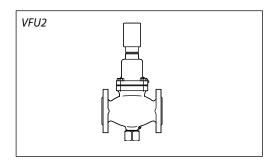
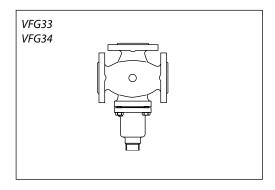

Клапаны регулирующие седельные серий VFG, VFGS2 и VFU2 (нормально закрытый)

Описание и область применения


Основные характеристики:

- проходные;
- нормально открытые;
- разгруженные по давлению;
- с металлическим уплотнением затвора (VFG2);
- с упругим уплотнением затвора (VFG21);
- регулируемая среда: вода.


Основные характеристики:

- проходной;
- нормально открытый;
- разгруженный по давлению;
- с металлическим уплотнением затвора;
- регулируемая среда: водяной пар.

Основные характеристики:

- проходные;
- нормально закрытые;
- разгруженные по давлению;
- с металлическим уплотнением затвора;
- регулируемая среда: вода.

Основные характеристики:

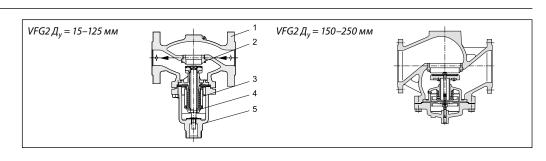
- трехходовой смесительный (VFG33);
- трехходовой разделительный (VFG34);
- разгруженный по давлению;
- регулируемая среда: вода.

Примечание. Клапаны регулирующие серий VFG2, VFGS2 и VFU2 могут использоваться в качестве составного элемента регуляторов температуры и давления прямого действия (см. каталог "Гидравлические регуляторы температуры, давления и расхода").

RC.08.V3.50 © Danfoss 2008 55

Номенклатура и коды для оформления заказа

VFG2 Нормально открытый, разгруженный по давлению, с металлическим уплотнением затвора


_	Д _{у′}	K _{vs′}	T _{makc} ,		Кодовый номер	
Эскиз	мм	м ³ /ч	°C	Р _у = 16 бар	Р _у = 25 бар	Р _у = 40 бар
	15	4,0	200	065B2388	065B2401	065B2411
	20	6,3	200	065B2389	065B2402	065B2412
	25	8,0	200	065B2390	065B2403	065B2413
	32	16	200	065B2391	065B2404	065B2414
	40	20	200	065B2392	065B2405	065B2415
- 🛱 -	50	32	200	065B2393	065B2406	065B2416
\	65	50	200	065B2394	065B2407	065B2417
	80	80	200	065B2395	065B2408	065B2418
	100	125	200	065B2396	065B2409	065B2419
	125	160	200	065B2397	065B2410	065B2420
	150	280	140	065B2398	_	065B2421
	200	320	140	065B2399	_	065B2422
	250	400	140	065B2400	_	065B2423
	150	280	200	065B2424	-	065B2427
	200	320	200	065B2425	<u>-</u>	065B2428
	250	400	200	065B2426	_	065B2429

