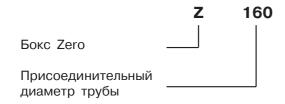


Боксы Zero

Корпус

Корпус выполнен из стального листа, оцинкованного методом седиментации, и сконструирован так, что одновременно является шумоглушителем. В звукопоглощающую облицовку из перфорированного стального листа вставлены панели из минерального волокна толщиной 50 мм. Кожух может быть снят после отвинчивания винтов, благодаря чему обеспечивается доступ к внутренней полости вентилятора для проведения работ по чистке и техническому обслуживанию. Двигатель может быть снят вместе с рабочим колесом вентилятора и улиткой.


Рабочие колеса

Электродвигатели с внешним ротором имеют степень защиты IP 44. Обеспечена защита от влаги. В опорах ротора установлены шарикоподшипники. Для защиты электродвигателя предусмотрен встроенный термоконтакт. Рабочее колесо имеет загнутые вперед лопасти и двухстороннее воздухозаборное устройство. Колесо динамически и статически сбалансировано в соответствии с классом качества G 2,5 по DIN ISO 1940.

Монтаж

Для монтажа применяются жесткие спирально сфальцованные трубы (Spiro), гибкие алюминиевые или пластмассовые трубы стандартного диаметра. При прокладывании магистрали через несколько этажей необходимо соблюдать местные требования противопожарной защиты.

Структура условного обозначения

Канальные вентиляторы

Целесообразное и идеальное в техническом отношении решение объединяет такие преимущества осевых вентиляторов как прямолинейность потока воздуха и простота монтажа с большим постоянством давления, низким уровнем шума и более высоким коэффициентом полезного действия центробежного вентилятора.

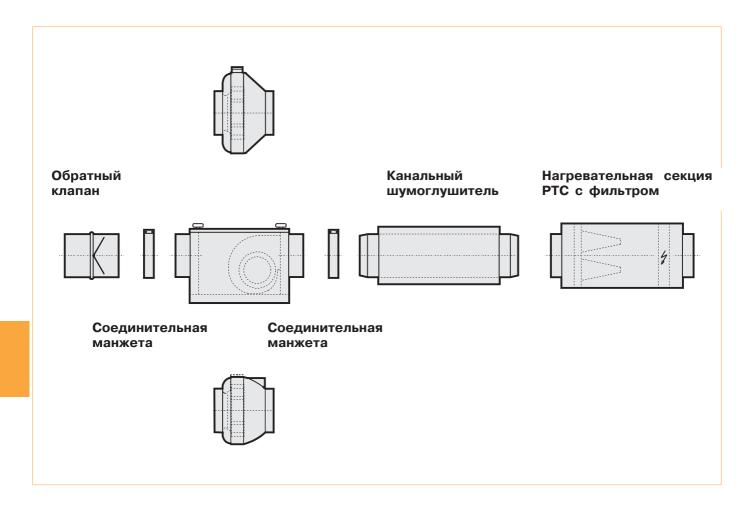
Пластмассовые корпуса

Вентиляторы типоразмеров RS 100 L – RS 315 L имеют корпус красивой формы из ударопрочной трудновоспламеняющейся пластмассы со встроенной клеммной коробкой, имеющей степень защиты IP 54, и направляющее устройство. Рабочие колеса типоразмеров до RS 315 выполнены из пластмассы, а типоразмера RS 315 L - из оцинкованного стального листа.

Привод осуществляется от установленного в центробежном колесе электродвигателя с внешним ротором, имеющего степень защиты IP44. Электрическая часть электродвигателя соответствует требованиям Общества немецких электротехников VDE 0530, класс нагревостойкости изоляционных материалов В. Выполнена дополнительная пропитка для защиты от влаги. Предусмотрен встроенный термоконтакт, последовательно соединенный внутри электродвигателя с обмоткой.

Исполнение R 315 ex не имеет тепловой защиты. Поставка производится в отдельной картонной коробке в подготовленном для монтажа виде.

