По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана (7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04

Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Тверь (4822)63-31-35 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15

Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес: ctv@nt-rt.ru **Веб-сайт:** www.clivet.nt-rt.ru

Тепловой насос WSH-XSC 65D-180F Clivet

WSH-XSC

65D÷180F

Водяной чиллер

Водяное охлаждение

Размещение внутри или снаружи помещения

Мощность от 195 до 560 кВт

Программа подбора в режиме он-лайн

SPINCHILLER

Блоки **WSH-XSC** относятся к серии **SPINCHILLER**, которым свойственна высокая эффективность, самоадаптация и надежность. Основные преимущества данного блока:

- КОМПАКТНОСТЬ: при разработке устройства особое внимание было уделено уменьшению габаритных размеров настолько, насколько это возможно. Ширина блоков мощностью до 560 кВт была сокращена до 85 см, что позволяет им проходить в стандартный дверной проем.
- Также особое внимание уделялось максимальному упрощению подключения и сведению к минимуму работ, требующих высококвалифицированного персонала. Таким образом, значительно уменьшаются затраты на монтаж. Такой же подход был использован при проектировании органов управления, чтобы добиться более простого управления и обслуживания наиболее чувствительных узлов.
- ЭФФЕКТИВНОСТЬ чиллеров возрастает, если тепловая нагрузка уменьшается, но и при максимальной нагрузке блок обеспечивает нормальную работу системы. SPINCHILLER всегда гарантирует максимальный комфорт, сохраняя при этом высокую эффективность, что приводит к значительному энергосбережению.
- ▶ Большое разнообразие дополнительных аксессуаров позволяет максимально приспособить блоки под конкретные условия работы как в гражданской, так и в промышленной сферах кондиционирования воздуха. Узел циркуляции воды HydroPack (гидромодуль) разработан исходя из концепции модульности и имеет несколько параллельно включенных насосов (до 3), что позволяет лучше контролировать нагрузку на систему и регулировать расход воды в критические моменты запуска (или перезапуска) системы, исключая, таким образом, необходимость использования внешних ресурсов.

Инновационные решения и использование передовых технологий hi-tech выводят серию SPINCHILLER на новый, более высокий уровень по сравнению с тем, что можно встретить на рынке сегодня.

Водоохлаждаемые блоки, размещаемые внутри помещения, могут сочетаться с сухими градирнями серии **REM**.

Назначения и характеристики

Только охлаждение

Водяное охлаждение

Внешнее размещение

Внутреннее

Хладагент R-410A

Гермет. спиральн

геверсирование по водяному контуру

гидромодул

Электронный асширительный

Имеющиеся конфигурации

WSH-XSC – D B 75D EN T

(1) РЕЖИМ РАБОТЫ

▶ S <u>Стандартный блок</u> (только охлаждение)

▶ ОНІ <u>Тепловой насос с реверсированием по водяному контуру</u>
 ▶ ОНР
 Тепловой насос с реверсированием по холодильному контуру

(2) РЕГЕНЕРАЦИЯ ЭНЕРГИИ

Не требуется (стандартно)

▶ D <u>Частичная регенерация</u>

Достигается за счёт пластинчатых теплообменников, регенерирующих до 20% тепла конденсации.

▶ R
Полная регенерация

Достигается за счёт пластинчатых теплообменников, регенерирующих до 100% тепла конденсации.

(3) НИЗКАЯ ТЕМПЕРАТУРА

▶ – Не требуется (стандартно)

▶ В Низкая температура холодоносителя

Модификация позволяет использовать смесь воды и гликоля, работая в температурном диапазоне от +4 до $-8\,^{\circ}\text{C}$ включительно. Возможны 2 версии:

- только для низкой температуры
- с двумя рабочими уставками

(4) КОНФИГУРАЦИЯ ПО УРОВНЮ ШУМА

► EN «Супер тихий» (Super Silenced)

Осуществляется путем помещения компрессоров в звукоизолирующие камеры.