Технические характеристики VFG2

	15	20	25	32	40	50	65	80	100	125	150	200	250
	4	6,3	8	16	20	32	50	80	125	160	280 320*	320 450*	400 630*
1A 24 422	0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3	0,2	0,2
P _y = 16 бар***	16	16	16	16	16	16	16	16	15	15	12	10	10
P _y = 25, 40 6ap***	20	20	20	20	20	20	20	20	15	15	12	10	10
Макс. перепад давлений на клапане $P_y = 16 \text{бар}^{***}$		16	16	16	16	16	16	16	_	_	_	_	_
c AMV(E) 4 $\Delta P_{\text{Makc.}}$, 6ap $P_y = 25,40 \text{ 6ap}^{***}$		20	20	20	20	20	20	20	_	_	_	_	_
P _y = 16 бар	16	16	16	16	16	16	16	16	15	15	12	10	10
P _y = 25, 40 бар***	20	20	20	20	20	20	20	20	15	15	12	10	10
	16, 25 или 40 бар; фланцы по DIN 2501												
			В	ода илі	и 30% і	воднь	ій рас	твор гл	пикол	я; Т = 2-	-200 °C		
			Сильс	рон из	нерж.	стали,	мат. М	№ 1.457	71		Гофр	о. мембр	рана
Р _у = 16 бар					Серь	ый чуг	ун EN	-GJL-25	50 (GG	-25)			
Р _у = 25 бар					Ковкий	 и чугу	н EN-C	GJS-400) (GGC	i-40.3)			
$P_y = 25,40 \text{Gap}$					C	таль (GP240	GH (GS	S-C 25)				
Материал затвора			Нерж. сталь, мат. № 1.4404								Мат. № 1.4021		
	Нерж. сталь, мат. № 1.4021 Мат. № 1.4313							313					
	$P_y = 16 \text{ Gap}^{***}$ $P_y = 25,40 \text{ Gap}^{***}$ $P_y = 16 \text{ Gap}^{***}$ $P_y = 25,40 \text{ Gap}^{***}$ $P_y = 16 \text{ Gap}$ $P_y = 25,40 \text{ Gap}^{***}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 6,3 8 MA 24 422 0,6 0,6 0,6 P _y = 16 бар*** 16 16 16 P _y = 25, 40 бар*** 20 20 20 P _y = 16 бар 16 16 16 P _y = 25, 40 бар*** 20 20 20 P _y = 16 бар 16 16 16 P _y = 25, 40 бар*** 20 20 20 В Сильф P _y = 16 бар P _y = 25 бар	4 6,3 8 16 MA 24 422 0,6 0,6 0,6 0,55 P _y = 16 6ap*** 16 16 16 16 16 P _y = 25,40 6ap*** 20 20 20 20 20 P _y = 16 6ap *** 20 20 20 20 20 P _y = 16 6ap *** 20 20 20 20 20 P _y = 16 6ap 16 16 16 16 16 P _y = 25,40 6ap*** 20 20 20 20 20 P _y = 16 6ap 16 16 16 16 16 P _y = 25,40 6ap*** 20 20 20 20 Boga или Сильфон из	4 6,3 8 16 20 MA 24 422 0,6 0,6 0,6 0,55 0,55 P _y = 16 бар*** 16 16 16 16 16 P _y = 25, 40 бар*** 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 P _y = 25, 40 бар*** 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 P _y = 25, 40 бар*** 20 20 20 20 20 R _y = 16 бар 16 16 16 16 16 16 R _y = 25, 40 бар*** 20 20 20 20 20 R _y = 16 бар 16 16 16 16 16 16 R _y = 25, 40 бар 16 16 16 16 16 R _y = 25, 40 бар 16 16 16 16 16 R _y = 25, 40 бар 16 16 16 16 16 R _y = 25, 40 бар 16 16 16 16 16 16 R _y = 25, 40 бар 16 16 16 16 16 16 R _y = 25, 40 бар 16 16 16 16 16 16 16 16 16 16 16 16 16	4 6,3 8 16 20 32 MA 24 422 0,6 0,6 0,6 0,5 0,55 0,5 P _y = 16 6ap*** 16 16 16 16 16 16 P _y = 25,40 6ap*** 20 20 20 20 20 20 P _y = 16 6ap 16 16 16 16 16 16 16 P _y = 25,40 6ap*** 20 20 20 20 20 20 P _y = 16 6ap 16 16 16 16 16 16 16 P _y = 25,40 6ap*** 20 20 20 20 20 20 P _y = 16 6ap 16 16 16 16 16 16 16 P _y = 25,40 6ap*** 20 20 20 20 20 20 16, 25 или 40 Вода или 30% воднь Сильфон из нерж. стали, P _y = 16 6ap Серый чуг Р _y = 25,40 6ap Ковкий чугу Р _y = 25,40 6ap Сталь 6	4 6,3 8 16 20 32 50 MA 24 422 0,6 0,6 0,6 0,55 0,55 0,5 0,5 P _y = 16 бар*** 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 Reputable 16 16 16 16 16 16 16 16 16 16 Reputable 17 16 16 16 16 16 16 16 16 16 16 16 16 16	4 6,3 8 16 20 32 50 80 MA 24 422 0,6 0,6 0,6 0,55 0,55 0,5 0,5 0,45 P _y = 16 бар*** 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 16, 25 или 40 бар; фланци Вода или 30% водный раствор г. Сильфон из нерж. стали, мат. № 1.45: Р _y = 25 бар Ковкий чугун ЕN-GJS-400 Р _y = 25,40 бар Сталь GP240GH (GS	4 6,3 8 16 20 32 50 80 125 MA 24 422 0,6 0,6 0,6 0,5 0,55 0,5 0,5 0,5 0,4 0,4 P _y = 16 бар*** 16 16 16 16 16 16 16 16 16 15 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 15 P _y = 16 бар 16 16 16 16 16 16 16 16 16 16 16 16 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 16 15 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 20 P _y = 16 бар 16 16 16 16 16 16 16 16 16 15 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 15 16, 25 или 40 бар; фланцы по D Вода или 30% водный раствор гликол: Сильфон из нерж. стали, мат. № 1.4571 Серый чугун EN-GJL-250 (GG P _y = 25,40 бар Сталь GP240GH (GS-C 25) Нерж. сталь, мат. № 1.4404	4 6,3 8 16 20 32 50 80 125 160 MA 24 422 0,6 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,4 0,4 0,35 P _y = 16 бар*** 16 16 16 16 16 16 16 16 16 15 15 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 20 15 15 P _y = 16 бар 16 16 16 16 16 16 16 16 16 16 16 16 16	4 6,3 8 16 20 32 50 80 125 160 280 320* MA 24 422 0,6 0,6 0,6 0,55 0,55 0,5 0,5 0,5 0,45 0,4 0,35 0,3 P _y = 16 бар*** 16 16 16 16 16 16 16 16 16 15 15 12 P _y = 25,40 бар*** 20 20 20 20 20 20 20 20 20 15 15 15 12 P _y = 16 бар *** 20 20 20 20 20 20 20 20 20 20 20 20 20	4 6,3 8 16 20 32 50 80 125 160 280 320* 320* 320* 320* 320* 320* 320* 320

