Системы центрального кондиционирования

Каталог Продукции

ЧИЛЛЕРЫ | ТЕПЛОВЫЕ НАСОСЫ | ФАНКОЙЛЫ | ВОЗДУХОРАСПРЕДЕЛИТЕЛИ | РЕШЕНИЯ ДЛЯ КОМПЛЕКСНОГО УПРАВЛЕНИЯ УСТАНОВКОЙ |

IRSAP с 1963 является лидером в производстве трубчатых стальных радиаторов. IRSAP - это пульсирующее сердце группы: несет в себе тепло огня и страсть к комфорту.

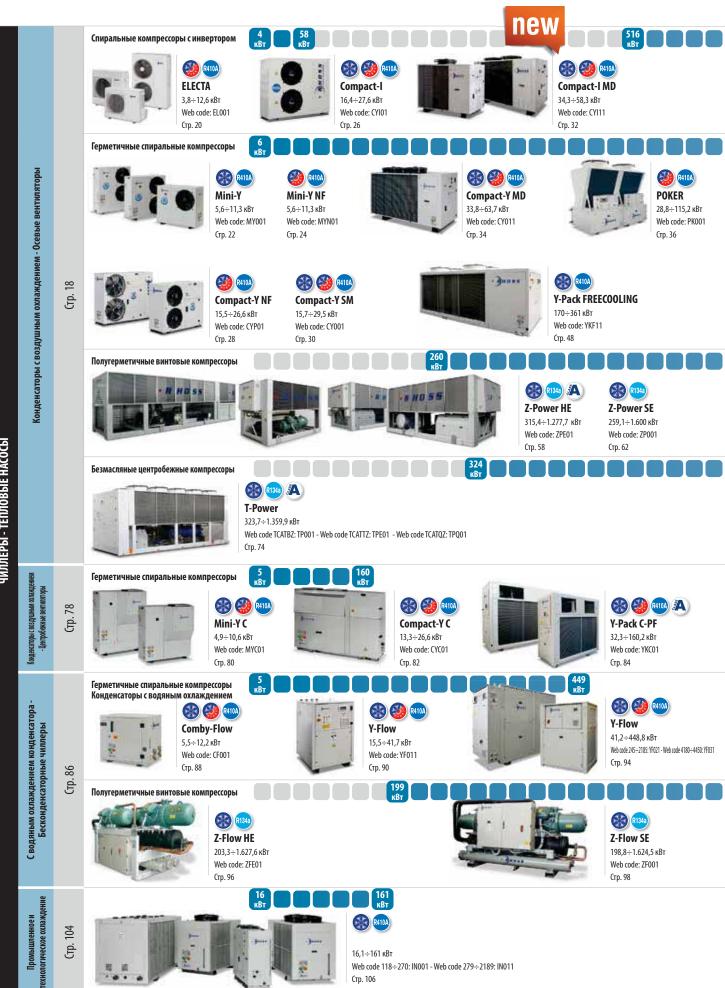
Компания RHOSS с 1968 года работает в отрасли климатизации, как бытовой, так и промышленной. RHOSS - это свежий ветер для тела и для духа, благодаря продукции и системам, которые в состоянии выдвинуть климатизацию на новый уровень.

To be a solution to the solution of the soluti

СОЗДАЙТЕ ВАШ КОМФОРТ

«Группа объединенных промышленных предприятий, действующих на международном рынке, в тесном взаимодействии с нашими клиентами.

С командой мотивированных сотрудников, мы ищем и реализуем «решения» для любых потребностей в отоплении и климатизации посредством инновационных комплексных систем. Наша цель - создать идеальный комфорт, гарантируя благополучие человека в его естественной среде с учетом окружающего пространства».


Наша миссия - это утвердиться в качестве одной из самых надежных компаний в отрасли, создать сильный и узнаваемый имидж технологического лидерства, продолжая инвестировать в исследования и развитие, адаптируя самые инновационные технологические решения.

Наша стратегия - это создавать ценность посредством роста и расширения на международной арене, прежде всего, на развивающихся рынках, стараясь разнообразить и специализировать наше предложение, в том числе через приобретение новых знаний и внешних производственных мощностей.

Наша цель - динамично и гибко отвечать новым потребностям рынка, ориентируя нашу гамму на продукты, комплексные системы, а также передовые и конкурентоспособные услуги высокой эффективности и с низким воздействием на окружающую среду, развивая, таким образом, оптимальный баланс между макро- и микроклиматом.

Web code 118÷270: IN001 - Web code 279÷2189: IN011

Стр. 106

Винтовые компрессоры с инвертором

Z-Power VFD

516÷903 кВт Web code: ZPV01 Стр. 68

EasyPACK 65,5÷144,5 кВт Web code: EAS01

Стр. 38

Y-Pack SE Y-Pack HE 66,6÷160,2 кВт Web code: YK001 - YKE01 Стр. 40

(R410A) (A) WinPACK HE-A 91,6÷345 кВт Web code: WKE11 Стр. 42

Стр. 44

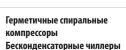
Y-Power HE-A 342.7÷665.1 кВт Web code: YPE01 Стр. 50

333.7÷634 кВт Web code: YP001 Стр. 52

(R410A) (A) WinPOWER HE-A 632.5÷916.8 кВт Web code: WPE11

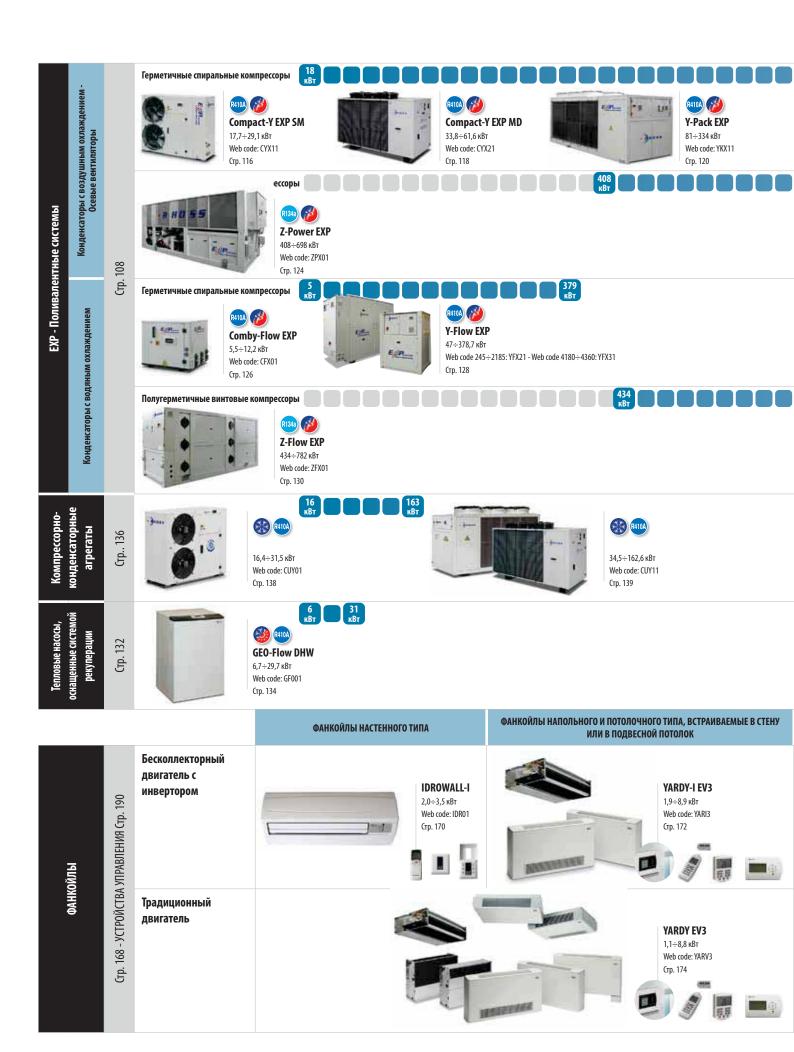
Стр. 54

Стр. 56


Z-Power FREECOOLING

469÷1.216 кВт Web code: ZPF01 Стр. 70

Web code 245÷2185: YFC21 - Web code 4180÷4360: YFC31

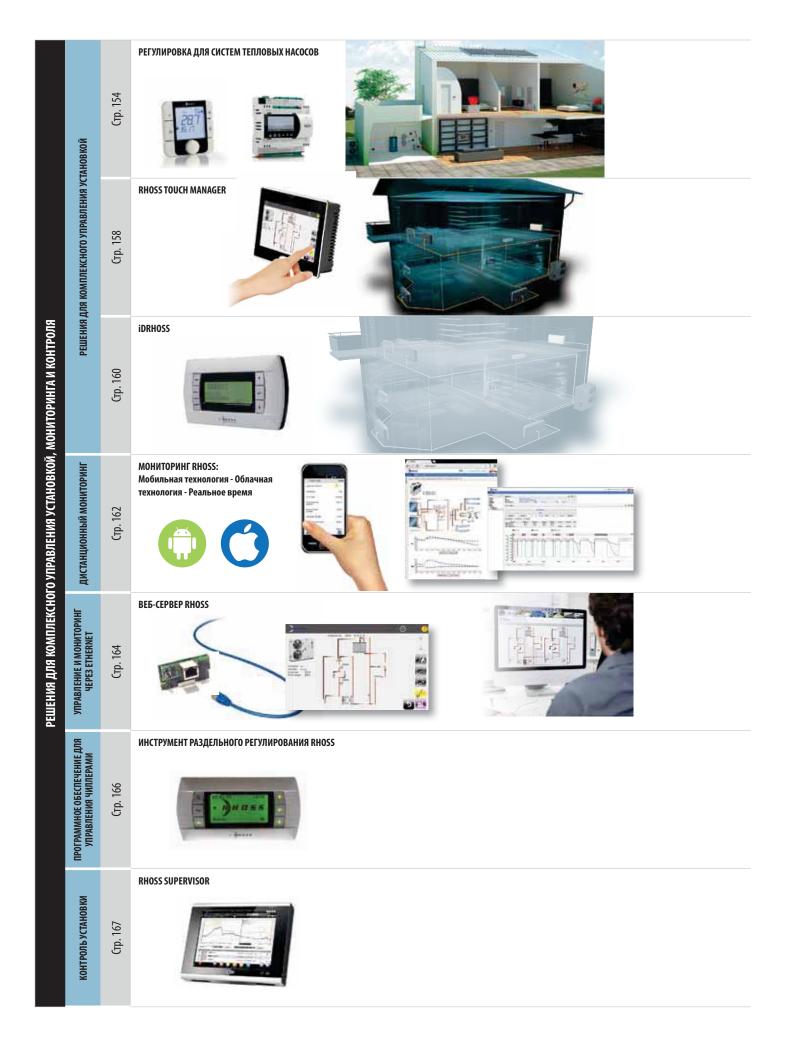


2,0÷11,1 кВт

2,0÷5,8 кВт

Стр. 180

Web code: YADC2


7,2÷20,5 кВт

Стр. 182

Web code: YAHP1

Стр. 192

Высоконапорные фанкойлы

ÚTNA Platinum

6,4÷70 кВт Web code: UTAP1 Стр. 194

Теплоутилизатор UTNR-A Platinum

Рекуперация в противотоке 400÷4.050 м³/ч Web code: UTNR3 Стр. 198

Теплоутилизатор UTNR-A e UTNR-P

Рекуперация перекрёстных потоков $300 \div 5.320 \, м^3/ч$ Web code: UTNR1 Стр. 202

Теплоутилизатор UTNR-HE Platinum

Ротационная рекуперация $310 \div 4.250 \, м^3/ч$ Web code: UTHE3 Стр. 206

Теплоутилизатор UTNR-HE

Ротационная рекуперация 310÷5.300 м³/ч Web code: UTHE2 Стр. 210

Теплоутилизатор UTNR-HP

Термодинамическая рекуперация 350÷4.500 м³/ч Web code: UTHP1 Стр. 218

Теплоутилизатор

VMC-É

Рекуперация в противотоке 150÷1.000 м³/ч Web code: VMC01 Стр. 220

Теплоутилизатор **UTNR Micro**

Рекуперация в противотоке 150 \div 500 м 3 /ч Web code: UTMS1 Стр. 222

Теплоутилизатор/Осушитель воздуха

UTNRD Micro

Рекуперация в противотоке 300/150÷500/250 м³/ч Web code: UTRD1 Стр. 224

Создавать идеальные комфортные условия, стремясь к совершенству.

Rhoss - это одна из компаний Группы IRSAP, специализирующаяся на проектировании и производстве продукции и систем для климатизации и обработки воздуха. Основанная в 1968 году, она сразу зарекомендовала себя как лидер в секторе производства стальных котлов для отопления жилых домов.

