Руководство по обслуживанию и уходу конденсационных котлов

Содержание:

- 1.ПРИМЕНЕНИЕ
- 2.ОБЩЕЕ ОПИСАНИЕ КОТЛОВ THERM 28 KD
- 3.ТЕХНИЧЕСКИЕ ДАННЫЕ
- 4.ПРОИЗВОДСТВЕННЫЙ КОНТРОЛЬ
- 5.ОСНОВНЫЕ ИНСТРУКЦИИ ПО МОНТАЖУ
 - Размещение котла
 - Подвеска котла
 - Присоединение котла к отопительной системе
 - Отвод конденсата
 - Присоединение котла к газу
 - Присоедение котла к электросети
 - Отвод продуктов сгорания
 - Наполнение отопительной системы
 - Выбор элементов регулирования и управления
 - Введение котла
 - Отключение котла

6.ИНСТРУКЦИИ ПО ОБСЛУЖИВАНИЮ И УХОДУ

- Обслуживание котла
- 7. ЭЛЕКТРОНИКА МОДУЛЯЦИОННАЯ DIMS03 TH01
- 8. ГАЗОВЫЙ РЕДУКТОР SIT 848 SIGMA
- 9. ГАРАНТИЯ И ОТВЕТСТВЕННОСТЬ ЗА ДЕФЕКТ
- 10. ГРАФИКИ ПРИСОЕДИНИТЕЛЬНОГО СВЕРХДАВЛЕНИЯ ОТОПИТЕЛЬНОЙ ВОДЫ
- 11. ЭЛЕКТРОСХЕМА СОЕДИНЕНИЙ THERM 45 KD C АВТОМАТИКОЙ DIMS03-TH01
- 12. СОСТАВ КОТЛА ТНЕЯМ 45 КД
- 13. ПРИСОЕДИНЕНИЕ КОТЛА ТНЕЯМ 45 КD
- 14. ПОДВЕСКА КОТЛА THERM 45 KD
- 15. ВАРИАНТЫ УСТАНОВКИ КОТЛОВ
- 16. РЕГИСТРАЦИЯ РЕМОНТОВ
- 17. СЕРТИФИКАТ КАЧЕСТВА

1. ПРИМЕНЕНИЕ

Настенные конденсационные котлы THERM 45 KD - современные газопотребляющие устройства для отопления объектов с тепловой потерю до 45 кВт в самостоятельном использовании а в каскадном подсоединению и для обширных объектов с высшей

тепловой потерю. Необходимую мощность котельней можно получить подсоединением котлов в каскад, который управляемый собственным

регулированием втом числе эквитермной. Таким образом возможно получить простой сборкой источник тепла с высоким полезным действием,

интеллигентной эксплуатацией высокой надёжностю. Отдельные котлы сконструированы как потребители с использованием конденсации водяного пара в процессе горения а выделяться высокой эффективностей и минимальными выбросами в атмосферу. Это ыначить, что их эксплуатация экономичная и незагрязняет окружащую среду. Мощность котла плавно

регулируемая в диапазоне 28 – 100 % а приспосабливается автоматически потреблениям объекта.

Примененные элементы от крупных мировых производителей обеспечивают высокий технический стандарт котла.

Предупреждение: Для правильной работы котла минимальное давление воды в отопительной системе должно быть 0,8 бар (измерено в володном состоянию). Котлы Therm 45 KD по их мощности и вариабельности использования неоснащены расширительным баком.

Если котел присоединен к системе с открытым расширителем, его высота над котлом должна быть как минимум 8 м.

2. ОБЩЕЕ ОПИСАНИЕ КОТЛОВ СЕРИИ THERM 28 KD

Все элементы газового котла THERM 45 KD закреплены на несущей раме.

В верхней части котла находится нержавеющее компактное тело Giannoni, которое объединяет камеру сжигания с горелкой и двухкамерным теплообменником. Передающие тепло поверхности теплообменников образуют круглые трубные доски, эти поверхности следует предохранять от загрязнений, которые могут выходит из отопительной системы. По этой причине отопительная система на входе обратной воды в котел оснащается фильтром. Коллектор на выходе отопительной воды из тела оснащается автоматическим деаэрационным вентилем и термозондом. На съемной передней стене тела закреплены два электрода (поджигающий и ионизирующий), трубчатая горелка и фасонный трубопровод подачи смеси газа и воздуха.

Надлежащее отношение смеси газа и воздуха и ее смешивание обеспечивается смесителем в содействии специальной газовой арматуры. Арматура состоит из регулятора давления газа, двух соленоидных блокирующих вентилей и измерительного регулятора выходящего количества газа с элементами механической настройки. Настроить синхронизм измерительного регулятора можно только с использованием специальных приборов. Действие системы заключается в том, что количество добавляемого газа прямо пропорционально количеству втекающего через смеситель воздуха, поставляемого вентилятором. Таким образом можно говорить, что мощность котла зависит от количества поступающего воздуха сжигания.

Обороты вентилятора плавно регулируются в широком диапазоне при помощи электроники, что в результате обеспечивает большой мощностный диапазон котла. Воздух в вентилятор поступает через фасонный трубопровод из присоединительного комплекта.

Вывод конденсата из конденсационного тела, трубопровода вытяжки дымовых газов и воздухопровода осуществляется при помощи шлангов в сифон, откуда конденсат выходит за пределы котла.

Подача воздуха сжигания, а также вынужденная вытяжка дымовых газов, как правило, осуществляются по коаксиальному трубопроводу, который проходит горизонтально сквозь наружнюю стену или вертикально через кровельную конструкцию в открытое пространство. Трубопровод должен быть сделан так, чтобы (благодаря низкой температуре продуктов горания), не возникало обледнение на наконечнике выхлопной трубы. Вертикальный трубопровод поэтому должен быть в обязательном порядке закончен кровельной трубой с козырьком, горизонтальный протягивается с небольшим уклоном от выхода к котлу.

На входе обратной воды встроен насос подачи «Wilo», который обеспечивает протекание воды через котел.

Достаточный объем протекания отопительной воды через котел контролируется проточным выключателем. Котел также оснащен предохранительным клапаном избыточного давления для защиты котла.

К котлу можно добавочно подсоединить трехходовой клапан с электрическим приводом для распределения функций подогрева ГВС и отопительной системы.

