Руководство по эксплуатации

Kamstrup 351C

Kamstrup A/S Industrivej 28, Stilling DK-8660 Skanderborg TEL: +45 89 93 10 00 FAX: +45 89 93 10 01 energi@kamstrup.com www.kamstrup.com

Содержание

1	Λис	ст изменений	5
2	Обі	бщее описание	6
	2.1	Терминология	6
	2.2	Конструкция	7
		2.2.1 Зажимы	7
		2.2.2 Измерительная система	7
	2.3	Модификации счетчиков	8
3	Фун	НКЦИИ	9
	3.1	Начало работы счетчика	9
		3.1.1 Контрольная сумма ПЗУ	
	0.0	3.1.2 Версия внутреннего ПО	
	3.2	•	
		3.2.1 Регистры учета энергии	
		3.2.2 Метод измерения и вычисления энергии	
		3.2.3 Тестовые регистры	
		3.2.4 Сбрасываемые (обнуляемые) регистры эн	•
		3.2.5 Регистры мощности	13
		3.2.6 Дополнительные регистры	14
		3.2.7 Регистр статуса счетчика	14
	3.3	Часы	16
		3.3.1 Часы реального времени	16
		3.3.2 Поддержка хода	16
		3.3.3 Счетчик часов работы	16
	3.4	Тарифы	17
	3.5	Измерение колебаний напряжения	
		3.5.1 Измерение напряжения	17
		3.5.2 Регистрация случаев повышенного и пониж	
		3.5.3 Регистрация пропадания питания	•
		3.5.4 Фиксация времени пропадания питания	
	3.6	Журналы	
		3.6.1 Журнал данных учетных периодов	
		3.6.2 Журнал данных учетных периодов 2	
		3.6.3 Журнал профиля нагрузки	
		3.6.4 Журнал аналитики	
		3.6.5 Журнал апалитики	
		3.6.6 Журнал изменения времени	
		3.6.7 Журнал пропадания питания	
		71	
		,,	
		3.6.9 Коэффициент трансформации	
	2.7	3.6.10 Журнал обрыва нейтрали	
	3.7	,	
		3.7.1 Импульсные входы	
		3.7.2 Счетчик воды (пример использования)	
		3.7.3 Использование импульсного входа для счет	
		3.7.4 Импульсные выходы	
		3.7.5 Импульсный выход \$0	
	3.8	Alarm handling/Push alarms	
	3.9	Управление нагрузкой	34
4	Δиα	сплей	35

Руководство по эксплуатации

	4.1	Поле значений	35
	4.2	Поле единиц измерений	
	4.3	Текстовое поле	35
	4.4	Индикатор наличия фаз	35
	4.5	Индикатор направления тока по фазам	36
	4.6	Индикатор тарифа	36
	4.7	Индикатор квадранта	36
	4.8	Семизначный идентификатор	
	4.9	Программирование дисплея	38
5	Вст	гроенный радиомодуль	40
	5.1	Передача данных по радио	40
	5.2	Обновление внутреннего программного обеспечения	40
6	Tex	нические характеристики	41
	6.1	Сертификаты и соответствие стандартам	
	6.2	Технические данные	
		6.2.1 Подключение	
	6.3	Габаритные размеры	
		6.3.1 Габаритные размеры счетчика	43
7	Mo.	дули	44
	7.1	Основные модули	
	7.2	Модули ССС	
		7.2.1 Модули ССС	45
8	Инс	формация для заказа	46
		8.1.1 Основные модификации	46
	8.2	Конфигурации счетчиков	
		8.2.1 Конфигурация 1 (A-B-CCC-DD-E)	
		8.2.2 Конфигурация 2 (FFF-GG-HH-I)	
		8.2.3 Конфигурация 3 (JJ-K-LL-M-NN)	
		8.2.4 Конфигурация 4 (000-PPP-QQ)	
		8.2.5 Конфигурация 5 (RRR)	50
9	Вкл	ючение счетчика	52
	9.1	Обозначение клемм	
	9.2	Схемы подключения	
	9.3	Меры предосторожности	
	9.4	Пломбирование	53
11		Arcecounh	55

1 Лист изменений

Версия	Дата	Событие
A1	30-01-2013	Создание документа
B1	12-03-2013	Выход первой версии

2 Общее описание

Kamstrup 351C является 3-х фазным счетчиком электроэнергии трансформаторного включения. Счетчик полностью электронный без движущихся частей.

Энергия определяется посредством одновременного измерения напряжения и тока. Напряжение измеряется с помощью резистивного делителя, а ток измеряется через трансформаторы тока. Измерительные элементы независимы и гальванически развязаны, что позволяет получить точные измерения вне зависимости от состояния трёхфазной системы.

Легко читаемый дисплей может работать как в автоматическом, так и в ручном режиме с выбором отбражаемых данных с помощью кнопки. Набор нужных данных измерений и последовательность их вывода на дисплей конфигурируются. Данные со счетчика можно считывать как локально через оптический порт, так и дистанционно - через соммуникационный модуль. Два специальных отсека в счетчике позволяют устанавливать различные модули для включения счетчика в систему учета и в систему «Умный Дом».

Счетчики могут выпускаться как одно- так и двунаправленными, с возможностью измерения активной и реактивной энергии. Учет можно вести по 8 тарифам, которые переключаются с помощью встроенных часов, питающихся от суперконденсатора и батареи.

Для работы со счетчиками Kamstrup M используется программное обеспечение METERTOOL.

Счетчики Kamstrup 351С имеют сертификат утверждения типа №

2.1 Терминология

Интервал усреднения интервалом усреднения является период времени, в течение

которого измеряемые величины усредняются, чтобы расчитать определенное значение, например 30-минутную максимальную

мощность. Обычно этот период составляет 30 минут.

Журнал профиля нагрузки Журнал в котором хранятся данные по усредненной за интервал

усреднения нагрузке. В зависимости от модификации счетчика

журнал может содержать до 4-х профилей (A+, A-, R+, R-).

Учетный период Период времени, по окончании которого производятся расчёты.

Обычно составляет один месяц.

Регистр учетных периодов Содержит данные по потреблению электроэнергии на конец

определённого учётного периода. Максимальное число записей

в регистре равно 36.

2.2 Конструкция

Корпус счётчиков состоит из трёх частей, сделанных из негорючего пластика: основы, внутренней крышки и внешней крышки. Внутренняя крышка пломбируется после поверки. Доступ к основной плате и измерительным цепям счётчика невозможен без вскрытия пломбы и открытия внутренней крышки.

Верхняя крышка предохраняет дисплей и модульный отсек счётчика от внешних воздействий. Модули связи, ввода-вывода и управления могут быть установлены в модульный отсек без необходимости дальнейшей переповерки счетчика. Верхняя крышка также закрывает колодку зажимов счетчика.

2.2.1 Зажимы

В блок зажимов входят по 2 токовых зажима и 1 зажим напряжения для каждой фазы.

Применение конструкции зажима с подъемной планкой позволяет обеспечить быстрое и надежное соединение с использованием одного винта. Такое устройство зажимов предохраняет соединительные провода от повреждения во время затяжки, одновременно увеличивая площадь контакта.

2.2.2 Измерительная система

В счетчике имеется по одному трансформатору тока на каждую фазу и один резистивный делитель для измерения напряжения. Для питания измерительных цепей и центрального процессора используется широкодиапазонный источник питания. В комбинации с варисторами и силовыми резисторами данный источник питания обеспечивает хорошую защиту компонент счетчика от воздействия переходных процессов.

Влияние магнитного поля обнаруживается встроенными датчиками и записывается в журнале событий счетчика.

Процессор счетчика и память имеют свой собственный источник, что обеспечивает дополнительную защиту данным измерений.

Потребленная или выданная энергия вычисляется как функция напряжения, тока и угла сдвига фаз, измеренных в один момент времени по каждой фазе. Суммарная величина энергии накапливается в соответствующем регистре энергонезависимой памяти.

2.3 Модификации счетчиков

Большое количество модификаций счетчика позволяет покрывать все возможные случаи применения. Все модификации имеют возможность регистрации энергии по учетным периодам и 8-ми тарифам, измеряют напряжение, регистрируют различные события в журнале и фиксируют попытки вмешательства в работу счетчика. Кроме того, счетчики могут быть сконфигурированы на измерение энергии по всем 4-м квадрантам, возможностью записи профиля нагрузки (первичной и вторичной энергии), и с интегрированным радиомодулем.

Обозначение модификации счетчиков состоит из 13и знаков, которые описывают аппаратную и механическую начинку:

- 3-фазный 3-проводный счетчик 50 Гц, 685-25X-СХ-ХЗ-ХХХ.
- 3-фазный 4-проводный счетчик 50 Гц, 685-35X-СХ-ХЗ-ХХХ.
- 3-фазный 4-проводный счетчик 60 Гц, 685-45X-СХ-ХЗ-ХХХ.