(5) ПРИМЕНЕНИЕ

▶ Т <u>Вода из градирни</u>

(6) ПРОВЕРКА ТЕПЛООБМЕННИКА

▶ CE <u>Тест PED</u> (в соответствии с европейскими нормами)

► C Собственные тесты Clivet

Дополнительные устройства

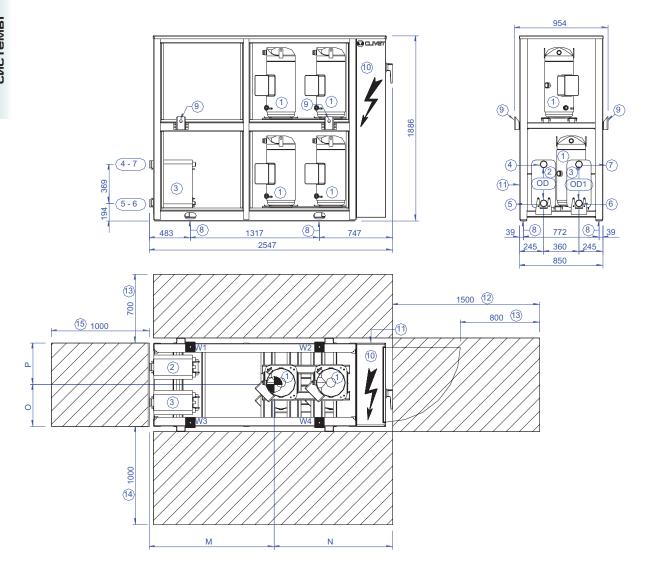
- Резиновые антивибрационные опоры
 - Внешняя установка блока
 - Запорные клапаны на всасывании и нагнетании компрессоров
 - Манометры высокого и низкого давления
 - Гидромодуль с 2 насосами
 - Гидромодуль на стороне источника с 2 насосами
 - ▶ Гидромодуль с 2 насосами +1 в холодном резерве
 - ▶ Гидромодуль на стороне источника с 2 насосами + 1 в холодном резерве
 - Гидромодуль с 3 насосами
 - Гидромодуль на стороне источника с 3 насосами
 - Комплект подключения гидромодуля (со стороны источника)
 - Комплект подключения гидромодуля (со стороны потребителя)
 - Антиобледенительные электронагреватели гидромодуля на стороне потребителя
 - Антиобледенительные электронагреватели гидромодуля на стороне источника
 - Стальной сетчатый водяной фильтр на стороне потребителя

- Стальной сетчатый водяной фильтр на стороне источника
- Компенсатор уставки по сигналу 4-20 мА
- Компенсатор уставки по сигналу 0-10 В
- Компенсатор уставки по датчику свежего воздуха
- Компенсатор уставки по наружной энтальпии
- Фазовый монитор
- Конденсаторы для повышения коэффициента мощности (соѕ fi >0,9)
- Устройство для снижения пусковых токов
 - Модуль последовательной передачи данных CAN/MODBUS
- ▶ Модуль последовательной передачи данных CAN/LonWorks
- Устройство хранения данных
- ▶ Работа в режимах Master/Slave
 - Свободные контакты состояния компрессора
- Дистанционное управление на базе удаленного микропроцессорного контроллера

Значение символов:

■ Дополнительное устройство, поставляется отдельно.

