

ТЕХНИЧЕСКИЙ ПАСПОРТ

Вентиляторы крышные радиальные дымоудаления с выходом потока в стороны

ВКР1ДУ(400) ВКР1ДУ(600)

ТУ 29.23.20-042-54365100-2017 Санкт- Петербург

ОГЛАВЛЕНИЕ

1	НАЗНАЧЕНИЕ	3
	ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ	
	УСТРОЙСТВО И ПРИНЦИП РАБОТЫ	
4	КОМПЛЕКТ ПОСТАВКИ	4
5	УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	4
6	ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ	5
7	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	7
8	ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	8
9	ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	9
10	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	9
11	СВИДЕТЕЛЬСТВО О ПРИЕМКЕ.	24

Убедительно просим Вас перед вводом изделия в эксплуатацию внимательно изучить данный паспорт!

Ваши замечания и предложения присылайте по адресу 195279, Санкт- Петербург, а /я 132, шоссе Революции, 90

Сервис-центр - тел. (812) 493-35-98

www.teplomash.ru

1 НАЗНАЧЕНИЕ

- 1.1 Вентиляторы крышные радиальные дымоудаления ВКР1ДУ (далее вентиляторы) предназначены для удаления образующихся при пожаре дымовоздушных смесей с температурой до 400 °C в течение 120 мин и до 600 °C в течение 120 мин (в соответствии с СП 7.13130.2013 «Отопление, вентиляция и кондиционирование. Требование пожарной безопасности»). Перемещаемая среда не должна быть взрывоопасной и содержать взрывчатые вещества, волокнистые и липкие материалы.
- 1.2 Вентиляторы предназначены для эксплуатации в условиях умеренного климата 1-ой категории размещения (У1 по ГОСТ 15150-69). Температура окружающей среды от минус 50 °C до плюс 45 °C, запылённость не более 100 мг/м³, относительная влажность до 100% при температуре плюс 25 °C. Окружающая среда должна быть невзрывоопасной, не содержать токопроводящую пыль, агрессивные газы и пары в концентрациях, разрушающих сталь обыкновенного качества и электроизоляцию.
- 1.3 Среднее квадратичное значение виброскорости внешних источников вибрации в местах установки вентиляторов не должно превышать 2 мм/с.
- 1.4 Вентиляторы применяются в аварийных системах вытяжной противодымной вентиляции производственных, общественных, жилых, административных и других помещений (кроме категории А и Б по НПБ 105-03).

2 ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

- 2.1 Технические характеристики, общий вид, габаритные, присоединительные и установочные размеры вентиляторов приведены в табл. 3 и рис. 1. Вентиляторы изготавливаются в соответствии с ГОСТ 24814-81 и ТУ 29.23.20-042-54365100-2017.
- 2.2 Аэродинамические характеристики показаны на рис. 2 (пересчёт на 400 °C и 600 °C показаны на рис.3) для перемещения воздуха при номинальных условиях:
 - плотность 1,2 кг/м³
 - барометрическое давление 101,4кПа
 - температура 20 °C
 - относительная влажность, 50%
 - 2.3 Вентиляторы комплектуются электродвигателями согласно таблице 3.
 - 2.4 Виброскорость на жёсткой опоре для вентиляторов:
 - эл/дв. с потребляемой мощностью не более 3,7 кВт 3,5 мм/с.
 - эл/дв. с потребляемой мощностью более 3,7 кВт 2,8 мм/с.
- 2.5 Изготовитель вентиляторов не несёт ответственности за уровень вибрации вентилятора на месте его эксплуатации, если это не оговорено контрактом (согласно п.8.4 ГОСТ 31350-2007 «Вибрация. Вентиляторы промышленные. Требования к производимой вибрации и качеству балансировки»).

3 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 3.1 Устройство вентиляторов соответствует исполнению 1 по ГОСТ 5976-90. Вентилятор состоит из стального оцинкованного корпуса, рабочего колеса типа ВЦ 4-70, электродвигателя. Соединение с электродвигателем должно осуществляться термостойким кабелем. Строповка вентилятора допускается только за специально предназначенные рым-гайки или проушины.
- 3.2 Рабочее колесо изготовлено: для $600\,^{\circ}\text{C}$ из конструкционной легированной стали, для $400\,^{\circ}\text{C}$ из углеродистой стали. Корпус и кожух из оцинкованной стали. Входной патрубок из углеродистой стали. Все узлы (кроме оцинкованных) покрыты термостойкой эмалью КО-8104 марки Б (ТУ 6-00-4691277-42-96).
- 3.3 Корпус имеет вертикальный входной патрубок и горизонтальный выход потока.
- 3.4 Принцип работы вентилятора заключается в передаче механической энергии от вращаемого электродвигателем рабочего колеса потоку воздуха путём аэродинамического воздействия на него лопаток колеса. Выйдя из рабочего колеса, поток воздуха растекается в горизонтальной плоскости.
- 3.5 В конструкцию вентилятора заводом-изготовителем могут быть внесены изменения, не ухудшающие его аэродинамические, шумовые характеристики и показатели надёжности.

