Displacement diffusers

About Lindab	1
Comfort and Design	2
Product overview / symbols	3
Theory	4
Ceiling diffusers	5
Ceiling diffusers - visible	6
Plenum boxes	7
Wall diffusers	8
Nozzles	9
Ventiduct	10
Grilles	11
Displacement diffusers	12
VAV	13
Constant- / variable flow dampers	14
Air valves	15
Fresh air valves/overflow units	16
Cleanroom diffusers	17
Contents	18

© 10.2011 Lindab Ventilation A/S. All forms of copying without written permission are forbidden. In Lindab B's registered trademark. Lindab's products, systems and product group and product designations are protected by intellectual property rights (IPR).

Lindab Comdif

Comdif

Displacement diffusers

	Products	Functions	Page
Overview			464
	Accessori	es	465
	СВА	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} $	466
	СНА	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} $	468
	CQA	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} $	470
	CRA	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} $	472
	CVA	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ $	475
	CEA	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $	478
	СКА	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	480
	CCA	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} $	482

Theatre diffusers

Circular and square diffusers

	Products	Functions	Page
Introduction			485
	CRP	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	486
	CRU	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $	487
()	ССР	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	488
\bigcirc	CCU	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $	489

Low-impulse diffusers

	Product	Functions	Page
Introduction			490
Ø	CBAL	$ \begin{array}{c} - \ \ \ \ \ \ \ \ \ \ \ \ \$	493
	CBAV	$ \begin{array}{c} \bullet \\ \bullet \\ \downarrow \\$	495

Lindab Comdif

Lindab Comdif

By using displacement ventilation, the air is supplied to the room directly into the occupied zone at floor-level - at a low velocity and a cooling temperature. The air spreads out across the floor and displaces the hot contaminated air, which is sent to the ceiling by the convection flow from the heated sources. Extraction should take place by the ceiling, where a hot "contaminated" layer of air forms.

The increase in ventilation efficiency means that cooling power can be saved, or that the cooling effect of the fresh air can be utilized better.

The ventilation efficiency of displacement ventilation is larger than that of mixed ventilation, owing to this division of layers. The difference increases when the ceiling and thermal load are higher.

CSC, canteen, Copenhagen

Flexibility by displacement ventilation

Comdif is a series of air distribution diffusers for displacement ventilation. Comdif is available in various designs for any purpose and consists of a pressure chamber with a number of nozzles.

The diffusers are all equipped with adjustable nozzles, so it is possible to change the near-zones

geometry. The diffuser comes standard supplied with a perforated frontplate with a free area of approx. 38%.

The diffusers are available in special designs with several different types of perforation, plate-thickness and choice of materials. The diffusers can also be constructed to fit other dimensions and different geometry on request.

CCA, circular displacement unit

Lindab Comdif a series of displacement diffusers

Comdif accessories

Duct covers

Duct cover Type 0

1. Duct cover

Duct covers are available for displacement diffusers type CBA,CHA,CQA from size 1207 to 3115.

Type CHAZ-0, CQAZ-0 & CBAZ-0

Size	A mm	Max. room height mm	Min. room- height mm	m kg/m
1207	250	3300	2400	6,0
1607	300	3300	2400	7,5
2010	330	3300	2400	9,5
2510	400	3300	2400	12,0
3115	520	3200	2400	15,0

Plinth CHAZ-2

Plinth CHAZ-2 is available in all sizes for free standing diffusers.

Mounting bracket CHAZ-3

Mounting bracket CHAZ-3 is available in all sizes for free standing diffusers.

Comdif is equipped with pressure nozzles, which can be connected through pipes to a flow measuring device (FMI, FMDU, DIRU) or one similar inside the air duct system. The couplings are mounted behind the holes in the front plate, so the measurements can be taken without removing the front plate.

Description

Comdif CBA is a semicircular perforated displacement diffuser for installation against/on a wall or column.