Полный список типов счетчиков можно найти в подразделе 8.1.1.

3 Функции

3.1 Начало работы счетчика

В течение первых пяти секунд после подключения счетчик отобразит на дисплее номер и версию внутреннего программного обеспечения, затем контрольную сумму ПЗУ.

3.1.1 Контрольная сумма ПЗУ

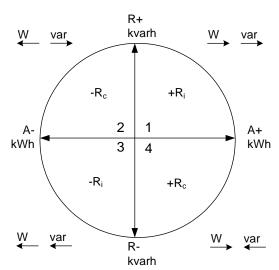
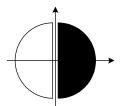
Результат вычисления контрольной суммы отображается в виде 4-х или 5-ти значного числа.

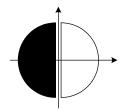
3.1.2 Версия внутреннего ПО

8 цифр в поле значений отображают номер внутреннего ПО. Версия ПО отображается в поле индикации в правом верхнем углу.

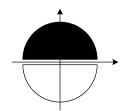
3.2 Регистры

Счётчики прямого включения Kamstrup разработаны как 4-х квадрантные счётчики, что позволяет учитывать активную и реактивную электроэнергию в обоих направлениях и при различных характерах нагрузки. Учет может вестись как по первичной так и по вторичной электроэнергии.

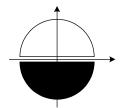




Рисунок 1: Измерение энергии и мощности по 4 квадрантам.

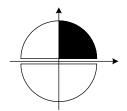
В базовом варианте исполнения счётчик измеряет только потреблённую активную энергию. Активно-реактивные счётчики и счётчики двунаправленные имеют дополнительные регистры для учёта энергии в соответствии с графиками, представленными ниже. В скобках указана кодировка OBIS для каждого типа энергии в соответствии с MЭК 62056-61.


A+(1.8.0)

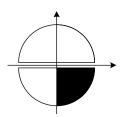
Активная потреблённая энергия по квадрантам 1 и 4.


A- (2.8.0)

Активная выданная энергия по квадрантам 2 и 3.


R+ (3.8.0)

Реактивная потреблённая энергия по квадрантам 1 (индуктивная) и 2 (ёмкостная).


R- (4.8.0)

Реактивная выданная энергия по квадрантам 3 (индуктивная) и 4 (ёмкостная).

R1 (5.8.0)

Реактивная потреблённая активная энергия по квадранту 1.

R4 (8.8.0)

Реактивная выданная энергия по квадранту 4.

3.2.1 Регистры учета энергии

Количество регистров, используемых для накапливания данных по учету энергии, зависит от конкретной модификации счетчика.

Отображение данных регистра учета на дисплее может быть сконфигурировано в формате 7.0 (0000000), в формате 7.1 (0000000.0) или в формате 7.2 (0000000.00). Кроме того, можно выбрать варианты с отображением предшествующих нулей или без.

Ниже перечислены основные регистры счетчика:

- **А+** Активная потребленная энергия (импорт). Учитывается по квадрантам 1 и 4 в кВтч.
- А- Активная выданная энергия (экспорт). Учитывается по квадрантам 2 и 3 в кВтч.
- **R+** Реактивная потребленная энергия. Учитывается индуктивная энергия по квадранту 1 и емкостная энергия по квадранту в кварч.
- **R-** Реактивная выданная энергия. Учитывается индуктивная энергия по квадранту 3 и емкостная энергия по квадранту 4 в кварч.
- **R1** Ri+ Реактивная потребленная энергия. Учитывается по квадранту 1 в кварч.
- **R4** Rc- Реактивная выданная энергия. Учитывается по квадранту 4 в кварч.

Учет по всем типам энергии, перечисленным выше, может вестись по тарифам T1, T2, T3, T4, T5, T6, T7 и T8.

Дополнительная информация по учету по тарифам содержится в части 3.4.

Для контроля потребления можно использовать специальный регистр, в котором накапливаются данные учета по потребленной и выданной энергии без учета знака, т. е. по модулю. Таким образом учет потребления будет производиться даже в случае если токовые провода поменять местами.

А1423 Учет активной энергии по модулю |A+| + |A-| в кВтч.

3.2.2 Метод измерения и вычисления энергии

Существуют несколько общепринятых методов для вычисления энергии в трехфазной системе. При этом, три исправных счетчика, измеряющие энергию с одинаковой точностью, могут получить три разных результата, в зависимости от применяемого метода.

Если потребляется по фазам L1 и L2, но выдается в сеть по фазе L3, как показано на Рис. 2, расчет может быть сделан в соответствии с методами, описанными ниже.

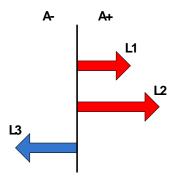


Рис. 2: Пример учета разнонаправленной энергии по фазам в трехфазном счетчике.

На Рис. 3 ниже графически показаны вычисления энергии 3-х фазной системы при применении разных методов расчета. Первый метод применяет векторное суммирование. Этот метод используют электромеханические счетчики. На следующем графике

направление энергии учитывается отдельно по каждой фазе, а на крайнем правом расчет общей суммы производится без учета знака.

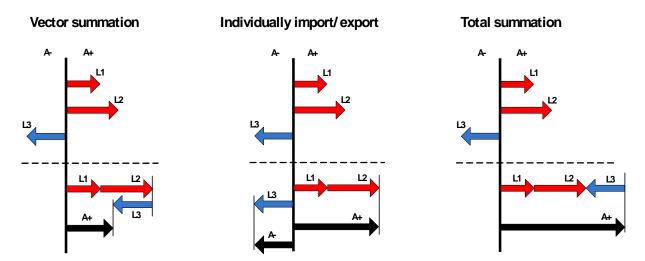


Рис. 3: Три метода расчета энергии

При использовании принципа сложения векторов, потребленная энергия по каждой фазе складывается, а отрицательная вычитается. В данном случае счетчик будет работать также как обычный электромеханический. Измерения таким методом чувствительны к неправильному подключению и манипуляциям.

При использовании метода учета прием/отдача по-фазно, регистры учета накапливают отдельно потребленную и выданную энергию.

Kamstrups 351C использует метод слжения векторов.

Примечание!

Значения регистров не уменьшаются при наличии отрицательного потока энергии независимо от конфигурации счетчика.

При использовании метода суммы по модулю, все измерения, как потребленной так и выданной энергии, накапливаются в регистре потребления без учета знака. Трансформаторные счетчики Камструп не используют этот способ расчета для учета основной энергии.

3.2.3 Тестовые регистры

Для ускорения тестирования счетчика, с помощью ПО METERTOOL можно изменить разрешение 4-х основных регистров (A+, A-, R+, R-) до формата 5.4 (00000.0000).

В этом случае дисплей перейдет из нормального режима работы в тестовый. Переключение между основными регистрами в этом режиме производится кнопкой. Светодиод будет выдавать импульсы в соответствии с отображаемым в данный момент регистром.

Возврат счетчика в нормальный режим работы производится следующим образом:

- по истечении 16 часов после активации тестового режима;
- при отключении напряжения;
- с помощью ПО METERTOOL;
- длительное (более 6 секунд) нажатие и удержание кнопки.

3.2.4 Сбрасываемые (обнуляемые) регистры энергии

В счетчике предусмотрена возможность использования специальных обнуляемых регистров для контроля и мониторинга потребления или выдачи энергии в сеть за определенный период, например за день или месяц.

Сброс показаний осуществляется нажатием и удержанием кнопки более 6 секунд во время отображения соответствующего регистра.

3.2.5 Регистры мощности

Счетчик может измерять и отображать текущую мощность по всем четырем квадрантам. Для измерения мощности используется тот же метод что и для измерения энергии. Все регистры мощности фиксируют значения первичной энергии. Единица измерения активной мощности - кВт, реактивной - квар.

Режим отображения на дисплее активной и реактивной энергии по умолчанию - 6.3 (000000.000).

Наличие того или иного типов регистров мощности зависит от выбранных типов энергии. Например счетчик (A+, A-) имеет только регистры мощности P+ и P-.

Текущая мощность (Р)

Текущая мощность (P+, P-, Q+ и Q-) показывает текущее потребление по всем трем фазам. Регистр текущей трехфазной мощности обновляется ежесекундно и может быть выбран для отображения на дисплее. Также есть возможность просмотра текущей мощности пофазно.

Максимальная (пиковая) мощность (Pmax)

Максимальная мощность – это наибольшее значение усредненной за определенный интервал мощноти, зафиксированное за учетный период. Максимальная мощность регистрируется в следующих регистрах мощности: P+max, P-max, Q+max и Q-max.

Кроме того, максимальную активную и реактивную потребленную мощность P+max и Q+max можно фиксировать для тарифов T1 и T2.

В конце учетного периода максимальная мощность и накопленная максимальная мощность сохраняются в соответствующем регистре. Расчет максимальной мощности начинается заново для нового периода. Накопленная максимальная мощность суммируется со значениями предыдущих периодов, в то время как максимальная мощность сбрасывается по окончании периода.