Устройство VFG2

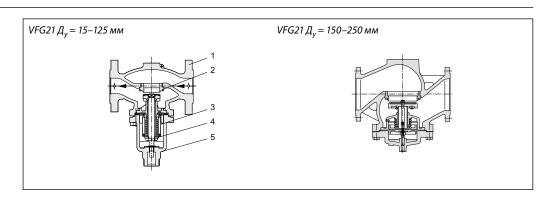
- 1. Корпус клапана
- 2. Седло клапана
- 3. Сильфон
- 4. Шток
- 5. Крышка

^{*} Повышенное значение К_{уз} для клапанов только в сочетании с приводом AMV 613-Y60 (082G0617). ** Установка приводов AMV(E) 55, 56 на клапан VFG2 возможна только через адаптеры (см. стр. 62 и 273). *** При рабочем давлении свыше 14 бар необходимо использовать удлинители штока ZF4, ZF6 (см. стр. 62).

Номенклатура и коды для оформления заказа

VFG21 Нормально открытый, разгруженный по давлению, с упругим уплотнением затвора

_	Д _у ,	K _{vs} ,	T _{make} ,	Кодовы	й номер
Эскиз	мм	м ³ /ч	°C	Р _у = 16 бар	P _y = 25 бар
	15	4,0	150	065B2502	065B2515
	20	6,3	150	065B2503	065B2516
	25	8,0	150	065B2504	065B2517
	32	16	150	065B2505	065B2518
	40	20	150	065B2506	065B2519
- Ħ-	50	32	150	065B2507	065B2520
A	65	50	150	065B2508	065B2521
	80	80	150	065B2509	065B2522
	100	125	150	065B2510	065B2523
	125	160	150	065B2511	065B2524
	150	280	140	065B2512	_
	200	320	140	065B2513	_
-	250	400	140	065B2514	