В 1971 году, начиная с производства фанкойлов, а затем и охладительных узлов, она окончательно входит в мир кондиционирования.

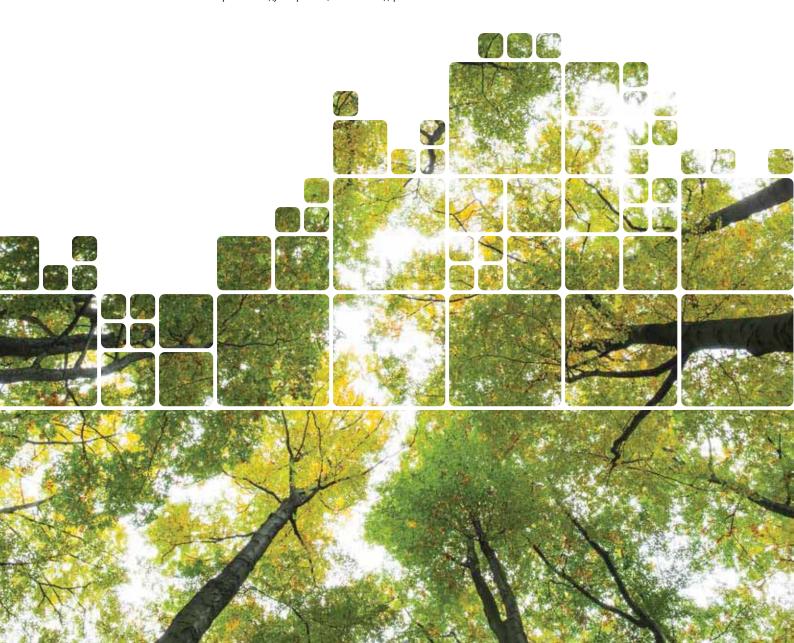
Более 40 лет компания Rhoss гарантирует передовую технологию, качество и сервис на самом высоком уровне. Поэтому это идеальный партнёр для специалистов по системам климат-контроля.

Рост и развитие компании RHOSS - это эволюция, соединяющая в себе инвестиции и планы, позволяющие предприятию занимать высокую позицию и на международном рынке. Рост предприятия идёт в ногу с развитием рынка и требованиями клиентов, в частности, предлагая продукцию с высоким эксплуатационными качествами, в соответствии с самыми современными требованиями Экологического строительства.

В течение всей своей деятельности компания Rhoss проявляла инновационную направленность. Сегодня она подтверждает стремление к постоянному технологическому развитию созданием

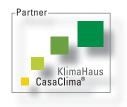
лаборатории R&D Lab: передовой испытательной станции площадью более 100 м², одной из самых крупных в Европе, позволяющей тестировать новую продукцию, Системы лучистого обогрева/охлаждения и специальные установки с потенциалом до 1500 кВт, в наиболее критичных эксплуатационных условиях и провести моделирование рабочего процесса с целью найти эффективный ответ на требования клиентов. R&D Lab одобрена для испытания жидкостных чиллеров и тепловых насосов, может проверять эксплуатационные качества продукции в соответствии с европейскими стандартами. Кроме того, R&D Lab способствует развитию исследовательских проектов в сотрудничестве с учёными и профессорами университетов на национальном и международном уровне.

Rhoss: сертифицированное качество.


www.eurovent-certification.com www.certiflash.com Сертификация EUROVENT для ЧИЛЛЕРОВ, ТЕПЛОВЫХ НАСОСОВ (ССР-НР) И ФАНКОЙЛОВ

Rhoss участвует в программах сертификации Eurovent для чиллеров, тепловых насосов и Фанкойлов согласно следующим стандартам: EN 14511 - EN 9614 - EN 1397.

www.eurovent-certification.com www.certiflash.com Сертификация EUROVENT для СТАНЦИЙ ОБРАБОТКИ ВОЗДУХА (АНU)


Rhoss участвует в программе сертификации Eurovent для Станций обработки воздуха серии ADV, согласно стандартам EN 13053 и EN1886.

LEED - Leadership in Energy & Environmental Design (Передовые разработки в энергообеспечении и экологии)

Rhoss участвует в протоколе сертификации зданий LEED. Международная система основывается на всём сроке службы здания от проектирования и строительства до управления и техобслуживания.

Партнёр компании Rhoss CasaClima - KlimaHaus

Rhoss принимает участие в развитии Casa Clima. Протокол, который обеспечивает зданиям жилищный комфорт высокого уровня в условиях сокращения расходов на электроэнергию и управление, внося существенный вклад в защиту окружающей среды.

Создавать идеальный комфорт, заботясь о природе.

Компания Rhoss предлагает решения, которые направлены на экологически устойчивое развитие с учетом энергоэффективности, в соответствии с требованиями самых важных систем сертификации в области экологического строительства, в частности системы сертификации LEED. Действительно, эта продукция или системы разработаны с использованием технологий, которые реально позволяют сократить энергозатраты системы климат-контроля. Решения компании Rhoss выполненные по принципам устойчивого развития, легко можно узнать, так как отмечены эмблемой "Green Line", которая представляет собой призвание компании Rhoss к охране окружающей среды.

Эффективность как отправной пункт

Эффективность - слово, которое заключает в себе мастерство развития предприятия - имеет множество граней, начиная с проектирования блоков для создания комфорта в окружающей среде до инноваций, направленных на оптимизацию энергосбережения, до изучения решений для улучшения интеграции с установками.

Новая философия проектирования холодильных агрегатов интегрируется с новыми тенденциями рынка и с выбором компоновочных решений, нацеленных на достижение первоклассных стандартов энергопотребления. Интеграция с инновационными станциями обработки воздуха, в которой максимальное внимание уделяется теплоутилизаторам и терморегулировке, хорошо совмещается с новыми установками, в которых технологическое содержание и функциональность комплексной системы представляют собой самые важные факторы. Система Rhoss предлагает широкую серию терминалов с высокими показателями, уделяя особое внимание потреблению и деталям, которые отвечают самым требовательным нуждам клиентов. Комплектует и определяет значимость предложения серия систем мониторинга, управления и контроля блоков для повышения общей производительности установки и взаимодействия с окружающей средой, в которой оборудование находит свое естественное место.

Стандарт холодильных установок ориентируется на класс A и всегда гарантирует эффективность при частичных нагрузках, всегда предлагает высокие показатели, чтобы не только соответствовать, но и превосходить новые цели указателей ESEER, SCOP и SEER. Новые представленные функции, которые, благодаря исследованиям и разработкам в лаборатории R&D Lab, позволяют сделать шаг вперед в достижении лучших энергетических показателей - это предмет особой гордости Rhoss.

Компания Rhoss предлагает системы рекуперации с конденсацией в холодильных установках, с увеличением показателя КПД, которые могут изготавливаться для использования с поливалентными системами тепловых насосов ЕХР, в которых производство холодной и горячей жидкости управляется одновременно или независимо, а также независимо применяться в 4х и 2х трубных установках с производством ГВС. Системы ЕХР позволяют, таким образом, реализовать установку с климатизацией, которая приносит двойной результат при приобретении только одного блока, гарантируя высокую производительность энергопотребления.

ИНТЕЛЛЕКТУАЛЬНАЯ ТЕХНОЛОГИЯ

Adaptive Function Plus - это инновационное программное обеспечение управления, интеллектуального типа, запатентованное компанией Rhoss*, созданное в результате сотрудничества с Департаментами Технической физики и Инженерной Информатики университета г. Падуя. Новая логическая схема позволяет холодильному агрегату получать от установки информацию относительно её нагрузки и тепловой инерции, которую она обрабатывает и на основе которой оптимизирует рабочие параметры в целях снижения энергозатрат.

УМНОЕ КРУГЛОГОДИЧНОЕ РАСПРЕДЕЛЕНИЕ ЭНЕРГОЗАТРАТ

В климатических установках холодильные агрегаты работают при полной нагрузке лишь в течение ограниченного времени, а в течение остального времени года они работают при частичной нагрузке. Adaptive Function Plus влияет на уровень нагрузки, повышая эффективность машины и сокращая энергозатраты, по сравнению с чиллерами и тепловыми насосами с традиционными логическими схемами управления. Экономия энергозатрат доходит до 36% в зимний период и до 18% в летний период!

НАДЁЖНОСТЬ ПРИ НИЗКОМ СОДЕРЖАНИИ ВОДЫ

Способность контроллера предварительно оценивать инерцию и динамику системы позволяет холодильным агрегатам, оснащённым Adaptive Function Plus, работать также в системах с небольшим количеством содержания воды, до 2 л/кВт.

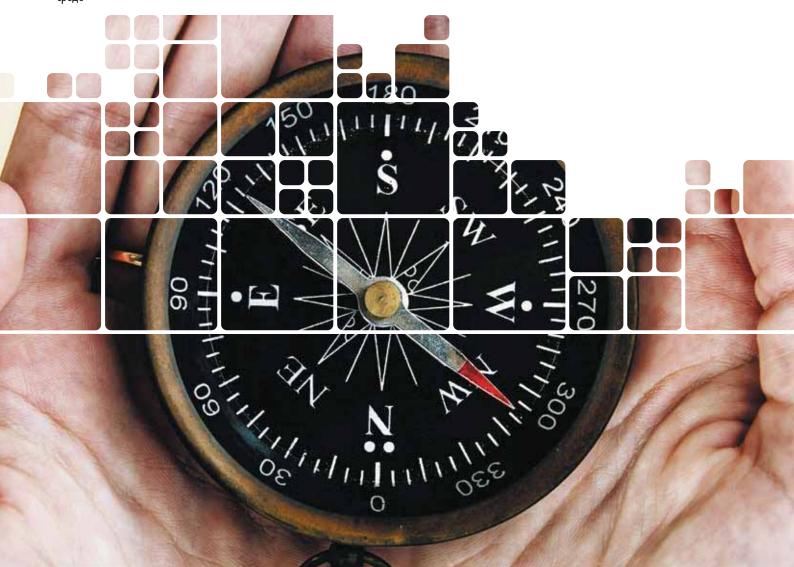
СОКРАЩЕНИЕ ЭНЕРГОЗАТРАТ И ЗАБОТА ОБ ОКРУЖАЮЩЕЙ СРЕДЕ

С Adaptive Function Plus улучшаются энергетические показатели системы здание-установка, благодаря её способности сокращения энергозатрат. Таким образом, возрастает ценность недвижимости, к тому же сокращается выделение загрязняющих веществ в окружающую среду.

ПОКАЗАТЕЛЬ СЕЗОННОЙ ЭФФЕКТИВНОСТИ PLUS

Университетом г. Падуя был установлен показатель сезонной эффективности ESEER+, с учётом подстраивания заданных значений чиллера к различным условиям частичной нагрузки, что наилучшим образом характеризует сезонное поведение холодильного агрегата с Adaptive Function Plus по сравнению с традиционным показателем ESEER. Показатель ESEER+, таким образом, может быть использован для быстрой оценки сезонных энергозатрат только для холодильных агрегатов, оснащённых Adaptive Function Plus, вместо более сложных реальных анализов системы здание-установка, обычно трудно выполнимых.

Чиллеры компании Rhoss, с технологией Adaptive Function Plus, можно легко узнать по неповторимой маркировке.* E.P.O. 07425350.1 - 07425349.3 - 08157531.8


Услуги компании Rhoss: индивидуальные решения в помощь вашему бизнесу.

"RHOSS SERVICE" - это эксклюзивная услуга, которую Rhoss предлагает своим клиентам, чтобы придать значение системам климатконтроля

Rhoss в состоянии создать программы технической поддержки и инструменты, позволяющие оказывать услуги на высшем уровне и в новом ракурсе.

Какие могут быть самые важные аспекты, требуемые пользователем систем климат-контроля?

