом сокращается количество всех групп тяжелых аэроионов и растет количество легких аэроионов. В суточном режиме концентрация легких аэроионов максимальна в вечерние и ночные часы, когда воздух чист — с восьми вечера до четырех часов утра, концентрация легких аэроионов минимальна с шести утра до трех часов дня.

Перед грозой растет концентрация положительных аэроионов, во время грозы и после грозы происходит рост числа отрицательных аэроионов. Вблизи водопадов, у моря во время прибоя, у фонтанов и в других случаях распыления и разбрызгивания воды увеличивается число легких и тяжелых положительных и отрицательных аэроионов. Табачный дым ухудшает аэроионный режим помещения, сокращая количество легких аэроионов.

В помещении площадью около 40 м2 при слабой вентиляции в зависимости от количества выкуренных сигарет происходит уменьшение концентрации легких аэроионов. Дыхательные пути и кожа человека являются зонами, которые воспринимают аэроионы. Большая или меньшая часть легких и тяжелых аэроионов воздуха при прохождении по дыхательным путям отдают свои заряды стенкам воздухопропускающего тракта.

Повышенный уровень легких аэроионов приводит к сокращению заболеваемости и смертности, ионизированный воздух повышает сопротивляемость организма к заболеваниям. При наличии чистого ионизированного легкими аэроионами воздуха повышается работоспособность, ускоряется ход восстановления работоспособности после длительных нагрузок, повышается устойчивость организма к токсичным воздействиям окружающей среды.

На сегодняшний день известно, что ионизация воздуха до величины 2 × 109–3 × 109 е/м3 оказывает благоприятное, нормализующее влияние на организм человека. Более высокие концентрации — более 50 × 109 е/см3 ионизации — неблагоприятны, желательный уровень — 5 × 108–3 × 109 е/м3. Эффективность аэроионного режима напрямую связана с выполнением норм по воздухообмену. Ионизированный воздух должен быть обеспыленным и очищенным от химических загрязнений различного происхождения.

(0) (6581)
Comments
  • В этой теме еще нет комментариев
Add a comment

Your name *

Your e-mail *

Your message