Устройство циркуляции должно осуществлять, как минимум, следующие основные функции: коагуляция взвеси воды, фильтрация, обеззараживание и коррекция рН. Степень обеззараживания никогда не равна 100%, часть бактерий все равно остается. Кроме того, с пловцов постоянно смываются новые бактерии. Поэтому при всех способах дезинфекции вода после обработки должна содержать вещества, подавляющие размножение бактерий. В процессе эксплуатации накапливаются растворимые в воде вещества, которые не могут быть удалены примененной системой очистки. Поэтому в бассейнах, особенно больших, (более 500 м3) рекомендовано постоянно добавлять свежую воду питьевого качества. Для улучшения отделения взвешенных веществ в воду, поступающую в контур очистки, вводится коагулянт. Затем вода проходит песчаный и, при необходимости, угольный фильтры. Коррекция рН после обработки осуществляется введением химических реактивов (обычно, кислоты). Основной проблемой является разложение загрязнений и дезинфекция воды. Наиболее широко распространенными методами обеззараживания воды в России являются обработка бактерицидными (УФ) лучами, хлорирование, озонирование. Рассмотрим эти и некоторые другие применяемые в настоящее время способы обеззараживания воды. Обработка УФ-излучением Ультрафиолетовое излучение является ионизирующим, однако энергия УФ-фотона не сильно превышает энергию ионизации молекул, так что энергии фотона хватает на возбуждение или ионизацию только одной молекулы, хотя длина пробега излучения в слабо поглощающей среде может достигать 10 см и более. Энергии УФ-фотона хватает на возбуждение или даже разрушение различных молекул, однако для этого длина волны фотона должна совпадать с длиной волны линии поглощения в данном веществе. Если длина волны фотона сильно отличается от длины волны линии поглощения, заметных превращений в химическом составе веществ, растворенных в воде, под действием УФ-излучения не происходит. Поглощение микроорганизмами определенной энергии УФ-излучения вызывает их гибель. Эта энергия индивидуальна для каждого вида бактерий, однако при дозе излучения 5–11 мДж/см2 можно обеспечить гибель практически всех видов бактерий с вероятностью до 99,9%. Наиболее оптимальными источниками излучения являются ртутные лампы низкого давления, излучающие на длине волны 253,7 нм. Эффективность обеззараживания (доля погибших под действием УФ-облучения микроорганизмов) пропорциональна интенсивности излучения, мВт/см2, и времени его воздействия, с. Произведение этих двух величин называется дозой облучения, мДж/ см2, и является мерой бактерицидной энергии, сообщенной микроорганизму. Минимальная доза УФ-облучения, регламентируемая методическими указаниями Минздрава РФ для обеззараживания питьевой воды, составляет 16 мДж/ см2 [2]. Обработка воды в плавательных бассейнах УФ-лучами не получила широкого распространения из-за низкой санитарной надежности: излучение не обеспечивает пролонгированный антмикробный эффект во всем объеме бассейна. Кроме того, под действием УФ-излучения многие соединения, загрязнители воды, не разлагаются, т.е. излучение обладает только антимикробным действием и не обеспечивает очистку воды. Хлорирование Хлорирование воды намного более надежно. Для предотвращения быстрого роста числа бактерий в бассейне согласно санитарным нормам должна поддерживаться небольшая концентрация хлора (0,2–0,5 мг/л). Поэтому без применения хлора ни один из методов обеззараживания воды не может использоваться. Если хлорирование производится газообразным хлором, то при попадании в воду хлор гидролизуется: Равновесие устанавливается, когда прореагирует примерно ⅓ растворенного хлора. Дезинфицирующим действием обладают молекулярный хлор и ионы ClO. Ионы ClO можно вводить в воду не только через газообразный хлор, но и через гипохлориты, например раствор NaClO. Раствор гипохлорита натрия содержит активный хлор, равноценный по своим дезинфицирующим и окислительным качествам чистому хлору. Его применение практически снимает все опасные и вредные производственные факторы, присущие использованию жидкого и газообразного хлора — сильнодействующего ядовитого вещества. К достоинствам применения гипохлорита натрия относится возможность его получения непосредственно на месте потребления путем электролиза дешевого и доступного сырья — поваренной соли NaCl. В настоящее время разработаны и производятсяустановки получения гипохлорита натрия различной производительности, которые могут быть использованы для хлорирования воды бассейнов. Ионы ClO являются сильным окислителем. Тем самым хлорирование обеспечивает разложение окисляющихся примесей воды. При взаимодействии с органическими соединениями ионы ClO превращаются в ионы Cl+, равновесие приведенной выше реакции гидролиза газообразного хлора смещается влево, и из воды выделяется избыток хлора. Поэтому доза хлора (расход активного хлора на поддержание требуемой концентрации) намного (в