Правила подбора РТК различного типа, иллюстрированные практическими примерами, подробно изложены применительно к различным системам отопления в Альбоме рекомендаций [5]. Вместе с тем, вероятность того, что в конкретной системе отопления жилого дома РТК будут установлены правильно, и их работа будет эффективна, невелика. Такое суждение опирается на ряд факторов, значение которых нельзя недооценивать, а именно: правильно подобранный РТК в двухтрубной системе отопления многоквартирного жилого дома должен быть настроен таким образом, чтобы его пропускная способность соответствовала тепловой мощности радиатора, а клапан при этом работал в зоне пропорциональности 2К, т.е. регулирующий орган клапана должен постоянно находиться в положении, близком к закрытому. При этом его гидравлическое сопротивление не должно превышать 25 кПа, чтобы клапан не шумел, а его так называемый «внешний авторитет», которым регламентируется соотношение гидравлических сопротивлений клапана и трубопроводной системы, должен находиться в интервале от 0,5 до 0,7. Все эти жесткие требования возможно выполнить только теоретически при условии, что на каждом ответвлении трубопроводной системы будут установлены автоматические регуляторы перепада давления, которые в свою очередь должны быть настроены должным образом, и эта настройка ни при каких условиях не должна нарушаться при эксплуатации. Жесткими правилами подбора РТК не всегда руководствуются даже в странах, откуда эта продукция поставляется в комплекте с радиаторами. Наш потребитель, покупая в свою квартиру такой импортный комплект, собранный из случайных изделий, получает устройство, котороефизически не может вписаться в проект системы отопления, как бы хорошо этот проект ни был разработан. В реальных условиях строительства и дооборудования жителями многоэтажных жилых домов предусмотренные проектом РТК часто демонтируют, заменяя их шаровыми кранами, которые способствуют полной гидравлической разбалансировке отопительной системы. Для того, чтобы разбалансированная система работала удовлетворительно, в нее приходится подавать расход воды, превышающий проектное значение в 1,4–1,6 раза при соответствующем перерасходе тепловой энергии [6]. Значительно меньше жестких требований предъявляется к РТК однотрубных отопительных систем, и разбалансировка таких систем вследствие замены РТК менее вероятна. Вместе с тем, возможность экономии тепловой энергии посредством РТК в любом случае нельзя переоценивать из-за влияния субъективных факторов на эту возможность при не вполне сформировавшемся энергосберегающем поведении жителей. Проектировщики систем отопления обязаны применять РТК в своих проектах, и относиться к этому нужно с высокой ответственностью, строго соблюдая правила подбора, потому что правильный выбор РТК является совершенно необходимым, хотя, к сожалению, и совершенно недостаточным условием их эффективной работы. Применив РТК, проектировщик может записать в свой актив бесспорно принимаемый любой экспертизой или инспекцией факт использования в проекте прогрессивной энергосберегающей техники. Но если проектировщик действительно озабочен проблемой рационального использования тепловой энергии в здании, он должен сосредоточить свое внимание на регулировании в тепловом пункте. 2.2.3.2. Регулирование в тепловом пункте Если бы радиаторные термостаты были способны четко выполнять свое назначение— поддерживать нужную температуру в помещениях, предотвращая их перегрев,— то регулировать в тепловых пунктах ничего не было бы нужно, потому что РТК теоретически способны реализовать самое совершенное регулирование — «по отклонению» температуры помещения. Но, как выяснилось, практически это в полной мере не происходит, и потому требуется еще и регулирование в тепловом пункте. В зданиях с многокомнатной планировкой центральное регулирование «по отклонению», как правило, не применяется, потому что регулировать теплопотребление здания по одной или нескольким контрольным комнатам, в которых можно было бы установить датчики температуры, было бы неточно, какими бы представительными эти комнаты ни были. В таких зданиях температуру в помещениях приходится регулировать косвенно. Если согласно расчету для удовлетворительного отопления температура теплоносителя t1 должна соответствовать температуре наружного воздуха tH, то регулятор должен обеспечивать это соответствие, и как только это соответствие нарушится, по факту «возмущения» будет подана команда