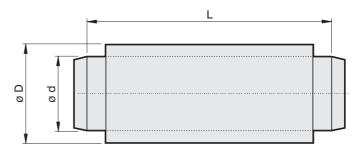
Металлические корпуса


Вентиляторы типоразмеров R 100-315 имеют корпус из оцинкованного стального листа, а типоразмеров R 355 – из алюминия. Привод осуществляется от установленного в центробежном колесе электродвигателя с внешним ротором, имеющего степень защиты IP 44. Электрической часть двигателя соответствует требованиям Общества немецких электротехников VDE 0530, класс изоляционных материалов В. Выполнена дополнительная пропитка для защиты от влаги. Имеется встроенный термоконтакт, последовательно соединенный внутри электродвигателя с обмоткой. Исполнение R 315 ех не имеет тепловой защиты.

Монтаж

Для монтажа применяются жесткие спирально сфальцованные трубы (Spiro), гибкие алюминиевые или пластмассовые трубы стандартного диаметра. При прокладывании магистрали через несколько этажей, необходимо соблюдать местные требования противопожарной защиты.

Структура условного обозначения



Канальный шумоглушитель

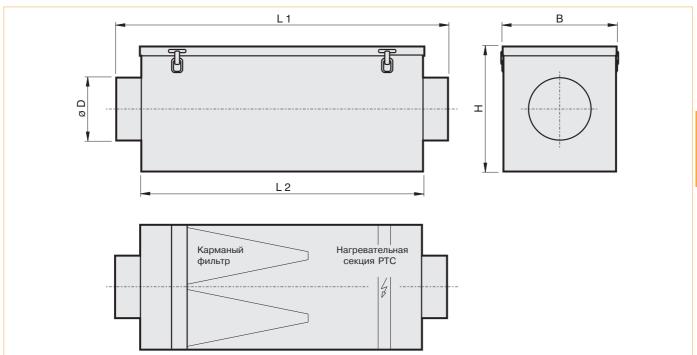
Канальный шумоглушитель характеризуется большой величиной постоянной затухания при минимальных потерях давления. Большие величины звукопоглощения достигаются в диапазоне частот ниже 1000 Гц, что важно для вентиляционной техники.

Шумоглушитель представляет собой перфорированную алюминиевую трубу, находящуюся внутри звукопоглощающего пакета толщиной 50 мм. Наружный кожух образован алюминиевой трубой, изготовленной методом навивки по спирали, которая благодаря своей упругости и гибкости обеспечивает возможность обжатия глушителя при монтаже. Без затруднений выполняется монтаж между несоосными трубами.

Шумоглушитель может быть вставлен непосредственно в вентиляционную трубу (DIN 24145 и DIN 24146) благодаря имеющимся на его концах уступам или же может быть подсоединен с помощью быстросоединяемых элементов.

Тип вентилятора	R 100	R 125	R 150	R 160	R 200	R 250	R 315	R 355
L [мм]	1104	1104	1104	1104	1104	1144	1144	1144
D [MM]	210	230	260	260	310	365	410	460
d [мм]	100	125	160	160	200	250	315	355
Уровень шумопонижения на частоте 250 Гц, дБ	18	15	15	15	12	8	8	8

Система канальных вентиляторов фирмы Rosenberg


Фильтрующая камера с нагревательной секцией РТС

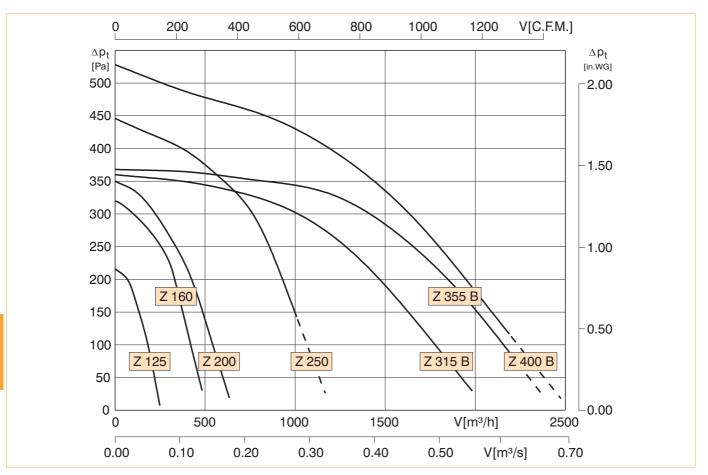
Стандартный фильтр из нетканого материала Простота монтажа