Behind the perforated front plate, CBA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a circular duct connection (MF measure), so the diffuser can be connected at the top or bottom. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for the supply of large volumes of air.
- The geometry of the near zone can be adjusted using adjustable nozzles.
- Duct covers, plinths and wall brackets can be supplied as accessories

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

Order code

Product	СВА	aaaa
Туре		
Size		

Order - accessories С

Cover:	CBAZ - 0 - size
Plinth:	CBAZ - 2 - size
Wall bracket:	CBAZ - 3 - size

Dimensions

	Α	ØD	н	Weight
Size	mm	mm	mm	kg
1207	350	125	710	6,50
1607	420	160	710	7,50
2010	500	200	970	13,0
2510	600	250	970	18,0
3115	730	315	1490	35,0
4020	900	400	2010	58,0
5020	1100	500	2010	78,0

Accessories

Can be supplied with duct cover, plinth and bracket for wall mounting.

Materials and finish

Diffuser:	Galvanised steel
Nozzles:	Black plastic
Front plate:	1 mm galvanised
Standard finish:	Powder-coated
Standard colour:	RAL 9010 - white

vanised steel coated) - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Technical data

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table 1, correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = $L_{WA} + K_{ok}$

Centre frequency Hz								
Size	63	125	250	500	1K	2K	4K	8K
1207	8	-3	0	1	-8	-15	-27	-38
1607	10	-3	3	0	-8	-18	-30	-33
2010	15	-2	3	0	-9	-16	-30	-37
2510	10	-1	4	-1	-9	-16	-29	-41
3115	11	1	4	-1	-8	-17	-30	-42
4020	13	3	4	-1	-9	-17	-30	-43
5020	7	2	2	0	-6	-16	-19	-17

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
1207	19	14	5	3	2	1	2	1
1607	16	12	4	1	2	1	2	2
2010	12	8	4	2	3	2	2	2
2510	12	8	5	2	1	1	1	1
3115	11	8	3	2	1	1	2	2
4020	9	6	1	1	1	1	1	1
5020	7	5	0	1	1	1	1	2

Nearzone

Large diffusion (factory setting)

Small diffusion

Table 1 Correction of the near zone $(a_{0,2}, b_{0,2})$

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Description

Comdif CHA is a semicircular perforated displacement diffuser for installation against a wall or column. Behind the perforated front plate, CHA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a circular duct connection (MF measure), so the diffuser can be connected at the top or bottom. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for the supply of large volumes of air.
- The geometry of the near zone can be adjusted using adjustable nozzles
- Duct covers, plinths and wall brackets can be supplied as accessories

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

	Α	ØD	Н	Weight
Size	mm	mm	mm	kg
1207	250	125	710	6,50
1607	300	160	710	7,50
2010	330	200	970	13,0
2510	400	250	970	18,0
3115	520	315	1490	35,0
4020	630	400	2010	58,0
5020	730	500	2010	78,0
6320	830	630	2010	106

Accessories

Dimensions

A/2

Δ

Can be supplied with duct cover, plinth and bracket for wall mounting.

Order code

Product	СНА	aaaa
Туре		
Size		

Order - accessories

Cover:	CHAZ - 0 - size
Plinth:	CHAZ - 2 - size
Wall bracket:	CHAZ - 3 - size

Materials and finish

Diffuser:	Galvanised steel
Nozzles:	Black plastic
Front plate:	1 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 9010 - white, glos

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

gloss 30

CHA

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table 1, correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = $L_{WA} + K_{ok}$

		Centre frequency Hz								
Size	63	125	250	500	1K	2K	4K	8K		
1207	11	-4	1	1	-9	-16	-28	-34		
1607	9	-2	2	0	-8	-16	-28	-34		
2010	10	-2	3	0	-7	-16	-28	-39		
2510	11	0	4	-2	-7	-15	-27	-37		
3115	13	1	3	-1	-7	-17	-29	-42		
4020	7	3	2	-1	-5	-14	-19	-14		
5020	7	3	2	0	-6	-16	-19	-17		
6320	7	3	2	0	-6	-16	-29	-17		

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
1207	19	14	5	3	2	1	2	1
1607	16	12	4	1	2	1	2	2
2010	12	8	4	2	3	2	2	2
2510	12	8	5	2	1	1	1	1
3115	11	8	3	2	1	1	2	2
4020	9	6	1	1	1	1	1	1
5020	7	5	0	1	1	1	1	2
6320	5	3	1	1	0	0	0	0

Nearzone

Large diffusion (factory setting)