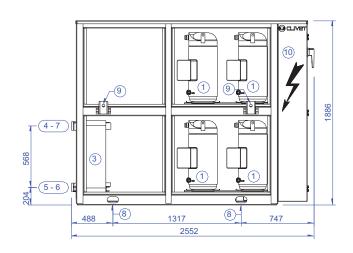
Технические данные WSH-XSC

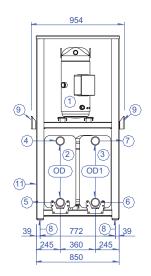

Типоразмер			65D	70D	75D	80D	85D	90D	100D	110D	115D	120D	135E	150F	165F	180F
ОХЛАЖДЕНИЕ																
Холодопроизводительность	1	кВт	195	207	223	234	251	286	312	334	353	371	406	440	497	560
Электропотребление компрессоров	1	кВт	41,2	44,2	47,3	50	53,4	59,5	65,1	70,2	75,4	79,3	86,1	93,7	106	119
Общее электропотребление	2	кВт	41,5	44,5	47,6	50,3	53,7	59,8	65,4	70,5	75,7	79,6	86,6	94,2	106	120
Тепловая мощность полной регенерации тепла	3		00.4	007	0.57	0.40	000	007	0.57	000	407	400	4	501		
конденсации	3	кВт	224	237	257	269	289	327	356	383	407	428	466	506	574	646
Тепловая мощность частичной регенерации тепла	3	D	47	50	54	57	61	69	75	81	86	90	98	107	121	136
конденсации	3	кВт	4/	30	54	3/	01	09	/3	81	80	90	98	107	121	130
EER			4,7	4,65	4,68	4,65	4,67	4,78	4,77	4,74	4,66	4,66	4,69	4,67	4,69	4,67
ESEER			6,11	6,15	5,87	6,03	5,88	6,02	5,99	6,15	6,09	6,07	6,1	6,28	6,21	6,24
НАГРЕВ																
Тепловая мощность	4	кВт	224	237	257	269	289	327	356	383	407	428	466	506	574	646
Электропотребление компрессоров	4	кВт	50,9	54,7	57,9	61,3	64,6	72,9	79,6	86,3	92,8	97,9	106	115	130	147
Общее электропотребление	2	кВт	51,2	55	58,2	61,6	64,9	73,2	79,9	86,6	93,1	98,2	107	115	130	147
COP			4,38	4,31	4,42	4,37	4,45	4,47	4,46	4,42	4,37	4,36	4,36	4,4	4,42	4,39
КОМПРЕССОР																
Тип	5								SCR	ROLL						
Количество		шт.	4	4	4	4	4	4	4	4	4	4	5	6	6	6
Номинальная мощность (С1)		л.с.	30	35	35	40	40	45	50	55	55	60	60	75	75	90
Номинальная мощность (С2)		л.с.	35	35	40	40	45	45	50	55	60	60	75	75	90	90
Количество ступеней регулирования		шт.	4	4	4	4	4	4	4	4	4	4	5	6	6	6
Заправка маслом (С1)	6	Л	7	8	8	10	10	9	10	10	12	11	11	20	20	17
Заправка маслом (С2)	6	Л	8	8	10	10	9	9	10	12	11	11	20	20	17	17
Количество холодильных контуров		шт.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ВНУТРЕННИЙ ТЕПЛООБМЕННИК																
Тип	7		PHE	PHE	PHE	PHE	PHE									
Расход воды		л/с	9,3	9,9	10,7	11,2	12	13,7	14,9	16	16,9	17,7	19,4	21	23,7	26,8
Гидравлическое сопротивление		кПа	47	43	43	47	31	40	36	40	45	49	47	46	45	56
Объем теплообменника		Л	11	13	14	14	25	25	29	29	29	29	34	38	47	47
ВНЕШНИЙ ТЕПЛООБМЕННИК																
Тип	7		PHE	PHE	PHE	PHE	PHE									
Расход воды		л/с	11,3	12	12,9	13,6	14,5	16,5	18	19,3	20,5	21,5	23,5	25,5	28,8	32,4
Гидравлическое сопротивление		кПа	46	51	52	51	32	40	33	37	36	39	46	49	52	65
Объем теплообменника		Л	14	14	16	18	29	29	38	38	43	43	43	47	56	56
ПОДКЛЮЧЕНИЯ																
Фитинги по воде	8		2" 1/2	2" 1/2	2" 1/2	2" 1/2	3"	3"	3"	3"	3″	3"	3″	3″	3″	3"
ШУМОВЫЕ ХАРАКТЕРИСТИКИ																
Уровень звукового давления ST (EN)	9	дБ(А)	73(64)	74(64)	74(65)	74(65)	74(66)	74(66)	76(67)	76(68)	76(68)	76(68)	76(68)	76(68)	77(68)	77(69
ЭЛЕКТРОПИТАНИЕ																
Параметры электропитания		В/Ф/Гц	Į.						400/	3/50						
ГАБАРИТНЫЕ РАЗМЕРЫ																
Длина		MM	2547	2547	2547	2547	2552	2552	2552	2552	2552	2552	3062	3062	3062	3062
Ширина		MM	850	850	850	850	850	850	850	850	850	850	850	850	850	850
Высота		MM	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886
ВЕС СТАНДАРТНОГО БЛОКА																
Эксплуатационный вес (ST)		КГ	1238	1320	1360	1397	1489	1490	1604	1694	1723	1 <i>7</i> 31	2012	2272	2409	2406
Транспортировочный вес (ST)		ΚΓ	1212	1292	1329	1364	1435	1436	1.537	1627	1651	1659	1935	2190	2325	2318