Также фиксируются максимальная и минимальная потребленная в течение суток мощность (P+max_daily, P+min_daily).

Полная мощность (S)

Регистр Полная мощность (S+ и S-) показывает текущее потребление полной мощности по всем трем фазам. Рассчитывается и обновляется каждую секунду. Также, полная мощность может фиксироваться по каждой фазе (S+_{L1}, S+_{L2}, S+_{L3}, S-_{L1}, S-_{L2} & S-_{L3}).

Регистрация количества превышений максимальной мощностью порога

В счетчике есть возможность фиксации количества превышений активной потребленной максимальной мощностью Р+ определенного значения.

Порог может быть установлен в пределах от 0 до 1000 кВт. Если мощность превысит порог в течение периода интеграции (5, 15, 30 or 60 мин.), счетчик превышения порога мощности изменит свое значение.

Случаи превышения порога фиксируются в специальном журнале учетных периодов и сбрасываются по окончании периода.

Коэффициент мощности (РF)

Коэффициент мощности рассчитывается как для каждой фазы (PF_{L1} , PF_{L2} & PF_{L3}) так и для всех трех фаз (PF).

Доступны мгновенное и среднее (за период интеграции) значения коэффициента мощности. Угол (от -90 до 90 град) рассчитывается для каждой фазы (PF_PhiL1, PF_PhiL2 & PF_PhiL3) и показывает либо опережение, либо запаздывание тока.

При способе измерения «прием/отдача по-фазно» общий коэффициент мощности всегда 1.00.

При способе измерения «сложение векторов» общий коэффициент мощности рассчитывается исходя из значений общей активной Р и общей реактивной Q мощностей.

3.2.6 Дополнительные регистры

Счетчик имеет несколько дополнительных регистров, перечисленных ниже:

- Часы реального времени
- Статус счетчика
- Воздействие магнитного поля
- Попытка несанкционированного доступа
- Колебания напряжения
- Номер счетчика
- Специальные данные
- Импульсный вход

3.2.7 Регистр статуса счетчика

Регистр статуса счетчика представляет собой 8 полей, каждое из которых может иметь значение либо "0" либо "1". Каждое поле обозначает статус определнного события (справа налево):

- 1 Поле: не используется
- **2 Поле**: обозначает ошибку доступа в EEPROM или ошибку с записью данных
- **3 Поле**: обозначает срабатывание детектора магнитного поля
- 4 Поле: ошибка ОЗУ
- 5 Поле: ошибка контрольной суммы ПЗУ
- **6 Поле**: наличие внешнего сигнала на специальном входе (для определённых модификаций)
- 7 Поле: срабатывание детектора открытия верхней крышки
- 8 Поле: не используется

Индикаторы счетчика сбрасываются когда источник изменения статуса исчезает. Ошибки, отображаемые полями 2, 4 и 5 в большинстве случаев являются постоянными и требуют возврата счетчика на завод.

На Рис. 4 показан пример отображения регистра статуса.

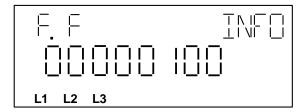


Рис. 4: Регистр статуса показывает срабатывание детектора магнитного поля

3.3 Часы

3.3.1 Часы реального времени

Часы реального времени используются для меток времени при записи в память определенных событий, профиля нагрузки, переключения тарифов и т. п. Точность хода часов нормируется при температуре 23°C и составляет 5ppm.

Настройку времени можно производить с помощью программы для конфигурирования счетчиков METERTOOL или по команде от системы учета. Часы и календарь поддерживают режим перехода на летнее время.

3.3.2 Поддержка хода

Счетчики мугут быть снабжены как батарей, так и суперконденсатором для поддержания хода часов при отсутствии питания. Кроме поддержки работы часов, батарея дает возможность доступа к дополнительным функциям счетчика, таким как отображение данных на дисплее при отсутствии питания. Дополнительная информация, относящаяся к работе батареи дана в разделе 4.9.

Технические данные, касающиеся суперконденсатора и батареи даны в разделе 7.2.

3.3.3 Счетчик часов работы

Встроенный счетчик часов работы учитывает время когда счетчик находился под напряжением.

3.4 Тарифы

Счетчик может учитывать энергию по восьми тарифам для каждого типа энергии, в зависимости от модификации, см. параграф 3.2.1.

Тарифы активируются когда в список отображения на дисплее включается один или более тарифных регистров. Управление тарифами может осуществляться двумя способами: подачей команды через коммуникационный модуль, или с помощью встроенных часов. В основном используется второй метод. Таблица тарифов создается и загружается в счетчик с помощью ПО METERTOOL.

Изменение отображаемых данных по тарифам производится каждую секунду. При этом активный тариф маркируется на дисплее символами T1 - T8.

3.5 Измерение колебаний напряжения

Счетчик измеряет напряжение, фиксирует максимальное и минимальное значение, переход напряжения через максимальный и минимальный порог и пропадание питания пофазно.

3.5.1 Измерение напряжения

Счетчик измеряет действующее значение напряжения по-фазно раз в секунду. Эти измерения являются основой для регистрации случаев повышенного напряжения, пониженного напряжения и пропадания питания. Напряжение измеряется с погрешностью менее 1%.

3.5.2 Регистрация случаев повышенного и пониженного напряжения

Если напряжение на одной, двух или всех трех фазах находится вне заранее запрограммированных пределов (Uнigh) или (ULow) в течение определенного времени (ta), счетчик записывает этот случай в память в специальный журнал. Данные в журнале включают дату и время события. Время нахождения напряжения за пределами программируется в пределах от 10 сек. до 2550 сек.

Пороги могут задаваться в пределах от 0 до 20% от номинального напряжения, т. е. от 230 В - 20 % (184 В) до 230 В + 20 % (276 В).

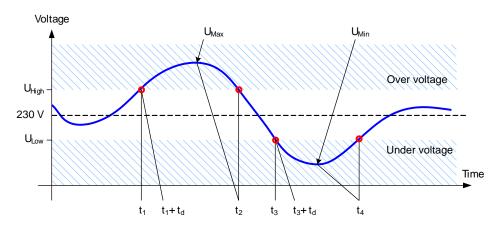


Рис. 5: Измерение колебаний напряжения – пониженное и повышенное напряжение.

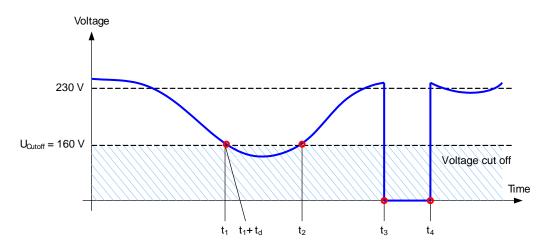


Рис. 6: Фиксация пропадания питания.

Пояснения к рисункам:

U_{High} - программируемый порог повышенного напряжения в %

U_{Low} - программируемый порог пониженного напряжения в %

 U_{max} - пиковое напряжения в течение периода повышенного напряжения (†1 – †2)

 U_{min} - минимальное напряжение в течение периода пониженного напряжения (†3 – †4)

 U_{Cutoff} - пропадание питания (†3 – †4)

†(1-4) - временные точки.

t_d - программируемое время задержки события.

3.5.3 Регистрация пропадания питания

Пропадания питания по одной или нескольким фазам, длящееся более программируемого периода времени (ta) регистрируются в специальном журнале с фиксацией времени пропадания (ta) и восстановления (ta), как показано на Рис. 6.

Продолжительность времени отсутствия питания, которая необходимо для регистрации пропадания питания программируется в интервалах, кратных 10 секундам. Максимальная продолжительность интервала 2550 секунды.

3.5.4 Фиксация времени пропадания питания

Время пропадания и восстановления питания фиксируется счетчиком. Пример такой записи показан на Рис. 7, в том виде, в котором производится считывание программой METERTOOL.

1270	18-02-2008 15:37:36	5140	0	System L1,L2,L3: Power enabled - above cutoff threshold
1269	18-02-2008 15:36:45	5140	0	System L1,L2,L3: Power cut off

Рис. 7: Запись в журнале пропадания и восстановления питания с соответствующим идентификатором и метками времени.

3.6 Журналы

Счетчик ведет несколько журналов для регистрации данных и событий, включая данные по предыдущим учетным периодам, профиля нагрузки и журналы, обеспечивающие сохранение такой информации, как появление внутренней ошибки, наличие внешнего магнитного поля, попытки несанкционированного вмешательства в работу счетчика, пропадание питания, коррекцию времени и другое. Журнал профиля нагрузки и журнал аналитики используют одну область памяти, при этом профиль нагрузки имеет приоритет

при конфигурации. Таким образом глубина записей журнала аналитики зависит от того какое количество профилей и с какими интервалами записываются счетчиком.