K

Small diffusion

Table 1 Correction of the near zone $(a_{0.2}, b_{0.2})$

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Perforated diffuser - corner

Description

Comdif CQA is a semicircular perforated displacement diffuser for corner installation. Behind the perforated front plate, CQA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a circular duct connection (MF measure), so the diffuser can be connected at the top or bottom. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for the supply of large volumes of air.
- The geometry of the near zone can be adjusted using adjustable nozzles
- Duct covers, plinths and wall brackets can be supplied as accessories

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

	Α	В	ØD	н	Weight
Size	mm	mm	mm	mm	kg
1207	250	302	125	710	8,00
1607	300	362	160	710	9,00
2010	330	398	200	970	14,0
2510	400	483	250	970	20,0
3115	520	628	315	1490	40,0
4020	630	760	400	2010	64,0

Accessories

Can be supplied with duct cover, plinth and bracket for wall mounting.

Order code

Product	CQA	aaaa
Туре		
Size		

Order - accessories

Cover:	CQAZ - 0 - size
Plinth:	CQAZ - 2 - size
Wall bracket:	CQAZ - 3 - size

Materials and finish

Galvanised steel
Black plastic
1 mm galvanised steel
Powder-coated
RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Perforated diffuser - corner

Technical data

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table 1, correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = $L_{WA} + K_{ok}$

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
1207	8	-3	3	0	-7	-15	-27	-35
1607	11	-1	5	-2	-8	-16	-28	-34
2010	11	0	5	-2	-7	-16	-28	-40
2510	11	2	5	-2	-7	-15	-29	-39
3115	11	3	5	-2	-8	-17	-29	-38
4020	12	4	2	0	-8	-16	-30	-41

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

			Ce	ntre fre	equen	cy Hz		
Size	63	125	250	500	1K	2K	4K	8K
1207	18	13	5	3	3	2	2	2
1607	15	11	3	1	2	2	2	2
2010	11	7	3	8	5	5	7	7
2510	10	6	5	7	5	4	4	5
3115	9	6	5	4	4	5	5	7
4020	8	5	2	3	2	3	3	3

Nearzone

Large diffusion (factory setting) Small diffusion

Table 1 Correction of the near zone $(a_{0,2}, b_{0,2})$

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Perforated diffuser - rectangular

Description

Comdif CRA is a rectangular perforated displacement diffuser for installation against a wall or column. CRA has a rectangular connection and therefore has a limited depth, making it ideal for installation in premises where a discrete appearance is required. Behind the perforated front plate, CRA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a rectangular duct connection, so the diffuser can be connected at the top or bottom. The connection duct CRAZ with a circular connection is available as an accessory. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for the supply of large volumes of air.
- The geometry of the near zone can be adjusted using adjustable nozzles
- Duct connections and plinths can be supplied as accessories

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

	Α	В	С	D	н	Weight
Size	mm	mm	mm	mm	mm	kg
3010	300	278	150	98	980	10,0
5010	500	478	150	98	980	17,0
8010	800	778	150	98	980	27,0
8020	800	778	250	198	2020	32,0

Accessories

Dimensions

Can be supplied with duct connection and plinth.

Order code

Order - accessories Connection duct: CRAZ - 1 - size

Plinth: CRAZ - 1 - size

Materials and finish

Diffuser:	Galvanised steel
Nozzles:	Black plastic
Front plate:	1,5 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Perforated diffuser - rectangular

Technical data

Recommended maximum volume flow

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table 1, correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = L_{WA} + K_{ok}

			Ce	ntre fre	equen	cy Hz		
Size	63	125	250	500	1K	2K	4K	8K
3010	9	-1	5	-1	-11	-17	-30	-41
5010	7	1	4	0	-11	-19	-32	-42
8010	15	0	4	0	-12	-20	-31	-43
8020	10	4	6	-2	-11	-21	-33	-39

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

		Centre frequency Hz						
Size	63	125	250	500	1K	2K	4K	8K
3010	11	7	6	4	2	2	1	2
5010	10	6	6	4	2	2	1	2
8010	10	6	4	3	2	1	1	1
8020	7	4	3	2	1	1	1	1

Nearzone

Large diffusion (factory setting)