4 КОМПЛЕКТ ПОСТАВКИ

Вентилятор ВКР1ДУ – 1шт.Паспорт – 1шт.

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 5.1 При эксплуатации вентиляторов должны быть обеспечены требования «Правил технической эксплуатации электроустановок потребителей» (утверждены приказом Минэнерго от $13.01.2003~\mathrm{r.}$) и «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок» (утверждены приказом Министерства труда и социальной защиты РФ от $24.07.2013~\mathrm{r.}$ № $328\mathrm{h}$).
- 5.2 Работы по обслуживанию вентилятора должен проводить специально подготовленный электротехнический персонал.
- 5.3 Во всех случаях работник, включающий вентилятор, обязан предварительно принять меры по прекращению всех работ по обслуживанию (ремонту, очистке и др.) данного вентилятора и его двигателя, и оповестить персонал о пуске.
- 5.4 В месте установки вентилятора должен быть обеспечен свободный доступ к местам его обслуживания при эксплуатации.
- 5.5 Вентилятор должен быть заземлён. Монтаж электрооборудования, а также заземление его и вентилятора производится в соответствии с «Правилами

устройства электроустановок (ПУЭ)». Сопротивление между заземляющим болтом и каждой доступной прикосновению металлической нетоковедущей частью вентилятора, которая может оказаться под напряжением, не должно превышать 0,1 Ом. Подключение вентилятора осуществлять только специальным термостойким токопроводящим кабелем!

- 5.6 Вентилятор должен быть установлен таким образом, чтобы при пожаре, когда через вентилятор идёт горячая дымовоздушная смесь, исключить как возможность ожога работника от прикосновения к вентилятору, так и возможность возгорания близлежащих объектов.
- 5.7 Поверхность вентилятора должна быть чистой, без следов масла и других горючих веществ, и предметов.
- 5.8 Не допускается хранить вблизи вентилятора горючие вещества, обтирочные концы и т.п.
- 5.9 Воздуховоды должны иметь устройства, предохраняющие вентилятор от попадания в него посторонних предметов.
- 5.10 При работах, связанных с опасностью поражения электрическим током (в т.ч. статическим электричеством), следует применять защитные средства.
- 5.11 При испытаниях, наладке и работе вентилятора всасывающая и нагнетательные полости должны быть ограждены так, чтобы исключить травмирование людей вращающимися частями и засасывание в вентилятор посторонних предметов, одежды и т.п.
- 5.12 В процессе эксплуатации, необходимо систематически проводить профилактические осмотры и техническое обслуживание вентилятора. Особое внимание следует обратить на зазоры между рабочим колесом и входным патрубком, состояние рабочего колеса, его износ, на повреждение лопаток, надёжность крепления колеса на валу, на состояние заземления вентилятора и двигателя.
- 5.13 Важно при визуальном осмотре обращать внимание на положение ламелей жалюзи на выходе вентилятора. Они не должны быть закрыты. Их положение должно способствовать горизонтальному выходу потока из вентилятора (см. рис.1).

6 ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ

- 6.1 При установке, монтаже и запуске в эксплуатацию необходимо соблюдать меры безопасности, указанные в разделе 5.
- 6.2 К установке и монтажу вентиляторов допускается только квалифицированный, специально подготовленный электротехнический персонал.
 - 6.3 Монтаж вентилятора.
- 6.3.1 Произвести внешний осмотр вентилятора. При обнаружении повреждений, дефектов, полученных в результате неправильных транспортировки и хранения, ввод вентилятора в эксплуатацию без согласования с заводом-изготовителем не допускается. В целях предотвращения разбалансировки запрещается демонтаж вращающихся частей вентилятора без согласования с заводом—изготовителем.