исполнительному органу на восстановление удовлетворительного режима отопления. Регулирование «по возмущению» не способно реагировать на внутренние тепловыделения в помещениях. Ни на солнечное излучение, ни на поступление тепла от работающих компьютеров, ни на бытовые источники тепла регулятор не среагирует. Наиболее отчетливо регулятор среагирует на изменение погодных условий, поэтому такое регулирование называют «погодным». В качестве управляющего прибора центрального регулирования отопительной системы служит электронный регулятор (контроллер), способный воспринимать информацию от датчиков температуры и от встроенного таймера и преобразовывать ее в команды для электрических исполнительных механизмов, воздействующих на тепловые потоки. Регуляторы систем отопления должны выполнять погодное и программное регулирование. Погодное регулирование обеспечивается температурным графиком, который задается углом наклона линии изменения температуры в координатах t = f (tH), где t — температура теплоносителя в подающем или обратном трубопроводах, а tH — текущая температура наружного воздуха. Программное регулирование позволяет в нужное время перевести систему отопления на погодное регулирование по пониженному температурному графику. При выборе регулятора рекомендуется исходить из реальной потребности объекта. Оптимальный для объекта регулятор — это такой прибор, функциональные возможности которого не превышают функциональных потребностей регулируемой системы. Чем регулятор проще, тем надежнее он в работе. Функцию погодного регулирования применительно к системам отопления, присоединенным к тепловым сетям с расчетными температурами теплоносителя 150–70°С, можно упростить, если поддерживать нужную температуру воды в обратном трубопроводе, которая зафиксирована тепловыми сетями, и никто не имеет право ее ни завышать (теплосети не позволят), ни занижать (потребитель замерзнет). Температура воды t2, °С, в обратном трубопроводе для всех зданий, строящихся на территории, где расчетные наружные температуры tнр, °С, находятся в интервале значений от –15 до –30°С, должна поддерживаться на уровне: T2 = 62,1 + 0,64tнр – tH, (1) где tH — текущая температура наружного воздуха, °С. Для каждого конкретного района формула (1) упрощается. Например, для Киева, где tнр = –22°С, формула приобретает вид: T2 = 48 – tH. (2)* Эффективно управлять системой по столь простому алгоритму можно при помощи простых регуляторов,формирующих команды на основе двух датчиков температур (рис. 1) и способных ночью менять по команде таймера цифру 48 на меньшую, определяемую уставкой, например, на 44. Этот логичный и простой алгоритм поддержания температуры обратной воды заложен в программу украинских производителей регуляторов тепловой автоматики (КИАРМ, «Семпал»), которые применены и эффективно эксплуатируются на многих объектах. При использовании этих регуляторов возможна гибкая корректировка постоянных величин в формуле (2) в зависимости от степени тепловой защиты здания и приоритетов потребителей, часть которых более озабочена экономией средств, расходуемых на отопление, в то время как другая часть боится замерзнуть. Возможность ночного понижения температуры теплоносителя в жилых домах долгое время считалась спорной, но выполненные исследованияне оставляют сомнений в целесообразности и эффективности такого понижения в переходной период.В отдельных __ случаях даже после шестичасового сокращения теплопотребления никаких изменений температуры в помещениях зафиксировать не удалось, что связано с высокой инерционностью водяных отопительных систем и строительных конструкций здания. Продолжительность работы в ночном режиме и допустимая глубина регулирования должны определяться для каждого дома индивидуально с тем, чтобы избежать недовольства жителей. Высокая тепловая инерционность обогреваемого отопительной системой жилого дома обусловила возможность вполне эффективного регулирования пропусками, которое может быть реализовано посредством использования позиционных клапанов. Такая многократно проверенная практикой возможность открывает благоприятные перспективы для оборудования системами автоматики абонентских вводов, где нет циркуляционных насосов с электроприводом, которые по европейским стандартам являются непременной деталью регулируемого теплового пункта (рис. 7, а). Оказалось, что системы отопления с элеваторным присоединением к тепловой сети, прежде несправедливо отнесенные к устройствам,тепловую