- 1. добиться постоянных эксплуатационных качеств без проблем и волнений
- 2. оптимизировать работу оборудования
- 3. максимально сократить энергопотребление
- 4. поддерживать на низком уровне затраты на техобслуживание
- 5. устранить эксплуатационные потери
- 6. иметь ограниченное время простоя
- 7. сбалансированно управлять предполагаемыми затратами
- 8. быть в соответствии с местными законодательными нормативными требованиями и нормами бережного отношения к окружающей среде

КОНТРАКТЫ - РАСШИРЕНИЕ ГАРАНТИИ

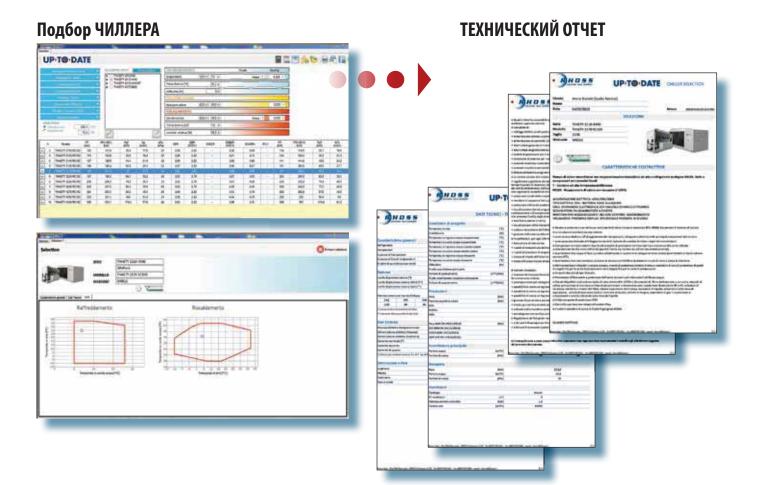
- На всё оборудование Rhoss распространяются основные положения гарантии, куда включены затраты рабочего труда и запчасти взамен дефектных в течение выбранного периода действия гарантии.
- Контракты на выполнение планового технического обслуживания (Basic, Program, Full Service и Global) предназначены для обеспечения эксплуатационной эффективности и продления срока службы вашей системы, а также помогают сократить затраты на управление.

ОБОРУДОВАНИЕ ДЛЯ ВРЕМЕННОГО ИСПОЛЬЗОВАНИЯ - АРЕНДА ОБОРУДОВАНИЯ (RENTING)

- Rhoss Service предлагает также аренду на средний и длительный период времени оборудования для кондиционнирования и отопления.
- Rhoss Smile Service предоставляет широкий спектр универсальных машин, в состоянии удовлетворить любой запрос на производительность охлаждения с формулой "всё включено". Поставка включает в себя срочную и комплексную установку под ключ, покрываемую от любого риска на затраты по техобслуживанию и управлению.
- Основными областями применения являются ледовые катки (специальное оборудование для работы при низких температурах) и оборудование для винодельческой отрасли.

ЭКСТРЕННОЕ ТЕХОБСЛУЖИВАНИЕ - ПОВТОРНАЯ СБОРКА АГРЕГАТА

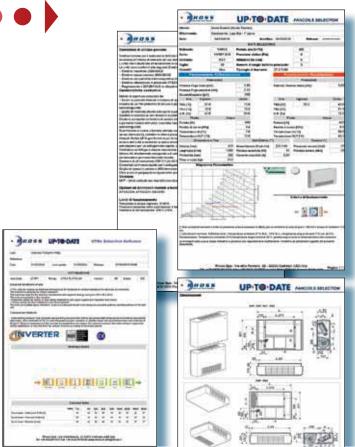
- Всё чаще архитектурные барьеры и структурные преграды делают невозможным замену оборудования, если его форма вес не соответствуют свободному пространству. Команда техников-специалистов Rhoss Service выполняет демонтаж и новый монтаж оборудования на месте установки машины.
- Команда Rhoss Service в состоянии принять запрос на любую техническую поддержку и организовать в краткие сроки: технический осмотр, предварительную смету ремонтных работ, ремонтные работы после подтверждения сметы, гарантия на 12 месяцев после выполнения операции и общая гарантия на последующие 6 месяцев со дня проведения операции.



Программное обеспечение RHOSS UP TO DATE

ваш порт доступа в мир Rhoss

- Инструменты для выбора продуктов Rhoss в соответствии с вашими нуждами.
- Быстрая проверка продуктов Rhoss. Своевременное осведомление о последних новинках.
- Технические отчеты на 7 языках.



Selezione Fancoils

UP-TO-DATE

ТЕХНИЧЕСКИЙ ОТЧЕТ

ELECTA - THAITY 105÷116

Mini-Y низкого потребления - TCAEY 105÷111

Mini-Y NF низкого потребления - THAEY 105÷111 NF

Compact-I низкого потребления - TCAITY-THAITY 117÷128

Compact-Y NF Plus низкого потребления - THAETY 115÷127 NF

Compact-Y SM низкого потребления - TCAEY-THAEY 115÷130

Compact-I MD низкого потребления - TCAITY-THAITY 236÷260

Compact-Y MD "низкого потребления" - TCAEY-THAEY 133 ÷ 265

РОКЕК низкого потребления - THAETY 234 H.T.

EasyPACK низкого потребления - TCAEY-THAEY 269÷2146

Y-Pack SE и Y-Pack HE низкого потребления - TCAEY-THAEY 270÷2160

WinPACK HE-A с низким энергопотреблением - TCAEY-THAEY 2110÷4340

WinPACK SE с низким энергопотреблением - TCAEY-THAEY 2110÷4340

Y-Pack СВОБОДНОЕ ОХЛАЖДЕНИЕ - TFAEY-TGAEY 4160÷4320

Y-Power HE-A низкого потребления - TCAEY-THAEY 437<u>0</u>÷6660

Y-Power SE низкого энергопотребления - TCAEY-THAEY 4350÷6640

WinPOWER HE-A низкого потребления - TCAEY 6700 <u>÷ 8920</u>

WinPOWER SE низкого потребления - $TCAEY 6670 \div 8860$

Z-Power HE - TCAVZ 2330÷2700

Z-Power HE - TCAVZ 2770÷21290

Z-Power SE - TCAVZ 1270÷1390

Z-Power SE - TCAVZ 2331÷2701

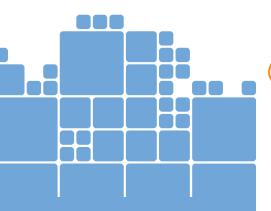
Z-Power SE - TCAVZ 2710÷21600

Z-Power VFD - TCAIZ 2520÷2900

Z-Power СВОБОДНОЕ ОХЛАЖДЕНИЕ - TFAVBZ - TFAVIZ - TFAVSZ 2420÷21100

Z-Power HP - THAVZ 2400÷2680

T-Power - TCATBZ 1361-41401 / TCATTZ 1321-41371 / TCATQZ 1361-41361



Конденсаторы с воздушным охлаждением - Осевые вентиляторы

Web code: EL001

ELECTA THAITY 105÷116

Мощность при охлаждении: 3,8÷12,6 кВт - Мощность при отоплении: 6,2÷15,2 кВт

- Работа при температуре внешнего воздуха до —20°C
- Температура произведённой воды до 60°C
- COP > 4,2
- Система управления встроена в тепловой насос

Реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия инверторных ротационных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, прямого тока, бесколлекторный, с тепловой защитой, приводится в действие инвертором.
- Расширительный клапан: электронный.
- Теплообменник со стороны воды выполнен пластинчатым из нержавеющей стали с надлежащей изоляцией.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: крыльчатка осевого типа с бесколлекторным электродвигателем прямого тока, с внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Управление: электронное с микропроцессором.
 Позволяет осуществлять комплексное управление тепловым насосом и системой отопления, в зависимости от различных нужд использования источников энергии и воздухораспределителей.
- Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол Modbus RTU).
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Конструкция: из оцинкованной окрашенной стали.
 В комплект входит поддон для сбора конденсата и противообледенительный нагревательный элемент основания агрегата.

Модели

• THAITY: агрегат теплового насоса.

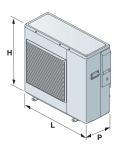
Оснащение PUMP

 Насосный блок укомплектован следующими устройствами: циркуляционный насос, ручной клапан стравливания воздуха, предохранительный клапан, манометр.

Комплектующие, поставляемые отдельно

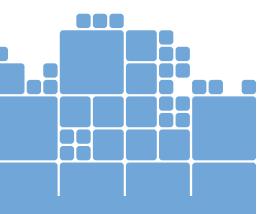
- Трехходовой клапан для производства ГВС, управляется настройкой.
- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Датчик воздуха с удалённым управлением.
- Хронотермостат и терминал пользователя (комплектующая КСТК).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.

Комплектующее КСТР - Хронотермостат, устанавливаемый внутри помещения для управления температурой и расписанием для максимального комфорта и минимального потребления электроэнергии. Позволяет также активировать основные состояния и рабочие режимы теплового насоса и отобразить основные данные управления, установленные на оборудовании.



МОДЕЛЬ ТНАІТҮ		105	110	116
Системы лучистого обогрева/охлаждения				
• Тепловая мощность МИН/НОМ/МАКС	кВт	2,0/6,5/7,1	1,7/9,9/9,9	9,4/16,0/18,5
Потребляемая мощность НОМ	кВт	1,49	2,15	3,81
• C.O.P. HOM		4,34	4,58	4,2
(§) Класс энергопотребления		A++	A++	A++
Тепловая мощность МИН/НОМ/МАКС	кВт	2,4/4,7/5,3	5,1/6,5/9,0	6,5/10,6/12,8
Потребляемая мощность НОМ	кВт	1,72	2,41	3,8
② C.O.P. HOM		2,7	2,7	2,8
❸ Холодильная мощность МИН/НОМ/МАКС	кВт	2,0/5,2/5,2	4,7/7,3/9,0	3,3/16,1/16,2
❸ E.E.R. HOM		4,02	3,61	3,91
Системы с Фанкойлами				
Ф Тепловая мощность МИН/НОМ/МАКС	кВт	1,8/6,2/6,4	1,9/9,8/9,8	8,8/15,2/16,7
Потребляемая мощность НОМ	кВт	1,98	2,83	4,47
④ C.O.P. HOM		3,12	3,44	3,4
Оподильная мощность МИН/НОМ/МАКС	кВт	1,6/3,8/3,8	2,4/5,5/7,7	2,1/12,6/12,9
⑤ E.E.R. HOM		2,98	2,91	3
● E.S.E.E.R.		4	3,35	3,9
Звуковая мощность	дБ(А)	60	62	63
Звуковое давление	дБ(А)	35	37	38
Полезный напор циркуляционного насоса	кПа	85	55	90
Электропитание	В-фаз-Гц	230-1-50	230-1-50	230-1-50
РАЗМЕРЫ И ВЕС				
L - Ширина	MM	898	850	1000
Н - Высота	MM	675	882	1418
Р - Глубина	MM	300	330	330
3 Bec	КГ	52	77	118

- **●** Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- **❷** Воздух: −7°С В.Ѕ. Вода: 30/35°С
- **❸** Воздух: 35°С В.Ѕ. Вода : 23/18°С
- **Ф** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- **⑤** Воздух: 35°С В.Ѕ. Вода : 12/7°С
- ூ Уровень звуковой мощности в дБ (A) на основании измерений, выполненных в соответствии с нормативными требованиями UNI EN ISO 9614
- ${f O}$ В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- **③** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
 Эксплуатационные характеристики по EN 14511:2013
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013



Web code: MY001

Mini-Y низкого потребления

TCAEY 105÷111

Мощность при охлаждении: 5,6÷11,3 кВт

• Компактные агрегаты и "Plug&Play" (Подключи и Работай)

Компактные чиллеры с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный спирального типа с тепловой защитой.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: теплообменник из медных трубок с алюминиевым оребрением или теплообменник с микроканалами из алюминия с защитной решеткой.
- Вентилятор: электровентиляторы осевого типа с внешним ротором с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной окрашенной листовой стали.

Модели

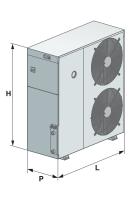
• TCAEY: агрегат предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

- ТЭН картера компрессора.
- Устройство "плавного запуска" (для моделей с питанием 230 Вольт).
- Контроль конденсации -10°С.
- Реле низкого давления.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Низкая заданная температура воды.

Комплектующие, поставляемые отдельно

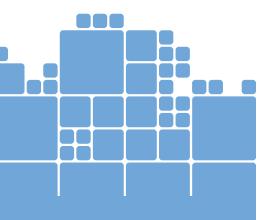
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Виброизолирующие резиновые опоры.
- Контроль конденсации -10°C.
- Водный фильтр.
- Реле низкого давления.
- Противообледенительный нагревательный элемент на накоплении.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.