Панель управления сделана из пластмассы. С передней стороны расположены элементы управления (см.инструкцию по обслуживанию). Внутри встроена автоматика DIMS03-TH01 которая обеспечивает поджиг и микропроцессорное регулирование котла.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

	Ед-ца измер.	THERM 45 KD
Топливо		природный газ
Категория потребителя		I_{2H}
Номин.тепл. потребл.мощность:	кВт	42.5
Мин.тепл. потребл.мощность:	кВт	12,25
Номин.тепл. мощность для отопления при $\Delta t = 80/60$ °C:	кВт	41.7
Номин.тепл. мощность для отопления при $\Delta t = 50/30$ °C:	кВт	45
Мин.тепл.мощность при $\Delta t = 50/30 ^{\circ}\text{C}$	кВт	13
Диаметр заслонки газа:	MM	10
Сверхдавление газа на входе в котел:	мбар	20
Расход газа:	м ³ .час ⁻¹	1,28-4,52
Макс.сверхдавл.отопительной системы	бар	3
Мин.сверхдавл.отопительной системы	бар	0,8
Макс.темпер.отоп.воды на выходе	°C	80
Диаметр коакс.трубы отвода/привода	MM	80/125
Средняя темпер.дымовых газов	°C	50
Макс.уровень шума по ČSN 01 16 03	дБ	54
кпд	%	98 - 106
Категория NO _x котла		5
Ном.эл.питание напряжение / частота	В/Гц	230 / 50
Ном.эп.потребляемая мощность	Вт	280
Ном.ток предохранителя котла	A	2
Степень защиты эл.деталей		IP 41 (D)
Среда по ČSN 33 20 00 – 3		основная
Среда по Съм 33 20 00 – 3		AA5/AB5
Габариты котла: высота/ширина/глубина	MM	800/430/370
Вес котла	КГ	45

4. ПРОИЗВОДСТВЕННЫЙ КОНТРОЛЬ

Все части котла до укомплектовки изготовителем контролируются и настраиваются. Каждый котел подвергается испытаниям на непроницаемость водяной системы, герметичность газопроводной системы, все регулирующие и предохранительные элементы проходят испытания и настраиваются.

5. ОСНОВНЫЕ ИНСТРУКЦИИ ПО МОНТАЖУ КОТЛА

Монтаж котлов разрешается проводить только квалифицированной специальной фирме, работники которой должны соблюдать все инструкции и предупреждения настоящего руководства. Монтаж необходимо проводить в соответствии с действительными нормами и инструкциями, касающимися газопотребяющих устройств, пожарной безопасности приборов и источников тепла и газопотребяющих устройств, работающих на природном газе и пропанбутане в зданиях.

В обязанности монтажной фирмы входит контроль правильности выбора типа котла в отношении его функциональных свойств и требуемых параметров, включая вид топлива, и контроль маркировки на упаковочной таре, соответствует ли заказанному типу котла. После распаковки следует проверить правильность и комплектность поставки. При обнаружении каких-либо недостатков, не приступая к монтажу, информируйте изготовителя котла или организацию-поставщика.

♦ Размещение котла

Котлы серии THERM 45 KD можно устанавливать в жилых и нежилых помещениях (котельных). По своему дизайну котлы предусмотрены скорее для жилых помещений. При установке котла в жилом помещении максимальную мощность котла лучше всего отрегулировать на нижную границу диапазона мощности потерь, благодаря чему понизится уровень шума котла при работе на низкой мощности.

У котлов предусмотрена защита электрической части **IP 41(D)**. Поэтому могут быть установлены в ванных согласно соответствующей нормы.

В помещении, где устанавливается котел, согласно соответствующей нормы, среда должна быть обычной, основной, защищенной от мороза, с температурой в диапазоне от +5 по +35 °C, влажность воздуха до 80%.

Расстояние между контуром котла и предметов, которых касается норма о пожарной безопасности приборов (классифициируемые по степени горючести материалов) должно быть, не менее:

- 100 мм из нелегкогорючих материалов, трудногорючих или среднегорючих
- 200 мм из легкогорючих материалов (например, древесноволокнистые плиты, материалы из целлюлозы, полиуретана, полистирола, полиэтилена, ПВХ и т.п.)

Предупреждение:

На котел и в местах находящихся на расстоянии, считающимся опасным, запрещается ставить предметы из горючих материалов (минимальное расстояние между котлом и горючими предметами в направлении основного теплоизлучения 50 мм, в остальных направлениях 10 мм).

Перед тем, как приступить к работам, в результате которых может измениться среда в помещении установленного котла (например, работа с лакокрасочными материалами, клеями и т.п.), котел следует выключить переключателем рабочих режимов (положение 0 – указатель показывает налево).

♦ Подвеска котла

Перед установкой котла следует убедиться, что выбранное место отвечает требованиям, касающимся вывода дымовых газов, что подходят минимальные расстояния, упоминавшиеся в предыдущей части. В соответствии с размерным эскизом подготовить скобы для монтажа котла на стену (см. рисунок).

При монтаже котлов в каскад рекомендуем их закрепление на несущей раме.

♦ Присоединение котла к отопительной системе

Котельные с каскадом котлов THERM 45 KD надо решить проектом, тщательно смотря на расчеты гидравлических условий отопительной системы ввиду общей отдаваемой тепловой мощности.

Само присоединение котла к системе отопления, газопроводной сети и трубопроводам горячей воды должно быть сделано с таким расчетом, чтобы исключить силовую нагрузку на присоединительные выводы котла.

С целью экономического использования конденсационного режима работы котла рекоммендуется расчитать отопительную систему на низкие температуры ($\Delta t = 50/30$ °C). С целью использования максимальной мощности теплообменника следует принять меры, чтобы в отопительной системе поддерживалось сверхдавление не менее 0,8 бар, только так будут обеспечены исправность действия и высокая долговечность.

До присоединения котла к системе отопления рекомендуем последнюю тщательно промыть с целью устранения случайных мелких примесей, которые бы могли обесценить работу теплообменника. За таким образом поврежденные компоненты или в случаи засорения теплообменника завод-изготовитель ненесет ответственность и поэтому на эти компоненты нельзя предъявлять гарантию!

В системе отопления следует предусмотреть соответствующий фильтр, кроме того исполнение системы отопления должна отвечать нормам, касающимся:

- Проектирование и монтаж центрального отопления
- Предохранительное оборудование для центрального отопления и обогрев хозяйственной воды

Предупреждение:

В котлах THERM 45 KD невстроен расширительный бак. Поэтому должно расширительный бак установить в отопительной системе.

♦ Отвод конденсата

Котел оснащен сифоном, который перед пуском котла следует наполнить водой, примерно 100 мл воды. На отвод конденсата з котла надо прежде всего подключить нейтрализационное оборудование и потом отвести конденсат в канализацию.

Выпускной трубопровод должен быть протянут с уклоном не менее 5° от котла в сторону канализации. Не допускать, чтобы этот трубопровод чем-либо был заблокирован (если вывод конденсата окажется засоренным, последует резонанс камеры сжигания котла).