мощность которых регулировать невозможно, могут эффективно экономить тепловую энергию, если оборудовать их позиционным регулятором (рис. 7, б). Сопоставление двух схем (а и б на рис. 7) автоматизированного приготовления теплоносителя не оставляет сомнений в рациональности второй схемы при реконструкции существующих тепловых пунктов жилых домов. Особенностью водоструйного насоса (элеватора) является его неспособность изменять коэффициент смешения при уменьшении расхода сетевой воды, поступающей в сопло. Если бы на месте клапана 4 стоял пропорциональный регулятор, то при его частичном закрытии соответственно изменился бы расход воды в системе отопления, что привело бы ее к разбалансированию. Но никаких проблем с гидравлической балансировкой не возникает при кратковременном закрытии позиционного клапана 4. Клапан 4 выполняется со встроенным байпасом, через который проходит около 10% воды при закрытом клапане. Это необходимо для того, чтобы контроллер отслеживал изменение температуры обратной воды. При отсутствии встроенного байпаса нужно предусмотреть в проекте обводную линию с балансировочным клапаном. Исследования, выполненные на абонентских вводах, оборудованных приборами тепловой автоматики КИАРМ, подтвердили не только возможность, но и эффективность позиционного регулирования. Высокие потребительские качества систем отопления, оборудованных позиционными регуляторами, объясняются тем, что дискретность срабатывания исполнительных механизмов совершенно нивелируется инерционностью системы, в результате чего потребитель этой дискретности не ощущает вовсе. Опыт применения позиционных регуляторов КИАРМ свидетельствует об уменьшении годового потребления тепла в жилых домах на 15–20%, а в пристроенных помещениях общественного назначения — до 40%. Это означает, что регулируемая система отопления жилого дома тепловой мощностью 1 Гкал/ч сэкономит около 500 Гкал в год, что равносильно годовой экономии около 70 тыс.м3 природного газа. При выборе схемы теплового пункта в проектах новых жилых домов следует иметь в виду, что элеватор не может применяться в качестве побудителя циркуляции в двухтрубных системах отопления с термостатическими клапанами. Здания, имеющие четко выраженную ориентацию фасадных стен, рекомендуется проектировать с фасадными ветвями отопительных систем, каждая из которых должна иметь свой регулятор теплового потока. При этом датчики температуры tH наружного воздуха (рис. 8) должны быть установлены на том фасаде, который обогревается системой отопления, регулирующейся при помощи этого датчика. Эффективность регулирования при этом будет весьма высокой, потому что такая система чувствительна к воздействию солнечного излучения на фасад, что обычно свойственно лишь регуляторам «по отклонению», к которым относятся термостатические клапаны. По этой причине нормы допускают при проектировании социального жилища выполнять однотрубные системы отопления с полнопроходными шаровыми кранами вместо термостатических клапанов при условии, что эти системы запроектированы с пофасадным регулированием. Рациональные проектные решения не обязательно создают реальную экономию тепла. Многое зависит от эксплуатации. Вероятность того, что экономия состоится, намного выше там, где используются приборы тепловой автоматики, доступные только профессионалам, в то время как самые совершенные приборы, находящиеся во власти большого количества неквалифицированных потребителей,имеют мало шансов достойно выполнить свою работу. 2.3. Оптимальный воздухообмен Естественная вентиляция жилища нелогична, если исходить из современных представлений о комфорте и энергетической эффективности. С одной стороны, воздухообмен, обеспечиваемый решетками в кухнях и санузлах, недостаточен, особенно для больших квартир. С другой стороны, он избыточен, если учесть, что в течение значительной части суток, когда в квартире никого нет, тепло непрерывно покидает жилище через вытяжные решетки. Новые нормы проектирования жилых домов не исключают возможности применения систем вентиляции с естественным побуждением, однако энергоэффективные технические решения вентиляции должны основываться на новой концепции, смысл которой определяется положениями: 1. Не нужно требовать от естественной вентиляции полноценного воздухообмена в любое время суток. Средствами естественной вентиляции должен быть обеспечен минимальный пассивный воздухообмен, достаточный для режима вентилирования помещений, в которых временно никого нет. 2. Активный воздухообмен должен обеспечиваться средствами механической вентиляции, включаемой периодически. Санузлы должны активно вентилироваться тогда, когда ими пользуются, а кухни — когда в них готовят пищу. 3. Вентиляционные каналы из кухонь и санузлов должны выполняться из долговечных материалов. 