Small diffusion

Table 1 Correction of the near zone $(a_{0.2}, b_{0.2})$

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

12

Accessories

Perforated diffuser - rectangular

12

	Α	В	ØD ₁	Weight
Size	mm	mm	mm	kg/m
3010	280	100	200	5,0
5010	480	100	250	7,0
8010	780	100	315	9,0
8020	780	200	400	11,0

Order code

Connection of	luct CRAZ	Z-1	aaaa	bbbb	с
Туре					
Size					
Length	According to dimensions in mm L=max. 2,000 mm				
Connection	Front Back (Standard)	0 1			

CRA

Perforated diffuser - installation

CVA

т

Description

Comdif CVA is a rectangular perforated displacement diffuser for installation in walls or similar structures. CVA has a rectangular connection. Behind the perforated front plate, CVA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a rectangular duct connection, so the diffuser can be connected at the top or bottom. A wall duct with circular connection is supplied as an accessory. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for installation in walls.
- The geometry of the near zone can be adjusted using adjustable nozzles.
- A wall duct can be supplied as an accessory.

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

	Α	В	D	н	m
Size	mm	mm	mm	mm	kg
3005	540	50	75	320	4,40
5005	540	50	75	450	5,80
6005	540	50	75	580	8,70
6008	540	80	105	580	9,00
8008	540	80	105	840	12,0

Cutting dimension: A - 30 x H - 30

Accessories

Dimensions

Can be supplied with wall duct.

Product	CVA
Order code	

	•
Туре	
Size	

Order - accessories Wall duct: CVAZ -1 - size

Materials and finish

Diffuser:	Galvanised steel
Nozzles:	Black plastic
Front plate:	1,5 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

aaaa

Perforated diffuser - installation

12

Technical data

Recommended maximum volume flow

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table 1, correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = L_{WA} + K_{ok}

		Centre frequency Hz						
Size	63	125	250	500	1K	2K	4K	8K
3005	7	-2	-2	1	-8	-17	-27	-38
5005	7	-3	-1	1	-7	-17	-29	-36
6005	11	-4	-1	1	-7	-17	-29	-37
6008	12	-4	2	1	-9	-20	-31	-31
8008	10	-4	2	1	-9	-19	-30	-43
8008	10	-4	2	1	-9	-19	-30	-43

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

		Centre frequency Hz						
Size	63	125	250	500	1K	2K	4K	8K
3005	18	13	9	4	1	0	0	1
5005	15	11	8	2	2	1	0	0
6005	15	10	4	2	0	0	0	1
6008	12	8	3	2	0	0	0	0
8008	12	8	3	1	0	0	0	0

Nearzone

Large diffusion (factory setting)

Table 1 Correction of the near zone $(a_{0,2}, b_{0,2})$

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Perforated diffuser - installation

V

Accessories

Wall duct CVAZ-1

	Α	В	ØD ₁	Weight
Size	mm	mm	mm	kg/m
3005	502	52	125	6,0
5005	502	52	160	6,0
6005	502	52	200	6,0
6008	502	82	250	6,5
8008	502	82	315	6,5

L=max. 2,000 mm

We reserve the right to make changes without prior notice

Perforated diffuser - rectangular

Description

Comdif CEA is a rectangular perforated displacement diffuser for installation against a wall or column. Behind the perforated front plate, CEA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a circular duct connection (MF measure), so the diffuser can be connected at the top or bottom. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for the supply of large volumes of air.
- The geometry of the near zone can be adjusted using adjustable nozzles.
- Plinths be supplied as accessories.

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

	Α	В	ØD	н	Weight
Size	mm	mm	mm	mm	kg
200	300	300	200	980	12,0
250	500	350	250	980	24,0
315	800	500	315	1500	80,0
400	800	600	400	1500	96,0

9

Accessories

Can be supplied with plinth.