Корпус из оцинкованного стального листа 6 типоразмеров

Нагревательная секция с полупроводниковыми элементами

Не требуется защита от перегрева Теплопроизводительность от 2 до 6 кВт

Типоразмер	В	Н	D	L1	L2	Нагревательная секция	Теплопроизводительность с шагом переключения 1 кВт
100	160	200	100	530	450	2 x HR06-13/15	2 kW
125	160	200	125	530	450	2 x HR06-13/15	2 kW
160	240	270	160	530	450	3 x HR06-13/15	3 kW
200	240	270	200	530	450	2 x HI-B7/6-36/15 A	4 kW
250	350	340	250	580	500	3 x HI-B7/6-36/15 A	6 kW
315	350	340	315	580	500	3 x HI-B7/6-36/15 A	6 kW


Нагревательная секция РТС

Вновь разработанная нагревательная секция РТС оснащена полупроводниковыми элементами. Благодаря особой характеристике зависимости сопротивления от температуры эти элементы обладают свойствами саморегулирования, вследствие чего предотвращается перегрев и регулируется теплопроизводительность. Максимальная температура поверхности, составляющая 140°С, практически не зависит от производительности по воздуху и не превышается даже при отключении вентилятора. При этом нагревательная секция РТС автоматически снижает теплопроизводительность до соответствующей малой величины. Защитное реле температуры не требуется. Путем создания индивидуальных схем включения можно получить множество ступеней переключения. При рабочем напряжении 230 В нагревательная секция может обеспечить теплопроизводительность от 2 кВт (типоразмер 100) до 6 кВт (типоразмер 315).

Характеристика теплопроизводительности секции РТС

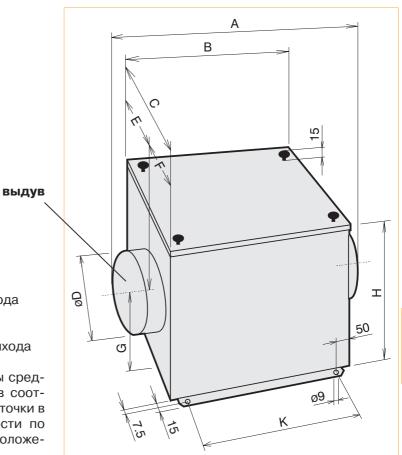
Ze	ero	125	160	200	250	315 B	355 B	400 B
Α	[MM]	470	470	470	470	700	700	770
В	[MM]	390	390	390	390	600	600	670
С	[MM]	360	360	460	460	615	615	665
D	[MM]	125	160	200	250	315	355	400
E	[MM]	180	180	230	230	215	235	258
F	[MM]	180	180	230	230	400	380	407
G	[MM]	187	171	220	220	220	235	260
Н	[MM]	295	295	380	380	470	470	480
K	[MM]	290	290	290	290	500	500	570
U	[B]	230	230	230	230	230	230	230
n	[мин ⁻¹]	1260	1790	1950	2220	1360	1320	1300
P ₁	[Вт]	60	125	160	330	550	600	830
I _N	[A]	0.24	0.54	0.70	1.4	2.6	3.0	4.0
t _R	[°C]	60	55	45	40	40	40	40
C ₄₀₀ V	[мкФ]	1.5	2.5	4	10	12	12	16
Ĭ	[кг]	11	11.5	17	25	36	40	46
I			RE 1,5			RE	3,2	-
ŀ		ED	0,8		ED 2,5	-	-	-
*				01.0	009			