- 6.3.2 Установить вертикально и закрепить вентилятор (место установки должно отвечать требованиям п.п. 5.4–5.6).
- 6.3.3 Убедиться в лёгком и плавном (без касаний и заеданий) вращении рабочего колеса.
- 6.3.4 Проверить затяжку болтовых соединений; особое внимание следует обратить на крепление рабочего колеса и электродвигателя. Центральный болт, фиксирующий через торцевую шайбу рабочее колесо на валу электродвигателя, должен быть затянут и застопорен кернением торцевой шайбы или с помощью пружинной шайбы.
- 6.3.5 Проверить сопротивление изоляции двигателя. При необходимости двигатель просушить.
 - 6.3.6 Заземлить двигатель и вентилятор.
- 6.3.7 Проверить соответствие напряжений питающей сети и электродвигателя.
- 6.3.8 Подключить 4-жильный кабель к клеммной колодке (см. рисунок справа).
- 6.3.9 Осмотреть вентилятор, убедиться в отсутствии внутри него посторонних предметов. Оградить всасывающее отверстие. Кратковременным включением двигателя проверить соответствие направления вращения рабочего колеса направлению стрелки на корпусе. Если соответствия нет – изменить направление вращения рабочего колеса переключением фаз.
- черный маркированный черный

M

- 6.3.10 Соединить вентилятор со всасывающим воздуховодом.
- 6.4 Пуск вентилятора.
- 6.4.1 Для проверки работоспособности вентилятора после завершения монтажа необходимо произвести пробный пуск. При простое вентилятора пуск необходимо производить не реже одного раза в три месяца.
- 6.4.2 При пуске вентилятора и во время его действия все работы на воздуховоде, вентиляторе (осмотр, очистка и т.п.) должны быть прекращены.
 - 6.4.3 Перед пуском вентилятора необходимо:
- а) осмотреть вентилятор, воздуховоды, убедиться в отсутствии посторонних предметов, наличие которых не допускается;
- б) проверить надёжность присоединения термостойкого токопроводящего кабеля к зажимам коробки выводов и закрепление зажима заземления;
- в) включить двигатель, измерить ток по фазам электродвигателя, ток не должен превышать номинальное значение, указанное на заводской табличке электродвигателя или в паспорте.
- г) проверить работу вентилятора в течение часа. При появлении посторонних стуков, шумов, повышенной вибрации, чрезмерном нагреве электродвигателя и других признаках ненормальной работы вентилятор должен быть немедленно остановлен. Повторный пуск разрешается только после устранения дефек-TOB.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 Для поддержания вентилятора в работоспособном состоянии необходимо осуществлять правильный и регулярный технический уход.
- 7.2 Устанавливаются следующие виды технического обслуживания при простое вентилятора:
 - техническое обслуживание №1 (TO-1) каждые 3 месяца;
 - техническое обслуживание №2 (ТО-2) каждый год.
- 7.3 Все виды технического обслуживания проводятся по графику вне зависимости от технического состояния вентилятора.
- 7.4 Уменьшать установленный объем и изменять периодичность технического обслуживания не допускается.
- 7.5 Эксплуатация и техническое обслуживание вентилятора должны осуществляться персоналом соответствующей квалификации.
 - 7.6 При ТО-1 проводятся:
 - очистка внешних поверхностей вентилятора от загрязнений;
- внешний осмотр вентилятора с целью выявления механических повреждений;
 - проверка состояния сварных и болтовых соединений;
- проверка надёжности крепления заземления вентилятора и двигателя;
- проверка надёжности крепления термостойкого токопроводящего кабеля;
 - пробный пуск вентилятора на 1 час.
 - 7.7 При ТО-2 проводятся:
- очистка вентилятора, в т.ч. внутренней полости корпуса и рабочего колеса от загрязнений;
 - проверка состояния и крепления рабочего колеса;
- проверка внешних лакокрасочных покрытий и, при необходимости, их обновление;
- проверка надёжности крепления двигателя к корпусу, вентилятора к фундаменту или монтажному стакану;
 - TO-1:
- проверка уровня вибрации; средняя квадратическая виброскорость вентилятора должна соответствовать требованиям п.2.4.
- 7.8 Текущий ремонт предусматривает устранение мелких дефектов и неисправностей вентилятора, проверку затяжки крепёжных соединений, устранение выявленных неплотностей и т.п. и проводится во время технических обслуживаний.
- 7.9 Техническое обслуживание двигателя проводится в объёме и сроки, предусмотренные техническим описанием и инструкцией по эксплуатации двигателя.
- 7.10 После перемещения вентилятором дымовых газов с температурой 400 °C, 600 °C при указанных в разделе 1 параметрах окружающей среды попол-

няется смазка подшипников электродвигателя, проверяется его работоспособность и проводится ТО-2. Вопрос о дальнейшей эксплуатации вентилятора, работавшего на пожаре, должен решаться вместе с представителями изготовителя. Однако его использование в системе противодымной защиты не допускается.