4. В жилых комнатах с окнами, имеющими герметизированные притворы, должны проектироваться приточные устройства. Следуя положению 1, нельзя проектировать в жилом доме систему механической вентиляции с непосредственным подключением вентилятора к сборной вентиляционной шахте через обратный и огнезадерживающий клапаны, потому что при выключенном вентиляторе никакого воздухообмена в квартире не будет. Следуя положению 2, вытяжные вентиляторы в кухнях и санузлах необходимы, но каналы должны быть или обособленными, или присоединенными к сборной шахте через каналы-спутники высотой не менее 2 м. Тогда при выключенных вентиляторах в квартире будет обеспечен постоянный пассивный воздухообмен, а при включенных — временный активный. Следуя положению 3, нельзя проектировать в жилом доме систему вытяжной вентиляции, включающую в себя воздуховоды из оцинкованной стали, потому что долговечность этих воздуховодов несопоставимо мала по сравнению с долговечностью жилого дома. Воздушные каналы должны выполняться в строительных конструкциях, т.е. из бетона или кирпича, и только каналы-спутники длиной 2 м могут выполняться из стальных труб. Следуя положению 4, в наружных ограждающих конструкциях (обычно в окнах) должны устраиваться отверстия для приточной вентиляции, — так называемые проветриватели, но наиболее эффективным техническим решением вентиляции всех помещений квартиры является установка в них приточно-вытяжного рекуперативного аппарата ТеФо (см. раздел 2.1.4 — журнал «С.О.К.» №7/2006, стр. 81). На рис. 3 показаны расходы воздуха в двухметровых по высоте каналахспутниках трех различных диаметров при естественном побуждении. Указанные на рис. 8 зависимости, полученные аналитически*, характерны для свободного движения воздуха. При наглухо закрытых створках окон через систему вытяжной вентиляции воздух вообще не пойдет. Предполагается, что приточный воздух будет заходить в помещения через открытые проемы форточек или через проветриватели, встраиваемые в переплеты современных окон. Для пассивного естественного воздухообмена достаточен расход воздуха, равный 75% нормативного расхода. При нормативном [1] расходе вытяжного воздуха из объема кухни 90 м3/ч пассивный воздухообмен должен быть около 68 м3/ч, и при наружной температуре переходного периода +5°С такой расход может быть обеспечен воздушным каналом диаметром 100 мм. Для вытяжки из санузла при нормативном расходе 50 м3/ч пассивный воздухообмен при неработающем вентиляторе составит 38 м3/ч, и воздушный канал диаметром 80 мм будет достаточен для этой цели. Вытяжной вентилятор должен устанавливаться на входе в вытяжной канал. Он должен подавать удвоенный нормативный расход воздуха и развивать давление, достаточное для преодоления гидравлического сопротивления воздушного канала от вентилятора до выхода в атмосферу. При этом гидравлическое сопротивление сборной шахты должно рассчитываться при всех работающих вентиляторах, соединенных со сборным каналом. Сечение сборной шахты должно быть таким, чтобы при работе всех, кроме одного, квартирных вентиляторов, подающих вытяжной воздух в эту шахту, в нем не создавалось давление, способное опрокинуть естественную тягу в том единственном канале, в котором вентилятор не работает. Нормами [1] установлено, что удельное сопротивление трению при движении воздуха в сборной шахте во время работы всех присоединенных к ней местных вентиляторов не должно превышать 0,65 Па/м**. С учетом этого ограничения минимальную площадь сечения сборной шахты F, м2, рекомендуется приближенно определять по формуле: F = BGК0,75, (3) где B — коэффициент, величина которого зависит от шероховатости стенки шахты и принимается равной 0,0004 для стальной трубы, 0,0006 — для бетонной и 0,0009 для кирпичной шахты; GК — расчетный для выбора сечения шахты расход воздуха, м3/ч, при всех работающих местных вентиляторах. Величину GК рекомендуется рассчитывать по формуле: GК = 2?gн, (4) где ?gн — сумма нормативных расходов воздуха, м3/ч, из помещений, воздух из которых собирается в сборном канале. Задача четвертая. Определить минимальную площадь сечения сборной вентиляционной шахты 16-этажного