rosenberg

Уровень шума

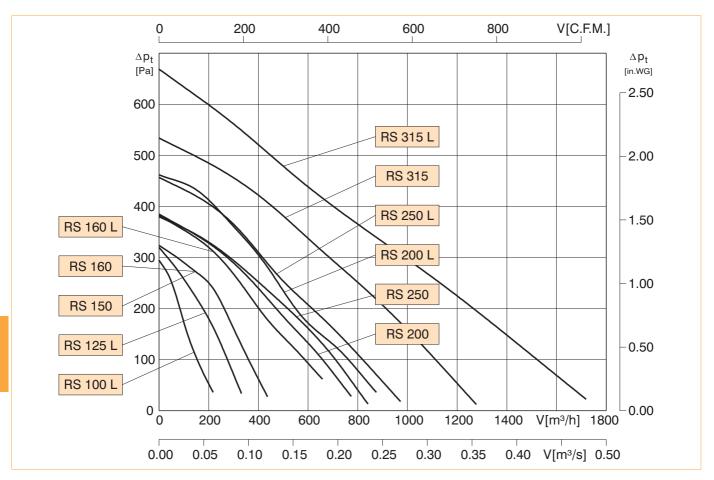
Lwa 2 , Lwokt 2

Уровень звуковой мощности корпуса

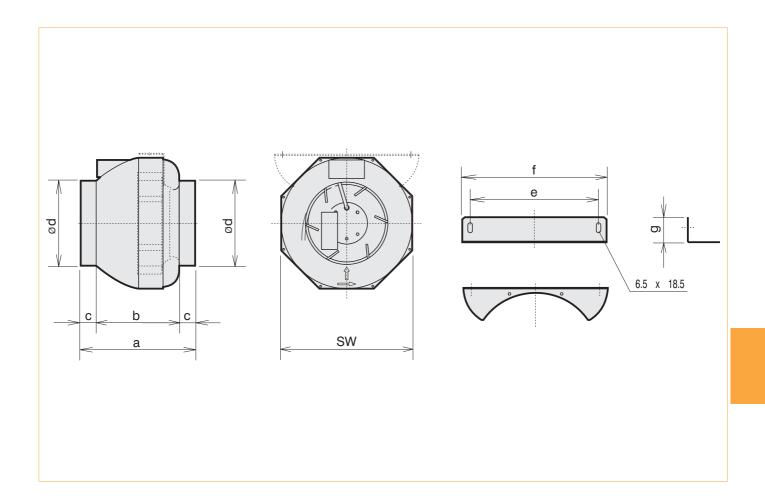

LWA 5 , LWOkt 5

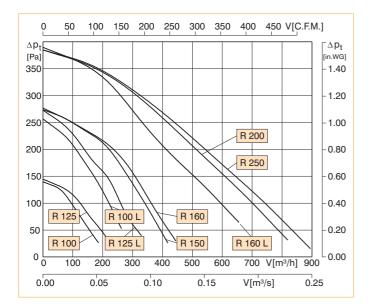
Уровень звуковой мощности со стороны входа

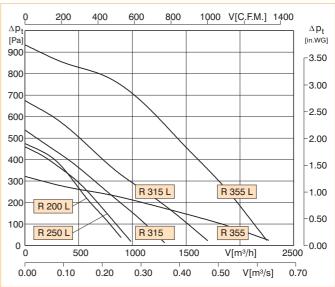
LWA 6 , LWOkt 6

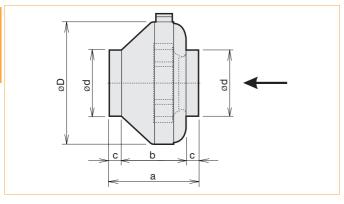

Уровень звуковой мощности со стороны выхода

В представленных ниже таблицах приведены средневзвешенные уровни звуковой мощности в соответствии с DIN 45 635, часть 38, для рабочей точки в верхней части диапазона производительности по воздуху и в трех различных монтажных положениях.