Технические характеристики VFG21

Условный проход Д _√ мм		15	20	25	32	40	50	65	80	100	125	150	200	250
Пропускная способность Қ _{уз} , м³/ч		4	6,3	8	16	20	32	50	80	125	160	280 320*	320 450*	400 630*
Коэффициент начала кавитации Z по VDMA 24 422		0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3	0,2	0,2
Макс. перепад давлений на клапане	P _y = 16 бар***	16	16	16	16	16	16	16	16	15	15	12	10	10
c AMV(E) 55(56)** ΔP _{макс.} , бар	P _y = 25 бар***	20	20	20	20	20	20	20	20	15	15	12	10	10
Макс. перепад давлений на клапане P _y = 16 бар***		16	16	16	16	16	16	16	16	_	_	_	_	_
c AMV(E) 4** ΔP _{макс} , бар			20	20	20	20	20	20	20	_	_	_	_	_
Макс. перепад давлений на клапане	P _y = 16 бар***	16	16	16	16	16	16	16	16	15	15	12	10	10
c AMV(E) 6** ΔP _{макс.} , бар	P _y = 25 бар***	20	20	20	20	20	20	20	20	15	15	12	10	10
Условное давление Р _у , бар		16 или 25 бар; фланцы по DIN 2501												
Регулируемая среда			Вода	или 30)% вод	ный ра	створ (<u>/</u>	глико 1 _v = 15	ля; T = 2 0–250)	2–150	(Д _y = 15	5–125) и	2–140°	C
Устройство разгрузки давления				Сильф	он из	нерж. с	стали,	мат. М	⁰ 1.457	'1		Гофр	о. мемб	рана
	P _y = 16 бар					Серь	ій чуг	ун EN	GJL-25	0 (GG	-25)			
Материал корпуса клапана $P_y = 25 \text{ бар}$						Ковкий	і чугу	н EN-C	JS-400	(GGG	-40.3)			
P _y = 25 6ap						C	таль (GP240	GH (GS	-C 25)				
Материал затвора	Материал затвора			Нерж. сталь, мат. № 1.4404								Мат. № 1.4021		
			Нерж. сталь, мат. № 1.4021 Мат. № 1.4313							313				

^{*} Повышенное значение К_{УЅ} для клапанов только в сочетании с приводом AMV 613-Y60 (кодовый номер 082G0617). ** Установка приводов AMV(E) 55, 56 на клапан VFG21 возможна только через адаптеры (см. стр. 62 и 273). *** При рабочем давлении свыше 14 бар необходимо использовать удлинители штока ZF4, ZF6 (см. стр. 62).

Устройство VFG21

- 1. Корпус клапана
- 2. Седло клапана
- 3. Сильфон
- 4. Шток
- 5. Крышка

RC.08.V3.50 © Danfoss 2008 57

Клапаны регулирующие седельные серий VFG, VFGS2 и VFU2 (нормально закрытый)

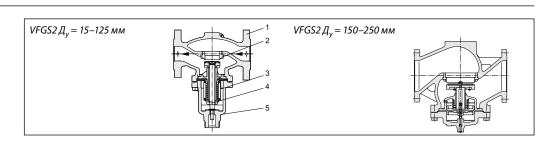
Номенклатура и коды для оформления заказа

VFGS2 Для пара, нормально открытый, разгруженный по давлению, с металлическим уплотнением затвора

	Д _у ,	K _{vs} *,	T _{макс} ,		Кодовый номер	
Эскиз	мм	м ³ /ч	°C	Р _у = 16 бар	P _y = 25 бар	P _y = 40 бар
	15	4,0 (2,5)	350	065B2430	065B2443	065B2453
	20	6,3 (4,0)	350	065B2431	065B2444	065B2454
	25	8,0 (6,3)	350	065B2432	065B2445	065B2455
	32	16 (10)	350	065B2433	065B2446	065B2456
	40	20 (16)	350	065B2434	065B2447	065B2457
- 🚝 -	50	32 (25)	350	065B2435	065B2448	065B2458
\(\delta\)	65	50 (40)	350	065B2436	065B2449	065B2459
	80	80 (63)	350	065B2437	065B2450	065B2460
	100	125 (100)	350	065B2438	065B2451	065B2461
	125	160 (125)	350	065B2439	065B2452	065B2462
	150	280	300	065B2440	_	065B2463
	200	320	300	065B2441	_	065B2464
egar I	250	400	300	065B2442	_	065B2465