МОДЕЛЬ ТСАЕҮ		105	107	109	111
Системы с Фанкойлами					
• Номинальная холодопроизводительность	кВт	5,6	7,0	9,0	11,0 / 11,3
• Потребляемая мощность	кВт	2,07	2,72	3,4	4,20 / 4,33
• E.E.R.		2,7	2,57	2,65	2,62 / 2,6
● E.S.E.E.R.		3,06	2,69	3,07	3,02
© E.S.E.E.R.+		3,50	3,07	3,50	3,42 / 3,49
Системы лучистого обогрева/охлаждения					
Холодильная мощность	кВт	7,6	9,4	12,4	15,4 / 15,7
Потребляемая мощность	кВт	2,18	2,70	3,56	4,44 / 4,54
② E.E.R.		3,48	3,48	3,48	3,47 / 3,46
Звуковое давление	дБ(А)	46	47	47	47
Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1	1/1
Контуры	кол-во	1	1	1	1
Содержание воды в накопительном баке	л.	19	19	30	30
Полезный напор циркуляционного насоса	кПа	55 / 85	55 / 86	84	75
Электропитание	В-фаз-Гц	230-1-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50
РАЗМЕРЫ И ВЕС		105	107	109	111
L - Ширина	MM	990	990	990	990
Н - Высота НАСОСА	MM	905	905	1.085	1.085
H - Высота ТАNK & PUMP (БАК И НАСОС)	MM	905	905	1.295	1.295
Р - Глубина	MM	380	380	380	380
④ Bec	КГ	131	133	157	166

- **●** Воздух: 35°С Вода: 12/7°С
- ❷ Воздух: 35°С Вода: 23/18°С
- $oldsymbol{6}$ В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- SEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.

 Эксплуатационные характеристики по EN 14511:2013



Web code: MYN01

Mini-Y NF низкого потребления

THAEY 105÷111 NF

Мощность при охлаждении: $5,6 \div 11,3$ кВт - Мощность при отоплении: $5,7 \div 11,8$ кВт

- Компактные агрегаты и "Plug&Play" (Подключи и Работай)
- Работа при температуре внешнего воздуха до —15°C

Реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный спирального типа с тепловой защитой.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением с гидрофильной обработкой, в комплект входит защитная решётка.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной окрашенной стали.
 В комплект входит поддон для сбора конденсата и противообледенительный нагревательный элемент в основании агрегата.

Модели

• ТНАЕҮ: агрегат теплового насоса.

Оснащение PUMP

 Насосный блок укомплектован следующими устройствами: циркуляционный насос, мембранный расширительный бак, ручной клапан стравливания воздуха, предохранительный клапан.

Оснащение TANK&PUMP

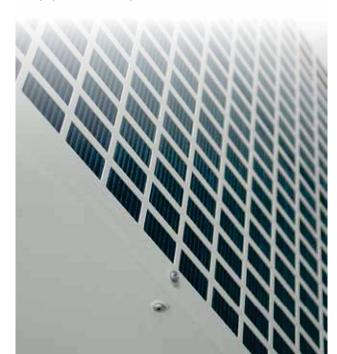
 Насосный блок укомплектован следующими устройствами: бак инертного накопления, циркуляционный насос, мембранный бак расширения, ручной клапан стравливания воздуха, автоматический клапан стравливания воздуха, предохранительный клапан.

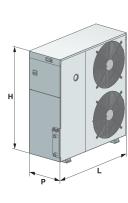
Аксессуары, установленные на заводе

- Устройство "плавного запуска" (для моделей с питанием 230 Вольт).
- ТЭН картера компрессора.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Низкая заданная температура воды.

Комплектующие, поставляемые отдельно

- Трехходовой клапан для производства ГВС.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Противообледенительный нагревательный элемент на накоплении.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.





МОДЕЛЬ ТНАЕҮ NF		105	107	109	111
Системы лучистого обогрева/охлаждения					
Тепловая мощность	кВт	5,9	7,7	9,4	11,9/12,3
Потребляемая мощность	кВт	1,68	2,07	2,63	3,30/3,30
1 C.O.P.		3,52	3,72	3,58	3,61/3,7
(§) Класс энергопотребления		A	A+	A	A
Тепловая мощность	кВт	4,1	5,3	5,8	7,3/7,
Потребляемая мощность	кВт	1,66	2,03	2,69	3,35/3,3
② C.O.P.		2,47	2,61	2,16	2,18/2,1
❸ Холодильная мощность	кВт	7,6	9	12,3	14,7/1
❸ E.E.R.		3,58	3,21	3,45	3,15/3,2
Системы с Фанкойлами					
Ф Тепловая мощность	кВт	5,71	7,33	9,3	11,35/11,
Потребляемая мощность	кВт	2,19	2,84	3,5	4,65/5,6
④ C.O.P.		2,61	2,58	2,66	2,44/2,0
Оправод по предостава по п	кВт	5,6	7	9	10,9/11,
⑤ E.E.R.		2,71	2,58	2,64	2,60/2,6
● E.S.E.E.R.		3,06	2,69	3,07	3,02/3,0
© E.S.E.E.R.+		3,5	3,07	3,5	3,42/3,4
Звуковое давление	дБ(А)	46	47	47	4
Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1	1/
Содержание воды в накопительном баке	л.	19	19	30	30
 Полезный напор циркуляционного насоса	кПа	55	55	85	7.
Электропитание	В-фаз-Гц	230-1-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50
РАЗМЕРЫ И ВЕС		105	107	109	111
L - Ширина	MM	990	990	990	99
Н - Высота НАСОСА	MM	905	905	1085	108
Н - Высота БАК&НАСОС	MM	905	905	1295	129
Р - Глубина	MM	380	380	380	38
Bec	КГ	141	143	167	176

- **1** Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- ❷ Воздух: −7°С В.Ѕ. Вода: 30/35°С
- **❸** Воздух: 35°С Вода: 23/18°С
- **Ф** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- **6** Воздух: 35°С В.S. Вода : 12/7°С
- ${\bf 6}$ В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- **7** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- © ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.

 Эксплуатационные характеристики по EN 14511:2013
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

Web code: CYI01

Compact-I низкого потребления

TCAITY-THAITY 117÷128

Мощность при охлаждении: 16,4÷27,6 кВт - Мощность при отоплении: 17,7÷28,5 кВт

- температуре внешнего воздуха до -20°C
- Производство горячей воды до 60°С
- Отличные показатели энергетической эффективности

Чиллеры и реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров DC с инвертором и газовым хладагентом R410A.

Конструктивные характеристики

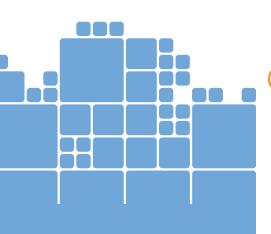
- Компрессор: герметичный ротационный, спирального типа и с тепловой защитой и ТЭН картера, приводится в действие инвертором.
- Электронный расширительный клапан.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением для TCAITÝ и с гидрофильной обработкой для THAITY, в комплект входят защитные решётки. Температурный датчик внешнего воздуха для компенсации заданных значений, входит в комплект поставки.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной и окрашенной оцинкованной стали, в комплект входит поддон для сбора конденсата и противообледенительный нагревательный элемент основания агрегата для THÁITY.

Версия

Т - Высокоэффективная.

TCAITY: агрегат предусмотрен только для охлаждения. THAITY: агрегат теплового насоса.

Оснащение PUMP

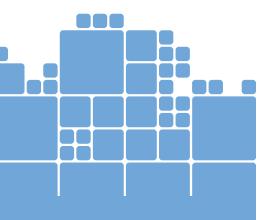

• Насосный блок, в комплект которого входят: циркуляционный насос ЕС с переключателем 3х скоростей или с непрерывной регулировкой скорости или электрический насос, расширительный мембранный бак, ручной клапан стравливания воздуха, предохранительный клапан, манометр.

Аксессуары, установленные на заводе

- Принудительная загрузка Частичное или полное отключение компрессоров с целью ограничения мощности и потребляемого тока (цифровой вход).
- Контроль конденсации –15°С с вентиляторами с ЕСдвигателем.
- Исполнение с пониженным уровнем шума.
- Противообледенительный нагревательный элемент циркуляционного насоса/электронасоса.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.

Комплектующие, поставляемые отдельно

- Трехходовой клапан для производства ГВС, управляется настройкой.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Удаленный температурный датчик внешнего воздуха для компенсации заданных значений.
- Водный фильтр.
- Виброизолирующие резиновые опоры.
- Удаленный кнопочный пульт с дисплеем.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь RS485/USB.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.


МОДЕЛЬ ТСАІТУ-ТНАІТУ		117	124	128
Системы лучистого обогрева/охлаждения				
• Тепловая мощность МИН/НОМ/МАКС	кВт	7,2/18,8/19,8	10,4/25,0/27,4	11,0/29,1/31,
Потребляемая мощность НОМ	кВт	4,59	6,09	7,0
● C.O.P. HOM		4,1	4,1	4,
(§) Класс энергопотребления ТНАІТУ		A++	A++	A++
Тепловая мощность МИН/НОМ/МАКС	кВт	4,2/12,9/13,8	8,1/21,0/723,1	8,1/23,1/24,
Потребляемая мощность НОМ	кВт	4,69	5,86	6,7
② C.O.P. HOM		2,75	3,58	3,4
❸ Холодильная мощность TCAITY MIN/NOM/MAX	кВт	11,4/20,6/21,7	15,1/28,4/30,2	16,3/32,6/33,
❸ E.E.R. TCAITY NOM		4,11	4,08	4,1
Системы с Фанкойлами				
• Тепловая мощность МИН/НОМ/МАКС	кВт	6,6/17,7/18,8	9,7/24,3/26,7	10,4/28,5/30,
Опотребляемая мощность НОМ	кВт	5,33	7,45	8,6
④ C.O.P. HOM		3,32	3,26	3,2
⊙ Холодильная мощность TCAITY MIN/NOM/MAX	кВт	8,7/16,4/17,3	12,6/24,3/25,9	13,4/27,6/28,
⑤ E.E.R. TCAITY NOM		3,14	2,98	3,1:
● E.S.E.E.R. TCAITY		5,25	4,85	4,7
© E.S.E.E.R.+		5,99	5,47	5,3
Звуковое давление	дБ(А)	46	48	4
Звуковое давление звукоизоляционного исполнения	дБ(А)	44	46	4
6 Полезный напор циркуляционного насоса P0	кПа	89	89	7
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-5
РАЗМЕРЫ И ВЕС				
L - Ширина	MM	1522	1522	152
Н - Высота	MM	1280	1280	128
Р - Глубина	MM	600	600	60
③ Bec	КГ	245	255	26.

- **●** Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- **❷** Воздух: −7°С В.Ѕ. Вода: 30/35°С
- Воздух: 35°С В.S. Вода : 23/18°С
- **④** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- **В**оздух: 35°С В.S. Вода : 12/7°С
- **6** В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- **③** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- **②** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные показатели в соответствии с EN 14511:2013. Оснащение PO/PIO.
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

Compact-Y NF Plus низкого потребления

THAETY 115÷127 NF

Мощность при охлаждении: 15,5÷26,6 кВт - Мощность при отоплении: 16,6÷30,4 кВт

- Работа при температуре внешнего воздуха до –15°C
- Температура произведённой воды до 60°C
- Arperat Plug&Play co встроенным гидравлическим модулем
- В комплект включен контроль испарения/ конденсации

Реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный, спирального типа, с тепловой защитой и ТЭН картера для мод. 127.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением с гидрофильной обработкой, в комплект входят защитные решётки.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной окрашенной стали.
 В комплект входит поддон для сбора конденсата и противообледенительный нагревательный элемент в основании агрегата.

Версия

•Т - Высокоэффективная/высокотемпературная версия.

Модели

• ТНАЕТҮ: агрегат теплового насоса.

Оснащение РИМР

 Насосный блок укомплектован следующими устройствами: циркуляционный насос или циркуляционный электронасос, мембранный расширительный бак, ручной клапан стравливания воздуха, предохранительный клапан, манометр.

Оснащение TANK&PUMP

 Насосный блок укомплектован следующими устройствами: бак инертного накопления, циркуляционный насос или циркуляционный электронасос, мембранный бак расширения, ручной клапан стравливания воздуха, автоматический клапан стравливания воздуха, предохранительный клапан, манометр.

Аксессуары, установленные на заводе

- Устройство "плавного запуска".
- Исполнение с пониженным уровнем шума.
- Противообледенительный нагревательный элемент на накоплении.
- •ТЭН картера компрессора (мод. 115÷124).
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Низкая заданная температура воды.

Комплектующие, поставляемые отдельно

- Трехходовой клапан для производства ГВС, управляется настройкой.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.