Order code
Product CEA aaaa
Type
Size

Order - accessories Plinth: CEAZ - 2 - size

Materials and finish

Diffuser: Nozzles: Front plate: Standard finish: Standard colour: Galvanised steel Black plastic 1,5 mm galvanised steel Powder-coated RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Perforated diffuser - rectangular

Technical data

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table 1, correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = $L_{WA} + K_{ok}$

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
2010	11	4	4	-1	-8	-14	-25	-37
2510	8	4	2	0	-6	-16	-27	-40
3115	14	6	3	-1	-8	-17	-29	-25
4015	11	3	2	1	-10	-18	-30	-37

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

		Centre frequency Hz						
Size	63	125	250	500	1K	2K	4K	8K
2010	10	6	1	4	5	3	4	4
2510	10	6	6	4	2	2	4	3
3115	9	6	5	3	3	4	4	5
4015	8	5	3	3	2	3	4	4

Nearzone

Large diffusion (factory setting)

2 × a_{0,2}

Small diffusion

Correction of the near zone $(a_{0.2}, b_{0.2})$

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

◎ 479

Perforated diffuser - square

CKA

Т

Description

Comdif CKA is a square perforated displacement diffuser for installation against a wall or column. Behind the perforated front plate, CKA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a circular duct connection (MF measure), so the diffuser can be connected at the top or bottom. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for the supply of large volumes of air
- The geometry of the near zone can be adjusted using adjustable nozzles
- · Plinths can be supplied as accessories

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

	Α	ØD	н	Weight
Size	mm	mm	mm	kg
200	300	200	980	11,0
250	400	250	980	20,0
315	500	315	980	30,0
400	500	400	1500	45,0
500	800	500	2020	150
630	800	630	2020	150

Accessories

Can be supplied with plinth.

Order code		
Product	СКА	aaaa
Туре		ĺ
Sizo		

Order - accessories Plinth: CKAZ - 2 - size

Materials and finish

Diffuser:	Galvanised steel
Nozzles:	Black plastic
Front plate:	1,5 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Perforated diffuser - square

Recommended maximum volume flow.

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = $L_{WA} + K_{ok}$

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
2010	10	0	4	0	-8	-18	-29	-43
2510	11	1	4	-1	-8	-19	-30	-42
3110	14	3	4	-1	-10	-18	-30	-32
4015	10	1	2	0	-8	-17	-27	-42
5020	7	3	2	0	-6	-16	-19	-17
6320	7	3	2	0	-6	-16	-19	-17

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
2010	12	8	4	2	1	1	1	1
2510	10	6	6	4	2	2	4	3
3110	10	7	3	1	2	1	2	1
4015	9	6	1	1	1	1	1	1
5020	6	4	1	1	1	1	1	1
6320	5	3	1	0	0	0	0	0

Nearzone

Large diffusion (factory setting)

Correction of the near zone $(a_{0,2}, b_{0,2})$

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Description

Comdif CCA is a circular perforated displacement diffuser for freestanding installation. Behind the perforated front plate, CCA is equipped with individually adjustable nozzles, making it possible to alter the geometry of the near zone. The diffuser can be turned and has a circular duct connection (MF measure), so the diffuser can be connected at the top or bottom. The diffuser is suitable for the supply of large volumes of moderately cooled air.

- The diffuser is suitable for the supply of large volumes of air.
- The geometry of the near zone can be adjusted using adjustable nozzles.
- Plinths can be supplied as accessories.

Maintenance

The front plate can be removed from the diffuser, making it possible to clean the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

	ØA	ØD	н	Weight
Size	mm	mm	mm	kg
1207	250	125	710	5,00
1607	300	160	710	7,50
2010	360	200	970	13,0
2510	400	250	970	18,0
3115	520	315	1490	35,0
4020	630	400	2010	58,0
5020	730	500	2010	78,0
6320	830	630	2010	106

Accessories

Can be supplied with plinth.

Order code		
Product	CCA	aaaa
Туре		
Size		

Order - accessories Plinth: CCAZ - 2 - size

Materials and finish

Diffuser:	Galvanised steel
Nozzles:	Black plastic
Front plate:	1 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 9010 - white

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Technical data

The near zone is given at an under-temperature of -3 K to a maximum terminal velocity of 0.20 m/s.

Conversion to other terminal velocities - see table correction of the near zone for -3 K and -6 K respectively.