3.6.1 Журнал данных учетных периодов

В данном журнале содержатся данные учетных периодов, которые автоматически сохраняются в памяти на момент окончания периода. Конец периода либо программируется в тарифном расписании, либо инициируется внешней командой через интерфейс.

Глубина хранения журнала составляет 36 записей. В стандартном варианте запись в журнал производится по наступлении 0:00 часов первого числа месяца. Возможны и другие варианты инициирования записи, такие как запись на начало каждого второго месяца, раз в полгода или раз в год.

В зависимости от типа и конфигурации счетчика, в журнале могут сохраняться следующие значения:

Дополнительно	Регистры энергии	Регистры мощности
Дата	Активная энергия А+	Максимальная мощность P+ _{max}
Время	Активная энергия А-	Максимальная мощность P+ _{max} Дата
Показатели качества напряжения	Реактивная энергия R+	Максимальная мощность P+ _{max} Время
Счетчик часов	Реактивная энергия R-	Максимальная мощность P+ max RTC
Количество учетных периодов	Активная энергия А+ Тариф 1	Накопленная максимальная мощность Р+ _{max acc}
Счетчик повышения порогов мощности	Активная энергия А+ Тариф 2	Накопленная максимальная мощность Р+ _{тох асс} Тариф 1
Счетчик импульсов	Активная энергия А+ Тариф 3	Накопленная максимальная мощность Р+ _{тах асс} Тариф 2
Текущий коэффициент трансформации	Активная энергия А+ Тариф 4	Максимальная мощность Q+ _{max}
	Реактивная энергия R+ Тариф 1	Максимальная мощность Q+ _{max} Дата
	Реактивная энергия R+ Тариф 2	Максимальная мощность Q+ _{max} Время
	Реактивная энергия R+ Тариф 3	Максимальная мощность Q+ _{max} RTC
	Реактивная энергия R+ Тариф 4	Накопленная максимальная мощность Q+ _{max acc}
		Максимальная мощность P+ _{max} Тариф 1
		Максимальная мощность P+ _{max} Тариф 1 Время
		Максимальная мощность P+ _{max} Тариф 1 Дата
		Максимальная мощность P+ _{max} Тариф 1 RTC
		Максимальная мощность P+ _{max} Тариф 2
		Максимальная мощность P+ _{max} Тариф 2 Время
		Максимальная мощность P+ _{max} Тариф 2 Дата
		Максимальная мощность P+ _{max} Тариф 2 RTC
		Максимальная мощность Q+ _{max} Тариф 1
		Максимальная мощность Q+ _{max} Тариф 1 Время
		Максимальная мощность Q+ _{max} Тариф 1 Дата
		Максимальная мощность Q+ _{max} Тариф 1 RTC
		Максимальная мощность Q+ _{max} Тариф 2
		Максимальная мощность Q+ _{max} Тариф 2 Время

	Максимальная мощность Q+ _{max}
Максимальная мощнос ⁻ Тариф 2 RTC	
	Максимальная мощность S+ _{max}
	Максимальная мощность S+ max RTC
	Максимальная мощность S- _{max}
	Максимальная мощность S-max RTC

Табл. 2: Список регистров, сохраняемых в журнале данных учетных периодов.

3.6.2 Журнал данных учетных периодов 2

Счетчики имеют дополнительный журнал, в котором сохраняется следующая информация:

Дополнительные	Регистры энергии
Дата	Активная энергия А+
Время	Активная энергия А-
Показатели	Реактивная энергия R+
Счетчик часов	Реактивная энергия R-
	Активная энергия А+ Тариф 1
	Активная энергия А+ Тариф 2
	Активная энергия А+ Тариф 3
	Активная энергия А+ Тариф 4
	Активная энергия А-Тариф 1
	Активная энергия А- Тариф 2
	Активная энергия А-Тариф 3
	Активная энергия А-Тариф 4
	Реактивная энергия R+ Тариф 1
	Реактивная энергия R+ Тариф 2
	Реактивная энергия R+ Тариф 3
	Реактивная энергия R+ Тариф 4
	Реактивная энергия R- Тариф 1
	Реактивная энергия R- Тариф 2
	Реактивная энергия R- Тариф 3
	Реактивная энергия R- Тариф 4

Табл. 3: Список регистров, сохраняемых в журнале данных учетных периодов 2.

С помощью ПО METERTOOL, интервал записи можно сконфигурировать равным одному дню, одной неделе или одному месяцу. В журналах может храниться до 75 записей.

3.6.3 Журнал профиля нагрузки

В журнале хранятся данные по профилю нагрузки с программируемым интервалом усреднения 5, 15, 30 или 60 мин.

Все данные записываются в формате 7.2 (0000000.00) kWh/ kvar (по первичной стороне) and 5.4 (00000.0000) kWh/ kvar (по вторичной стороне). Каждая группа значений профиля имеет идентификатор, метку времени и события и данные по 1-4 регистрам, в зависимости от конфигурации счетчика.

Метка времени совмещена с меткой качества напряжения и включает в себя информацию по дате и времени, наличие в период усреднения изменений времени и случаев пониженного и повышенного напряжения и пропадания и восстановления питания.

Чтение профиля может производиться в стандарте DLMS или в формате протокола Kamstrup'a KMP. Формат данных зависит о того, считываются ли абсолютные значения профиля или суммарные (потребление – отдача). Формат данных дан в Таблица 3-1

Таблица 3-1 Формат данных профиля

Регистр	Коэффициент Трансформации	Абсолютные значения	Суммарные значения
Первичная сторона	> 300/5	7.2 (XXXXXXXXX) kWh/ kvar	5.2 (XXXXX.XX) kWh/kvar

Первичная сторона	<= 300/5	7.2 (XXXXXXXXXX) kWh/ kvar	2.2 (XX.XX) kWh/ kvar
Вторичная сторона		5.4 (XXXXX.XXXX) kWh/ kvar	0.4 (.XXXX) kWh/ kvar

Важно: При изменении периода усреднения профиль нагрузки удаляется

Глубина хранения профиля зависит от типа счетчика, измеряемых величин и периода усреднения.

Интервал усреднения	5 мин.	15 мин.	30 мин.	60 мин.
Вид энергии	Дней	Дней	Дней	Дней
A+	92	275	550	1100
A+/A-	77	231	462	924
A+/R+	77	231	462	924
A+/A-/R+/R-	58	175	350	700

Табл. 4: Глубина записи журнала профиля нагрузки.

Журнал профиля нагрузки может быть прочитан с дисплея счетчика как это описано в секции 4.10.

3.6.4 Журнал аналитики

Журнал аналитики позволяет пользователю выбирать для записи и хранения различные регистры и сохранять данные через определенные интервалы. Одновременно можно выбрать до 16 регистров. Интервал записи выбирается из ряда 5, 15, 30, 60 мин. или 1 день. Глубина записи журнала составляет от 7 до 520 дней и зависит от количества и типа выбранных регистров, и интервала записи. В Табл. 5 приведенной ниже, дан список регистров, которые можно выбрать для записи в журнал аналитики.

Описание		
Активная энергия А+	Реактивная энергия R- Тариф 1	Текущая мощность P+ L1
Активная энергия А-	Реактивная энергия R- Тариф 2	Текущая мощность P+ L2
Активная энергия А1423	Реактивная энергия R- Тариф 3	Текущая мощность P+ L3
Реактивная энергия R+	Реактивная энергия R- Тариф 4	Текущая мощность P- L1
Реактивная энергия R-	Реактивная энергия R- Тариф 5	Текущая мощность P- L2
Реактивная энергия R1	Реактивная энергия R- Тариф 6	Текущая мощность P- L3
Реактивная энергия R4	Реактивная энергия R- Тариф 7	Текущая мощность Q-L1
Активная энергия А+ Тариф 1	Реактивная энергия R- Тариф 8	Текущая мощность Q-L2
Активная энергия А+ Тариф 2	Текущая мощность Р+	Текущая мощность Q-L3
Активная энергия А+ Тариф 3	Текущая мощность Р-	Текущая мощность Q+ L1
Активная энергия А+ Тариф 4	Текущая мощность Q+	Текущая мощность Q+ L2
Активная энергия А+ Тариф 5	Текущая мощность Q-	Текущая мощность Q+ L3
Активная энергия А+ Тариф 6	Текущая мощность S+	
Активная энергия А+ Тариф 7	Текущая мощность S-	Текущий коэффициент мощности
Активная энергия А+ Тариф 8	Текущая мощность \$+ L1	Текущий коэффициент мощности L1
Активная энергия А-Тариф 1	Текущая мощность \$+ L2	Текущий коэффициент мощности L2
Активная энергия А-Тариф 2	Текущая мощность \$+ L3	Текущий коэффициент мощности L3
Активная энергия А-Тариф 3	Текущая мощность S- L1	Средний коэффициент

		мощности
Активная энергия А-Тариф 4	Текущая мощность S- L2	Средний коэффициент мощности L1
Активная энергия А-Тариф 5	Текущая мощность S- L3	Средний коэффициент мощности L2
Активная энергия А-Тариф 6	P+ max daily	Средний коэффициент мощности L3
Активная энергия А-Тариф 7	P+ min daily	
Активная энергия А-Тариф 8		Среднее напряжение L1
Реактивная энергия R+ Тариф 1	Импульсный вход	Среднее напряжение L2
Реактивная энергия R+ Тариф 2	Счетчик часов	Среднее напряжение L3
Реактивная энергия R+ Тариф 3	Текущий тариф	Средний ток L1
Реактивная энергия R+ Тариф 4		Средний ток L2
Реактивная энергия R+ Тариф 5	Значение порога мощности	Средний ток L3
Реактивная энергия R+ Тариф 6	Счетчик превышения порога мощности	
Реактивная энергия R+ Тариф 7		
Реактивная энергия R+ Тариф 8		

Табл. 5: Список регистров, доступных для журнала аналитики.