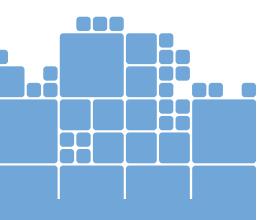


٨	МОДЕЛЬ THAETY NF		115	117	122	124	127
C	истемы лучистого обогрева/охлаждения						
0 T	епловая мощность	кВт	18	19	24,7	27,8	32,2
0	Іотребляемая мощность	кВт	4,35	4,59	5,95	6,67	7,61
0 (o.p.		4,14	4,14	4,15	4,17	4,23
(§) K	Класс энергопотребления		A+	A+	A+	A+	A+
2 T	епловая мощность	кВт	11,7	12	15,7	17,9	20,8
9 (I.O.P.		2,74	2,76	2,76	2,75	2,82
8 X	Солодильная мощность	кВт	23,3	27,1	34,6	37,8	40,4
❸ [Потребляемая мощность (оснащён электронасосом P1)	кВт	6,02	6,93	8,87	9,67	10,57
6 E	E.R. (оснащен электронасосом P1)		3,87	3,91	3,9	3,91	3,82
C	истемы с Фанкойлами						
4 T	епловая мощность	кВт	16,6	17,7	23,4	25,9	30,4
4	Іотребляемая мощность	кВт	5,68	6,3	8,21	9,06	10,13
4	I.O.P.		2,92	2,81	2,85	2,86	3
6 X	Солодильная мощность	кВт	15,5	17,6	22,5	23,9	26,6
6	Тотребляемая мощность	кВт	5,78	6,64	8,06	9,52	10,23
6	E.E.R.		2,68	2,65	2,79	2,51	2,6
• E	E.S.E.E.R.		3,15	3,11	3,44	3,09	3,18
⊕ E	i.S.E.E.R.+		3,49	3,42	3,82	3,41	3,5
6 3	Ввуковое давление	дБ(А)	50	50	52	52	53
6 3	Ввуковое давление звукоизоляционного исполнения	дБ(А)	46	46	49	49	50
K	Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1	1/1	1/1
(одержание воды в накопительном баке	Л.	35	35	45	45	45
6 H	Іоминальный полезный напор циркуляционного насоса Р1	кПа	75/147	64/136	66/131	69/130	63/116
Э	Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
П	Іотребляемая мощность циркуляционного насоса (оснащён P0-ASP0)	кВт	0,45	0,45	0,45	0,45	0,45
П	Потребляемая мощность электронасоса (оснащён P1-ASP1)	кВт	0,57	0,57	0,57	0,57	0,73
P	РАЗМЕРЫ И ВЕС		115	117	122	124	127
L	Ширина НАСОСА	MM	1230	1230	1230	1230	1535
L	Ширина БАКА&НАСОСА	MM	1522	1522	1522	1522	1822
Н	1 - Высота	MM	1090	1090	1280	1280	1510
Р	? - Глубина	MM	580	580	600	600	695
7 B	Bec	КГ	215	225	278	288	320

- **●** Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- Воздух: -7°С В.S. Вода: 30/35°С
- Воздух: 35°С В.S. Вода : 23/18°С
- Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- **В**оздух: 35°С В.S. Вода : 12/7°С
- **6** В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности. **©** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Эксплуатационные показатели в соответствии с EN 14511:2013. Оснащен циркуляционным насосом.
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

Примечание.

- С циркуляционным насосом (оснащение PO/ASPO) агрегат не подходит для излучающего функционирования при охлаждении.
- Допустимый перепад температуры теплообменника $\Delta T = 4 \div 8^{\circ} C$.



Compact-Y SM низкого потребления

TCAEY-THAEY 115÷130

Мощность при охлаждении: 15,7÷29,5 кВт - Мощность при отоплении: 16,5÷34 кВт

• ESEER c Adaptive
Function Plus
(усовершенствованная функция адаптации) до 3,8

Чиллеры и реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера для мод. 127÷130).
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входят защитные решётки.
- Вентилятор: электровентиляторы осевого типа с внешним ротором с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашенная, в комплект входит поддон для сбора конденсата.

Модели

- ТСАЕҮ: агрегат предусмотрен только для охлаждения.
- ТНАЕУ: агрегат теплового насоса.

Оснащение PUMP

 Насосный блок укомплектован следующими устройствами: циркуляционный насос или циркуляционный электронасос, мембранный расширительный бак, ручной клапан стравливания воздуха, предохранительный клапан, манометр.

Оснащение TANK & PUMP

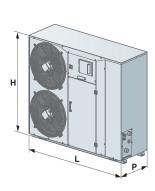
 Насосный блок укомплектован следующими устройствами: бак инертного накопления, циркуляционный насос или циркуляционный электронасос, мембранный бак расширения, ручной клапан стравливания воздуха, автоматический клапан стравливания воздуха, предохранительный клапан, манометр.

Аксессуары, установленные на заводе

- Устройство "плавного запуска".
- Звукоизоляционное оснащение.
- Контроль конденсации –10°С.
- Противообледенительный нагревательный элемент на накоплении.
- ТЭН картера компрессора (мод. 115÷124).
- Противообледенительный нагревательный элемент, основание для работы в режиме теплового насоса при низкой температуре внешнего воздуха
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Низкая заданная температура воды.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.

Комплектующие, поставляемые отдельно

- Виброизолирующие резиновые опоры.
- Контроль конденсации –10°С.
- Водный фильтр.
- Трехходовой клапан для производства ГВС.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.



МОДЕЛЬ ТСАЕҮ-ТНАЕҮ			115	117	122	124	127	130
Системы с Фанкойлами								
О Холодильная мощность ТСАЕУ	•	кВт	15,7	17,7	23,1	24,7	27,3	29,5
• Потребляемая мощность ТСАЕ	ΞΥ	кВт	5,69	6,63	8,25	9,32	10,54	12,04
• E.E.R. TCAEY			2,76	2,67	2,8	2,65	2,59	2,45
● E.S.E.E.R. TCAEY			3,05	3,03	3,33	2,98	3,07	2,81
② E.S.E.E.R.+			3,49	3,42	3,82	3,41	3,5	3,2
Тепловая мощность		кВт	16,5	17,5	23,5	25,7	30,3	34
Потребляемая мощность		кВт	5,64	6,23	7,94	9,05	10,16	11,25
② C.O.P.			2,92	2,82	2,96	2,84	2,98	3,02
Системы лучистого обогре	ва/охлаждения							
За холодильная мощность ТСАЕУ	•	кВт	21,3	24,1	31,2	33,3	37	39,5
❸ E.E.R. TCAEY			3,49	3,33	3,5	3,32	3,29	3,01
Тепловая мощность		кВт	16,7	17,9	24	26,4	30,9	34,5
④ C.O.P.			3,67	3,62	3,75	3,68	3,75	3,77
(§) Класс энергопотребления ТНА	EY		Α	A	A+	A+	A+	A+
Звуковое давление		дБ(А)	50	50	52	52	53	53
6 Звуковое давление звукоизол	яционного исполнения	дБ(А)	46	46	49	49	50	50
Компрессор спиральный/ступ	енчатый	кол-во	1/1	1/1	1/1	1/1	1/1	1/1
Контуры		кол-во	1	1	1	1	1	1
Содержание воды в накопите	тьном баке	л.	35	35	45	45	45	45
• Номинальный полезный напор циркуляцион	юго насоса/стандартного электронасоса	кПа	74/147	63/130	64/131	66/125	61/117	57/110
Электропитание		В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС			115	117	122	124	127	130
L - Ширина HACOCA		MM	1230	1230	1230	1230	1535	1535
L - Ширина TANK & PUMP (БАК	А И НАСОСА)	MM	1522	1522	1522	1522	1822	1822
Н - Высота		MM	1090	1090	1280	1280	1510	1510
Р - Глубина		MM	580	580	600	600	695	695
❸ Bec TCAEY		КГ	210	220	270	280	310	370
❸ Bec THAEY		КГ	215	225	278	288	320	380

- Воздух: 35°С Вода: 12/7°С
- Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- Воздух: 35°С В.S. Вода : 23/18°С
- **④** Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- **6** В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- **②** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные показатели в соответствии с EN 14511:2013. Оснащен электронасосом.

Compact-I MD низкого потребления

TCAITY-THAITY 236÷260

Мощность при охлаждении: 34,3÷58,3 кВт - Мощность при отоплении: 39,9÷68,9 кВт

- Работа при температуре внешнего воздуха до -15°C
- Производство горячей воды до 60°С
- Aгрегат Plug&Play со встроенным гидравлическим модулем
- Опция вентилятора ЕС и циркуляционного насоса с инвертором
- Поливалентная система для 2-х трубных установок + **ACS (с опцией RC100)**

Чиллеры и реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров DC с инвертором и газовым хладагентом R410A.

Конструктивные характеристики

- Компрессоры: герметичные, ротационные, спирального типа, приводимые в действие инвертором, укомплектованные тепловой защитой и ТЭН картера.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входят защитные решётки. Температурный датчик внешнего воздуха для компенсации заданных значений, входит в комплект поставки.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной и окрашенной листовой стали. Также в комплект агрегата входит:
- отображение высокого и низкого давления цепи охлаждения,
- электронный расширительный клапан.
- плата часового датчика.

Версия

Т - Высокоэффективная.

Модели

TCAITY: агрегат предусмотрен только для охлаждения. **ТНАІТУ**: агрегат теплового насоса.

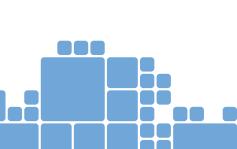
Оснашение PUMP

• Насосный блок, оснащенный одиночным или двойным электронасосом, один из которых в режиме ожидания при автоматическом приводе, в комплект входит расширительный бак, клапан выпуска воздуха, предохранительный клапан и водный манометр. Электронасосы предоставляются в версиях низкого и высокого напора с ИНВЕРТОРОМ.

Оснащение TANK&PUMP

• Насосный блок с накопительным баком инерционного типа и одиночным или двойным электронасосом, один из которых в режиме ожидания с автоматическим запуском, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и водный манометр. Электронасосы предоставляются в версиях низкого и высокого напора с ИНВЕРТОРОМ.

Аксессуары, установленные на заводе

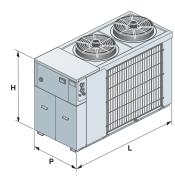

- Змеевик медь/предварительно окрашенный алюминий, с гидрофильной обработкой или медь/медь.
- Пароохладитель.
- Теплоутилизатор 100%.

Трехходовой отводный клапан для производства ГВС, управляется настройкой.

- Контроль конденсации —15°С с вентиляторами с ЕС-
- Противообледенительный нагревательный элемент основания
- Противообледенительный нагревательный элемент, бак накопления и электронасосы.
- Принудительная загрузка Частичное или полное отключение компрессоров с целью ограничения мощности и потребляемого тока (цифровой вход).
- Датчик утечки хладагента
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 MA.
- Измерение показателей энергопотребления
- Исполнение с пониженным уровнем шума.
- Манометры высокого и низкого давления охладительной цепи.

Комплектующие, поставляемые отдельно

- Трехходовой клапан для производства ГВС, управляется настройкой.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Термостат с дисплеем.
- Удаленный кнопочный пульт с дисплеем.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.



МОДЕЛЬ ТСАІТҮ-ТНАІТҮ		236	245	250	260
Системы лучистого обогрева/охлаждения					
• Тепловая мощность МИН/НОМ/МАКС	кВт	9,7/38,8/40,5	12/50,6/53	13,9/54,1/56,4	16,3/69,3/72,6
Потребляемая мощность НОМ	кВт	10,3	13,1	13,9	18
• C.O.P. HOM		3,78	3,85	3,9	3,84
(§) Класс энергопотребления		A++	A++	A++	A++
Тепловая мощность МИН/НОМ/МАКС	кВт	8,3/28,4/29,2	10,9/38,3/39,4	11,4/38,6/39,7	14,9/52,5/54,1
Потребляемая мощность НОМ	кВт	11,5	14,9	14,7	20,4
② C.O.P. HOM		2,46	2,57	2,62	2,57
❸ Холодильная мощность МИН/НОМ/МАКС	кВт	13,6/41,2/42,8	18,4/55,4/57,5	20/60,4/62,8	24,3/75/78
❸ E.E.R. HOM		3,27	3,58	3,72	3,67
Системы с Фанкойлами					
Ф Тепловая мощность МИН/НОМ/МАКС	кВт	8,9/39,9/41,2	10,4/50,5/52,3	13/56,5/58,2	14,1/68,9/71,3
Потребляемая мощность НОМ	кВт	12,4	15,3	17,5	21,5
④ C.O.P. HOM		3,22	3,3	3,23	3,2
Оподильная мощность МИН/НОМ/МАКС	кВт	11/34,3/35,2	14,7/45,7/46,9	16/50/51,3	18,2/58,3/59,9
⑤ E.E.R. HOM		2,56	2,96	2,96	2,71
● E.S.E.E.R.		4,61	4,19	4,23	4,48
○ E.S.E.E.R.+		5,07	4,69	5,00	4,93
Звуковое давление	дБ(А)	54	56	56	57
3 Звуковое давление звукоизоляционного исполнения	дБ(А)	51	53	53	54
Компрессор спирального типа с инвертором	кол-во	2	2	2	2
Контуры	кол-во	1	1	1	1
Содержание воды в накопительном баке (ТАNK&PUMP - БАК И НАС	ОС) л.	80	150	150	150
• Номинальный полезный напор базовый напор	кПа	129	101	114	111
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС					
L - Ширина	MM	1660	2660	2660	2660
Н - Высота	MM	1570	1570	1570	1570
P - Глубина	MM	1000	1000	1000	1000
③ Bec TCAITY	КГ	497	697	712	740
❸ BecTHAITY	КГ	507	717	732	760

- Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- Воздух: -7°С В.S. Вода: 30/35°С
- Воздух: 35°С В.S. Вода : 23/18°С
- **④** Воздух: 7°С В.Ѕ. 6°С В.U. Вода: 40/45°С
- **В**оздух: 35°С В.S. Вода : 12/7°С
- **③** В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- **③** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные показатели в соответствии с EN 14511:2013.
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

Compact-Y MD "низкого потребления"

TCAEY-THAEY 133÷265

Мощность при охлаждении: 33,8÷63,7 кВт - Мощность при отоплении: 39,4÷68,3 кВт

- 3 ступени регулирования (мод. 245÷265).
- ESEER с программой **Adaptive Function Plus** до 5
- Опция НТ65 для производства горячей воды 65°C (°)

Чиллеры и реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный, спирального типа,с тепловой защитой и ТЭН картера. З ступени регулировки с высокой эффективностью на частичных нагрузках для моделей 245÷265.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входят защитные решётки.
- Вентилятор: электровентилятор осевого типа с внешним ротором, оснащен внутренней тепловой защитой, предохранительными решётками и для моделей 245÷265 электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованного окрашенного листового металла.

