В настоящее время геотермальная энергия используется в 51 стране в электрогенерирующих технологиях. За пять лет (с 2010 по 2015 годы) суммарная мощность геотермальных электростанций возросла на 16 % и составила 12 635 МВт. Существенное увеличение мощности геотермальных электростанций обусловлено экологической безопасностью, существенной экономической эффективностью и высокими показателями использования установленной мощности.

Геотермальная энергетика: технологии и оборудование. 7/2017. Фото 1

Сегодня геотермальные электростанции (ГеоЭС) эксплуатируются в 26 странах с ежегодной выработкой электроэнергии около 73 549 ГВт [1]. Ожидаемый рост установленной мощности геотермальных электростанций к 2020 году — порядка 21 443 МВт (рис. 1). Значительные показатели в области геотермальной энергетики имеют США: общая установленная мощность ГеоЭС составляет 3450 МВт при ежегодной выработке электроэнергии 16,6 МВт/ч. На втором месте Филиппины с суммарной мощностью ГеоЭС 1870 МВт, на третьем Индонезия — 1340 МВт. При этом наиболее существенный прирост мощности ГеоЭС за последние пять лет отмечен в Турции — с 91 до 397 МВт, то есть на 336 %. Далее следуют Германия — на 280 % (с 6,6 до 27 МВт) и Кения — на 194 % (с 202 до 594 МВт).

Геотермальная энергетика: технологии и оборудование. 7/2017. Фото 2

В современной геотермальной энергетике наиболее распространёнными являются ГеоЭС с тепловой схемой турбоустановки, включающей дополнительное расширение геотермального пара, общая мощность которой составляет 5079 МВт. На перегретом геотермальном паре работают энергоблоки ГеоЭС суммарной мощностью 2863 МВт. Общая мощность энергоблоков ГеоЭС с двумя ступенями расширения пара равна 2544 МВт.

Геотермальные бинарные энергоблоки с органическим циклом Ренкина получают всё большее распространение, и на сегодняшний момент их суммарная мощность превышает 1800 МВт. Средняя единичная мощность бинарных энергоблоков равна 6,3 МВт, энергоблоков с одним давлением сепарации — 30,4 МВт, с двумя давлениями сепарации — 37,4 МВт, а энергоблоков, работающих на перегретом паре, — 45,4 МВт.

Основной прирост установленной мощности современных геотермальных электростанций в мире в последние годы осуществляется в значительной степени за счёт сооружения новых ГеоЭС с энергоблоками бинарного цикла.

Технологические схемы современных ГеоЭС можно классифицировать по фазовому состоянию геотермального теплоносителя, типу термодинамического цикла и применяемых турбин (рис. 2). Геотермальные электростанции работают на геотермальном теплоносителе в виде перегретого пара, пароводяной смеси и горячей воды. Прямой цикл ГеоЭС характеризуется использованием во всём технологическом тракте в качестве рабочей среды геотермального теплоносителя.

Геотермальная энергетика: технологии и оборудование. 7/2017. Фото 3

ГеоЭС с бинарным циклом в основном применяются на месторождениях с низкотемпературной горячей водой (90–120 °C), которые характеризуются использованием во втором контуре низкокипящего рабочего тела. Двухконтурные ГеоЭС предполагают использование бинарного и комбинированного бинарного циклов. В комбинированном цикле ГеоЭС паровая турбина работает на геотермальном паре, а утилизация тепла отработавшего или сбросного геотермального теплоносителя в виде жидкой фазы осуществляется в бинарной энергоустановке второго контура.

Конденсационные турбины одноконтурных ГеоЭС работают на геотермальном перегретом паре, а также на насыщенном паре, отсепарированном из пароводяной смеси. Турбины с противодавлением используются на одноконтурных ГеоТЭС, которые наряду с выработкой электроэнергии обеспечивают теплом системы теплоснабжения.

В настоящее время в России энергоблоки с противодавленческими турбинами эксплуатируются на островах Кунашир и Итуруп (входят в Курильскую гряду). На Калужском турбинном заводе были разработаны энергоблоки «Омега-500», «Туман-2,0» и «Туман-2,5» [2].