жилого дома, выполненной из железобетона, если на каждом этаже в нее подключены каналы-спутники из кухни и совмещенного санузла одной квартиры. Нормативный [1] расход вытяжного воздуха из кухни равен 90, а из санузла — 50 м3/ч. Расчетный для выбора сечения шахты расход воздуха, м3/ч, при всех работающих местных вентиляторах определяется по формуле (4): GК = 2,16•(90 + 50)= 4480 м3/ч, а площадь сечения сборной шахты— по формуле (3): F = 0,0006•(44800,75)= 0,328 м2. Как правило, вентиляционные блоки, разработанные в свое время для многоэтажных типовых жилых домов, не удовлетворяют новым требованиям, регламентирующим площадь сечения сборной шахты. Это естественно, поскольку старые каналы проектировались исключительно для небольших расходов воздуха при гравитационном побуждении. Несмотря на то, что сборная шахта в новых домах будет больше, чем она была в домах, построенных в прошлом веке, вытяжную вентиляцию рекомендуется проектировать таким образом, чтобы вытяжной канал в целом был компактнее, чем прежде. Этого удается достичь, если обособленные каналы-спутники, площадь сечения которых теперь минимальна, разместить в габаритах сборной шахты. На рис. 9, а показано техническое решение вентиляционного блока применительно к условиям четвертого примера. Обособленные каналы-спутники нормативной длиной 2 м каждый не занимают полезного сечения сборной шахты, которая остается полностью свободной выше того уровня, где эти каналы заканчиваются. Направление движения воздуха в сборной шахте совпадает с направлением входа воздуха из каналов-спутников, что создает эжектирующий эффект, способствующий дополнительной устойчивости естественной тяги в каналах-спутниках, работающих в режиме пассивной вентиляции. Таким образом, габаритные размеры вентиляционного блока совпадают с размерами сборной шахты. Уменьшенные обособленные каналы открывают возможность применения в многоэтажных домах многоканальных блоков, в которых обособленные вытяжные каналы, не объединяясь, проходят до выброса наружу. При этом могут использоваться монолитные каналы в поперечных несущих стенах, которые в этом случае не занимают полезной площади квартир. На рис. 9, б показаны размеры многоканального блока для санитарного узла 12-этажного жилого дома. Применение 100-миллиметровых каналов для вытяжки из санузлов вместо 80-миллиметровых, как это было определено в результате анализа рис. 8, связано с большой протяженностью обособленного канала. 80-миллиметровый канал был бы достаточен для пассивной вентиляции, для которой длина канала не имеет значения, поскольку потери на трение в протяженном канале соответствуют увеличению располагаемого давления при естественном побуждении. В режиме активной вентиляции гидравлические потери могут оказаться чрезмерными по сравнению с давлением, развиваемым вентилятором. Поэтому рекомендации, касающиеся размеров вытяжных каналов, сделанные на основе анализа рис. 8, к многоканальным блокам не относятся, и диаметры каналов в них нужно выбирать для режима активной вентиляции с учетом давления, развиваемого вентилятором, при подаче удвоенного нормативного расхода воздуха. 2.4. Сокращение энергоемкости систем водоснабжения Расход воды в системах холодного и горячего водоснабжения жилого дома определяется двумя факторами, — поведением жителей и давлением воды. Энергосберегающее поведение жителей определяется, главным образом, суммами ежемесячных платежей за воду, если эти платежи отвечают объемам фактического потребления воды. Украинские нормы [7] требуют обязательной установки квартирных водосчетчиков. Нормами [1] установлена новая предельная величина давления у водоразборных кранов. Теперь она равна 4,5 бар вместо 6, и это обстоятельство должно способствовать заметному уменьшению потребления воды в многоэтажных жилых домах и, как результат, уменьшению нормы водопотребления, которая пока остается чрезмерно высокой. Более низкое нормативное давление ведет к увеличению количества зон в высотных зданиях и к уменьшению мощности повысительных водопроводных насосов. Чтобы уменьшить потребление энергии приводами повысительных насосов, насосные установки нужно выполнять с пневмобаками, при наличии которых насосы могут автоматически отключаться в период, когда нет водоразбора. Ведущие фирмы поставляют в собранном виде насосные группы с пневмобаком с возможностью одновременного включения нужного количества насосов, один из которых служит для подачи воды при минимальной потребности. Самым