Анализ конденсата:

Параметр	Ед.измерительная	Измер.
рН – водородный показатель	-	3
Нитриты	МГ.Л⁻¹	0,06
Медь (Си)	МГ.Л⁻¹	0,2
Свинец (Рв)	MГ.Л ⁻¹	0,65
Кадмий (Cd)	МГ.Л⁻¹	1,25
Цинк (Zn)	MГ.Л ⁻¹	2,1

♦ Присоединение котла к газопроводной сети

Присоединять котел к газовой сети, согласно соответствующих норм, разрешается только фирме с надлежащими правомочиями, ее работниками с надлежащей квалификацией, дающей им согласно их документации право работать с газом. Перед котлом регулятор газа уже не встраивается. Такой регулятор предусмотрен в объединенной газовой арматуре, которая является частью котла. Перед котлом должен быть предусмотрен газовый шаровой вентиль с сертификатом на газ. К задвижке газа доступ должен быть открытым.

Котел работает на природном газе <u>теплотворностью</u> от 9 до 10,5 кВт.час/м³ и номинальным давлением в распределительной сети 20 мбар.

♦ Присоединение котла к электросети

У котла предусмотрен трехжильный подвижный провод с вилкой на конце. Присоединяется к сетевой штепсельной розетке, помещенной поблизости от котла, чтобы после его установки розетка оказалась доступной для штепцельной вилки согласно требований нормы, касающейся безопасности электроприборов для домашнего хозяства и других целей. В штепсельной розетке должна быть предусмотрена защита занулением или заземлением а ее присоединение должно отвечать нормам присоединения электроприборов, чтобы защитный штифт был сверху, а центральный или зануляющий провод был присоединен к правой гильзе при взгляде спереди. Напряжение сети должно быть 230 В ± 10 %. К установке штепсельной розетки, присоединению термостата и сервису электрической части котла допускается только специалист с квалификацией электротехника, как этого требует соответствующая норма – Присоединение электрических приборов и устройств.

♦ Вытяжка дымовых газов

Оттяжка дымовых газов и подача воздуха горения производятся сдвоенной трубой 80/125 мм поставляемой изготовителем котла, которую можно себе заказать в необходимом количестве по проекту (горизонтальная или вертикальная труба втом числе уплотнительной манжеты, продных изоляторов и т.п.). К оттяжению дымовых газов на большой разгон возможно использовать систему дымовых труб 80/80 мм (самостоятельное всасывание а выдох). По причине большой разнообразности возможных вариантов, не являются элементы оттяжки дымовых газов в основном оснащении котла.

Котел должен быть установлен с принадлежностями (трубопровод для подачи воздуха сжигания и дымоход вместе с выпуском, промежуточными элементами, арматурой), поставляемыми с котлом. Эти компоненты являются неотъемлемой частью котла и поставляются отдельно в зависимости от типа установки. Без этих компонентов котел запрещается вводить в эксплуатацию. Возможные варианты приведены на конце настоящего руководства.

Основные условия по выводу дымовых труб из котлов с горелкой с принудительным притоком воздуха сжигания и с принудительной вытяжкой дымовых газов определены техническими правилами TPG-G 800 01 от 20.9.1996 г. Конкретное исполнение отвода дымовых газов должно быть разработано проектом схем соединения котла с соблюдением стандартных правил и с учетом выпуска конденсата. Горизонтальная выхлопная труба (чтобы конденсату не вытекать на улицу) должна быть с уклоном 2^0 от наконечника трубы к котлу.

При использовании коаксиальной трубы у котла Therm 45 KD необходимо использовать систему 80/125 мм! Допустимые изготовителем длины коаксиального отвода дымовых газов:

Допустимая изготовителем максимальная длина коаксиального отвода дымовых газов 80/125 мм:

Горизонтальный трубопровод: – макс. 5 метров. Измерять от колена на котле до выпуска в фасаде здания. Каждое следующее колено 90° сокращает эту длину на 0.75 м, и колено 45 – на 0.5 м.

Вертикальный трубопровод: – макс. 5 метров. Измерять от аппарата до нижней части проходного изолятора через крышу. Каждое колено 90° сокращает эту длину на 0,75 м, и колено 45 – на 0,5 м.

При использовании распределителя и отдельного трубопровода отвода газов и всасывания диам. 80 мм макс. длина 2 x5 м.

♦ Наполнение системы отопления

Во время наполнения отопительной системы котел должен быть отключенным от электрической сети, т.е. штепсельная вилка должна быть вынута из розетки. Давление наполнения при холодной системе составляет 1-1,5 бара. Процесс наполнения должен проходить медленно, чтобы дать возможность отхода воздушным пузырькам через соответствующие продувочные вентили. Для первого наполнения и дополнения используется вода, отвечающая соответствующим нормам (касающимся воды и пара для тепловых энергетических устройств), вода должна быть прозрачной, бесцветной, без осадочных веществ, масла и химически агрессивных примесей, некислой (pH менее 7), с минимальной карбонатной жесткостью (не более 3,5 мвал/л). Если потребуется жесткость регулировать, надо применить рекомендуемые вещества.

В случае несоблюдения вышеуказанных условий может быть повреждем насос, теплообменник или другие компоненты котла и на такие поврежденные компоненты гарантия не распространяется.

♦ Выбор элементов регулирования и управления

Котел оснащен основным набором элементов регулирования и предохранения, как это очевидно на приводимых ниже электросхемах. С целью расширения возможностей регулирования к элементам регулирования можно добавить прибор, регулирующий в зависимости от температуры избранного в качестве эталона помещения, или эквитермный регулятор отопительной воды или комбинированное регулирование.

Для регулирования по комнатной температуре на выбор может быть предоставлена целая шкала термостатов, например Honeywell CM 707, CM 907, Electrobock PT 21, PT 30, BPT 30 GSM. Для выгодное эквитермальное регулирование поставляем датчик наружной температуры THERM Q01.

Высококачественное регулирование возможно с использованием интеллигентного программируемого регулятора ТНЕЯМ RC 03, который при помощи интерфейса IU02 непрерывно коммуникует с микропроцессором в котле. Таким образом передается информация не только о заданной температуре отопительной системы в зависимости от комнатной и наружной температуры, но и к переводу рабочих параметров котла на дисплей (например сведения о рабочем режиме, производительности, температуре, неисправности, возможности выключить функцию нагревания воды в ночное время и т.п.). Эта система отличается множеством настраиваемых и изображаемых на индикаторе параметров для оптимизации управления отопительным устройством с модуляцией производительности котла.

Котельнзе с каскадом этих котлов возможно выгодно регулировать нашей единичной системой коммуникации между отдельными котлами с использованием бесспорно выгодных регулировочных свойств котлов. К этой цели подаем интерфейс IU 04.10, который обеспечивает передачу информации между котлами и вычисление запросов мощности котельней (число работающих котлов а их модуляцию мощности). Для улучшения возможно использовать у направляющего котла каскада интерфейс IU 05, какой ассоциирует свойства интерфейса IU 04.10 (коммуникация между котлами) и интерфейса IU 02 (коммуникация с программируемым регулятором THERM RC 03). У этой системы более программируемых возможностей изображения рабочих режимов котельней (рабочий режим, мощность, температура, возможные сбои отдельных котлов, сбои коммуникации и т.п.).