7.11 Учёт технического обслуживания вести по примеру таблицы 1.

Таблица 1 – Учёт технического обслуживания.

Дата	Время простоя, время работы	Вид ТО	Замечание о техниче- ском состоянии вентиля- тора	ФИО, долж- ность, ответ- ственного лица

8 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

8.1 При устранении неисправностей по таблице 2 необходимо соблюдать меры безопасности, указанные в раздел 5.

Таблица 2 – Возможные неисправности и способы их устранения

Наименование неисправно-	павности и спосоов их ус	
сти, внешнее проявление и дополнительные признаки.	Вероятная причина	Способ устранения
Paurungrap upu pagayay ya	Неправильно произведён расчёт вентиляционной сети.	Отрегулировать со- противление сети.
Вентилятор при рабочей ча- стоте вращения рабочего ко- леса не создаёт расчётного давления и не подаёт требуе- мого количества воздуха.	Колесо вентилятора вращается в обратную сторону.	Изменить направление вращение колеса.
	Утечка воздуха через неплотности.	Устранить утечку.
Двигатель вентилятора при рабочей частоте вращения работает с перегрузкой.	Вентилятор подаёт больше воздуха, чем предусмотрено при выборе двигателя.	Уточнить сопротивление сети. Задросселироать сеть.
Вентилятор при рабочей частоте вращения подает больше воздуха, чем необходимо.	Сопротивление возду- ховода ниже проект- ного.	Уточнить сопротивление воздуховода. Задросселироать сеть.

Повышенная вибрация вентилятора. При работе вентилятора создаётся сильный шум,	Слабая затяжка болтовых соединений.	Затянуть болтовые соединения.
как в самом вентиляторе, так и в сети.	Слабое крепление кла- панов и задвижек на воздуховодах.	Обеспечить жёсткое крепление клапанов и задвижек.

9 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 9.1 Вентилятор транспортируется в собранном виде без упаковки. При транспортировке водным транспортом вентилятор упаковывается в ящик по ГОСТ 2991-85 или ГОСТ 10198-91, при транспортировании в районы Крайнего Севера и труднодоступные районы вентилятор упаковывается по ГОСТ 15846-2002.
- 9.2 Вентиляторы следует транспортировать и хранить в условиях, исключающих их механические повреждения, под навесом или в помещении, где колебания температуры и влажности воздуха не больше, чем на открытом воздухе.
- 9.3 Вентиляторы могут транспортироваться без ограничения расстояний автомобильным, железнодорожным, речным и морским транспортом по правилам, действующим на указанном виде транспорта.

10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 10.1 Гарантийный срок эксплуатации крышного вентилятора дымоудаления при соблюдении потребителем правил транспортирования, хранения, монтажа, эксплуатации и технического обслуживания устанавливается 12 месяцев со дня ввода в эксплуатацию, но не более 18 месяцев со дня изготовления.
 - 10.2 Гарантийные обязательства распространяются на:
 - дефекты материала;
 - функциональные дефекты;
 - дефекты, возникшие при производстве изделия.
 - 10.3 Условия предоставления гарантийных обязательств:
 - отсутствие внешних повреждений изделия;
- соблюдение всех рекомендаций и предписаний производителя, касающихся монтажа, подключения, применения и эксплуатации;
- отсутствие несанкционированных производителем переделок или изменений конструкции изделия.
 - 10.4 Гарантия не действует:
 - при наличии дефектов, возникших по вине Заказчика;
- при эксплуатации вентилятора без пускозащитной аппаратуры, соответствующей номиналу используемого электродвигателя (защита по току, защита от обрыва фаз);
 - при отсутствии проекта системы вентиляции;

- при нарушении потребителем правил транспортирования, хранения, условий категорий размещения и условий эксплуатации.
- 10.5 При нарушении потребителем перечисленных выше правил, предприятие-изготовитель ответственности не несёт.
- 10.6 Гарантийный срок эксплуатации электродвигателя определяется заводом-изготовителем электродвигателя и указан в паспорте на электродвигатель.
- 10.7 Средний срок службы вентилятора 10 лет. Гарантированная продолжительность функционирования по назначению при температуре перемещаемой среды:
- 400 °С не менее 120 минут;
- 600 °С не менее 120 минут.
- 10.8 После использования вентилятора при пожаре в течение гарантийного срока последний считается истекшим.