Журнал аналитики конфигурируется и считывается с помощью ПО METERTOOL.

При производстве журнал аналитики конфигурируется с интервалом записи и усреднения 15 минут. Список регистров по умолчанию дан в Табл. 6.

Тип счетчика	K251C/K351C/K451C			
Количество профилей нагрузки	1 регистр	2 рег	истра	4 регистра
Список регистров в журнале	A+	(A+, A-)	(A+, R+)	(A+, A-, R+, R-)
Текущая мощность Р+	Х	Х	Х	Х
Текущая мощность Р-		Х		Х
Текущая мощность Q+			Х	Х
Текущая мощность Q-				Х
Среднее напряжение L1	X	Х	Х	Х
Среднее напряжение L2	(X)	(X)	(X)	(X)
Среднее напряжение L3	Х	Х	Х	Х
Средний ток L1	Х	Х	Х	Х
Средний ток L2	(X)	(X)	(X)	(X)
Средний ток L3	X	Х	X	Х

Табл. 6: Регистры в журнале событий по умолчанию.

Среднее напряжение и ток по фазам расчитываются как усредненные за интервал значения.

Токи измеряются в абсолютных величинах, без указания знака.

3.6.5 Журнал записи состояний

В данный журнал записываются внутренние ошибки счетчика, которые затем можно использовать для анализа текущего состояния прибора.

ОЗУ счетчика тестируется при каждом запуске на чтение и запись, а для ПЗУ рассчитывается контрольная сумма ПЗУ. В случае появления внутренней ошибки, специальный символ в виде треугольника с восклицательным знаком отображается на дисплее. Этот символ невозможно сбросить с помощью ПО METERTOOL.

В журнале записи состояний фиксируются случаи воздействия на счетчик магнитного поля и вскрытия крышки счетчика.

В журнале может храниться до 200 записей.

3.6.6 Журнал изменения времени

В данном журнале хранятся данные об изменениях даты и времени с фиксацией времени до и после изменения. Событие регистрируется в журнале если разница во времени до и после изменения превосходит определенное программируемое значение, которое находится в пределах от 0 до 255 секунд. По умолчанию это значение принимается равным 7 секундам.

В журнале может храниться до 200 записей.

3.6.7 Журнал пропадания питания

В журнале регистрируются пропадания питания по каждой фазе, которые длятся более 1 секунды. Запись содержит данные о времени пропадания и восстановления питания и номер фазы (фаз) в соответствии с Рис. 6.

Пропадание питания фиксируется в случае понижения напряжения ниже 160 VAC ±5 %. В журнале может храниться до 200 записей.

3.6.8 Журнал событий профиля нагрузки

В данном журнале регистрируются все события, относящиеся к профилю нагрузки. Все изменения конфигурации профиля сохраняются с меткой времени. Глубина хранения составляет 10 записей.

3.6.9 Коэффициент трансформации

В журнале записи изменений коэффициента трансформации хранятся данные, перечисленные в таблице ниже.

Разное	Первичная сторона	Вторичная сторона
Дата	Активная потребленная первичная energy A+	Активная потребленная secondary energy A+
Время	Активная выданная первичная энергия А-	Активная выданная secondary энергия А-
Счётчик часов	Реактивная потребленная первичная энергия R+	Реактивная потребленная secondary энергия R+
Коэффициент трансформации до смены	Реактивная выданная первичная энергия R-	Реактивная выданная secondary энергия R-
Коэффициент трансформации после смены	Реактивная первичная энергия R1	Реактивная secondary энергия R1
	Реактивная первичная энергия R4	Реактивная secondary энергия R4
	Активная потребленная первичная энергия А+ Тариф 1	
	Активная потребленная первичная энергия А+ Тариф 2	
	Активная потребленная первичная энергия А+ Тариф 3	
	Активная потребленная первичная энергия А+ Тариф 4	
	Активная потребленная первичная энергия А+ Тариф 5	
	Активная потребленная первичная энергия А+ Тариф 6	
	Активная потребленная первичная энергия А+ Тариф 7	
	Активная потребленная первичная энергия А+ Тариф 8	
	Активная выданная первичная энергия А- Тариф 1	
	Активная выданная первичная энергия А- Тариф 2	
	Активная выданная первичная энергия А- Тариф 3	
	Активная выданная первичная энергия А- Тариф 4	

 Активная выданная первичная эне А-Тариф 5	
Активная выданная первичная эне А-Тариф 6	ергия
Активная выданная первичная эне А-Тариф 7	ергия
Active выданная первичная энерги Тариф 8	19 A-
Реактивная потребленная перви энергия R+ Тариф 1	чная
Реактивная потребленная перви энергия R+ Тариф 2	чная
Реактивная потребленная перви энергия R+ Тариф 3	чная
Реактивная потребленная перви энергия R+ Тариф 4	чная
Реактивная потребленная перви энергия R+ Тариф 5	чная
Реактивная потребленная перви энергия R+ Тариф 6	чная
Реактивная потребленная перви энергия R+ Тариф 7	чная
Реактивная потребленная перви энергия R+ Тариф 8	чная
Реактивная выданная перви энергия R- Тариф 1	чная
Реактивная выданная перви энергия R- Тариф 2	чная
Реактивная выданная перви энергия R- Тариф 3	чная
Реактивная выданная перви энергия R- Тариф 4	чная
Реактивная выданная перви энергия R- Тариф 5	чная
Реактивная выданная перви энергия R- Тариф 6	чная
Реактивная выданная перви энергия R- Тариф 7	чная
Реактивная выданная перви энергия R- Тариф 8	чная

Журнал записи изменений коэффициента трансформации имеет глубину в 10 записей.

Коэффициент трансформации программируется в диапазоне от 1 (5A/5A) до 600 (3000A/5A).

3.6.10 Журнал обрыва нейтрали

Журнал обрыва нейтрали региситрирует состояние сети, которое может привести к повреждению электронных устройств, включенных в эту сеть из-за повышенного напряжения.

Данная функция работает только с 3-х фазным 4-х проводным счетчиком.

Рис. 8 поясняет работу функции определения обрыва нейтрали.

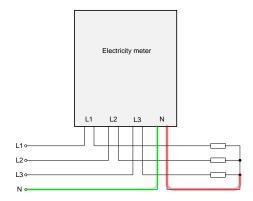
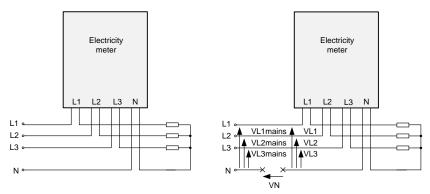



Рис. 8: Определение обрыва нулевого провода.

Счетчик может определить обрыв нейтрали только в линии до счетчика (на рисунке отмечена зеленым).

 Δ ля определения обрыва используется измерения напряжения и пороговые значения напряжения.

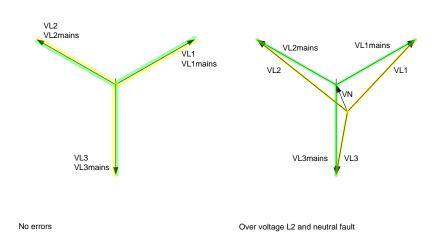


Рис. 9: Принцип определения обрыва нейтрали.

Рис. 9 показывает два состояния: нейтраль подключена и нейтраль оборвана. В случае когда нейтраль отсутствует и нагрузка несимметрична, возникает потенциал между нейтралью нагрузки и счетчика VN.

Зеленые вектора отображают фазные напряжения в линии. Желтые вектора – напряжения, измеренные счетчиком.

Счетчик фиксирует состояние обрыва нейтрали когда присутствуют следующие условия:

Какие либо два фазных напряжения из VL1, VL2 и VL3 выше порогового напряжения VLHiTh.

Одно из фазных напряжений VL1, VL2 или VL3 ниже порогового напряжения VLLoTh. Условия 1 и 2 выше должны присутствовать в течение периода времени большего чем заданное.