^{*} В скобках приведено значение К_{vs} для клапанов с сепаратором, который применяется в целях снижения шума (см. стр. 62). Возможна поставка клапанов со встроенным сепаратором (кодовые номера предоставляются по индивидуальному запросу).

300 °C — для Д_у 15−125, Р_у 16, с удлинителем штока ZF4; 350 °C — для Д_у 15−125, Р_у 25, 40, с удлинителем штока ZF4.


Технические характеристики VFGS2

Условный проход Д _у , мм		15	20	25	32	40	50	65	80	100	125	150	200	250
Пропускная способность К _{vs} , м³/ч		4,0 (2,5)	6,3 (4,0)	8,0 (6,3)	16 (10)	20 (16)	32 (25)	50 (40)	80 (63)	125 (100)	160 (125)	280 320*	320 450*	400 630*
Коэффициент начала кавитации Z по VDMA 24 422		0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3	0,2	0,2
Макс. перепад давлений на клапане	P _y = 16 бар***	16	16	16	16	16	16	16	16	15	15	12	10	10
c AMV(E) 55(56)** ΔP _{макс.} , бар	$P_y = 25,40 \text{Gap***}$	20	20	20	20	20	20	20	20	15	15	12	10	10
Макс. перепад давлений на клапане	Макс, перепад давлений на клапане $P_v = 16 \text{бар}^{***}$		16	16	16	16	16	16	16					
c AMV(E) 4 ΔP _{макс} , бар	P _y = 25, 40 бар***	20	20	20	20	20	20	20	20					
Макс. перепад давлений на клапане	P _y = 16 бар***	16	16	16	16	16	16	16	16	15	15	12	10	10
c AMV(E) 6 ΔP _{макс} , бар	P _y = 25, 40 6ap***	20	20	20	20	20	20	20	20	15	15	12	10	10
Условное давление Р _у , бар		16, 25 или 40 бар; фланцы по DIN 2501												
Регулируемая среда		Пар, Т _{макс} = 350 °C Пар, Т _{макс} = 300 °C									300 °C			
Устройство разгрузки давления		Сильфон из нерж. стали, мат. № 1.4571 Гофр. мембран										рана		
	Р _у = 16 бар					Серы	й чугу	н EN-G	JL-250	(GG-25	5)			
Материал корпуса клапана	Материал корпуса клапана P _v = 25 бар				K	овкий	чугун	EN-GJ	S-400 (GGG-4	0.3)			
$P_y = 40 \text{Gap}$		Сталь GP240GH (GS-C 25)												
Латериал затвора			Нерж. сталь, мат. № 1.4021 Мат. № 1.431									313		
lатериал седла			Нерж. сталь, мат. № 1.4021											

 $^{^*}$ Повышенное значение K_{yz} для клапанов только в сочетании с приводом AMV 613-Y60 (кодовый номер 082G0617). ** Установка приводов AMV(E) 55, 56 на клапан VFGS2 возможна только через адаптеры (см. стр. 62 и 273).

Устройство VFGS2

- 1. Корпус клапана
- 2. Седло клапана
- 3. Сильфон
- 4. Шток
- 5. Крышка

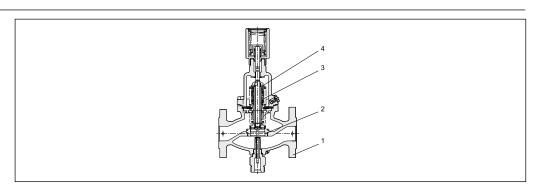
^{* 200 °}C – для Д_у 15–125, Р_у 16, 25, 40; 300 °C – для Д_у 15–125, Р_у 25, 40;

^{***} При рабочем давлении свыше 14 бар необходимо использовать удлинители штока ZF4, ZF6 (см. стр. 62).