Гарантийный и послегарантийный ремонт осуществляется по адресу: 195279, Санкт-Петербург, шоссе Революции, д. 90, лит. А

Таблица 3 – Технические характеристики.

,		арактериетики.	Электро		0		Macca,		
Модель вентилятора	Dотн	Тип э/д	n, об/мин	Ny, кВт	Nпотр	I, A	Q, тыс.м ³ /час	P _S , Па	кг
	0,9	АИР63А4		0,25	0,37	0,83	0,8-2,0	175-80	43
	0,95	АИР63В4	1500	0,37	0,54	1,18	1,0-2,2	185-80	44
ВКР1ДУ-3,55	1	АИР63В4		0,37	0,54	1,18	1,2-2,7	210-80	44
БКГ1ДУ-5,55	0,9	АИР80А2		1,5	1,9	3,3	1,8-4,0	800-350	51
	0,95	АИР80В2	3000	2,2	2,7	4,6	2,0-4,7	850-350	54
	1	АИР80В2		2,2	2,7	4,6	2,6-5,6	1000-350	54
	0,9	АИР71А4		0,55	0,77	1,61	2,0-6,0	1000-440	62
	0,95	АИР71А4	1500	0,55	0,77	1,61	2,9-7,0	1100-440	63
ВКР1ДУ-4	1	АИР71А4		0,55	0,77	1,61	3,5-8,2	1200-440	63
БКГ 1Д3-4	0,9	AИP90L2	3000	3	3,6	6,1	2,0-6,0	1000-440	68
	0,95	AИP90L2		3	3,6	6,1	2,9-7,0	1100-440	68
	1	АИР100S2		4	4,6	7,9	3,5-8,2	1200-440	82
	0,9	АИР71В4		0,75	1,0	1,9	2,0-4,2	310-140	56
	0,95	АИР71В4	1500	0,75	1,0	1,9	2,3-4,9	340-140	56
ВКР1ДУ-4,5	1	АИР80А4		1,1	1,5	2,75	2,6-5,7	390-140	59
БКГ 1ДУ-4,3	0,9	АИР100S2		4	4,6	7,9	3,3-8,1	1400-560	74
	0,95	АИР100L2	3000	5,5	6,25	10,7	4,1-9,7	1450-560	79
	1	АИР112М2		7,5	8,6	14,7	4,9-11,4	1650-560	90
	0,9	АИР80А4		1,1	1,5	2,75	2,9-5,8	400-180	78
ВКР1ДУ-5	0,95	АИР80А4	1500	1,1	1,5	2,75	3,1-6,7	450-180	79
	1	АИР80В4		1,5	1,9	3,52	3,7-8,0	500-180	82
	0,9	АИР71В6		0,55	0,81	1,74	2,6-5,4	200-90	90
ВКР1ДУ-5,6	0,95	АИР71В6	1000	0,55	0,81	1,74	2,7-6,2	240-90	91
	1	АИР80А6		0,75	1,1	2,26	3,2-7,3	260-90	95