Противодавленческие турбоустановки значительно проще конденсационных по своей конструкции, поэтому их цена существенно ниже.

Достаточно часто применяются технологические схемы одноконтурных ГеоЭС с одним, двумя и тремя давлениями сепарации, так называемые схемы SingleFlash, Double-Flash и Triple-Flash, соответственно. Так, ГеоЭС с двумя и тремя давлениями сепарации предполагают использование дополнительного вторичного пара, полученного в расширителе вследствие вскипания сепарата. Это позволяет увеличить использование тепла геотермального флюида по сравнению с ГеоЭС с одним давлением сепарации.

Геотермальные паротурбинные установки производят компании в Японии, США, Италии и России.

В табл. 1 представлены основные фирмы-производители современных паровых турбоустановок и оборудования для геотермальных электростанций. Конструкция геотермальных турбин обладает рядом особенностей, которые обусловлены использованием низкопотенциального геотермального насыщенного пара в качестве рабочей среды, отличающейся коррозионной агрессивностью и склонностью к образованию отложений.

Геотермальная энергетика: технологии и оборудование. 7/2017. Фото 4

К современным передовым технологиям повышения эффективности геотермальных турбин можно отнести:

  • внутриканальную сепарацию влаги в проточной части турбины, включая периферийную сепарацию влаги, отвод влаги через щели в полых сопловых лопатках и ступень-сепаратор;
  • системы периодической промывки проточной части и концевых уплотнений на работающей турбине;
  • применение технологии управления физико-химическими свойствами геотермального теплоносителя присадками поверхностно-активных веществ;
  • снижение потерь в турбинных решётках за счёт оптимизации геометрии сопловых и рабочих лопаток, включая использование высокоэффективных саблевидных лопаток.

Так, в конструкции геотермальной паровой турбины ОАО «КТЗ» мощностью 25 МВт для Мутновской ГеоЭС применены специальные устройства для сепарации влаги, позволяющие удалить до 80 % жидкой фазы в виде крупных капель и жидких плёнок из проточной части [3]. Начиная с четвёртой турбинной ступени, в проточной части применена развитая система периферийной сепарации влаги. В седьмой и восьмой ступенях обоих потоков турбины используется внутриканальная сепарация влаги в сопловых решётках. Достаточно эффективным методом удаления влаги является применение специальной турбинной ступени-сепаратора, которая позволяет увеличить КПД турбина почти на 2 %.

Солесодержание пара, поступающего в проточную часть турбин ГеоЭС, зависит от минерализации исходного геотермального флюида и эффективности разделения фаз в сепарационных устройствах. Эффективность сепарационных устройств в значительной степени определяет степень заноса проточной части турбин солеотложениями, а также влияет на интенсивность каплеударной эрозии турбинных лопаток и коррозионного растрескивания металла элементов проточной части турбин.

В технологических схемах современных геотермальных электростанций применяются вертикальные и горизонтальные сепараторы. Вертикальные сепараторы используются в основном на ГеоЭС, построенных при участии новозеландских специалистов в Новой Зеландии, Филиппинах и др. странах. Горизонтальные сепараторы применяются в геотермальных энергоблоках в России, США, Японии и Исландии. Причём до 70 % ГеоЭС в мире работает с вертикальными сепараторами [4]. Вертикальные сепараторы способны в среднем обеспечивать степень сухости пара на выходе до 99,9 %. При этом их эффективность существенно зависит от режимных параметров: расхода и давления влажного пара, влагосодержания пароводяной смеси (ПВС), уровня жидкости в сепараторе и др.

В России разработаны и эксплуатируются на энергоблоках ГеоЭС горизонтальные сепараторы, отличающиеся высокой эффективностью и малогабаритными характеристиками. Степень сухости пара на выходе из сепаратора достигает 99,99 %. В основу этих разработок легли исследования и технологии предприятий, производящих оборудование для АЭС, судостроения и других отраслей [5]. Такие сепараторы установлены и успешно работают в модульных энергоблоках ВерхнеМутновской ГеоЭС и на первой очереди Мутновской ГеоЭС (рис. 3).