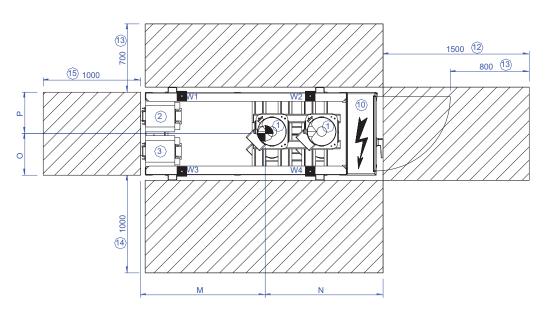
Данные соответствуют следующим условиям:

- (1) Температура воды на входе/выходе: внутреннего теплообменника 12/7 °С; внешнего теплообменника 30/35 °С.
- (2) Общая потребляемая мощность = потребляемая мощность компрессоров + мощность, потребляемая дополнительными цепями.
- (3) Температура воды на входе/выходе: регенерирующего теплообменника $40/45\,^{\circ}$ C; внутреннего теплообменника $12/7\,^{\circ}$ C.
- (4) Температура воды на входе/выходе: внутреннего теплообменника 40/45 °C; внешнего теплообменника 12/7 °C
- (5) SCROLL = спиральный компрессор.
- (6) Приближенное значение.
- (7) РНЕ = пластинчатый теплообменник.
- (8) Подключения со стороны потребителя и со стороны источника.
- (9) Показатели измерены на расстоянии 1 м.

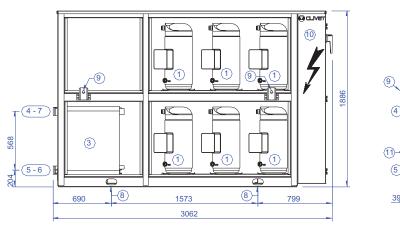
Габаритный чертеж WSH-XSC 65D:80D

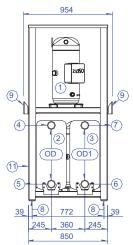

- (1) Компрессор
- (2) Внутренний теплообменник (испаритель)
- (3) Внешний теплообменник (конденсатор)
- (4) Вход воды внутреннего теплообменника
- (5) Выход воды внутреннего теплообменника
- (6) Вход воды внешнего теплообменника
- (7) Выход воды внешнего теплообменника
- (8) Отверстия для крепления блока

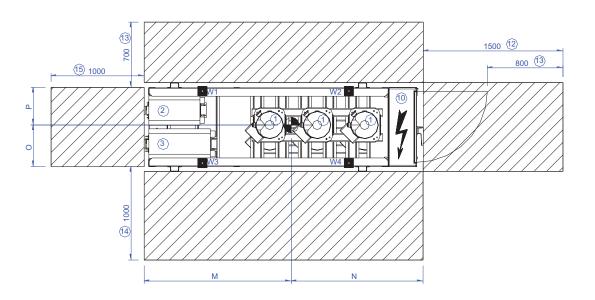

- (9) Подъемные скобы (при необходимости снимаются после установки блока)
- (10) Электрическая панель
- (11) Ввод кабеля электропитания
- (12) Минимальное расстояние со стороны электрощита
- (13) Минимальное расстояние для безопасного прохода
- (14) Минимальная ширина площадки обслуживания
- (15) Минимальное расстояние для подключения гидравлических магистралей


T			5	ST .	EN					
Типоразмер		65D	70D	75D	80D	65D	70D	75D	80D	
M	MM	1314	1323	1289	1272	1271	1293	1264	1246	
Ν	MM	1233	1224	1258	1275	1276	1254	1283	1301	
0	MM	404	398	402	399	404	399	402	400	
P	MM	446	452	448	451	446	451	448	450	
OD	MM	76	76	76	76	76	76	76	76	
OD1	MM	76	76	76	76	76	76	76	76	
Длина	MM	2547	2547	2547	2547	2547	2547	2547	2547	
Ширина	MM	850	850	850	850	850	850	850	850	
Высота	MM	1886	1886	1886	1886	1886	1886	1886	1886	
W1	КГ	187	192	216	229	223	222	246	260	
W2	КГ	398	422	423	423	410	440	442	440	
W3	КГ	208	221	244	262	248	254	277	296	
W4	КГ	444	485	477	484	457	504	498	501	
Эксплуатационный вес	КГ	1238	1320	1360	1397	1337	1420	1464	1496	
Транспортировочный вес	КГ	1212	1292	1329	1364	1311	1392	1433	1463	