Модели

- TCAEY: агрегат предусмотрен только для охлаждения.
- ТНАЕҮ: агрегат теплового насоса.

Аксессуары, установленные на заводе

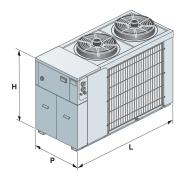
 РИМР с одним или двумя электронасосами (мод. 245÷265), один из которых в режиме ожидания с автоматическим запуском, в комплект входит расширительный бак, клапаны выпуска воздуха, предохранительный клапан и водный манометр. Электронасосы предоставляются в версиях низкого и высокого напора.

- ТАNК&PUMP с инертным накопительным баком с одним или двумя электронасосами (мод. 245÷265), один из которых в режиме ожидания с автоматическим запуском, в комплект входит расширительный бак, клапаны выпуска воздуха, предохранительный клапан и водный манометр. Электронасосы предоставляются в версиях низкого и высокого напора.
- Устройство "плавного запуска".
- Звукоизоляционное оснащение.
- Пароохладитель 15%.
- Теплоутилизатор 100%
- Манометр высокого и низкого давления цепи охлаждения (мод. 245÷265).
- Противообледенительный нагревательный элемент, бак накопления и электронасосы (мод. 245÷265).
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Низкая заданная температура воды.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.

Комплектующие, поставляемые отдельно

- Трехходовой клапан для производства ГВС, управляется настройкой (мод. 133).
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.

(*) Ознакомьтесь с документацией, чтобы проверить доступные модели и комплектующие.



МОДЕЛЬ ТСАЕҮ-ТНАЕҮ		133	233	238	245	250	260	265
Холодильная мощность ТСАЕҮ	кВт	33,8	32,3	38,5	44	51	58,9	63,7
Потребляемая мощность ТСАЕҮ	кВт	13,47	12,47	13,05	17,67	19,92	22,4	24,3
• E.E.R. TCAEY		2,51	2,59	2,95	2,49	2,56	2,63	2,6
● E.S.E.E.R. TCAEY		2,78	2,87	3,54	3,78	4,22	4,29	4,0
© E.S.E.R.+		3,19	4,11	4,12	4,38	4,98	5,04	4,7
Тепловая мощность	кВт	39,4	37,8	42,1	48,1	56,2	62,6	68,
Потребляемая мощность	кВт	13,58	12,54	13,19	16,82	18,97	20,86	23,7
② C.O.P.		2,9	3,01	3,19	2,86	2,96	3	2,8
(§) Класс энергопотребления THAEY		Α	A+	A+	A+	A+	A+	A-
Звуковое давление	дБ(А)	54	54	54	56	56	57	5
 Звуковое давление звукоизоляционного исполнения 	дБ(А)	51	51	51	53	53	54	5
Компрессор спиральный/ступенчатый	кол-во	1/1	2/2	2/2	2/3	2/3	2/3	2/
Контуры	кол-во	1	1	1	1	1	1	
Содержание воды в накопительном баке (ТАNK&PUMP - БАК И НАСОС)	л.	80	80	150	150	150	150	15
• Полезный номинальный напор стандартного электронасоса	кПа	102	106	87	113	103	88	7.
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-5
РАЗМЕРЫ И ВЕС		133	233	238	245	250	260	26
L - Ширина	MM	1660	1660	2260	2260	2260	2260	226
Н - Высота	MM	1570	1570	1570	1570	1570	1570	157
Р - Глубина	MM	1000	1000	1000	1000	1000	1000	100
● Bec TCAEY	КГ	450	465	625	725	750	775	820
● BecTHAEY	КГ	460	475	645	745	770	795	840

- **●** Воздух: 35°С Вода: 12/7°С
- Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- $oldsymbol{6}$ В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные характеристики по EN 14511:2013
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

Web code: PK001

POKER низкого потребления

THAETY 234 H.T.

Мощность при охлаждении: 28,8÷115,2 кВт - Мощность при отоплении: 33,8÷135,2 кВт

- Модульная гамма: до 4 соединяемых между собой агрегатов
- Полное резервирование системы в случае нескольких установленных модулей
- Производство горячей воды при температуре наружного воздуха от -20°C до 40°C
- Температура произведённой воды до 60°C

Реверсивные модульные тепловые насосы для производства воды высокой температуры с конденсатором с воздушным охлаждением и осевыми вентиляторами.

Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессоры: герметичные ротационные спиральные с инжекцией пара, укомплектованные тепловой защитой и ТЭН картера.
- Водный теплообменник: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением с гидрофильной обработкой. Температурный датчик внешнего воздуха для компенсации заданных значений, входит в комплект поставки.
- Вентилятор: электровентилятор осевого типа с внешним ротором с двигателем с постоянными магнитами (ЕС бесколлекторные) для электронного контроля скорости, оснащенный внутренней тепловой защитой и предохранительными решетками.
- • Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной окрашенной стали с подходящей звукоизоляцией. В комплект входит противообледенительный нагревательный элемент на лотке для сбора конденсата.

Версия

Т - Высокоэффективная/высокотемпературная версия.

Оснащение

- PUMP P1 Агретат, укомплектованный следующим образом: циркуляционный электронасос и ручной клапан стравливания возлуха.
- • PUMP P1 V3V Агрегат, укомплектованный следующим образом: циркуляционный электронасос, ручной клапан стравливания воздуха, трехходовой отводный клапан для производства ГВС.
- PUMP P1 DS Агрегат, укомплектованный следующим образом: циркуляционный электронасос на основном теплообменнике, ручной клапан стравливания воздуха, пароохладитель с противообледенительным нагревательным элементом.

ОБЯЗАТЕЛЬНЫЕ комплекты, поставляемые отдельно

- Удаленная панель с ЖК-дисплеем с подсветкой, настенное крепление или установка на машину.
- Навесные боковые панели.

ОБЯЗАТЕЛЬНЫЕ комплекты, поставляемые отдельно

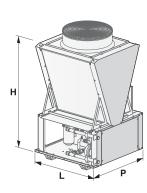
в случае нескольких параллельно установленных модулей.

- Гибкие трубы для соединения модулей.
- Панели и телефонные кабели для соединения модулей.

Аксессуары, установленные на заводе

- Принудительная загрузка. Частичное или полное отключение компрессоров с целью ограничения мощности и потребляемого тока (цифровой вход). Когда несколько модулей соединены параллельно, чтобы подключить этот сигнал, необходимо приобрести дополнительное устройство КСSC.
- Агрегат с насосом с повышенным напором.
- Устройство "плавного пуска".
- Агрегат с конденсационными батареями медь/окрашенный алюминий или медь/медь.
- Реле потока и ТЭН для защиты насоса и труб до температуры наружного воздуха -20°С.
- Исполнение с пониженным уровнем шума (чехол на компрессорах).
- Манометр высокого и низкого давления цепи охлаждения.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.

- Концентратор цифровых входов и выходов (KCSC).
- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Комплект правых креплений.
- Трехходовой отводной клапан для управления производством ГВС, укомплектованный защитным кожухом и гибкими трубами для подсоединения к машине. Для установки далее по линии относительно блока агрегатов. Несовместим с оснащением PUMP V3V
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.


МОДЕЛЬ ТНАЕТҮ Н.Т.					234
Системы с Фанкойлами		1 модуль	2 модуля	3 модуля	4 модуля
Тепловая мощность	кВт	33,8	67,6	101,4	135,2
• Потребляемая мощность	кВт	9,85	19,71	29,56	39,42
● C.O.P.		3,43	3,43	3,43	3,43
(§) Класс энергопотребления		A++	A++	A++	A++
Тепловая мощность	кВт	23,49	46,98	70,47	93,96
Потребляемая мощность	кВт	9,83	19,66	29,48	39,31
❷ C.O.P.		2,39	2,39	2,39	2,39
Опотративной обращений обращении обращений обращении обращени	кВт	28,8	57,6	86,4	115,2
❸ E.E.R.		2,93	2,93	2,93	2,93
• E.S.E.E.R.		4,02	4,17	4,32	4,4
© E.S.E.E.R.+		4,5	4,71	4,86	4,97
Системы лучистого обогрева/охлаждения		1 модуль	2 модуля	3 модуля	4 модуля
• Тепловая мощность	кВт	33,9	67,88	101,82	135,76
Потребляемая мощность	кВт	8,11	16,24	24,36	32,48
④ C.O.P.		4,18	4,18	4,18	4,18
Оподильная мощность	кВт	39,2	78,4	117,6	156,8
Потребляемая мощность	кВт	10,18	20,36	30,55	40,73
❸ E.E.R.		3,85	3,85	3,85	3,85
Звуковое давление	дБ(А)	43	46	47	48
Звуковое давление звукоизоляционного исполнения	дБ(А)	41	44	45	46
Компрессор спиральный/ступенчатый	кол-во	2/2	4/4	6/6	8/8
Полезный номинальный напор электронасоса	кПа	137	137	137	137
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		1 модуль	2 модуля	3 модуля	4 модуля
L - Ширина	MM	1297	2541	3785	5029
Н - Высота	MM	2152	2152	2152	2152
Р - Глубина	MM	1224	1224	1224	1224
⊘ Bec	ΚΓ		510 (по отношению к	одному модулю)	

- Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- ❷ Воздух: −7°С В.Ѕ. Вода: 40/45°С
- Воздух: 35°С В.S. Вода : 12/7°С
- Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- **⑤** Воздух: 35°С В.S. Вода: 23/18°С
- **6** На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- **7** Вес относится к оснащению Р1 DS.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.

Эксплуатационные характеристики по EN 14511:2013

(§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

EasyPACK низкого потребления

TCAEY-THAEY 269÷2146

Мощность при охлаждении: 63,7÷144,4 кВт - Мощность при отоплении: 70,3÷151,7 кВт

- Чиллеры и тепловые насосы класса A с ESEER до 4,31
- Широкий ассортимент комплектующих и дополнительных приспособлений
- Поливалентная система для 2-х трубных установок + ACS (с опцией RC100)
- Встроенная функция главной/подчинённой платы управления

Чиллеры и реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 3 ступени регулировки с высокой эффективностью на частичных нагрузках.
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками и дифференциальным реле давления потока воды.
- Воздушный теплообменник: змеевик с оребрением с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- термомагнитные выключатели, компрессоры и вентиляторы;
- отображение высокого и низкого давления охладительной цепи;
- управление Ведущий/Подчиненный до 4 блоков параллельно;
- плата часового датчика.

Варианты исполнения

- В Базовая версия (ТСАЕВУ).
- Т Высокоэффективная версия с увеличенной конденсатной секцией (ТСАЕТУ-ТНАЕТУ).
- S Звукоизолированная версия, в комплект входит звукоизоляция технического отсека, вентиляторы на пониженной скорости и увеличенная конденсатная секция (TCAESY-THAESY).
- Q Версия повышенной звукоизоляции, в комплект входит звукоизоляция технического отсека компрессоров, вентиляторы на сверхпониженной скорости и увеличенная конденсатная секция (ТСАЕОУ-ТНАЕОУ).