Геотермальная энергетика: технологии и оборудование. 7/2017. Фото 5

Преимущество бинарных установок, заключающееся прежде всего в возможности производить электроэнергию на основе низкотемпературного источника тепла, в значительной степени определило основные направления их применения. Особенно целесообразно использование бинарных установок для:

  • энергообеспечения (также и автономного) регионов, обладающих низкотемпературными геотермальными ресурсами;
  • повышения мощности действующих ГеоЭС, работающих на высокотемпературном геотермальном теплоносителе, без бурения дополнительных скважин;
  • повышение эффективности использования геотермальных источников за счёт применения бинарных установок в технологических схемах вновь проектируемых комбинированных геотермальных электростанций.

Теплофизические, термодинамические и др. свойства органических низкокипящих веществ оказывают существенное влияние на вид и эффективность теплового цикла, технологические параметры, конструкцию и характеристики оборудования, режимы эксплуатации, надёжность и экологичность бинарных установок.

На практике применяются около 15-ти различных низкокипящих органических веществ и смесей в качестве рабочего тела бинарных установок. По факту в настоящее время геотермальные бинарные энергоблоки в основном работают на углеводородах — около 82,7 % от суммарной установленной мощности бинарных энергоблоков в мире, фторуглеродах — 6,7 %, хлорфторуглеродах — 2,0 %, водно-аммиачной смеси — 0,5 %, отсутствуют данные по рабочему телу для 8,2 % [6].

Геотермальные электростанции с комбинированным бинарным циклом отличаются тем, что геотермальный флюид первого контура не только является источником тепла для второго контура, но и непосредственно используется для преобразования теплоты в механическую работу в паровой турбине.

Паровая фаза геотермального двухфазного теплоносителя используется непосредственно для выработки электрической энергии путём расширения в паровой турбине с противодавлением, а теплоту конденсации геотермального пара (а также сепарата) направляют во второй низкотемпературный контур, в котором для выработки электроэнергии используется органическое рабочее тело. Применение подобной комбинированной схемы ГеоЭС особенно целесообразно в случаях, когда исходный геотермальный флюид содержит большое количество неконденсирующихся газов, поскольку затраты энергии на удаление их из конденсатора могут быть значительными.

Результаты термодинамических расчётов [7] показывают, что при всех равных исходных условиях использование бинарного энергоблока в геотермальных электростанциях комбинированного цикла может увеличить мощность ГеоЭС типа Single-Flash на 15 %, а ГеоЭС DoubleFlash — на 5 %. В настоящее время бинарные установки производятся на заводах в США, Германии, Италии, Швеции, России и др. странах. Сведения о некоторых технических характеристиках бинарных установок, выпускаемых различными производителями, представлены в табл. 2.

Геотермальная энергетика: технологии и оборудование. 7/2017. Фото 6

На рис. 4 представлены данные о стоимости установленной мощности в 1 кВт при сооружении различных ГеоЭС с турбоустановками на геотермальном паре и низкокипящем органическом рабочем теле, свидетельствующие о зависимости стоимости ГеоЭС от применяемого цикла и температуры геотермального геофлюида.

Геотермальная энергетика: технологии и оборудование. 7/2017. Фото 7

Наиболее перспективными российскими геотермальными энергетическими проектами являются расширение Мутновской ГеоЭС (50 МВт) и Верхне-Мутновской ГеоЭС (12 МВт) комбинированными (с бинарным циклом) энергоблоками мощностью 10 и 6,5 МВт, соответственно, за счёт утилизации тепла их сбросного теплоносителя без бурения дополнительных скважин, а также строительство второй очереди Мутновской ГеоЭС мощностью 50 МВт.

Выводы

1. В мировой геотермальной энергетике применяются технологические схемы с ГеоЭС прямого, бинарного и комбинированного циклов — в зависимости от фазового состояния и температуры геотермального теплоносителя.
2. Основной прирост в суммарной установленной мощности ГеоЭС в мире в последние годы осуществляется за счёт развития бинарных геотермальных энерготехнологий.
3. Удельная стоимость установленной мощности геотермальных энергоблоков существенно зависит от температуры геотермального теплоносителя и с её увеличением резко снижается.