Габаритный чертеж WSH-XSC 85D÷120D


- (1) Компрессор
- (2) Внутренний теплообменник (испаритель)
- (3) Внешний теплообменник (конденсатор)
- (4) Вход воды внутреннего теплообменника
- (5) Выход воды внутреннего теплообменника
- (6) Вход воды внешнего теплообменника
- (7) Выход воды внешнего теплообменника
- (8) Отверстия для крепления блока


- (9) Подъемные скобы (при необходимости снимаются после установки блока)
- (10) Электрическая панель
- (11) Ввод кабеля электропитания
- (12) Минимальное расстояние со стороны электрощита
- (13) Минимальное расстояние для безопасного прохода
- (14) Минимальная ширина площадки обслуживания
- (15) Минимальное расстояние для подключения гидравлических магистралей


T				S	T		EN						
Типоразмер		85D	90D	100D	110D	115D	120D	85D	90D	100D	110D	115D	120D
M	MM	1233	1248	1217	1228	1221	1221	1211	1224	1197	1207	1202	1202
N	MM	1319	1304	1335	1324	1331	1331	1341	1328	1355	1345	1350	1350
0	MM	398	400	399	396	394	394	398	400	399	396	394	394
P	MM	452	450	451	454	456	456	452	450	451	454	456	456
OD	MM	89	89	89	89	89	89	89	89	89	89	89	89
OD1	MM	89	89	89	89	89	89	89	89	89	89	89	89
Длина	MM	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552
Ширина	MM	850	850	850	850	850	850	850	850	850	850	850	850
Высота	MM	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886	1886
W1	КГ	266	260	297	304	312	313	297	291	327	335	342	344
W2	КГ	426	437	451	479	480	482	442	452	467	494	496	498
W3	КГ	306	296	340	354	367	368	341	331	375	390	402	404
W4	КГ	490	497	516	557	564	567	509	515	534	574	583	585
Эксплуатационный вес	КГ	1489	1490	1604	1694	1723	1731	1589	1589	1703	1793	1823	1830
Транспортировочный вес	КГ	1435	1436	1537	1627	1651	1659	1535	1535	1636	1726	1751	1758

Габаритный чертеж WSH-XSC 135E+180F

- (1) Компрессор
- (2) Внутренний теплообменник (испаритель)
- (3) Внешний теплообменник (конденсатор)
- (4) Вход воды внутреннего теплообменника
- (5) Выход воды внутреннего теплообменника
- (6) Вход воды внешнего теплообменника
- (7) Выход воды внешнего теплообменника
- (8) Отверстия для крепления блока

- (9) Подъемные скобы (при необходимости снимаются после установки блока)
- (10) Электрическая панель
- (11) Ввод кабеля электропитания
- (12) Минимальное расстояние со стороны электрощита
- (13) Минимальное расстояние для безопасного прохода
- (14) Минимальная ширина площадки обслуживания
- (15) Минимальное расстояние для подключения гидравлических магистралей

			9	ST .		EN					
Типоразмер		135E	150F	165F	180F	135E	150F	165F	180F		
М	MM	1509	1464	1470	1461	1493	1459	1459	1457		
Ν	MM	1553	1598	1592	1601	1569	1603	1603	1605		
0	MM	388	400	401	400	390	403	403	403		
P	MM	462	450	449	450	460	447	447	447		
OD	MM	89	89	89	89	89	89	89	89		
OD1	MM	89	89	89	89	89	89	89	89		
Длина	MM	3062	3062	3062	3062	3062	3062	3062	3062		
Ширина	MM	850	850	850	850	850	850	850	850		
Высота	MM	1886	1886	1886	1886	1886	1886	1886	1886		
W1	КГ	398	496	523	527	434	536	560	567		
W2	КГ	511	567	607	598	534	605	632	636		
W3	КГ	483	564	592	600	520	601	628	635		
W4	КГ	620	645	687	681	640	678	708	713		
Эксплуатационный вес	КГ	2012	2272	2409	2406	2128	2419	2528	2552		
Транспортировочный вес	КГ	1935	2190	2325	2318	2051	2337	2444	2464		

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана (7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04

Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Тверь (4822)63-31-35 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47

Ростов-на-Дону (863)308-18-15

Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес: ctv@nt-rt.ru **Веб-сайт:** www.clivet.nt-rt.ru