VLLoTh = 230V - VNTh

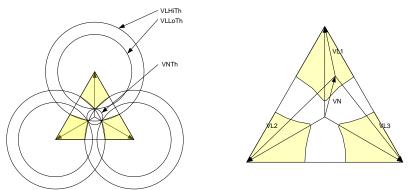


Рис. 10: Зона определения обрыва нейтрали.

На Рис. 10 желтым цветом выделены области, которые счетчик определяет как обрыв нейтрали. Соответственно, в зонах, не выделенных цветом, обрыв нейтрали не определяется. Например, в условиях, когда нагрузка симметрична, напряжение VN будет равно нулю и обрыв нейтрали не будет зафиксирован.

С правой стороны на Рис. 10 показана ситуация, когда обрыв нейтрали определен по наличию следующих условий:

VL1 < VLLoTh

VL2 > VLHiTh

VL3 > VLHiTh

По умолчанию параметры VNTh, VLHiTh и Time конфигурируются со следующими величинами:

NeutralFaultVNTh = 40 B NeutralFaultVLHiTh = 253 B NeutralFaultTime = 60 c

В Табл. 7 перечислены параметры, фиксируемые в журнале.

Дополнительные	Событие
Дата и время	Обрыв нейтрали
Счетчик часов	

Табл. 7: Информация, фиксируемая в журнале.

Глубина журнала составляет 45 записей.

3.7 Импульсные входы/выходы

Счетчик в базовой конфигурации имеет импульсный выход S0 (см. параграф 3.7.5). Выход S0 работает параллельно с испытательным светодиодом на лицевой панели, с постоянной 5000 имп/кВтч.

Расширить количество импульсных входов/выходов можно установкой модулей. Порты, используемые модулем позволяют конфигурировать как длительность импульса, так и постоянную.

3.7.1 Импульсные входы

Модули импульсных входов можно использовать для следующих функций:

- Внешнее управление тарифами
- Счетчик импульсов от других устройств
- Сигнальный вход от внешнего источника

Импульсный вход аккумулирует импульсы в специальном регистре. Если этот регистр выбран для отображении на дисплее, он обновляется каждые 10 секунд. Для изменения цены единицы регистра можно применить масштабирующий коэффициент из ряда 0.100 - 1000.000 единиц на импульс. Максимально допустимая частота импульсов на входе составляет 25 Гц.

Для отображения на дисплее можно выбрать следующие единицы: kWh, m3, l.

3.7.2 Счетчик воды (пример использования)

Счетчик воды генерирует 1 импульс на 25 литров. Показания, отображаемые на дисплее должны быть в m3 без десятичной точки.

 $1000 I = 1 m^3$, 1000 / 25 = 40 ⇒ масштабирующий коэффициент равен 40.

Регистр в счетчике электроэнергии будет увеличиваться на 1 каждые 40 импульсов, таким образом отображая показания в m₃.

Наиболее часто используемые цены импульсов и соответствующие коэффициенты даны в Табл. 8.

Цена импульса л/имп	Постоянная имп/m3	Масштабирующий коэффициент Для отображения в "m3"	Масштабирующий коэффициент Для отображения в "!"
100	1.0	-	'
100	10	10	I
50	20	20	-
25	40	40	-
10	100	100	0.1
5.0	200	200	5
2.5	400	400	2.5
1.0	1000	1000	1
1000	1	1	1000

Табл. 8: Цена импульса и коэффициенты для счетчиков воды.

3.7.3 Использование импульсного входа для счетчиков электроэнергии

В Табл. 9 ниже даны наиболее часто используемые цены импульсов и соответствующие коэффициенты для счетчиков э/энергии.

Цена импульса	Постоянная	Масштабирующи й коэффициент
Втч/имп	имп/кВтч	
		Для отображения в " kWh "
100000	0,01	-
10000	0,1	0.1
1000	1	1
16.67	60	60
13.33	75	75
8.333	120	120
4.167	240	240
2.941	340	340
2.083	480	480
1.667	600	600
1.000	1000	1000
0.100	10000	-

Табл. 9: Цена импульса и коэффициенты для счетчиков э/энергии.

3.7.4 Импульсные выходы

Импульсные выходы, установленные в модульном отсеке, могут быть сконфигурированы как для активной, так и для реактивной энергии.

При выпуске счетчика величина постоянной импульсных выходов установлена 1000 имп/kWh. Для импульсных выходов тоже может применяться масштабирующий коэффициент в пределах 1 – 1000. В дополнение, длительность импульса может быть изменена в пределах от 30 до 80 милисекунд.

При выборе масштабирующего коэффициента и длительности импульса нужно иметь в виду максимальную нагрузку и руководствоваться приведенной ниже таблицей.

3.7.5 Импульсный выход \$0

При коэффициенте трансформации равном 1 (5A/5A), выход S0 работает с постоянной 5000 импульсов на kWh.

Выход SO соответствует стандарту DIN 43864. На Рис. 11 показано расположение выхода SO.

Максимальное напряжение, которое может быть подсоединено к выходу составляет 27 V постоянного тока (на 1 кОм), а максимальный ток проходящий через выход составляет 27 mA. Длительность импульсов 30 мс.

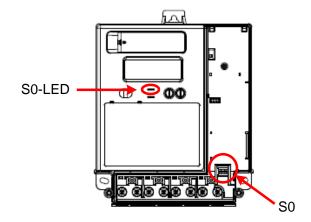


Рис. 11: Импульсный выход SO в трехфазном счетчике.

В Табл. 10 даны технические данные выхода SO.

Состояние контакта	Условия тестирования		Результат тестирования
	Напряжение питания U _B	Внутреннее сопротивление R _V	Ток через выход SO
On (активный)	18 V DC	1 kΩ	i > 10 mA
Off (неактивный)	27 V DC	1 kΩ	i < 2 mA

Табл. 10: Технические данные выхода SO.

3.8 Alarm handling/Push alarms

Счетчик можно сконфигурировать таким образом, что определенные события будут инициировать передачу тревожного сигнала через интерфейсы счетчика. Эти события перечислены ниже:

- Наличие магнитного поля
- Несанкционированный доступ (открытие крышки)
- Внутренняя ошибка счетчика
- Пониженное или повышенное напряжение
- Обрыв фазы
- Обрыв нейтрали

Сигнал передается через радиосеть Kamstrup (при наличии интегрированного радиомодуля) либо через коммуникационный модуль.

3.9 Управление нагрузкой

Опционально в счетчик может устанавливаться модуль управления нагрузкой с двумя реле, которые используются для включения и выключения внешних коммутационных аппаратов. Управление этими реле осуществляется следующим образом:

- Самим счетчиком, с помощью заранее запрограммированных таблиц управления нагрузкой
- Дистанционно, по команде системы учета.

В части 9.4 дана более подробная информация о онфигурировании данной функции.

4 Дисплей

Жидкокристаллический дисплей счетчика состоит из сегментов и полей, показанных на Рис. 12.

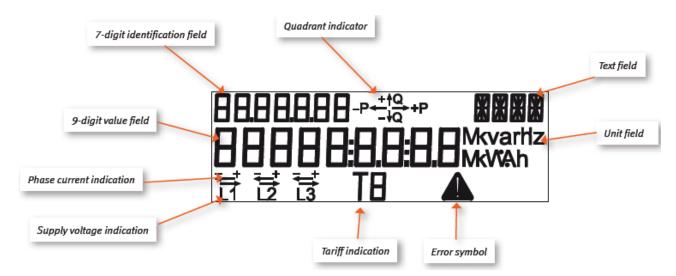


Рис. 12: Дисплей.

Для конфигурации параметров, отображаемых на дисплее, используется программное обеспечение METERTOOL. Более детально программирование дисплея описано в секции 4.9.

4.1 Поле значений

Данное поле используется для отображения измеренных и других величин. Количество отображаемых величин зависит от типа и конфигурации счетчика. Формат поля значений зависит от отображаемого значения. Номер счетчика, специальные данные отображаются в формате 8.0, энергия в формате [7.0] или [7.2] для первичных величин и в формате [5.2] для вторичных. Мощность отображается в формате [6.3]. Дата и время, соответственно, в формате ГГГГ:ММ:ДД and ЧЧ:ММ:СС.

Поле значений можно сконфигурировать на отображение величин как с незначащими нулями, так и без них.

4.2 Поле единиц измерений

В данном поле отображаются единицы величин, отображаемых в поле значений.

4.3 Текстовое поле

Текстовое поле используется или как дополнительное для поля единиц измерений или для дополнительной текстовой информации. В последнем случае используется принцип бегущей строки.

4.4 Индикатор наличия фаз

Индикатор наличия фаз L1, L2 и L3 показывает наличие напряжения на каждой фазе.

Индикаторы L1, L2, L3	Обозначение
On	Напряжение выше минимального (160В).
Off	Напряжение ниже минимального (160В).

Table 12: Индикация наличия напряжения.