Модель			Электро	одвигател	ΙЬ		Q,		Macca,
вентилятора	Dотн	Тип э/д	n, об/мин	Ny, кВт	Nпотр	I, A	тыс.м ³ /час	Ps, Па	кг
	0,9	АИР80В4		1,5	1,9	3,52	3,9-8,0	490-210	94
ВКР1ДУ-5,6	0,95	AИP90L4	1500	2,2	2,7	5,0	4,1-9,3	560-210	97
	1	АИР100S4		3,0	3,7	6,7	5,0-10,8	600-210	106
	0,9	АИР80В6		1,1	1,5	3,05	3,8-7,6	290-120	121
	0,95	АИР80В6	1000	1,1	1,5	3,05	4,1-8,7	320-120	122
ВКР1ДУ-6,3	1	AИP90L6		1,5	2,0	4,1	4,7-10,3	340-120	127
БКГ1ДУ-0,5	0,9	АИР100L4		4	4,7	8,5	5,7-11,6	660-280	135
	0,95	АИР100L4	1500	4	4,7	8,5	6,7-13,5	720-280	136
	1	АИР112М4		5,5	6,4	11,3	7,3-16,0	790-280	147
	0,9	AИP90L6	1000	1,5	2,0	4,1	4,9-11,0	380-150	151
	0,95	АИР100L6		2,2	2,7	5,6	5,9-12,7	420-150	169
DI/D1 IIV 7 1	1	АИР112МА6		3,0	3,7	7,4	6,5-15,0	450-150	196
ВКР1ДУ-7,1	0,9	АИР112М4	1500	5,5	6,4	11,3	7,8-16,7	910-340	198
	0,95	АИР132S4		7,5	8,6	15,1	9,0-19,0	990-340	221
	1	АИР132М4		11	12,4	22,2	10,5-23,0	1000-340	236
	0,9	АИР112МА6		3	3,7	7,4	6,0-16,0	500-200	227
ВКР1ДУ-8	0,95	АИР112МВ6	1000	4	4,9	9,1	7,9-18,0	550-200	233
	1	АИР132S6		5,5	6,5	12,3	8,5-22,0	580-200	260
	0,9	АИР132S6		5,5	6,5	12,3	12,0-22,8	560-240	316
ВКР1ДУ-9	0,95	АИР132М6	1000	7,5	8,8	16,5	13,5-26,0	630-240	333
	1	АИР160S6		11	12,6	23,0	14,5-30,5	680-240	379
	0,9	АИР132S8		5,5	6,6	13,6	11,2-23,5	410-170	345
ВКР1ДУ-10	0,95	АИР132М8	750	7,5	8,7	18,0	12,1-27,0	460-170	366
	1	АИР160S8		11	12,6	23,0	14,2-32,5	490-170	415

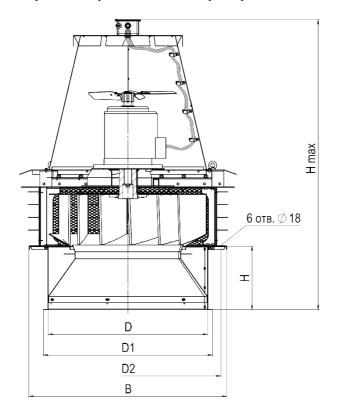
Модель	Dотн		Электродвигатель						Macca,
вентилятора		Тип э/д	n, об/мин	Ny, кВт	Nпотр	I, A	- Q, тыс.м ³ /час	Ps, Па	кг
	0,9	АИР160S6		15	16,9	31,0	14,1-31,1	800-300	404
ВКР1ДУ-10	0,95	АИР160М6	1000	18,5	20,7	36,9	17,0-35,0	850-300	440
	1	АИР180М6		5,5	6,6	13,6	18,0-40,1	900-300	469
	0,9	АИР160S8		7,5	8,7	18,0	16,1-32,5	500-220	499
	0,95	АИР160М8	750	11	12,6	26,0	18,0-37,0	570-220	533
ВКР1ДУ-11,2	1	АИР160М8		11	12,6	26,0	19,5-44,0	610-220	542
БКГ1ДУ-11,2	0,9	АИР180М6	1000	18,5	20,7	36,9	22,5-42,5	920-380	533
	0,95	5АИ200М6		22	24,4	44,7	26,0-50,0	980-380	581
	1	5AИ200L6		30	33,3	59,6	28,5-58,0	1100-380	649
	0,9	АИР180М8		15	16,9	31,3	22,1-46,0	650-270	595
	0,95	АИР180М8	750	15	16,9	31,3	24,0-53,0	710-270	608
ВКР1ДУ-12,5	1	5AИ200L8		22	24,4	45,8	29,5-63,0	790-270	693
БКГ1ДУ-12,3	0,9	5АИ225М6		37	40,7	72,7	31,0-60,0	1070-470	708
	0,95	5AИ250S6	1000	45	49,2	85	34,0-70,0	1200-470	822
	1	5AИ250S6		45	49,2	85	38,5-83,0	1400-470	834

Условные обозначения:

*Domн – относительный диаметр колеса (Domн = Dhom*0,9), где Dhoм – номинальный диаметр рабочего колеса;*

п – частота вращения вала электродвигателя, об/мин;

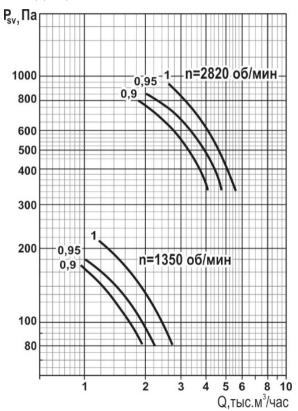
Ny – номинальная (установленная) мощность двигателя, кВт;