				Уровен	ь звуково	й мощно	сти при	средних ч	настотах	октавных	полос
Тип	Средневзвешенны	й уровень	fm (Гц)	63	125	250	500	1000	2000	4000	8000
Z 125	Lwa 2 [дБ (А)]	39	LWOkt 2 [дБ (А)]	24	30	32	34	32	29	24	19
	Lwa 5 [дБ (А)]	43	LWOkt 5 [дБ (А)]	29	34	36	39	38	29	25	22
	Lwa 6 [дБ (А)]	55	LWOkt 6 [дБ (А)]	32	38	43	46	51	49	45	36
Z 160	Lwa 2 [дБ (А)]	45	LWOkt 2 [дБ (А)]	25	37	38	39	40	35	26	19
	Lwa 5 [дБ (А)]	48	LWOkt 5 [дБ (А)]	28	37	37	41	42	40	35	30
	Lwa 6 [дБ (А)]	63	LWOkt 6 [дБ (А)]	32	42	49	54	59	57	53	46
Z 200	Lwa 2 [дБ (А)]	51	LWOkt 2 [дБ (А)]	33	45	42	45	44	42	38	28
	Lwa 5 [дБ (А)]	53	LWOkt 5 [дБ (А)]	39	46	42	45	46	44	38	33
	Lwa 6 [дБ (А)]	67	LWOkt 6 [дБ (А)]	41	52	54	59	63	62	58	54
Z 250	Lwa 2 [дБ (А)]	58	LWOkt 2 [дБ (А)]	40	49	50	52	53	49	43	37
	Lwa 5 [дБ (А)]	59	LWOkt 5 [дБ (А)]	41	50	50	52	52	50	46	43
	Lwa 6 [дБ (А)]	75	LWOkt 6 [дБ (А)]	47	55	60	67	70	69	65	61
Z 315	Lwa 2 [дБ (А)]	56	LWOkt 2 [дБ (А)]	40	48	50	50	51	44	39	28
	Lwa 5 [дБ (А)]	60	LWOkt 5 [дБ (А)]	49	52	53	54	53	50	45	41
	Lwa 6 [дБ (А)]	74	LWOkt 6 [дБ (А)	53	59	61	67	70	67	64	60
Z 355	Lwa 2 [дБ (А)]	55	LWOkt 2 [дБ (А)]	43	47	50	48	47	45	40	28
	Lwa 5 [дБ (А)]	61	LWOkt 5 [дБ (А)]	50	54	55	52	51	51	46	41
	Lwa 6 [дБ (А)]	76	LWOkt 6 [дБ (А)]	57	62	64	69	71	69	66	62
Z 400	LWOkt 2 [дБ (А)]	56	LWOkt 2 [дБ (А)]	39	46	50	48	50	48	43	32
	LWOkt 5 [дБ (А)]	63	LWOkt 5 [дБ (А)]	46	52	56	56	58	56	49	42
	LWOkt 6 [дБ (А)	78	LWOkt 6 [дБ (А)	51	58	65	72	73	71	68	62


R	S	100 L	125 L	150	160	160 L	200	200 L	250	250 L	315	315 L
U	[B]	230	230	230	230	230	230	230	230	230	230	230
n	мин ⁻¹	2030	2540	2520	2520	2515	2550	2520	2550	2550	2450	2300
P ₁	[Вт]	40	70	70	70	125	120	180	120	170	220	280
IN	[A]	0,18	0,31	0,31	0,31	0,54	0,52	0,78	0,52	0,75	0,98	1,20
t _R	[°C]	60	60	60	60	45	45	40	45	50	45	60
C ₄₀₀ V	[мкФ]	3	2	2	2	3	3	5	3	5	5	8
Ĭ	[кг]	2,4	2,7	3,1	3,1	3,5	3,6	4	3,6	4	5	5,5
\triangle						IP	44					
*						01.	009					
I						RE	1,5					
ŀ					ED	0,8					ED	2,5





RS	100 L	125 L	150	160 , 160 L	200 , 200 L	250 , 250 L	315,315L
d	100	124	149	159	199	249	314
SW	245	245	340.5	340.5	340.5	340.5	405
а	220	220	230	230	230	230	275
b	160	160	170	170	170	170	215
С	30	30	30	30	30	30	30
е	240	240	240	240	240	240	375
f	270	270	270	270	270	270	405
g	47	47	47	47	47	47	47