рациональным способом управления повысительным насосом является частотное регулирование. Применением сложных систем управления повысительными насосами определяется необходимость единой повысительной установки для систем холодного и горячего водоснабжения. Она должна рассчитываться на подачу суммарного секундного расхода воды при давлении, учитывающем потери в водоподогревателях горячего водоснабжения, которые не должны превышать 1 бар в обеих ступенях подогрева. При этом максимальное давление в системе горячего водоснабжения не должно превышать 4,2 бар, а в холодном водопроводе в этом случае — 4,8 бар. При необходимости понижения давления во внутренней водопроводной системе невысокого здания применяется регулятор давления прямого действия «после себя». На рис. 10 показана схема водопроводного ввода с регулятором давления «после себя». Регулятор должен применяться в тех случаях, когда давление Р1 в городском водопроводе, выраженное в метрах водяного столба, превышает высоту водопроводной системы здания на 20 м и более. При установке регулятора следует иметь в виду, что он может применяться исключительно на хозяйственно-бытовых системах водоснабжения. На противопожарных системах регуляторы давления по схеме рис. 10 устанавливать не допускается. Установка регуляторов давления «после себя» рекомендуется на водопроводных вводах зданий детских садов и школ, расположенных внутри района, застроенного многоэтажными зданиями, а также в других подобных случаях. Циркуляционные насосы систем горячего водоснабжения должны обеспечивать расход воды, минимально необходимый для предотвращения ее чрезмерного (более чем на 10°С) охлаждения при отсутствии водоразбора: QГВС = 3,6•103?WГВС/(c?t), (5) где ?t — предельно допустимая разность температур, °С, в горячем и циркуляционном трубопроводах, принимаемая 10°С; с — удельная теплоемкость воды, равная 4,187 кДж/(кг?°С); ?— коэффициент, учитывающий несбалансированность циркуляционной системы горячего водоснабжения. Значения ??рекомендуется принимать равным 1 при одном циркуляционном стояке в системе, а также при нескольких циркуляционных стояках, если на каждом из них установлен настроенный надлежащим образом балансировочный вентиль. При отсутствии балансировочных вентилей 1,2 ? ?? 1,5. Для разветвленных систем горячего водоснабжения рекомендуется принимать более высокие значения ?.WГВС — тепловой поток, кВт, от нагретых трубопроводов системы горячего водоснабжения в помещения, вычисляемый: WГВС = 10–3??(50 – tП)[?DiLi + (1 – ?из)(?DjLj)], (6) где ?— коэффициент теплоотдачи, Вт/(м2?°С), от поверхности нагретой трубы к воздуху помещения, принимаемый 11 Вт/(м2?°С); tП — температура, °С, помещений, в которых прокладываются трубы горячего водоснабжения; ?DiLi — сумма произведений диаметров, м, неизолированных трубопроводов (включая трубопроводы полотенцесушителей, присоединенных к стоякам горячего водоснабжения) на их длину, м; ?DiLi— сумма произведений диаметров, м, изолированных трубопроводов на их длину, м; ?из— эффективность тепловой изоляции, величина которой не должна быть меньше 0,8. Давление Н, кПа, циркуляционного насоса системы горячего водоснабжения принимают равным величине гидравлического сопротивления контура циркуляции, включающего в себя наиболее удаленный от насоса циркуляционный стояк, при прохождении через сборный участок контура расхода QГВС, вычисленного по формуле (5). Циркуляционными насосами горячего водоснабжения целесообразно управлять, отключая их во время пикового водоразбора. Командой для такого отключения может быть электрический сигнал от водосчетчика или от датчиков перепада давления, установленных, например, до и после водоподогревателя. В системах горячего водоснабжения пристроенных помещений общественного назначения циркуляционный насос нужно отключать по команде таймера на ночь и на выходные дни вместе с отключением водоподогревателя горячего водоснабжения от тепловой сети. При прокладке трубопроводов горячего водоснабжения в эффективной тепловой изоляции расходы тепловой и электрической энергии на циркуляцию будут минимальными, в особенности при использовании электрических полотенцесушителей вместо водяных, которые обычно присоединяют к системе горячего водоснабжения. При использовании в качестве водонагревателей интенсифицированных кожухотрубных теплообменников ТТАИ можно вообще отказаться от применения циркуляционных насосов в системах горячего водоснабжения (раздел 3.4).