Минимальное напряжение находится в пределах $160 \text{ VAC} \pm 5 \%$. Если напряжение на всех фазах меньше минимального в течение более 1 секунды, счетчик выключается и при восстановлении питания проходит через режим запуска в работу.

4.5 Индикатор направления тока по фазам

Данный индикатор позволяет определить направление тока в каждой фазе. Данная функция позволяет контролировать правильность подключения счетчика.

Indications	Indicate
→ ⁺	Потребление активной энергии (А+)
←	Выдача активной энергии (А-)

Table 13: Работа индикаторов направления тока.

Минимальная нагрузка составляет около 0,6Вт. Если фазный ток меньше чем соответствующее значение, индикатор не отображается.

4.6 Индикатор тарифа

Данный индикатор отображает текущий тариф с помощью символов Т1, Т2, Т3, Т4, Т5, Т6, Т7 и Т8. Индикатор обновляется каждые 10 сек., т.е. следует иметь в виду что с момента смены тарифа до изменения отображаемого символа может пройти до 10 секунд.

4.7 Индикатор квадранта

Характер суммарной нагрузки отображается с помощью стрелок для потребленной и выданной активной и индуктивной и емкостной реактивной энергии.

Текущее значение квадранта отображается при измеряемой мощности более 0,6Вт.

Данный индикатор можно отключить.

4.8 Семизначный идентификатор

Это поле используется для идентификации значений, отображаемых в поле значений. Для идентификации используются OBIS коды. С помощью ПО METERTOOL идентификатор можно отключить.

Формат индикатора: CC.DD.E.FF., где:

- СС означает тип энергии и квадрант
- DD обозначает отображаемые величины
- Е обозначает тариф
- FF данные предыдущих периодов.

Наиболее часто используемые значения представлены в таблице ниже:

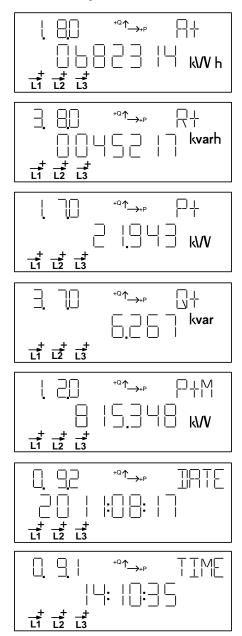
С (тип энергии)	D (величина)	Е (тариф)
1 – Активная + (Q1+Q4)	2 – Суммарная максимальная мощность	0 – Нет
2 — Активная — (Q2+Q3)	6 – Максимальное значение	1 – Тариф 1
3 – Реактивная + (Q1+Q2)	7 – текущее значение	2 – Тариф 2
4 – Реактивная – (Q3+Q4)	25 – Среднее значение	3 – Тариф 3
5 – Реактивная (Q1)		4 – Тариф 4
8 – Реактивная (Q4)		5 – Тариф 5
9 — Полная + (Q1+Q4)		6-Тариф 6
10 — Полная - (Q2+Q3)		7 – Тариф 7
		8 – Тариф 8

Табл. 1: Коды OBIS.

Полный список кодов дан в Ошибка! Источник ссылки не найден..

4.9 Программирование дисплея

Дисплей имеет три списка, которые могут быть сконфигурированы независимо. При этом, следует учесть, что некоторые показания присутствуют в списке всегда и не могут быть удалены из списков.


В автоматическом режиме дисплей меняет отображаемые значения каждые 10 секунд. В список автоматического отображения можно внести до 16-ти параметров.

В режиме ручного просмотра, переход к следующему отображаемому значению осуществляется с помощью кнопки. В этом режиме для просмотра можно выбрать 30 параметров. Счетчик возвращается из ручного режима просмотра в автоматический по истечении 2-х минут после последнего нажатия кнопки.

Для счетчика, снабженного батареей, можно использовать специальный режим просмотра, который позволяет просматривать показания в случае отсутствия питания. В данном режиме можно запрограммировать до 8 параметров.

Ниже даны примеры показаний дисплея. Полный список показаний дан в секции 9.3.

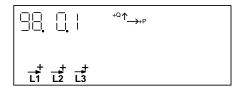
Автоматический режим

Активная энергия A+ в формате 7.0, код OBIS /направление токов, незначащие нули.

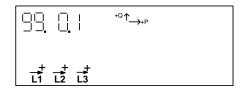
Реактивная энергия R+ в формате 7.0, код OBIS / направление токов, незначащие нули.

Текущая активная мощность P+, в формате 6.3, код OBIS / направление токов.

Текущая реактивная мощность Q+, в формате 6.3, код OBIS /направление токов.


Накопленная максимальная мощность P+ в формате 6.3, код OBIS / направление токов.

Дата, OBIS код.


Время, OBIS код.

Ручной режим

Список показаний в ручном режиме аналогичен автоматическомы. В дополнение, данные предыдущих периодов и профиля нагрузки можно просматривать только в ручном режиме.

Данные предыдущих периодов

Данные журнала профиля

После вывода на дисплей экранов, показанных на рисунках выше, можно перейти к просмотру показаний значений регистров.

Просмотр данных журнал учетных периодов производится нажатием левой кнопки. Для каждого периода отображаются следующие данные:

5 Встроенный радиомодуль

Данная глава относится к счетчикам с интегрированным радиомодулем.

5.1 Передача данных по радио

Радиомодуль, интегрированный в счетчик, служит для организации mesh радио сети и дистанционного снятия показаний счетчиков.

Счетчик со встроенным радио интегрируется в радиосеть автоматически.

С модулем может использоваться как внутренняя, так и внешняя антенна. Штекер антенны находится слева от дисплея.

5.2 Обновление внутреннего программного обеспечения

Счетчик позволяет дистанционно загружать в него новые версии внутреннего ПО, относящиеся к радиомодулю.

6 Технические характеристики

6.1 Сертификаты и соответствие стандартам

Счетчики имеют сертификат утверждения типа № и № и соответствуют ГОСТ 52320-2005, 52322-2005, 52425-2005. Кроме того счетчики были сконструированы в соответствии со следующими международными стандартами:

 Клеммная колодка
 DIN 43857

 Импульсный выход \$0
 DIN 43864

Оптический порт IEC 62056-21 (IEC 61107)

OBIS коды IEC 62056-61

Протокол DLMS IEC 62056-53, IEC 62056-62, IEC 62056-72

6.2 Технические данные

Принцип измерения:

- Ток: По-фазно с помощью трансформаторов тока

- Напряжение: По-фазно с поллощью резестивного делителя напряжения

Номинальное напряжение Un:

3x230VAC -20 - +15 % (для 2-х элементных счетчиков)

3x230/400VAC -20 - +15 %

 Ток In(Imax)
 5(6)A

 Стартовый ток
 ≤ 5mA

Класс точности: 0.5 или 1.0

Реактивная энергия: 2.0

Номинальная частота f_n : $50\Gamma \mu \pm 5 \%$ Рабочая температура: $-40^{\circ}\text{C} - +70^{\circ}\text{C}$

Температура хранения: -40°С - +85°С (До 100 часов при +85°С)

 Степень защиты:
 IP54

 Класс защиты:
 II

Относительная влажность: <75 % среднегодовая, при 21°C

< 95 % менее 30 дней в году, при 25°С

Вес: 0.9 кг

Место установки: Внутренняя или наружная в ящике

Собственное потребление:

- Токовые цепи: 0.02 VA

- Цепи напряжения: 0,2 VA; 0,1 W

Материал корпуса: Поликарбонат усиленный стеклом

Дисплей: ЖКИ, высота знаков 7 мм для поля значений

5 мм для идентификаторов

3 мм для индикаторов фаз и тарифов

Постоянная счетчика: 10000 imp/kWh, kvarh

Pulse length 30ms ± 10%

Импульсный выход \$0: 5000 imp/kWh

Pulse length 30ms ± 10%

Точность хода часов: 5 ppm при 23 °C.

Поддержка хода часов:

- Срок жизни батареи > 10 лет в нормальных условиях

- Срок жизни суперконденсатора > 10 лет в нормальных условиях

- Время работы от конденсатора 4 дня при полной зарядке

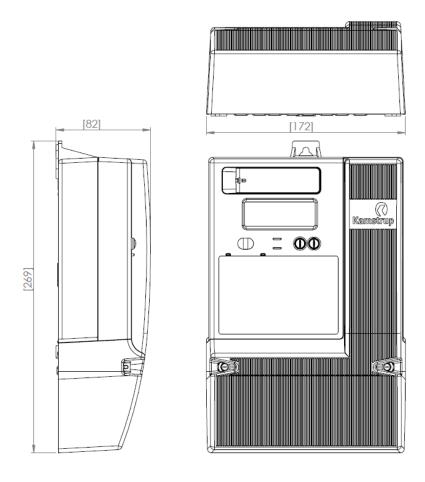
- Время перезарядки < 24 часов

6.2.1 Подключение

Клеммы основные: 2.5 – 10 мм²

Винты: под крестообразный или обычный шлиц

Момент затяжки: 2.5 – 3 Нм


Выводы под напряжение: 0.25 - 1.5 мм, под 2, 5 мм вилочную клемму

Винты TORX (звездочка) Тх 10

Момент затяжки: 1 Нм

6.3 Габаритные размеры

6.3.1 Габаритные размеры счетчика

7 Модули

В счетчике есть два отсека для дополнительных модулей. Первый модуль монтируется под крышку в отсек, расположенный с правой стороны. Второй отсек предназначен для модулей ССС (связь с на уровне потребителя) и расположен в верхней части корпуса (см. подраздел 8.2).