Модели

- ТСАЕВУ: базовая версия предусмотрена только для охлаждения.
- ТСАЕТУ: высокоэффективный агрегат, предусмотрен только для охлаждения.
- TCAESY: агрегат со звукоизоляцией предусмотрен только для охлаждения.
- TCAEQY: агрегат с повышенной звукоизоляцией предусмотрен только для охлажления.
- ТНАЕТУ: агрегат теплового насоса.
- THAESY: агрегат теплового насоса с пониженным уровнем шума.
- ТНАЕОУ: агрегат повышенной звукоизоляции теплового насоса.

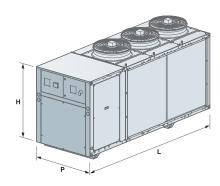
Аксессуары, установленные на заводе

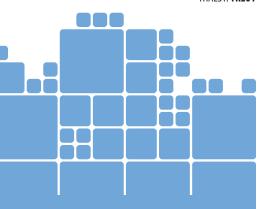
- Кожухотрубный испаритель.
- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением.
 Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАМК&РUMP со встроенным накопительным баком от 230 до 440 литров (в зависимости от модели) с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр со стороны воды.
- Управление насосами с переменной производительностью.
- Пароохладитель.
- Теплоутилизатор 100%.
- Электронный расширительный клапан.

Контроль конденсации -10°С (серийный в версиях S - Q).

- Контроль конденсации –15°С с вентиляторами с ЕС-двигателем.
- Контроль конденсации с вентиляторами повышенного давления (только версия В-Т).
- Конденсатор корректировки мощности ($\cos \phi > 0,94$).
- Принудительное ограничение электрической мощности.
- Принудительное ограничение шума.
- Измеритель показателей энергопотребления.
- Оптимизация энергоэффективности.
- Плавный пускатель.
- Звукоизоляция технического отсека.
- Звукоизоляционные кожухи компрессоров.
- Краны на всасывании и нагнетании охладительного контура.
- Детектор утечки хладагента (leak detector).
- Манометры высокого и низкого давления охладительной цепи.
- Двойные предохранительные клапаны.
- Металлические фильтры или защитные решётки змеевика.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент испарителя, электрощит, накопительный бак, электронасосы и теплообменники для теплоутилизатора, если установлен таковой.
- Встроенные нагревательные элементы накопителя
- Производство воды при низкой температуре.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие резиновые опоры.

- Удаленный кнопочный пульт с дисплеем.
- Термостат с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.




	МОДЕЛЬ ТСАЕВУ		269	279	289	296	2112	2125	2146
0	Номинальная холодопроизводительность	кВт	65,6	72,1	77,6	86,5	105,5	-	-
0	E.E.R.		2,74	2,81	2,81	2,62	2,79	-	-
0	Потребляемая мощность	кВт	23,94	25,66	27,62	33,02	37,81	-	
	МОДЕЛЬ TCAETY-TCAESY-TCAEQY		269	279	289	296	2112	2125	2146
0	Номинальная холодопроизводительность	кВт	69,2	79,1	90,1	96,1	112,0	125,5	144,4
0	Номинальная холодопроизводительность	кВт	67,7	76,7	87,6	92,1	108,0	122,0	138,9
0	Номинальная холодопроизводительность	кВт	64,7	71,2	84,6	89,6	101,1	116,5	131,0
0	E.E.R.		3,12	3,18	3,12	3,11	3,10	3,12	3,12
0	E.E.R.		2,92	3,05	2,95	2,92	2,94	2,99	2,94
0	E.E.R.		2,82	2,72	2,80	2,72	2,53	2,72	2,59
•	E.S.E.E.R.		4,30	4,24	4,28	4,28	4,31	4,26	4,26
0	E.S.E.R.+		5,00	4,98	5,10	5,05	5,06	4,99	5,01
0	Потребляемая мощность	кВт	22,18	24,87	28,88	30,90	36,13	40,22	46,28
0	Потребляемая мощность	кВт	23,18	25,15	29,69	31,54	36,73	40,80	47,24
0	Потребляемая мощность	кВт	22,94	26,18	30,21	32,94	39,96	42,83	50,58
	МОДЕЛЬ THAETY-THAESY-THAEQY		269	279	289	296	2112	2125	2146
0	Номинальная тепловая мощность	кВт	73,4	82,4	92,4	100,5	118,5	133,1	151,7
0	Номинальная тепловая мощность	кВт	70,8	80,4	90,4	98,0	115,0	129,1	147,6
0	Номинальная тепловая мощность	кВт	70,3	77,3	88,4	95,4	111,0	125,5	143,6
0	C.O.P.		3,35	3,36	3,31	3,28	3,31	3,25	3,23
@	C.O.P.		3,32	3,36	3,31	3,29	3,30	3,27	3,27
@	C.O.P.		3,31	3,30	3,27	3,26	3,21	3,23	3,22
0	Номинальная холодопроизводительность	кВт	67,2	76,7	86,6	93,6	107,5	121,5	139,4
0	Номинальная холодопроизводительность	кВт	66,2	74,7	85,7	89,6	104,6	119,0	136,9
0	Номинальная холодопроизводительность	кВт	63,7	69,7	82,7	86,6	99,1	112,1	128,5
0	Потребляемая мощность	кВт	21,91	24,52	27,92	30,64	35,80	40,95	46,97
@	Потребляемая мощность	кВт	21,33	23,93	27,31	29,79	34,85	39,48	45,14
0	Потребляемая мощность	кВт	21,24	23,42	27,03	29,26	34,58	38,85	44,60
	МОДЕЛЬ ТСАЕҮ-ТНАЕҮ		269	279	289	296	2112	2125	2146
0	Звуковое давление ТСАЕВҮ	дБ(А)	50	50	50	50	52	-	_
6	Звуковое давление ТСАЕТҮ-ТНАЕТҮ	дБ(А)	50	51	51	51	53	54	54
0	Звуковое давление TCAESY-THAESY	дБ(А)	46	47	47	47	49	50	50
8	Звуковое давление TCAEQY-THAEQY	дБ(А)	42	42	43	43	46	47	47
4	Звуковая мощность ТСАЕВҮ	дБ(А)	82	82	82	82	84	-	_
4	Звуковая мощность ТСАЕТҮ-ТНАЕТҮ	дБ(А)	82	83	83	83	85	86	86
4	Звуковая мощность TCAESY-THAESY	дБ(А)	78	79	79	79	81	82	82
4	Звуковая мощность TCAEQY-THAEQY	дБ(А)	74	74	75	75	78	79	79
	Компрессор спиральный/ступенчатый	кол-во	2/3	2/3	2/3	2/3	2/3	2/3	2/3
	Контуры	кол-во	1	1	1	1	1	1	1
	Электропитание	В-фаз-Гц	400-3+N-50						
	РАЗМЕРЫ И ВЕС		269	279	289	296	2112	2125	269
	L - Ширина версии В	MM	2650	2650	2650	2650	3250	-	-
	L - Ширина версии T - S - Q	MM	3250	3250	3250	3250	3450	3450	3450
	Н - Высота версии В	MM	1700	1700	1700	1700	1700	-	-
	H - Высота версии T - S	MM	1700	1700	1700	1700	2000	2000	2000
	H - Высота версии Q	MM	1520	1520	1520	1520	2000	2000	2000
	Р - Глубина версии В	MM	1210	1210	1210	1210	1210	-	-
	P - Глубина версии Т - S - Q	MM	1210	1210	1210	1210	1520	1520	1520
6	Bec TCAEBY	КГ	755	760	795	800	980	-	_
6	Bec TCAETY	КГ	850	865	870	905	1160	1195	1255
6	Bec THAETY	КГ	915	930	935	980	1240	1280	1355

- **●** Воздух: 35°С Вода: 12/7°С
- Воздух: 7°С С.К. 6°С В.К. Вода: 40/45°С
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата, со стороны батареи.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес относится к пустому агрегату без комплектующих.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- **②** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии со звукоизоляцией TCAESY-THAESY.
- Версии с повышенной звукоизоляцией TCAEQY-THAEQY. Эксплуатационные показатели в соответствии с EN 14511:2013.

Web code TCAEBY: YK001

Web code TCAETY-TCAESY-TCAEQY-THAETY-THAESY: **YKE01**

- 3 ступени регулирования
- ESEER до 4,24
- Широкий ассортимент комплектующих
- Опция НТ65 для производства горячей воды 65°C (°)

Y-Pack SE и Y-Pack HE низкого потребления

TCAEY-THAEY 270÷2160

Мощность при охлаждении: 66,6÷160,2 кВт - Мощность при отоплении: 79,4÷175,6 кВт

Чиллеры и реверсивные тепловые компактные насосы с

воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 2 или 3 ступени регулирования в зависимости от моделей с высокой эффективностью на частичных нагрузках.
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками и дифференциальным реле давления потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы винтового типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости врашения вентиляторов (за исключением ТСАЕВУ).
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- термомагнитные выключатели, компрессоры и вентиляторы; - плата часового датчика.

Варианты исполнения

- В Базовая версия (ТСАЕВУ).
- Т Высокоэффективная версия с увеличенной конденсатной секцией (ТСАЕТУ-ТНАЕТУ).
- S Звукоизолированная версия, в комплект входит звукоизоляция технического отсека, вентиляторы на пониженной скорости и увеличенная конденсатная секция (ТСАЕЅУ-ТНАЕЅУ).
- S Версия повышенной звукоизоляции, в комплект входит звукоизоляция технического отсека, вентиляторы на сверхпониженной скорости и увеличенная конденсатная секция (TCAEQY).

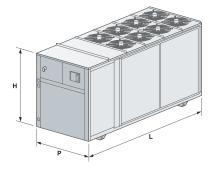
Моделі

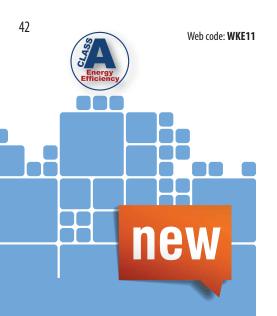
- •ТСАЕВУ: базовая версия предусмотрена только для охлаждения.
- ТСАЕТУ: высокоэффективный агрегат, предусмотрен только для охлаждения.
- TCAESY: агрегат со звукоизоляцией предусмотрен только для охлаждения.
- TCAEQY: агрегат с повышенной звукоизоляцией предусмотрен только для охлаждения.
- ТНАЕТУ: агрегат теплового насоса.
- THAESY: агрегат теплового насоса с пониженным уровнем шума.

Аксессуары, установленные на заводе

- PUMP с отдельным или двойным электронасосом один из которых в режиме ожидания при автоматическом приводе, в комплект входит расширительный бак, предохранительный клапан и водный манометр. Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАЙК&PUMP со встроенным накопительным баком от 250 до 450 литров с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапан стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель
- Теплоутилизатор 100%
- Электронный расширительный клапан.
- Контроль конденсации –10°С (только модель ТСАЕВҮ) / –15°С.
- Конденсатор корректировки мощности (cosф > 0,94).
- "Плавный" пускатель.
- Манометр высокого и низкого давления цепи охлаждения.
- Металлические фильтры или сетки для защиты батарей.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент, накопительный бак, электронасосы и теплообменники для теплоутилизатора, если установлен таковой.
- Производство воды при низкой температуре.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие резиновые опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.