Клапаны регулирующие седельные серий VFG, VFGS2 и VFU2 (нормально закрытый)

Номенклатура и коды для оформления заказа

VFU2 Нормально закрытый, разгруженный по давлению, с металлическим уплотнением затвора


2	Д _у ,	K _{vs} ,	T _{make} ,	Кодовь	ій номер
Эскиз	мм	м ³ /ч	°C	Р _у = 16 бар	P _y = 25 бар
	15	4,0	200	065B2738	065B2748
	20	6,3	200	065B2739	065B2749
	25	8,0	200	065B2740	065B2750
	32	16	200	065B2741	065B2751
	40	20	200	065B2742	065B2752
	50	32	200	065B2743	065B2753
	65	50	200	065B2744	065B2754
	80	80	200	065B2745	065B2755
	100	125	200	065B2746	065B2756
	125	160	200	065B2747	065B2757

Технические характеристики VFU2

Условный проход Д _у , мм		15	20	25	32	40	50	65	80	100	125
Пропускная способность K _{vs} , м³/ч		4	6,3	8	16	20	32	50	80	125	160
Коэффициент начала кавитации Z по VD	эффициент начала кавитации Z по VDMA 24 422		0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35
Макс. перепад давлений на клапане с AMV(E) 55(56)* ^{ΔР} _{макс} , бар	P _y = 16 6ap**				12				3		
Макс. перепад давлений на клапане с AMV(E) 4 $\Delta P_{\text{макс.}}$, бар	P _y = 16 6ap**	12 10 -						_			
Макс. перепад давлений на клапане с AMV(E) 6 $\Delta P_{\text{макс.}}$, бар	P _y = 16 6ap**	12 10						:	3		
Условное давление Р _у , бар				1	6, 25 или	1 40 бар;	фланцы і	no DIN 25	501	,	
Регулируемая среда		Вод	да или 30)% воднь	ій раство	р гликол	ıя; T = 2–	200 (VFU	2) и 2–15	0°C (VFL	J21)
Устройство разгрузки давления				C	ильфон и	из нерж.	стали, ма	т. № 1.45	71		
Материал корпуса клапана	Р _у = 16 бар		Серый чугун EN-GJL-250 (GG-25)								
Материал затвора	•	Нерж. сталь, мат. № 1.4404									
Материал седла Нерж. сталь, мат. № 1.4021											

Устройство VFU2

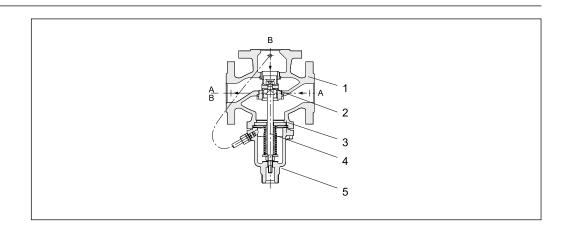
- 1. Корпус клапана
- 2. Седло клапана
- 3. Сильфон
- 4. Шток

RC.08.V3.50 © Danfoss 2008 59

^{*} Установка приводов AMV(E) 55, 56 на клапан VFU2 возможна только через адаптеры (см. стр. 62 и 273). ** При рабочем давлении свыше 14 бар необходимо использовать удлинители штока ZF4, ZF6 (см. стр. 62).

Номенклатура и коды для оформления заказа

VFG33 Трехходовой, смесительный, разгруженный по давлению


2	Д,,	K _{vs} ,	T _{makc} ,	Кодовь	ій номер
Эскиз	мм	м ³ /ч	°C	Р _у = 16 бар	Р _у = 25 бар
	25	8,0	200	065B2598	065B2606
	32	12,5	200	065B2599	065B2607
	40	20	200	065B2600	065B2608
	50	32	200	065B2601	065B2609
" 🖨 "	65	50	200	065B2602	065B2610
	80	80	200	065B2603	065B2611
	100	125	200	065B2604	065B2612
	125	160	200	065B2605	065B2613