7.1 Основные модули

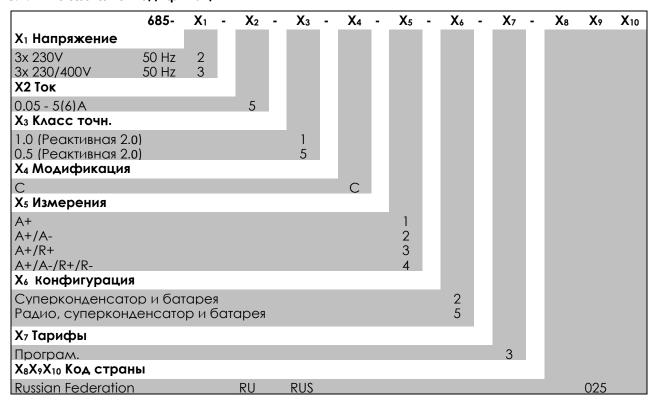
Описание	Артикул
Импульсный вход/выход	68 50 003
IP101i, TCP/IP	68 50 040
GSM6i; GSM6i/RF; GSM7i; GSM8i	68 50 053
LON	68 50 057
Управление нагрузкой 5А	68 50 058
Z-wave	68 50 063
Б/п M-Bus, OMS	68 50 064
M-Bus	68 50 068
Управление нагрузкой 2*5А	68 50 069
Радио рутер	68 50 070
RS-485	68 50 072

Подробные описания модулей даны в отдельных документах.

7.2 Модули ССС

Дополнительные модули могут быть установлены в верхний отсек, как показано на Рис. 14.

Рис. 14: Отсек для дополнительного for ССС модуля.


7.2.1 Модули ССС

Описание Артикул

8 Информация для заказа

ПРИМЕЧАНИЕ: некоторые комбинации не исполняются – уточняйте у поставщика.

8.1.1 Основные модификации

8.2 Конфигурации счетчиков

В этом разделе дан обзор возможных конфигураций счетчика.

Значения А и В устанавливаются при производстве и не могут быть изменены без перекалибровки счетчика.

8.2.1 Конфигурация 1 (A-B-CCC-DD-E)

A Знаки после запятой (зафиксировано)

В Конфигурация светодиода (зафиксировано)

ССС Основной модуль

DD Конфигурация порта ввода/вывода модуля

Е Период усреднения

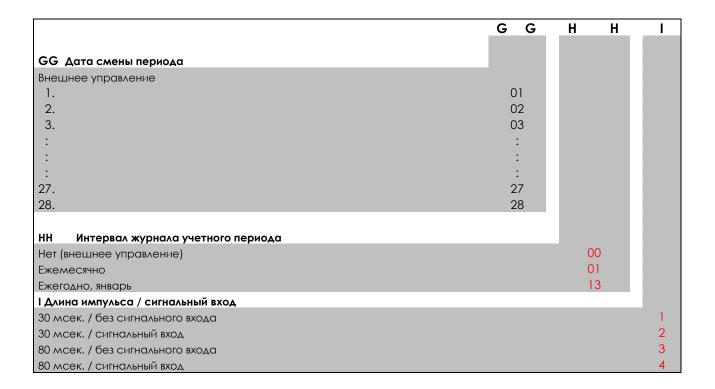
Код DD описывает функциональность двух портов модуля, которые могут быть сконфигурированы как входы или выходы.

7.1 Первичная энергия 7.2 Первичная энергия	2 3				
В Конфигурация светодиода					
Выключен при отсутствии нагрузки	_	1			
Выключен при отсутствии нагрузки		2			
ССС Модуль					
Отсутствует			000		
IP101i, TCP/IP			040		
GSM8i, GMS8i/RF,GSM8i			053		
Управление нагрузкой 5А			058		
Z-wave			061		
Б/п M-Bus, OMS			064		
M-Bus			068		
Управление нагрузкой 2*5А			069		
MUC			071		
RS-485			072		
Data/pulse module, dual pulse, 9600			075		

DD Конфигурация модуля I/O			DD	Е
Описание	Порт 1	Порт 2		
R+ /A+	Output	Output	06	
A- /A+	Output	Output	16	
Упр. нагр 1 / Упр. нагр 2	Output	Output	26	
Е период усреднения				
5 min.				1
15 min.				2
30 min.				3
60 min.				4

8.2.2 Конфигурация 2 (FFF-GG-HH-I)

FFF Конфигурация дисплея


GG Дата смены периода

НН Интервал журнала учетного периода

I Длительность импульса / сигнальный вход

Для помощи в выборе конфигурации 2 обратитесь к поставщику.

В таблице ниже даны примеры конфигурации дисплея.

8.2.3 Конфигурация 3 (JJ-K-LL-M-NN)

JJ Не используется

К Не используется

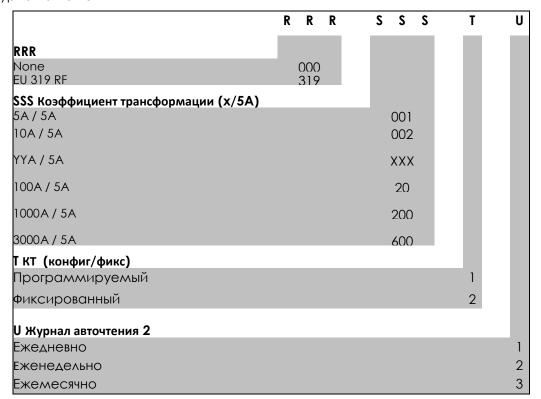
LL Часовой пояс

М Используется

NN Единица измерения импульсного входа

Для помощи с конфигурацией (JJ), обратитесь к поставщику

8.2.4 Конфигурация 4 (OOO-PPP-QQ)


000 Таблица тарифов

РРР Переход на летнее время

QQ Протокол

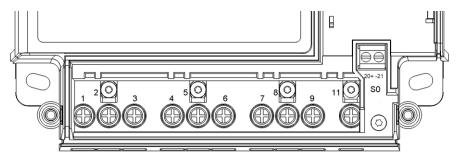
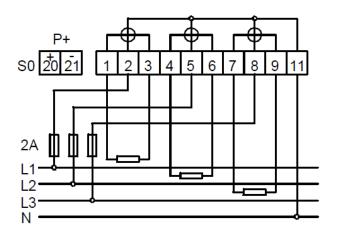
8.2.5 Конфигурация 5 (RRR)

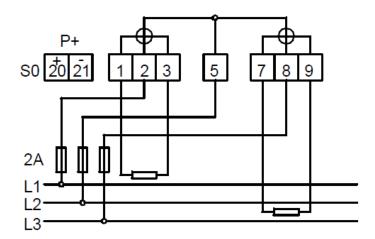
- RRR Радио
- **\$\$\$** Коэффициент трансформации (x / 5A)
- Т Коэффициент трансформации (Программируемый / фиксированный)
- **U** Журнал авточтения 2

9 Включение счетчика

Подсоедините счетчик в соответствии со схемой на лицевой панели или под крышкой клеммника и приведенными ниже.

9.1 Обозначение клемм


Рис. 16: Обозначение клемм для счетчика 351.

9.2 Схемы подключения

3-х фазный, 4-х проводный

3-х фазный, 3-х проводный

9.3 Меры предосторожности

Счетчик должен использоваться только по назначению и работать только в пределах максимальных допускаемых значений.

При установке счетчика напряжение должно быть отключено. Установка должна производиться только авторизованным персоналом.

Счетчики прямого включения должны быть защищены от токов короткого замыкания с учетом максимального тока, на который они рассчитаны.

9.4 Пломбирование

Счетчик имеет несколько уровней пломбирования. Корпус счетчика пломбируется сваркой при производстве, таким образом счетчик нельзя вскрыть без нарушения целостности. Крышка, закрывающая клеммник и модульный отсек, а также правая кнопка пломбируются энергоснабжающей организацией.

Рис. 17: Уровни пломбирования

11 Аксессуары

Программное обеспечение

METERTOOL 68 99 580

Дополнительно

Стандартная крышка клеммника (для 3-х фазных счетчиков)	59 60 370
Удлинённая крышка клеммника 60 мм (для 3-х фазных счетчиков)	59 60 316

59 60 370 59 60 316

Оптическая головка с USB

66 99 099