Рекомендация: Для регулирования работы отдельного котла (без эквитермной регуляции) рекомендуем использовать хотя бы простой комнатный термостат. Температура помещения постоянна во времени и удерживает котел в более длительных рабочих режимах. Настраивать термостат котла рекомендуем в переходное время года (осень, весна) на 60°C, зимой — на 80°C. Для получения максимума от конденсационного режима котла является удобным использование встроенного устройства эквитермального регулирования, либо отдельно, либо как дополнение к комнатному термостату, как указано ниже.

Эти надстроенные виды регулирования не входят в предмет поставки котла.

♦ Введение в эксплуатацию

Первый пуск котла выполняется сервисным работником, обученным изготовителем!

До первого поджига котла должны быть предусмотрены следующие меры:

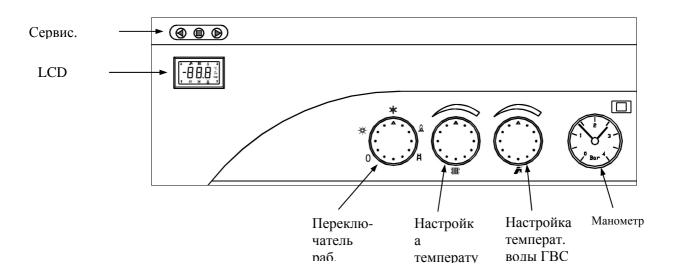
- проверить, наполнена ли система отопления водой и произведена ли деаэрация котла
- проверить, открыты ли все вентили отопительной системы
- открыть газовый кран и проверить непроницаемость газовой проводки котла

Действия при первом зажигании котла следующие:

- кнопку термостата котла установить на максимум
- поворотом переключателя рабочих режимов в положение ☀ (зимний режим) котел автоматически зажигается (при обезвоздушенном газопроводе и сцепленном кокн.термостату)
- проверить исправность действия всех режимов, термостатов и элементов управления котла
- проверить ограничение макс. мощности котла или отрегулировать настройку в зависимости от условий отапливаемого объекта

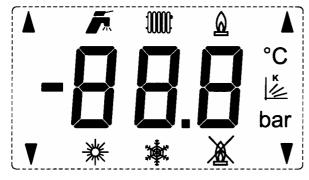
Предупреждение:

Настройка диапазона мощности котла и остальных параметров должна соответствовать техническим данным. Любая перегрузка и неправильное использование котла могут вывести из строя его компоненты. На поврежденные таким образом компоненты гарантия не распространяется.


♦ Отключение котла

Котел можно выключить на короткое время переключателем рабочих режимов , или выключателем на комнатном термостате. При долгосрочном отключении котла вне отопительного сезона (например, на время летнего отпуска) является удобным закрыть газовый кран, в отопительном сезоне дальше надо выпустить воду из котла и прекратить эл.питание вытащением эл.привода из розетки.

6. ИНСТРУКЦИИ ПО ОБСЛУЖИВАНИЮ И УХОДУ


♦ Обслуживание котла

Обслуживать котел разрешается только лицам, достигшим совершеннолетнего возраста.

- **❖** Сервисные кнопки служат для диагностики и настройки параметров котла.
- *** Настройка температуры отопления** поворотный переключатель настройки потреби-телем выходной температуры воды в отопительной системе в диапазоне 30 80 °C. При выборе эквитермного регулирования настраивается сдвиг отопительной кривоой (в диапазоне ± 15 °C эквитермной кривой).
- **♦ Настройка температуры хоз. воды** − у котла Therm 45 KD неиспользуется (только у каскада с IU04.10 у управляющего котла для настройки ночного уменьшения мощности).
- **❖ Манометр** изображает давление воды в отопительной системе.
- **Переключатель рабочих режимов** имеет следующие позиции:
- 0 Выключение котла (режимов)
- Летний режим (включен только нагрев хоз. воды, отопление выключено)
- Зимний режим (включены отопление и нагрев хоз. воды)
- ♦ Разблокировка состояния сбоя котла

❖ LCD дисплей -

Значение примененных символов:

- 🖁 🖟 🖁 - цифровое изображение температур, состояний сбоя и сервисных параметров

- символ режима нагрева хоз. воды (изображена температура хоз. воды)
- символ режима отопления (изображена температура отопления)
- символ горения котла

1000

<u>@</u>

°C

嫩

- символ изображаемого значения температуры
- символ изображаемого значения фактора "К" (эквитермный режим)
- * символ выбранного "летнего режима"
 - символ выбранного "зимнего режима"

- символ сбоя розжига котла
- символы индикации коммуникации с присоединенным интерфейс (IU02, IU04, IU05)

Индикация настраиваемой температуры:

При повороте кнопки настройки температуры системы отопления или хоз. воды начнет мигать соответствующий символ режима и цифровое изображение температуры. В этом случае изображается значение настраиваемой в настоящий момент температуры. После окончания настройки индикация настраиваемой температуры светится еще около 5 секунд. Вслед за этим появившиеся цифровые данные и символ снова изображают реальную температуру надлежащего режима.

Индикация сбоев или превышения рабочих величин:

Изображается на LCD дисплее знаком "Е" и кодом сбоя, значение которого в таблице

код сбоя	значение	
E01	сбой розжига котла	
E02	малый проток отопит. воды (между повторными	
	попытками)	
E03	-	
E04	поврежден датчик отопительной воды	
E05	поврежден датчик хоз. воды (только котлы "КDС")	
E06	сбой превышения лимита температуры отоп. воды	
	(блокировочный термостат)	
E07	поврежден датчик наружной температуры (при	
	эквитермном регулировании)	
E08	сбой вентилятора (сигнал обратной связи оборотов)	
E09	сбой вентилятора (обороты мимо регул.диапазон)	
E10	сбой вентилятора (поворачивается в состоянии "STOP")	
E12	малый проток отопит. воды (между повторными	
	попытками)	
E16	высокая температура в конденсационном корпусе	

Изображение информации на дисплее:

При помощи сервисных кнопок (крайние кнопки; стрелка направо "Ф" – тактование (шаг) вперед, стрелка налево "Ф" – шаг назад) можно изобразить параметры котла в следующей последовательности:

- 1. Настроенная температура отоп. воды (Ш+°C + цифровое значение мигает).
- 2. Действительная температура отоп. воды (Ш+°C + цифровое значение).
- 3. Настроенная температура хоз. воды * ($\mathbf{L} + ^{\circ}\mathbf{C} + \mathbf{\mu} \mathbf{u} \mathbf{p}$ ровое значение мигает).
- 4. Действительная температура хоз. воды *(+ ° C + цифровое значение).
- 5. Наружная температура ** ($\stackrel{*}{\sqsubseteq}$ + °С + цифровое значение).
- 6. Сдвиг эквитермной кривой ** (🖆 + цифровое значение).
- 7. Обороты вентилятора (симбо неприведен+ цифровое значение х 10).
- 8. Возврат в стандартное изображение

Изображается цифровое значение вместе с соответствующим символом в течение 10 секунд от окончания тактирования кнопками. Затем режим дисплея вернется в в стандартное изображение.