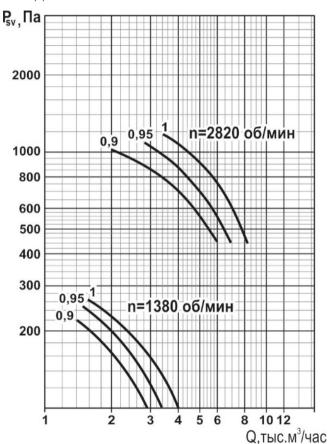

Nnomp – потребляемая мощность двигателя, кВт;

I – сила тока, A;

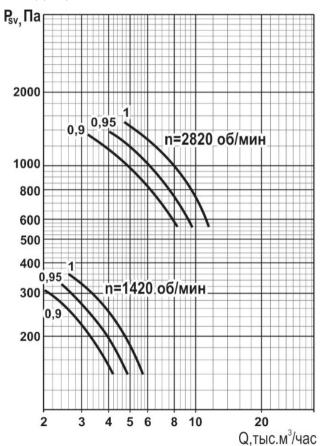
Q – производительность при температуре 20 °C, тыс. м 3 /час;

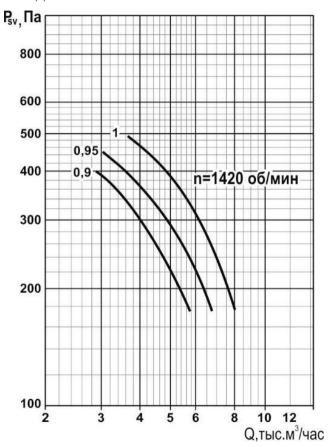
 P_s — статическое давление при температуре 20 °C, Πa .

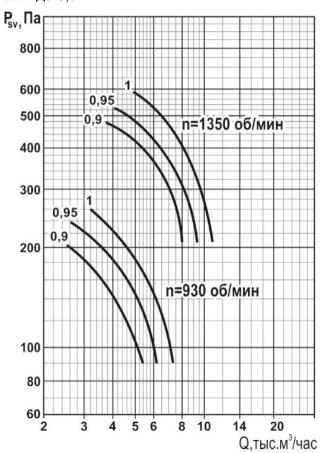

Рисунок 1 – Габаритные и присоединительные размеры.



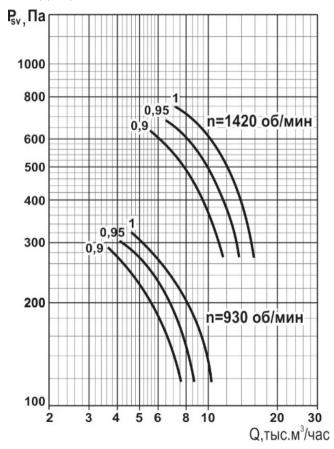
Вентилятор	D,	D1,	D2,	В,	Н,	H max,
дентилятор	MM	MM	MM	MM	MM	MM
ВКР1ДУ-3,55	360	410	585	555	160	820
ВКР1ДУ-4	405	455	640	605	160	870
ВКР1ДУ-4,5	455	510	695	655	190	1115
ВКР1ДУ-5	505	555	750	705	190	910
ВКР1ДУ-5,6	565	615	825	765	230	1090
ВКР1ДУ-6,3	635	685	925	850	265	1200
ВКР1ДУ-7,1	715	765	995	910	265	1330
ВКР1ДУ-8	810	860	1070	1005	325	1480
ВКР1ДУ-9	910	960	1325	1200	385	1835
ВКР1ДУ-10	1015	1065	1450	1335	420	1870
ВКР1ДУ-11,2	1135	1185	1625	1495	385	2145
ВКР1ДУ-12,5	1265	1315	1670	1525	470	2190