ı	R	100	100 L	125	125 L	150	150 L	160	160 L	200	200 L	250	250 L	315	315 L	355	355 L
d	[MM]	100	100	125	125	150	150	160	160	200	200	250	250	315	315	355	355
D	[мм]	201	244	201	244	284	334	284	334	334	334	334	334	401	401	490	490
а	[мм]	195	175	175	175	185	210	185	210	200	230	190	225	260	265	400	400
b	[мм]	135	125	125	115	135	150	135	150	150	150	180	140	175	200	320	320
С	[мм]	30	25	25	30	25	30	25	30	25	25	25	25	30	30	40	40
U	[B]	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230
n	-1 мин	2500	2340	2500	2250	2250	2600	2250	2600	2600	2600	2350	2600	2450	2300	1340	2600
P ₁	[Вт]	30	75	30	80	80	110	80	110	110	190	120	190	220	320	280	650
I _N	[A]	0,20	0,33	0,20	0,36	0,36	0,48	0,36	0,48	0,48	0,85	0,52	0,85	1,00	1,40	1,30	3,00
t _R	[°C]	60	60	60	60	60	70	60	70	70	40	60	40	40	40	40	40
С	[мкФ]	-	2	-	2	2	3	2	3	3	5	3	5	5	8	10	12
Ĭ	[кг]	2,1	3,0	2,1	3,0	3,1	4,8	3,1	4,8	4,8	5,0	4,8	5,0	7,1	8,6	10	11
I								RE	1,5								RE3,2
ŀ						ED	0,8							ED	2,5		-
Λ									IP 44								
*									01.009								

Шумовая характеристика

В таблице приведен суммарный уровень звуковой мощности L_{Wtot} в двух различных рабочих точках.

а – Вентилятор включен в канал входным и выходным устройствами, измерение производилось снаружи b – Измерение производилось внутри канала со стороны входного устройства вентилятора

Кроме того, приводится поправочная величина Lwrel для средних частот октавных полос. Измерения относятся к помещению с показателем отражения 10 сэбин. Октавный уровень звуковой мощности можно определить с помощью следующего уравнеия:

R	1	. [aF	l acu	1 n					Попра	авочна	ая вел	пичин	a Lwre	ы (дБ))				
К	LWt	ot [ДÞ] при /	7 b t	125	Гц	250) Гц	500) Гц	100	0 Гц	200	0 Гц	400	0 Гц	800	0 Гц	
	а	b	а	b	а	b	а	b	a	b	a	b	а	b	а	b	а	b	
100	60	Па	115	115 Па		3	9	7	8	7	6	17	8	26	19	30	24	40	
	50	69	51	70	9			•		-									
100L	100	Па	215 Па		13	7	9	3	10	7	4	16	7	24	14	30	18	37	
	55	77	56	77															
125	45	Па	100	100 Па		3	9	5	10	7	6	17	7	24	19	33	30	43	
	50	67	51 68																
125L		Па	225 Πa		11	7	13	5	11	5	4	16	4	20	17	28	25	36	
	53	75	53	76															
150	85		220 Па		4	6	6	3	10	5	10	14	12	16	18	24	26	32	
160	54	73	56	74															
150L 160L		Па	300		3	7	12	4	6	5	11	14	20	21	22	24	27	31	
TOOL	67	80	68	82															
200		Па	300		6	0	8	2	9	5	1	8	6	12	9	17	20	24	
	55	78	55	77															
200L		Па	350		3	5	5	7	4	15	8	17	11	21	12	23	19	28	
	65	88	65	88															
250		78	350 55	77	6	0	8	2	9	5	1	8	6	12	9	17	20	24	
	55	_ 78) Па	350																
250L	65	84	65	85	5	3	7	5	6	13	10	15	13	19	14	21	21	26	
) Па	300																
315	63	80	63	79	10	5	12	5	6	8	6	12	9	16	12	18	21	22	
) Па	300																
315L	67	81	67	81	4	3	8	5	8	10	10	15	5 13	20	17	23	29	29	
) Па		200 Πa															
355	56	73	56	72	9	5	10	5	6	8	6	12	9	16	12	18	21	22	
) Па	300						_	_								-	
355L	73	90	73	89	9	5	10	5	6	8	6	12	9	16	12	18	21	22	