Технические характеристики VFG33

Условный проход Д _у , мм		25	32	40	50	65	80	100	125
Пропускная способность К _{vs} , м ³	/ч	8	12,5	20	32	50	80	125	160
Макс. перепад давлений на клапане с AMV(E) 55(56)* ΔΡ _{макс.} , бар	P _y = 16, 25 6ap**	16	16	16	14	12	10	10	10
Макс. перепад давлений на клапане с AMV(E) 4 ΔΡ _{макс} , бар	P _y = 16, 25 6ap**	16	16	16	14	12	10	10	10
Макс. перепад давлений на клапане с AMV(E) 6 ΔΡ _{макс.} бар	P _y = 16, 25 6ap**	16	16	16	14	12	10	10	10
Условное давление Р _у , бар				16 ил	и 25 бар; ф	ланцы по	DIN 2501		
Регулируемая среда		Вод	да или 30%	ь водный р	аствор гли	иколя; T = :	2–200 °C (c	ZF4 — 350) °C)
Материал корпуса клапана, Р _у =	иал корпуса клапана, Р _у = 16, 25 бар		Ковкий чугун EN-GJS-400 (GGG-40.3)						
Материал затвора	Материал затвора		Нерж. сталь, мат. № 1.4404						
Материал седла				Нє	рж. сталь,	мат. № 1.4	021		

Устройство VFG33

- 1. Корпус клапана
- 2. Золотник
- 3. Сильфон
- 4. Шток
- 5. Крышка

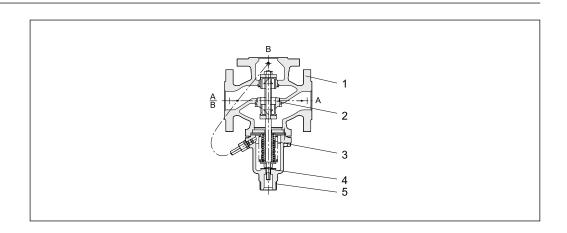
^{*} Установка приводов AMV(E) 55, 56 на клапан VFU2 возможна только через адаптеры (см. стр. 62 и 273). ** При рабочем давлении свыше 14 бар необходимо использовать удлинители штока ZF4, ZF6 (см. стр. 62).

Клапаны регулирующие седельные серий VFG, VFGS2 и VFU2 (нормально закрытый)

Номенклатура и коды для оформления заказа

VFG34 Трехходовой, разделительный, разгруженный по давлению

_	Д,,	K _{vs} ,	T _{make} ,	Кодовь	ій номер
Эскиз	мм	м ³ /ч	°C	P _y = 16 бар	P _y = 25 бар
	25	8,0	200	065B2614	065B2622
	32	12,5	200	065B2615	065B2623
	40	20	200	065B2616	065B2624
	50	32	200	065B2617	065B2625
" 🖨 "	65	50	200	065B2618	065B2626
	80	80	200	065B2619	065B2627
	100	125	200	065B2620	065B2628
	125	160	200	065B2621	065B2629


Технические характеристики VFG34

Условный проход Д _у , мм		25	32	40	50	65	80	100	125
Пропускная способность К _{vs} , м³/ч		8	12,5	20	32	50	80	125	160
Макс. перепад давлений на клапане c AMV(E) 55(56)* $\Delta P_{\text{макс,}}$ бар			16	16	14	12	10	10	10
Макс. перепад давлений на клапане с AMV(E) 4 $\Delta P_{\text{макс}}$, бар	P _y = 16, 25 6ap**	16	16	16	14	12	10	10	10
Макс. перепад давлений на клапане с AMV(E) 6 $\Delta P_{\text{макс}}$, бар	P _y = 16, 25 6ap**	16	16	16	14	12	10	10	10
Условное давление Р _у , бар				16 ил	и 25 бар; ф	ланцы по	DIN 2501		
Регулируемая среда		Вод	ца или 30%	водный р	аствор гли	іколя; T = 2	2–200 °C (c	ZF4 — 350) °C)
Устройство разгрузки давления				Сильфон	из нерж.	стали, мат.	№ 1.4571		
Материал корпуса клапана, $P_v = 16, 25$ бар				Ковкий	чугун ЕN-0	GJS-400 (G	GG-40.3)		
Материал затвора	Нерж. сталь, мат. № 1.4404								
Материал седла				He	рж. сталь,	мат. № 1.4	021		

^{*} Установка приводов AMV(E) 55, 56 на клапан VFU2 возможна только через адаптеры (см. стр. 62 и 273).