- (*) У котлов "КD" и KDZ" не имеется цифровое показание (изображение "- -")
- (**) Эти параметры изображаются только при выбранном эквитермном регулировании отопления (переключен надлежащий переключатель параметров котла, присоединен и не поврежден датчик наружной температуры).

При управлении котла от сигналов комнатного регулятора RC 03 с интерфейсом IU02 о проходящей коммуникации Ореп-Therm сигнализируют верхние крайние стрелки в углах дисплея "▲ ▲", о коммуникации каскада (IU04 и IU05) – нижние крайние стрелки "▼ ▼"

♦ Уход за котлом

Регулярный уход очень важен для надежного хода котла, обеспечения его высокой долговечности и эффективности процесса сжигания. Пользователю рекомендуем связаться с сервисной организацией в месте жительства и позаботиться о регулярном осмотре котла после годового действия (см. Условия на предъявление гарантийных требований). Сервисный техник проверит элементы управления и предохранения котла, непроницаемость газовой и водяной систем, если понадобится, вычистит горелку и теплообменник от сажи и сгоревших частиц пыли.

Для того, чтобы система отопления действовала безупречно, необходимо регулярно контролировать давление воды на выходе в холодном состоянии. Как только давление понизится, в отопительную систему следует долить воду. Корпус котла можно протирать тряпкой, намоченной в мыльной воде, и вытереть насухо.

7. ЭЛЕКТРОНИКА ПЛАВНОГО РЕГУЛИРОВАНИЯ DIMS03-TH01

Переключатель выбора типа и параметров котла (dip-switch)

	DS1-хоз.вода	DS2-наруж. датчик	DS3-каскад	DS4	DS5	DS6
OFF	резервуар	без наруж. датчика	slave			
ON	проточный	с наруж. датчиком	master			

Настроено изготовителем:DS1-по типу котла; DS2-OFF (режим 1.1), DS3-OFF; выбег насоса 50% = 5минут; время против зацикливания 50% = 5 минут

Описание действий:

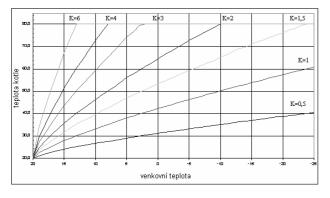
1.1 Режим нагрева отопительной системы (без эквитермного регулирования)

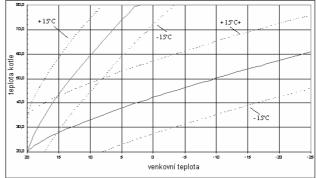
Настройка: Датчик наружной температуры не присоединен, сервисный переключатель DS2, DS3 – OFF.

Рабочая фаза котла начинается сцеплением комнатного термостата (переключатель режимов в позиции «Зимний режим»). Следует запуск вентилятора и активизируется ход центробежного насоса и автоматика розжига. Розжиг котла происходит на настроенную пусковую мощность. Это сохраняется в течение 10 секунд после розжига котла (обратная связь с автоматикой розжига). Затем мощность снижается на минимум с медленным линейным нарастанием (около 1 мин.) до точки модуляции, данной сервисной настройкой макс. мощности отопления. Регуляция мощности котла на этой стадии совершается по принципу PID (пропорционально/интегрально/ деривационная) с поддержкой температуры, настроенной кнопкой на панели управления (в диапазоне 30 – 80 °C). При нагревании отопительной системы с низшей потребляемой мощностью чем минимальная мощность котла, произойдет повышение выходной температуры отопительной воды на 5°C сверх настроенное значение. На этой стадии котел прервет горение, но сохранит ход циркуляционного насоса и запустит функцию ограничения времени повторного розжига (сервисная настройка в диапазоне 0 – 10 минут). Благодаря этому котел становится очень гибко приспосабливаемым источником тепла по отношению к большому количеству регулируемых последующих отопительных систем (например, регуляция по зонам, термостатические вентили и т.п.).

От расцепления комнатного термостата запускается функция регулируемого ограниченного во времени выбега насоса (сервисная настройка в диапазоне 0 – 10 минут). Эта функция используется для дополнительного охлаждения теплообменника и для перекачки тепла из камеры сжигания и для улучшения распределения температуры отопительных элементов (особенно при горизонтальной распределительной системе) в случае применения комнатных регуляторов с PI связью с короткими циклами работы (например, Honeywell CM 707, CM 907).

1.2 Режим нагрева отопительной системы с эквитермным регулированием


Настройка: Датчик наружной температуры присоединен, сервисный переключатель DS2 – ON, DS3 – OFF.


Рабочая фаза котла такая же, как описанный выше режим в пункте 1.1, с той разницей, что температура отопительной системы настраивается автоматически в зависимости от наружной температуры (установленной датчиком). Вычисление величины требуемой температуры отопительной системы — это функция наружной температуры и функция фактора "K"(наклон эквитермной кривой), настраиваемая сервисным техником с учетом местных условий и характера отопительной системы. При помощи кнопки температуры отопительной воды на панели управления потребитель сам настроит требуемый тепловой комфорт (поправка сдвига эквитермной кривой в диапазоне \pm 15 °C отопительной воды).

Эквитермная кривая рассчитана на стандартную отопительную систему с радиаторами.

Графики кривых (наклоны-сдвиги) Наклоны эквитерма venkovní teplota – наружная температура

Сдвиги эквитерма teplota kotle – температура котла

Из вышесказанного следует, что кнопкой настройки температуры отопления на панели управления в этом режиме котла настраивается требуемая температура в отапливаемом помещении. Рекомендуем начальную сервисную настройку "К" = 1,6. Потребитель установит поворотный переключатель температуры отопления посредине траектории настройки (указатель вверх, что соответствует сдвигу кривой 0 °С). После проверки температуры в отапливаемом помещении (примерно через 24 часа) можно внести поправку в настройку в зависимости от ваших представлений о тепловом комфорте. Настроенный таким образом уровень температуры отапливаемого помещения будет поддерживаться автоматически, независимо от изменений наружной температуры.