разы) превышает содержание хлора в воде бассейна. Обилие органических соединений находится в первую очередь на теле пловца, поэтому пловец в таком бассейне очень остро чувствует запах хлора, образующегося у него под руками. Выделение газообразного хлора при контакте с телом пловца и попадание хлора в нос делает купание в хлорированной воде не слишком приятным занятием. Озонирование Более современный, но и более дорогой способ очистки и обеззараживания воды — озонирование. Озон вводится в воду после добавления коагулянта и на выходе песчаного фильтра. Коагулирующим эффектом обладает сам озон, поэтому при озонировании эти реагенты можно не использовать. Озонированная вода проходит затем дегазацию (удаление избыточного озона) и угольный фильтр, в котором происходит удаление загрязнений, выпавших в осадок, и разрушение остаточного растворенного озона. Концентрация озона в воде, необходимая для ее дезинфекции, составляет примерно 1 мг/л, время контакта озона с водой — не менее двух минут. Однако доза озона (количество озона, вводимого на единицу объема) может быть намного больше из-за его расходования на окисление загрязнений. Чем больше пловцов в бассейне, тем больше максимально необходимый расход озона. Минимальную мощность озонатора можно выбрать такой, чтобы обеспечить концентрацию озона в воде не менее 1 мг/л. Недостатком озона как дезинфицирующего агента является его малое время жизни (в чистой воде — не более часа). Поэтому при озонировании в воду нужно дополнительно вводить вещества, подавляющие размножение бактерий. Такими веществами могут быть активный хлор и перекись водорода (активный кислород). Таким образом, после озонирования все равно необходимохлорирование. Минимальное содержание остаточного хлора должно быть 0,2 мг/л. Только расход хлора будет в десятки раз меньше, чем при хлорировании, и его запах практически не будет ощущаться. Озон является более сильным окислителем, чем хлор, поэтому степень очистки воды при озонировании существенно выше, чем при хлорировании. Однако озон — селективный окислитель, есть много соединений, которые практически не разлагаются озоном. Озонирование по многим показателям превосходит хлорирование: ❏ озон обладает более высоким окислительным потенциалом, чем хлор, поэтому бактерицидное действие озона сильнее; ❏ озон реагирует в 15–20 раз быстрее хлора; ❏ при озонировании возрастает содержание растворенного в воде кислорода, что способствует возврату очищенной озоном воде свежести, характерной для чистых природных источников. К недостаткам озона можно отнести неполное окисление органических веществ и возможность накопления в воде карбонильных соединений (альдегидов). Озон хорошо окисляет фенол, однако окисление мочевины, накапливающейся в плавательном бассейне (концентрация мочевины может достигать 10–4 мольл), происходит очень медленно. Поэтому при озонировании полная и достаточно частая замена воды продолжает оставаться необходимой. Ультразвук В сонохимических процессах звуковая энергия на частотах от 20 кГц до нескольких МГц прикладывается к водному раствору. Интенсивная звуковая волна вызывает разрушение оболочки клетки и гибель бактерий [3]. Энергия акустической волны превращается в тепловую через образование и коллапс кавитационных пузырьков. Схлопывание пузырьков сопровождается световой вспышкой, что может свидетельствовать об электрическом разряде внутри пузырька. Высокая температура и давление, сопровождающие коллапс пузырька, приводят к диссоциации молекул воды на гидроксильные радикалы и атомы (радикалы) водорода. Тем самым при сонохимических процессах возможно не только обеззараживание, но и очистка воды. Применение этой технологии не получило заметного распространения. Хороший эффект достигается при сочетании ультразвука (кавитации) и УФ-излучения. При этом намного повышается производительность установок и сокращается расход энергии. Обработка озоногидроксильной смесью Дальнейшим развитием технологии очистки воды плавательных бассейнов является обработка озоно-гидроксильной смесью [4]. Обеззараживание и частичное разложение примесей осуществляется озоном, полное разложение примесей гидроксильными радикалами. Принцип циркуляции воды при обработке озоно-гидроксильной смесью показан на рис. 1. Основной контур очистки воды состоит из насоса и механического (песчаного) фильтра. Поток воды в этом контуре должен быть больше 1/8 объема бассейна в час на величину потока воды через контур генератора озоногидроксильной смеси. Часть воды из основного контура ответвляется в контур генератора. Давление воды на отрезке от фильтра 3 до бассейна 1 при длине трубы 5–10 м может составлять не менее 0,5 атм. Этого давления достаточно для нормальной работы эжектора генератора. Поток воды в контуре генератора может быть 5–10% от основногопотока и его величина не имеет принципиального значения. Поток проходит через генератор и подвергается обработке озоном и