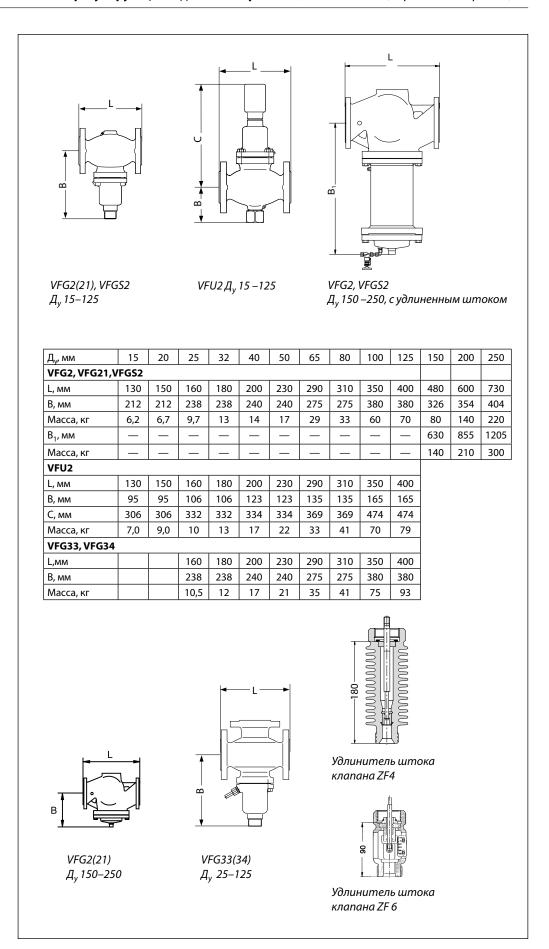
Устройство VFG34

- 1. Корпус клапана
- 2. Седло клапана
- 3. Сильфон
- 4. Шток
- 5. Крышка

RC.08.V3.50 © Danfoss 2008 61

^{**} При рабочем давлении свыше 14 бар необходимо использовать удлинители штока ZF4, ZF6 (см. стр. 62).

Клапаны регулирующие седельные серий VFG, VFGS2 и VFU2 (нормально закрытый)


Дополнительные принадлежности

Эскиз	Тип	Примечание	Кол-во	Кодовый номер
	Удлинитель штока клапана ZF4	Только для клапанов Д $_{\rm y}$ = 15–125 мм при температуре свыше 200 °C	1	003G1394
	Удлинитель штока клапана ZF6 с индикатором положения	Только для клапанов $Д_y = 15-125 \text{ мм}$ при температуре свыше 200 °C	1	003G1393
8	Сепаратор для VFGS2 (устанавливается в клапан для снижения шума)	Для Д _у = 15, 20 мм	1	065B2775
		Для Д _у = 25, 32 мм	1	065B2776
		Для Д _у = 40, 50 мм	1	065B2777
		Для Д _у = 65, 80 мм	1	065B2778
		Для Д _v = 100, 125 мм	1	065B2779
	Адаптер для установки электроприводов AMV(E)55, 56 на клапаны VFG, VFGS2 и VFU2	Для Д _у = 15–25 мм	1	003G2040
		Для Д _v = 32–40 мм	1	003G2041
		Для Д _v = 50–65 мм	1	003G2042
		Для Д _v = 80–125 мм	1	003G2043
		Для Д _у = 150–250 мм	1	003G2044

Примечание. При рабочем давлении среды свыше 14 бар необходимо использовать удлинители штока ZF4, ZF6.

Габаритные и присоединительные размеры

RC.08.V3.50 © Danfoss 2008 63