Рисунок 2 – Аэродинамические характеристики

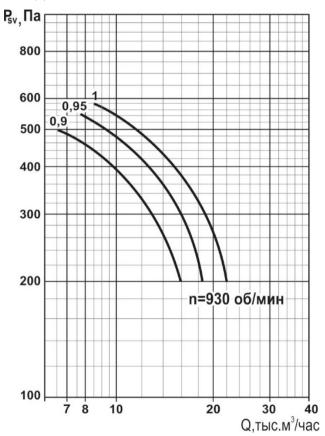

ВКР1ДУ-3,55



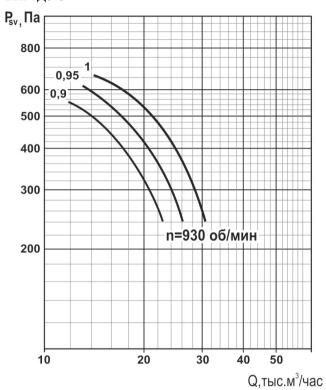
ВКР1ДУ-4,5

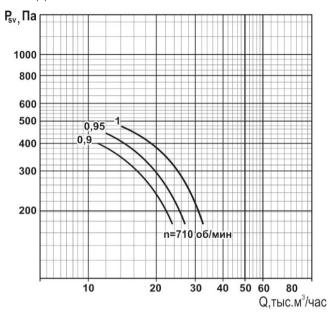


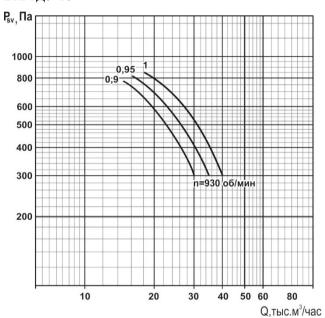
ВКР1ДУ-5,6

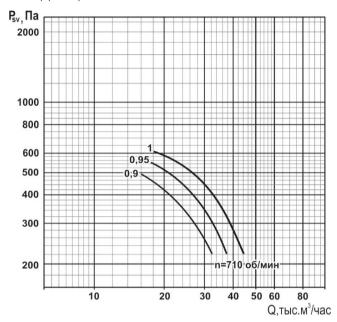


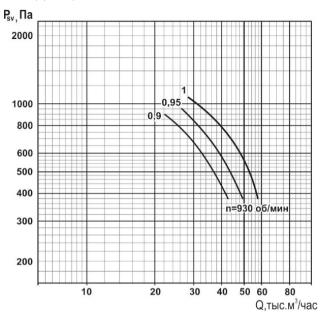
ВКР1ДУ-6,3

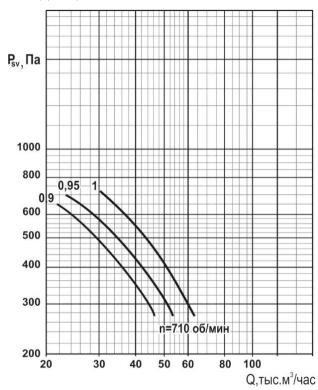



ВКР1ДУ-7,1




ВКР1ДУ-9




ВКР1ДУ-11,2

ВКР1ДУ-11,2

ВКР1ДУ-12,5

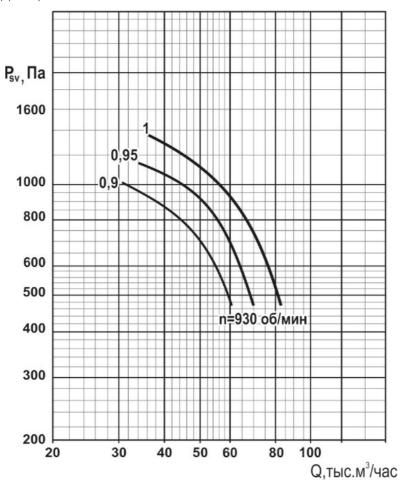
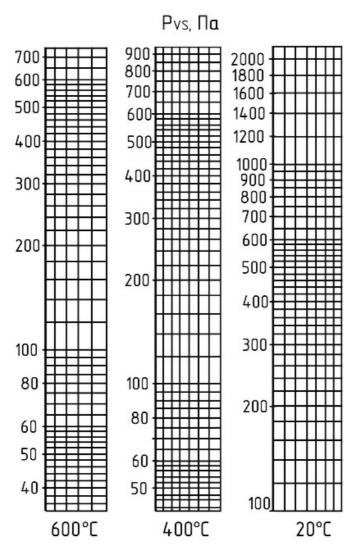



Рисунок 3 — Шкалы для пересчёта давления вентилятора в зависимости от температуры дымовых газов.

11 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

11.1 Вентилятор крышный	радиальный д	цымоудаления
типа ВКР1ДУ,	D =	
заводской номер №	,	
щей технической документации имеет обязательный сертификат	и признан го	23.20-042-5435100-2017, действую- одным к эксплуатации. Вентилятор я ТР ТС №С-RU.ПБ74.В.00541 вы- РТ» ООО «СЗРЦ ПБ» от 07.06.2018.
11.2 Двигатель, установлен	ный на венти	лятор:
тип		
мощность	кВт,	
частота вращения	0	б/мин,
напряжение 380 В, частота тока	50Гц,	
заводской номер №		
«»20г.		М.П (подпись)