Используя этот режим регуляции котла, добьемся еще большего снижения эксплуатационных расходов, а тепловой комфорт только улучшится (непрерывный нагрев отопительных элементов). Особенно оценим такую возможность, внеся предварительную регуляцию в первичный отопительный контур при использовании регуляции по зонам (при помощи смесительных клапанов), и т.п.

Само собой разумеется, что для снижения температуры отапливаемого помещения можно присоединить комнатный термостат. В таком случае советуем использовать вариант без РІ регуляции (только со сцеплением от разницы температуры). При помощи поворотного переключателя настройки температуры отопления настраиваем слегка завышенное значение по сравнению работы без комнатного термостата.

В случае сбоя датчика наружной температуры об этом состоянии включается сигнализация, а котел работает в режиме с температурой отопительной системы по параметрам, настроенным в предыдущем режиме, см. пункт 1.1.

2. Режим нагрева резервуара хоз. воды (в случае подключения внешнего бойлера при помощи внешнего трехходового клапана)

Настройка: Сервисный переключатель DS1 – OFF, DS2 по описанному выше, DS3 – OFF.

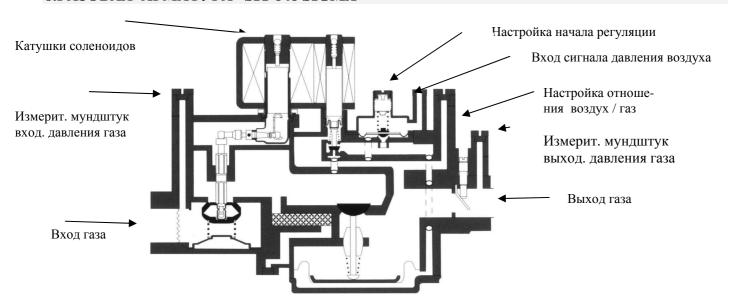
Контуры электронной регуляции приспособлены реагировать на запрос нагрева хоз. воды в резервуаре.

Рабочая фаза в этом режиме котла начинается от сцепления термостата резервуара. Активизируется реле трехходового вентиля, и вентиль переводится в позицию нагрева хоз. воды в резервуаре. Через 8 секунд включается реле насоса и автоматики зажигания. Котел зажигается на пусковую мощность (10 секунд от розжига котла) и затем мощность котла увеличивается на максимум, чтобы как можно быстрее поднялась выходная температура на 80°C. Эта температура поддерживается регулированием мощности по принципу PID. Как только резервуар нагреется, отпускает термостат, котел прерывает горение. Через 10 секунд остановится насос и выключится реле трехходового вентиля, в результате чего вентиль переводится в позицию отопления. Во время перестановки вентиля (примерно 8 секунд) остается заблокированным требование на розжиг. Потом котел может продолжать нагревать отопительную систему (по запросу).

Нагрев резервуара хоз. воды при параллельных запросах имеет преимущественное значение перед отоплением. Учитая запрос повышения проверки деятельности микропроцессора заключается всегда один раз в сутке работы провести вынудительный повторный запуск электроники с последующей инициалиыацией (проявится кратковременной остановкой деятельности ктола а затемнение данных на диспли подобно как при включении сетевой подачи ктола в штепсельную розетку).

Дополнительные функции

- * После окончения работы котла, вентилятор работает еще 20 секунд с оборотами пускавой мощности (чтобы устранить остатки продуктов сгорения из камеры сгорания).
- * Регулярный запуск насоса, когда котел не работает (на 30 секунд в течение суток бездействия).
- * Регулярный запуск трехходового клапана, когда котел не работает (на 10 секунд в течение суток бездействия).
- * Антиоблединительная защита становится активной при понижении температуры в котле под 6°C. Трехходовой вентиль переключается в отопление (в зависимости от типа котла), запускается насос, котел зажигается и нагревает отопительный контур до 30 °C. Когда температура поднимется до этого значения, снова выключается.


* Повторный контроль проточного выключателля становится активным, если в течение 15 секунд хода насоса не окажется сцепленным проточный выключатель. Насос остановится и через 45 секунд будет произведена еще одна попытка запустить котел. Такое явление повторяется десять раз. Затем котел надо выключить и снова включить при помощи переключателя режимов. Если время бездействия насоса до повторного запуска котла превысило 30 минут, первый интервал хода насоса удлиняется до 180 секунд. Интервалы между циклами попыток изображаются так, как приведено в таблице ниже индикации сбоев.

Сервисный техник со специальным разрешением, выданным изготовителем, обязан при запуске ознакомить потребителя с эксплуатацией котла, о чем должно существовать письменное подтверждение, показать отдельные части котла, предохранительные приборы и рассказать о способе управления, заполнить гарантийный паспорт и передать потребителю настоящие инструкции по обслуживанию.

Потребитель обязан эксплуатировать котел в соответствии с настоящими инструк-циями, что является условием признания гарантии.

Категорически запрещается какое-либо вмешательство в запломбированные части котла.

8.ГАЗОВАЯ APMATYPA SIT 848 SIGMA

SIT 848 SIGMA — это газовая арматура с регуляцией отношения воздух / газ. Оснащена двумя соленоидными клапанами блокировки просачивания газа в состоянии бездействия котла. Система регуляции работает в зависимости от сигнала обратной связи давления газа из смесителя. Кроме закрываемых измерительных наконечников измерения входного, выходного и среднего давлений газа арматура имеет элементы настройки правильного отношения воздух/газ в полном диапазоне регуляции мощности котла.

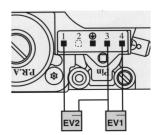
1. Настройка начала регуляции:

Производится пластмассовым винтиком в прибыли системы регулирования дополнительной мембраны. К винтику можно попасть, отвинтив защитный латунный колпачок.

Здесь настраивается отношение смеси при минимальной мощности котла (т.е. при минимальных оборотах вентилятора). От ввинчивания винтика количество газа в смеси уменьшается.

выходное давление газа p2; сигнал давления воздуха Pvz

2. Настройка отношения смеси воздух / газ:


Производится регулирующим винтиком прикрывающего клапана газа на выходе газового клапана.Здесь настраивается отношение смеси при максимальной мощности котла (т.е. при максимальных оборотах вентилятора). От ввинчивания винтика количество газа в смеси уменьшается. выходное давление газа p2; сигнал давления воздуха Pvz

Signál tlaku vzduchu Pvz

Signál tlaku vzduchu Pvz

Электросхема соединений коннектора катушек соленоидов:

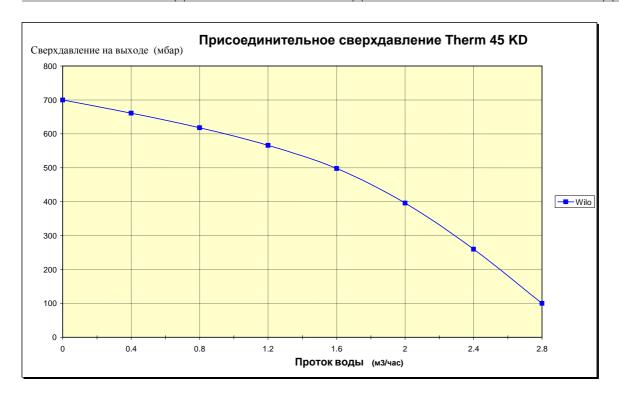
Газовая аматура содержит два соленоидных клапана EV1 (соленоид входа газа) и EV2 (соленоид системы регуляции). Катушки в коннекторе соединительного кабеля включены параллельно (т.е. обе включаются одновременно). Питающее напряжение катушек $220~B \sim ($ переменный).

9. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА И ОТВЕТСТВЕННОСТЬ ЗА ДЕФЕКТЫ

Изготовитель не отвечает за механическое повреждение отдельных компонентов в результате небрежного обращения, за поломки, вызванные неумелым вмешательством в электронику во время наладки и присоединения надстроечных элементов регуляции, за повреждения, вызванные в результате использования чужих деталей и компонентов вместо оригинальных, применяемых изготовителем.

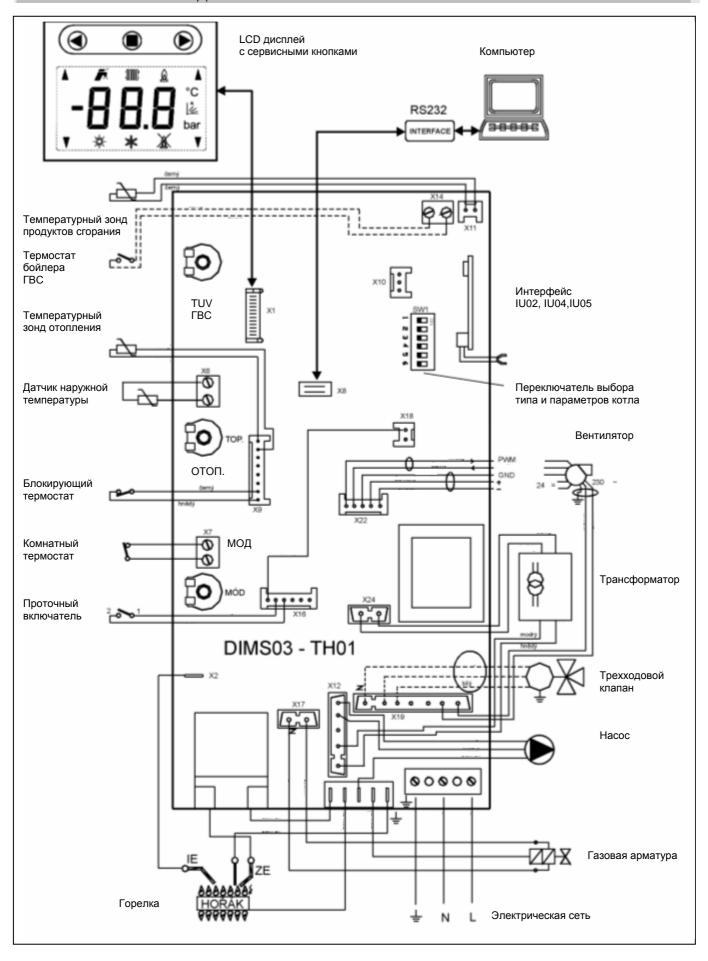
Кроме того, гарантия не распространяется на неисправности, вызванные несоблюдением обязательных предупреждений и условий, оговоренных в отдельных статьях настоящего руководства по обслуживанию и уходу за котлами.

Гарантия также не касается нестандартизированных условий в распределитель-ных системах (колебания и пики перенапряжения электричества, давление и чистота газа), на дефекты оборудования вне котла, которые влияют на его функцию, ненадлежащий вывод дымовых газов, примеси в воздухе сжигания, повреждения от внешних воздействий, механические повреждения, неисправности, возникшие при складировании, транспортировке, а также вследствие стихийных бедствий.

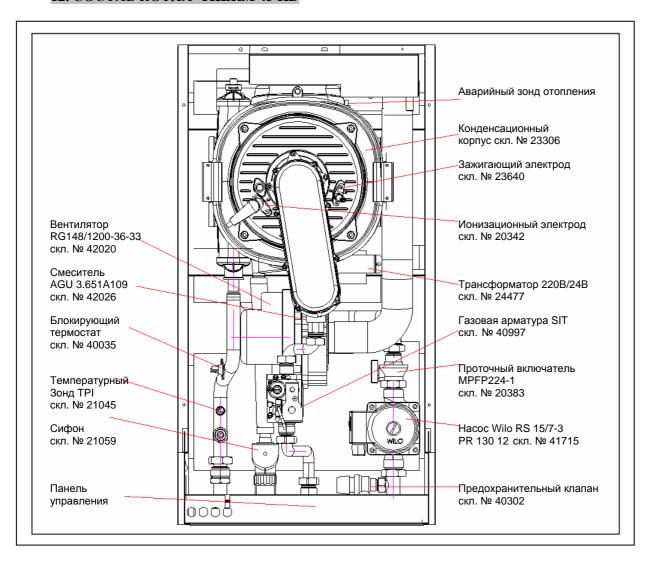

В таких случаях сервисная организация вправе требовать от заказчика оплаты за ремонт.

Предъявление прав, вытекающих из ответственности за неисправности, регулируется по Гражданскому кодексу согласно положения \$ 422 – 441, а по вопросу возмещения за ущерб – согласно положению \$ 373 – 386.

Условия на предъявление гарантийных требований:

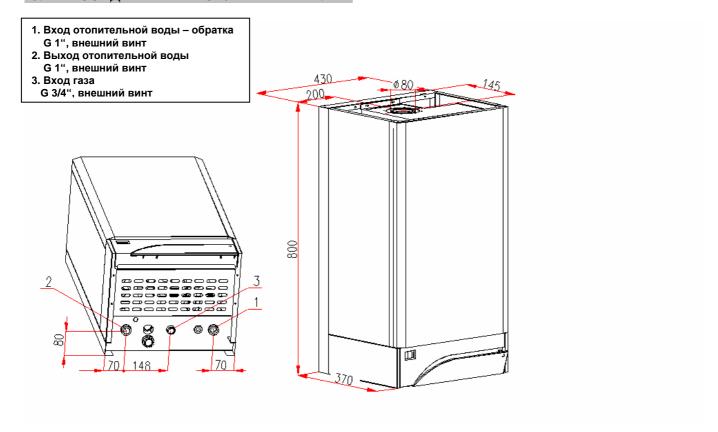

- 1.Согласно законов «Об условиях предпринимательства и реализации государственного управления в сертифицированных отраслях» и «Государственной энергетической инспекции» проводить регулярно один раз в год контроль газового котла. Контроль разрешается проводить только правомочной организации, т.е. договорной сервисной организации.
- 2.Записывать в таблицу, прилагаемую к настоящему руководству, все, касающееся гарантийного ремонта и годовых проверок котла.