Sound effect level

Sound effect level L_W [dB] = $L_{WA} + K_{ok}$

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
1207	8	-1	1	1	-9	-17	-28	-40
1607	10	-1	1	1	-8	-17	-29	-33
2010	10	-1	3	0	-9	-17	-27	-40
2510	7	-1	3	0	-7	-18	-28	-41
3115	13	2	3	-1	-8	-17	-29	-27
4020	13	2	3	-1	-7	-16	-28	-43
5020	7	3	2	0	-6	-16	-19	-17
6320	7	3	2	0	-8	-16	-20	-17

Sound attenuation

Sound attenuation ΔL [dB] including end reflection.

	Centre frequency Hz							
Size	63	125	250	500	1K	2K	4K	8K
1207	19	14	5	3	2	1	2	1
1607	16	12	4	1	2	1	2	2
2010	12	8	4	2	3	2	2	2
2510	12	8	5	2	1	1	1	1
3115	11	8	3	2	1	1	2	2
4020	9	6	1	1	1	1	1	1
5020	6	4	1	1	1	1	1	1
6320	5	3	1	1	0	0	0	1

Nearzone

Oval diffusion

Circular diffusion (factory setting)

Table 1					
Correction	of the	near	zone	(a _{0.2} ,	b _{0.2})

Under- temperature	Maximum velocity	Mean velocity	Correction factor
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Theatre diffusers

For ventilation in auditoriums, theatres, cinemas etc., where many people sit together, it is a great advantage to use the displacement principle and diffusers especially for that purpose.

Typically diffusers are either placed in the stairs or in the floor under the rows of seats. Normal small air volumes (10-14 l/s) are supplied with a limited cooling temperature, usually distributed in the ratio of one diffuser per person. This ensures the best division of layers. An added bonus is that the thermal load from the people is removed.

The velocity of the air in the diffusers near-zone is an important parameter in planning. Normally 0,20 m/s at a temperature gradient of 1,5 K is acceptable. The velocity depends on how much air is supplied per metre of chairrows in the room, in addition to the air diffusion. Usurally air diffusion pattern is directed so the air is supplied in the direction of the chairs. This ensures a reduction in the velocity before the air is spread throughout the room.

Opera House, Copenhagen

Unique solutions

In the series of theatre diffusers are also diffusers for displacement ventilation. The theatre diffusers come in circular and rectangular with the possibility of being mounted directly in the air duct system or pressure chamber.

The diffusers are delivered with perforated front plates and blending profiles, which makes it possible to direct the air flow patterns to small near-zones. The diffusers are delivered pre-set for chosen pressure and air flow, so adjustment is not necessary.

In many instances, it is necessary to create especially

designed solutions due to the increased requirements for acoustics, architecture, constructional needs etc.

The diffusers are therefore available in a number of special designs and varieties. Please contact Lindab for further information.

CCU, theatre diffuser

2,00

2,70

Description

CRP is a rectangular displacement diffuser for installation under seats in theatres, auditoriums, etc. It is suitable for installation in a pressure chamber and has a fixed resistance that ensures even distribution of the air. The diffuser can be adapted to the correct air volume and pressure, specified according to the actual conditions.

- It has built-in resistance that ensures even distribution over the diffusers
- The diffuser can be supplied with a specified pressure setting
- The diffuser is available in other dimensions

Maintenance

The front plate of the diffuser can be removed to enable cleaning of the internal components. The visible parts of the diffuser can be wiped with a damp cloth.

Materials and finish

Diffuser:	Galvanised steel
Front plate:	1 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 7040 - grey, gloss 30
	RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Order code

Product	CR	P	а	bbbb
Туре				
Colour	RAL 7040 - grey RAL 9010 - white Special colour	0 1 2		
Size		I		

Dimensions

100

150

Pressure, sound level

5010

5015

500

JIZE	00	125	200	500	IN	21	41	ON
4010	5	-6	-5	-2	-4	-9	-17	-26
4015	0	-4	-1	0	-6	-10	-18	-27
5010	7	-4	-3	0	-6	-12	-18	-29
5015	5	-3	-1	0	-6	-11	-19	-30

Description

CRU is a rectangular displacement diffuser for installation under seats in theatres, auditoriums, etc. The diffuser is supplied with a circular connection. The diffuser can be supplied with a fixed resistance adapted to the correct air volume and pressure, specified according to the actual conditions.