гидроксильными радикалами. Озоно-гидроксильная смесь контактирует с водой в эжекторе-кавитаторе. Кавитация усиливает действие основных факторов электрического разряда. Внутри полости генератора создается концентрация озона в воде 1–3 мг/л, время удержания воды в полости — не менее двух минут. Вода, насыщенная озоном, уносится из генератора и после угольного фильтра 5 смешивается с основным потоком в точке 6. Точка 6 находится вблизи узла забора воды из бассейна. В угольном фильтре поглощаются свободные радикалы и осуществляются химические реакции, приводящие к выпадению в осадок карбонатов тяжелых металлов. Для дезинфекции воды основной активной частицей будет озон (также как и при озонировании). Дезинфицирующий эффект усиливает кавитация. Разложение примесей в воде будет осуществляться озоном и радикалами ОН. Радикалы ОН, в отличие от озона, являются универсальным окислителем, они взаимодействуют со многими веществами примерно в миллион раз быстрее, чем озон. Конечным продуктом взаимодействия с органическими веществами является углекислый газ и вода. Выход озона на единицу затрачиваемой энергии в БЭР-реакторе примерно тот же, что и в современных озонаторах, однако кроме озона здесь образуются радикалы ОН (примерно 1/6 часть от выхода озона), которые при тех же энергетических затратах намного повышают эффективность очистки воды. Озонированная вода, смешиваясь с основным потоком, осуществляет ее дезинфекцию. Пролонгированное дезинфицирующее действие может осуществляться двумя способами. 1. В обработанной озоно-гидроксильной смесью воде создается остаточная концентрация активного кислорода на уровне 0,05–0,1 мг/л, которая может сохраняться больше суток. Основной составляющей активной формы кислорода является перекись водорода. 2. Поддержание концентрации активного хлора. Идея метода заключается в том, что ионы хлора, находящиеся в воде (например, в составе поваренной соли), окисляются гидроксильными радикалами: Следует подчеркнуть, что окисление ионов хлора озоном в принципе возможно, но реакция протекает очень медленно. В генераторе часть образующегося газообразногохлора выделяется из воды, а часть гидролизуется: Соляная кислота нейтрализуется щелочью — продуктом первой реакции окисления хлора: В этом процессе молярная концентрация ионов гипохлорита может достигать16 от молярной концентрации озона (пропорционально соотношению выходов озона и гидроксильных радикалов при вспышечном коронном электрическом разряде). Нарабатываемые таким образом ионы гипохлорита обеспечивают подавление размножения бактерий в объеме бассейна. Применение генератора озоно-гидроксильной смеси для очистки воды плавательного бассейна позволяет получить следующие преимущества. ❏ Улучшение качества воды за счет более полного окисления примесей (по сравнению как с хлорированием, так и с озонированием). ❏ Отсутствие раздражающего запаха хлора (хотя хлор в виде NaCl все равно нужно добавлять, однако его расход очень маленький). ❏ Получение воды с низким окислительно-восстановительным потенциалом. Испытания установки мощностью 40 Вт в бассейне объемом 40 м3 дали следующие результаты. В новый бассейн была залита вода из скважины, вода мутная. На первом этапе очистка воды осуществлялась только с помощью песчаного фильтра. В воду добавили 200 г реагента, содержащего активный хлор (таблетки ≪Акватабс≫). После осветления воды был включен генератор озоно-гидроксильной смеси. Никакие реактивы в воду больше не добавлялись. Система очистки воды, представленная на рисунке, включалась на 7–10 ч в сутки. Поток воды через контур генератора БЭР (см. рис.) составлял 0,6 м3/ч. При работе генератора вода сохранялась чистой и прозрачной. Когда генератор выключили на трое суток, работал по 10 ч/сут только насос и песчаный фильтр, вода покрылась окрашенной пленкой. После включения генератора пленка исчезла. Исходная вода имела рН = 7,15, содержание железа — 2 мг/л. После обработки в течение месяца по 7–10 ч/сут значение рН стало 8,45, окислительновосстановительный потенциал +70 мВ, содержание железа — меньше 0,3 мг/л. Получившаяся вода по своим свойствам близка святой воде (из церкви) и является целебной [4]. Она пригодна для питья и лучше бутилированной воды (например, лучше воды Aqua Minerale).


1. Гигиенические требования к устройству, эксплуатации и качеству воды в плавательных бассейнах. СанПиН 2.1.2.568–96. 2. Методические указания МУ 2.1.4.719–98 ≪Санитарный надзор за применением ультрафиолетового излучения в технологии подготовки питьевой воды≫.Методика Министерства здравоохранения РФ. 15 октября 1998 г. Утверждены Главным государственным санитарным врачом РФ. 3. Маргулис М.А. Звукохимия — новая перспективная область химии высоких энергий.— ≪Химия высоких энергий≫, т. 38,№3/2004. 4. Аристова Н.А., Пискарев И.М.Новый подход кз адаче очистки и обеззараживания питьевой воды на основе генератора озоно-гидроксильной смеси.— Журнал ≪С.О.К.≫,№9/2005.