10.ГРАФИК ПРИСОЕДИНИТЕЛЬНЫХ СВЕРХДАВЛЕНИЙ ОТОПИТЕЛЬНОЙ ВОДЫ

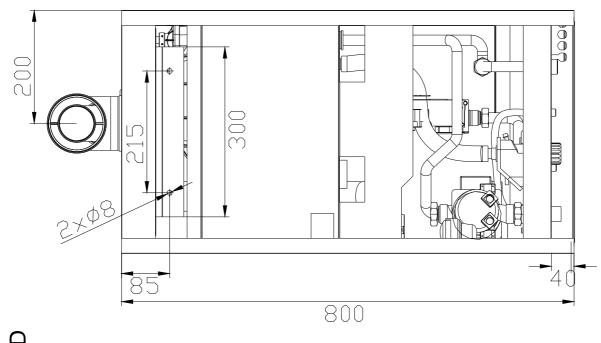


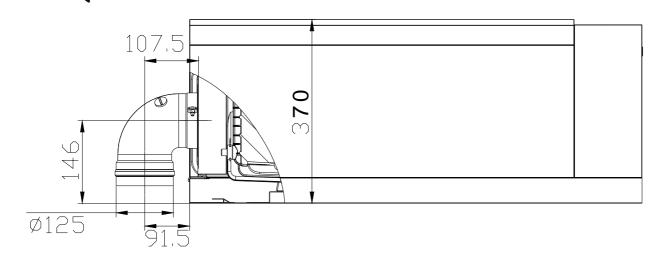
Предупреждение: Кривая применимых присоединительных сверхдавлений воды отопления расчитаны на насосы Wilo 15/7-3 на максимальную степень регуляции. Не рекомендуем снижать мощность насоса.

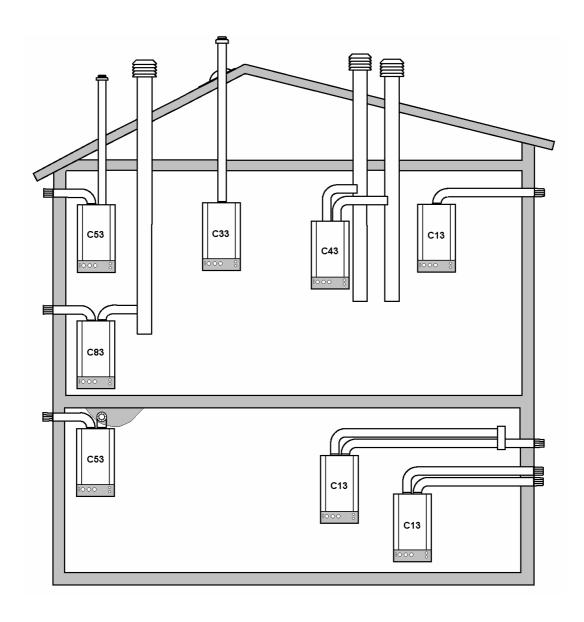
11.ЭЛЕКТРОСХЕМА СОЕДИНЕНИЙ КОТЛОВ THERM 45 KD C АВТОМАТИКОЙ DIMS03 – TH01



12. СОСТАВ КОТЛА ТНЕКМ 45 КД




13. ПРИСОЕДИНЕНИЕ КОТЛА THERM 45 KD


14. ПОДВЕСКА КОТЛА THERM 45 KD

45 K

15. ВАРИАНТЫ УСТАНОВКИ КОТЛА

Исполнение:

 C_{13} - соосный горизонтальный вариант с выпуском в наружной стене. Трубопровод может быть и удвоенным с выпуском либо концентрическим либо настолько близко расположенным (на расстоянии 50 см), что подлежит тем же атмосферным влияниям.

 C_{33} - соосный вертикальный вариант с выпуском на крыше. Трубопровод может быть и удвоенным с выпуском либо концентрическим либо настолько близко расположенным (на расстоянии 50 см), что подлежит тем же атмосферным влияниям.

 C_{43} - раздельное присоединение к двум трубопроводам общего колодца. Выпуск колодцев либо концентрический либо настолько близко расположенный (на расстоянии 50 см), что подлежит тем же атмосферным влияниям.

 C_{53} - раздельные трубопроводы с выпуском в наружней стене или на крыше, в зонах разных давлений, но ни в коем случае не в двух противоположных наружных стенах.

 C_{83} - раздельное присоединение с выводом дымовых газов в отдельный или общий дымоход. Подача воздуха сжигания из проема в наружной стене.

16. ЗАПИСЬ О ВЫПОЛНЕННОМ ГАРАНТИЙНОМ И ПОСЛЕГАРАНТИЙНОМ РЕМОНТЕ И ГОДОВЫХ ПРОВЕРКАХ

všechno co děláme hřeje

Операция	Договорная организация	Подпись заказчика	Дата записи

Рекомендации по ликвидации упаковки и изделия после окончания его срока службы

Упаковка изделия, как правило, сдается в пункт приема макулатуры.

Части котла из стали, меди и сплавов меди сдаются в пункт приема металлолома.

Термоизоляция камеры сгорания с медицинской точки зрения совершенно безвредна, поэтому может быть выброшена в мусорное ведро.

СЕРТИФИКАТ О КАЧЕСТВЕ И КОМПЛЕКТНОСТИ ИЗДЕЛИЯ

Газовый котел THERM

Обозначение типа: THERM 45 KD
Производственный номер:
Прибор отвечает требованиям приводимых выше директив, технических предписаний и стандартов, его эксплуатация в стандартных условиях применения является безопасной. Изготовителем приняты меры благодаря которым обеспечивается соответствие настоящего вводимого на рынок прибора технической документации и основным требованиям техническим, техники безопасности и санитарно-гигиеническим.
Изделие одобрено Машиностроительным испытательным институтом в г.Брно, сертифицированный орган№ 202:
THERM 45 KD - сертификат перепроверки типа согласно ЕС директивы по газопотребляющим приборам 90/396/EHS № Е-30-00771-06
THERM 45 KD - сертификат перепроверки типа согласно ЕС директивы на эффективность 92/42/EHS № E-30-00772-06
Технический контроль
Дата:
Печать и подпись:
OOO «THERMONA» spol. s r.o Stará Osada 258, Zastávka u Brna, 664 84

Тел.: +420 544 500 505, +420 544 500 505

Факс: +420 544 500 506