- Circular connection with Lindab Safe.
- The diffuser can be supplied with a fixed resistance at a specified pressure setting
- The diffuser is available in other dimensions.

Maintenance

The front plate can be removed from the diffuser for cleaning of the internal components. The visible parts of the diffuser can be wiped with a damp cloth.

Materials and finish

Diffuser:	Galvanised steel
Front plate:	1 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 7040 - grey, gloss 30
	RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Order code

Product	CF	งบ	aaaa	bbbb
Туре				
Colour	RAL 7040 - grey RAL 9010 - white	0 1		
	Special colour	2		
Size				

Dimensions

	Α	В	ØD ₁	Weight
Size	mm	mm	mm	kg
4010	400	100	80	1,40
4015	400	150	100	2,00
5010	500	100	80	1,70
5015	500	150	125	2,50

Pressure, sound level

Size	63	125	250	500	1K	2K	4K	8K
4010	5	-4	-2	2	-9	-18	-30	-42
4015	9	-2	-2	2	-10	-17	-30	-37
5010	5	-4	-2	2	-9	-18	-30	-42
5015	7	-6	-2	2	-11	-21	-33	-28

Dimensions

Pressure, sound level

CCP is a circular displacement diffuser for installation under seats in theatres, auditoriums, etc. This diffuser is suitable for installation in a pressure chamber. It has a fixed resistance that ensures even distribution of the air. The diffuser can be adapted to the correct air volume and pressure, specified according to the actual conditions.

- It has built-in resistance that ensures even distribution over the diffuser
- The diffuser can be supplied with a specified pressure setting
- The diffuser is available in other dimensions

Maintenance

The front plate of the diffuser can be removed to enable cleaning of the internal components.The visible parts of the diffuser can be wiped with a damp cloth.

Materials and finish

Diffuser:	Galvanised steel
Front plate:	1 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 7040 - grey, gloss 30
	RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Order code

Product	C	СР	а	bbb
Туре		J		
Colour	RAL 7040 - grey RAL 9010 - white	0 1		
	Special colour	2		
Size				

Near zone

Description

CCU is a circular displacement diffuser for installation under seats in theatres, auditoriums, etc. The diffuser is supplied with a circular connection. The diffuser can be supplied with a fixed resistance, adapted to the correct air volume and pressure, specified according to the actual conditions.

- Circular connection with Lindab Safe.
- The diffuser can be supplied with a fixed resistance at a specified pressure setting.
- The diffuser is available in other dimensions.

Maintenance

The front plate of the diffuser can be removed to enable cleaning of the internal components. The visible parts of the diffuser can be wiped with a damp cloth.

Materials and finish

Diffuser:	Galvanised steel
Front plate:	1 mm galvanised steel
Standard finish:	Powder-coated
Standard colour:	RAL 7040 - grey, gloss 30
	RAL 9010 - white, gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Order code

Product	co	U	а	bbb
Туре				
Colour	RAL 7040 - grey	0		
	Special colour	2		
Size		•		

Pressure, sound level

Near zone

Size	63	125	250	500	1K	2K	4K	8K
100	10	1	-2	-3	-3	-11	-19	-29
125	9	-1	-2	-3	-3	-12	-20	-19

Low impulse

Low-impulse supplied air

At low-impulse supplied air, cooling temperature air is added at a low velocity from either ceiling- or wall mounted diffusers. That way, the clean air will partially displace the contaminated air. The need for this type of supplied air method usually arises when the environment and health issues demand supplied air as a substitute for the air which is exhausted by fume cubboards, cooking hoods or other types of exhaust diffusers. This often results in air changes up to 50 times per hour.

With an air change that high, it will not usually be possible to use diffusers based on the traditional mixed ventilation without creating draughts. The supply air method with low impulse is different from the traditional supplied air diffusers, and helps to ensure short air throws and limited velocities in the occupied zone. In order to avoid draughts it is however a pre-requisite that air with a limited cooling temperature (-3 to -4 K) is added. Despite the limited cooling temperature, the large air change will normally result in an unproblematic removal of the thermal load.

CBAL, LEO pharma, Ballerup

Large selection

Lindab offers a large selection of low-impulse diffusers for visible mounting in the ceiling on on the wall. Likewise, the product-programme contains square and circular perforated diffusers for mounting in suspended ceilings with or without plenum boxes type MBA (see chapter on ceiling diffusers). These diffusers have in common, that Lindab in many instances adapts the diffuser for a specific ceiling system or in other ways adapts the diffuser to the constructual or architectual room conditions. In this chapter we will show some of the varieties Lindab has delivered as an inspiration.

CBAV, diffuser

Low impulse

Planning guide

The planning guide below is made for rooms with up to 4 metres room height.

Sound power level and total pressure

Sound power level $\rm L_{\rm WA}$ and total pressure loss can be read in the diagrams, which are shown in connection with product-documentation.

Recommended maximum air flow

Please note the schedule below for the individual products.

Produkt	q _{max} recommended m³/h	q _{max} recommended I/s
CBAL-1200	1000	278
CBAL-1800	1600	444
CBAV-1200	800	222
CBAV-1800	1200	333
PS-1V/H-L-160	190	53
PS-1V/H-L-200	190	53
PS-1V/H-L-250	300	83
PS-1V/H-L-315	450	125
PC-6-L-125	135	38
PC-6-L-160	230	64
PC-6-L-200	230	64
PC-6-L-250	300	83
PC-6-L-315	300	83

Vertical temperature gradient

When air is supplied at a cooling temperature of up to -6K it will not be possible to register temperatures higher than - 1K lower than the surrounding room temperature, within the diffusers air diffusion area. This is the case no matter the air flow.

The tolerance level for the temperature is +/- 0,5 K.

Please note that for the diffusers PS-1 and PC-6 the diagram is only valid, if the minimum distance between the diffusers is enforced as described in the formula below:

 $L_{0.2} < A/2+C$ (see chapter on theory for more information)

Low impulse

Types of CBAL

Lindab offers a variety of standard products. On this page we will show a small selection.

Continuous mounting

CBAL adapted to 600x600 ceiling systems is used directly in the air duct with moderate velocities, which in principle will function as a pressure chamber. Diffusers are available as 1, 2 or 3 module sections, which can be combined as needed. The diffuser is delivered with built-in resistance, so that adjustment of the individual diffusers is not needed. The individual diffuser can be made inactive by closing. It is possible to "move the air" and obtain a great deal of flexibility when furnishing the room.

CBAL without plenum box is used, when there is a need for a lower building height. The diffuser is usually mounted directly in an air duct placed above the diffuser. The diffuser is available in a length of 1200,1800 in addition to 2400 mm with 1 and 2 piece ø315 connections and 2 x ø400 connections respectively. The diffuser is also adaptable to most ceiling systems.

Description

CBAL is a low-impulse diffuser for ceiling installation. The diffuser is suitable for the supply of replacement air in laboratories, commercial kitchens, etc. The diffuser is equipped with adjustable nozzles behind the perforated face plate, allowing the dispersal pattern to be adjusted according to the conditions.

Maintenance

The face plate and nozzle tray can be removed from the diffuser to enable cleaning of the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

L Size mm	A mm	ØD mm	Number of connections
1200	570	315	1
1800	500	315	2

Order codeProductCBALType

Size 1200 1800

Materials and finish

Material:	Galvanised steel
Nozzles:	Black ABS plastic
Standard finish:	Powder-coated
Standard colour:	RAL 9010 Gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

bbbb

CBAL

Description

CBAV is a low-impulse diffuser for ceiling installation against a wall or skirt. The diffuser is suitable for the supply of replacement air in laboratories, commercial kitchens, etc. The diffuser is equipped with adjustable nozzles behind the perforated face plate, allowing the dispersal pattern to be adjusted according to the conditions.

Maintenance

The face plate and nozzle tray can be removed from the diffuser to enable cleaning of the nozzles. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

L	A	ØD	Number of
Size mm	mm	mm	connections
1200	600	315	1
1800	500	315	2

Order code		
Product	CBAV	bbbb
Туре		
Size	1200	
0.20	1800	

Materials and finish

Material:	Galvanised steel
Nozzles:	Black ABS plastic
Standard finish:	Powder-coated
Standard colour:	RAL 9010 Gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

CBAV