	МОДЕЛЬ ТСАЕВУ		270	280	290	2100	2115	2130	2145	2160
0	Номинальная холодопроизводительность	кВт	67,1	74,9	82,6	95,5	110	119,9	137,8	154,
0	E.E.R.		2,59	2,64	2,51	2,64	2,67	2,59	2,61	2,5
0	Потребляемая мощность	кВт	25,91	28,37	32,91	36,17	41,2	46,29	52,8	60,2
	МОДЕЛЬ TCAETY-TCAESY-TCAEQY		270	280	290	2100	2115	2130	2145	216
0	Номинальная холодопроизводительность	кВт	69,9	79,1	87,5	100,6	113,9	125,3	142,3	160,
0	Номинальная холодопроизводительность	кВт	69,9	79,1	87,5	100,6	107,5	118,4	135,3	150,
0	Номинальная холодопроизводительность	кВт	66,6	74,6	82	94,5	100,5	107,5	124,4	137,
0	E.E.R.		2,91	2,93	2,84	2,84	2,87	2,85	2,84	2,8
0	E.E.R.		2,91	2,93	2,84	2,84	2,63	2,62	2,58	2,5
0	E.E.R.		2,65	2,8	2,57	2,68	2,3	2,26	2,28	2,1
•	E.S.E.E.R.		4,19	4,24	4,18	4,15	4,24	4,14	4,12	4,0
0	E.S.E.E.R.+		4,99	5,06	5,04	4,99	5,07	4,96	4,94	4,9
0	Потребляемая мощность	кВт	24,02	27	30,81	35,42	39,69	43,96	50,11	56,4
0	Потребляемая мощность	кВт	24,02	27	30,81	35,42	40,87	45,19	52,44	58,9
	Потребляемая мощность	кВт	25,13	26,64	31,91	35,26	43,7	47,57	54,56	63,3
	МОДЕЛЬ ТНАЕТУ-ТНАЕЅУ		270	280	290	2100	2115	2130	2145	216
0	Номинальная тепловая мощность	кВт	79,4	86,3	96,4	111,5	122,5	139,6	157,6	175,
	Номинальная тепловая мощность	кВт	79,4	86,3	96,4	111,5	120,5	135,5	154,6	170,0
	C.O.P.		3,33	3,41	3,26	3,31	3,18	3,28	3,19	3,1
	C.O.P.		3,33	3,41	3,26	3,31	3,19	3,28	3,22	3,18
0	Номинальная холодопроизводительность	кВт	69,1	77,4	84,9	98,9	110,6	123,4	140,8	159,
	Номинальная холодопроизводительность	кВт	69,1	77,4	84,9	98,9	106,8	118,1	135,2	149,
	Потребляемая мощность	кВт	23,84	25,31	29,66	33,69	38,52	42,56	49,4	55,2
	Потребляемая мощность	кВт	23,84	25,31	29,66	33,69	37,77	41,31	48,01	53,6
	МОДЕЛЬ ТСАЕУ-ТНАЕУ		270	280	290	2100	2115	2130	2145	2160
6	Звуковое давление ТСАЕВУ	дБ(А)	53	53	53	55	61	61	61	6.
	Звуковое давление ТСАЕТУ-ТНАЕТУ	дБ(А)	50	51	51	52	55	55	56	5
	Звуковое давление TCAESY-THAESY	дБ(А)	48	49	49	50	52	52	53	5.
	Акустическое давление TCAEQY	дБ(А)	46	47	47	48	49	49	50	5
4	Звуковая мощность ТСАЕВҮ	дБ(А)	82	82	82	84	90	90	90	9
	Звуковая мощность ТСАЕТҮ-ТНАЕТҮ	дБ(А)	76	77	77	78	84	84	85	8.
	Звуковая мощность ТСАЕЅҮ-ТНАЕЅҮ	дБ(А)	74	75	75	76	81	81	82	8.
	Звуковая мощность ТСАЕQY	дБ(А)	72	73	73	74	78	78	79	7
_	Компрессор спиральный/ступенчатый	кол-во	2/3	2/2	2/3	2/3	2/3	2/2	2/3	2/
	Контуры	кол-во	1	1	1	1	1	1	1	2,
	Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-500	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
	РАЗМЕРЫ И ВЕС	ь физ іц	270	280	290	2100	2115	2130	2145	2160
	L - Ширина версии В	MM	2.650	2.650	2.650	3.150	3.150	3.150	3.150	3.450
	L - Ширина версии Т - S - Q	MM	3.150	3.150	3.150	3.150	3.250	3.250	3.250	3.25
	Н - Высота версии В	MM	1.700	1.700	1.700	1.700	1.730	1.730	1.730	1.73
	H - Высота версии Т - S - Q	MM	1.520	1.520	1.520	1.520	2.000	2.000	2.000	2.00
	Р - Глубина версии В	MM	1.210	1.210	1.210	1.210	1.210	1.210	1.210	1.21
	Р - Глубина версии Т - S - Q		1.210	1.210		1.210	1.520		1.520	
A	Р - Пубина версии 1 - 5 - Q Вес TCAEBY	MM	685	725	1.210 870	945	1.020	1.520	1.100	1.52
	Bec TCAETY-TCAESY-TCAEQY	KF KF	745	765	910	945	1.130	1.040	1.100	1.160
G										

- **●** Воздух: 35°С Вода: 12/7°С
- Воздух: 7°С С.К. 6°С В.К. Вода: 40/45°С
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата, со стороны батареи.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- Вес относится к пустому агрегату без комплектующих.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- **②** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии со звукоизоляцией TCAESY-THAESY.
- Версии с повышенной звукоизоляцией TCAEQY. Эксплуатационные показатели в соответствии с EN 14511:2013.

- Чиллеры и тепловые насосы класса А
- ESEER до 4,32
- Электронный расширительный клапан в стандартной комплектации

WinPACK HE-A с низким энергопотреблением

TCAEY-THAEY 2110÷4340

Мощность при охлаждении: 91,6÷345 кВт - Мощность при отоплении: 110,5÷357 кВт

TCAEQY 2150 c Tank&Pump

ТНАЕТҮ 4270 с комплектующими защитными решетками змеевика

Чиллеры и реверсивные тепловые насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 2, 3 или 4 ступеней регулировки с высокой эффективностью на частичных нагрузках.
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками и дифференциальным реле давления потока воды.
- Воздушный теплообменник: с микроканалами или с оребренным змеевиком с медными трубами и алюминиевым оребрением в зависимости от моделей/размеров.
- Вентилятор: электровентиляторы осевого типа с внешним ротором с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- магнитотермические выключатели, компрессоры и вентиляторы;
- отображение высокого и низкого давления цепи охлаждения,
- электронный расширительный клапан.
- плата часового датчика.

Варианты исполнения

- Т Высокоэффективная версия с увеличенной конденсатной секцией (ТСАЕТУ-ТНАЕТУ).
- Q Версия повышенной звукоизоляции, в комплект входит звукоизоляция технического отсека компрессоров, вентиляторы на сверхпониженной скорости и увеличенная конденсатная секция (ТСАЕОУ-ТНАЕОУ).

Модели

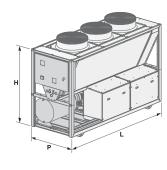
- TCAETY: высокоэффективный агрегат, предусмотрен только для
- TCAEQY: агрегат с повышенной звукоизоляцией предусмотрен только для охлаждения.
- ТНАЕТУ: агрегат теплового насоса.
- ТНАЕQY: агрегат повышенной звукоизоляции теплового насоса.

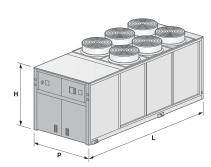
Аксессуары, установленные на заводе

• Кожухотрубный испаритель.

- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением.
 Электронасосы предоставляются в версиях с низким и высоким наполом
- ТАМК&PUMP со встроенным накопительным баком от 300 до 700 литров (в зависимости от модели) с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр со стороны воды.
- Управление насосами с переменной производительностью.
- Пароохладитель.
- Теплоутилизатор 100%.
- Контроль конденсации -10°C.
- Контроль конденсации -15°C с вентиляторами с ЕС-двигателями (в серийном оснащении для версии Q).
- Контроль конденсации с вентиляторами повышенного давления.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Принудительное ограничение электрической мощности.
- •Принудительное ограничение шума.
- Измеритель показателей энергопотребления.
- Оптимизация энергоэффективности.
- Плавный пускатель.
- •Звукоизолированная компрессорная коробка или звукоизоляция технического отсека.
- Звукоизоляционные кожухи компрессоров.
- Краны на всасывании и нагнетании охладительного контура.
- Детектор утечки хладагента (leak detector).
- Манометры высокого и низкого давления охладительной цепи.
- Металлические фильтры или защитные решётки змеевика.
- Змеевики с микроканалами с обработкой E-coating.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент испарителя, электрощит, накопительный бак, электронасосы и теплообменники для теплоутилизатора, если установлен таковой.
- Встроенные нагревательные элементы накопителя
- Производство воды при низкой температуре.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие опоры.

- Удаленный кнопочный пульт с дисплеем.
- Термостат с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.





	МОДЕЛЬ ТСАЕТУ-ТСАЕQY		2110	2120	2140	2150	2170	2200	2220	4240	4270	4310	4340
0	Номинальная холодопроизводительность	кВт	110,5	121,5	138,4	156,4	175,4	200,3	223,2	241,3	276,3	309,1	345,1
0	Номинальная холодопроизводительность	кВт	100,6	108,6	126,5	140,5	155,5	181,4	199,4	218,4	251,4	280,2	318,2
0	E.E.R.		3,13	3,1	3,13	3,11	3,1	3,11	3,1	3,1	3,10	3,1	3,1
0	E.E.R.		2,73	2,6	2,69	2,65	2,6	2,64	2,61	2,56	2,68	2,62	2,63
•	E.S.E.E.R.		4,28	4,32	4,13	4,22	4,28	4,18	4,21	4,29	4,26	4,23	4,22
0	E.S.E.E.R.+		5,02	5,09	4,96	4,98	5,04	4,89	4,95	5,1	5,06	5	5,03
0	Потребляемая мощность	кВт	35,3	39,2	44,2	50,3	56,6	64,4	72	77,8	88,8	99,7	111,3
0	Потребляемая мощность	кВт	36,8	41,8	47	53	59,8	68,7	76,4	85	93,8	106,9	121
	МОДЕЛЬ THAETY-THAEQY		2110	2120	2140	2150	2170	2200	2220	4240	4270	4310	4340
0	Номинальная тепловая мощность	кВт	114,5	124,5	141,6	161,6	181,7	204,8	233,9	249,8	282,8	321	357
@	Номинальная тепловая мощность	кВт	110,5	118,5	136,5	153,6	171,6	194,7	221,8	236,7	266,7	301	341,9
2	C.O.P.		3,22	3,22	3,21	3,22	3,23	3,22	3,21	3,2	3,2	3,2	3,2
2	C.O.P.		3,28	3,29	3,27	3,26	3,26	3,23	3,26	3,12	3,11	2,95	3,08
0	Номинальная холодопроизводительность	кВт	101,6	112,6	126,5	145,4	161,4	186,3	209,3	231,3	263,3	301,1	334,1
0	Номинальная холодопроизводительность	кВт	91,6	100,6	118,6	130,6	144,5	169,5	187,4	206,5	238,4	270,3	302,3
2	Потребляемая мощность	кВт	35,6	38,7	44,1	50,2	56,3	63,6	72,9	78,1	88,4	100,3	111,6
2	Потребляемая мощность	кВт	33,7	36	41,7	47,1	52,6	60,3	68	75,9	85,8	102	111
	МОДЕЛЬ ТСАЕТУ-ТСАЕQY-ТНАЕТУ-ТНАЕ	EQY	2110	2120	2140	2150	2170	2200	2220	4240	4270	4310	4340
6	Звуковое давление ТСАЕТҮ	дБ(А)	55	56	57	57	58	59	59	58	60	60	62
0	Звуковое давление ТНАЕТҮ	дБ(А)	53	54	55	55	56	57	57	58	60	60	62
6	Звуковое давление TCAEQY-THAEQY	дБ(А)	47	47	48	48	49	50	50	51	53	53	54
4	Звуковая мощность ТСАЕТҮ	дБ(А)	87	88	89	89	90	91	91	90	92	92	94
4	Звуковая мощность ТНАЕТҮ	дБ(А)	85	86	87	87	88	89	89	90	92	92	94
4	Звуковая мощность TCAEQY-THAEQY	дБ(А)	79	79	80	80	81	82	82	83	85	85	86
	Компрессор спиральный/ступенчатый	кол-во	2/3	2/3	2/2	2/3	2/2	2/3	2/2	4/4	4/4	4/4	4/4
	Контуры	кол-во	1	1	1	1	1	1	1	2	2	2	2
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС		2110	2120	2140	2150	2170	2200	2220	4240	4270	4310	4340
	L - Ширина	MM	3.600	3.600	3.600	3.600	4.550	4.550	4.550	4.800	4.800	5.300	5.300
	Н - Высота	MM	2.440	2.440	2.440	2.440	2.440	2.440	2.440	2.030	2.030	2.030	2.030
	Р - Глубина	MM	1.350	1.350	1.350	1.350	1.350	1.350	1.350	2.090	2.090	2.090	2.090
6	Bec TCAETY	КГ	1.090	1.100	1.110	1.130	1.280	1.300	1.320	2.290	2.390	2.520	2.640
6	Bec TCAEQY	ΚΓ	1.250	1.260	1.270	1.290	1.440	1.460	1.480	2.420	2.520	2.650	2.770
6	Bec THAETY	ΚΓ	1.380	1.410	1.420	1.500	1.670	1.690	1.780	2.470	2.570	2.720	2.840
ษ	DECTIMENT	IVI	1.500	1.110	1.120	11500	1107 0						

- Воздух: 35°С Вода: 12/7°С
- Воздух: 7°C, В.S. (сухая колба) 6°C В.U.- Вода: 40/45°C
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- Вес относится к пустому агрегату без комплектующих.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- **©** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии с повышенной звукоизоляцией ТСАЕQY-ТНАЕQY.

WinPACK SE с низким энергопотреблением

TCAEY-THAEY 2110÷4340

Мощность при охлаждении: 97,6÷328,6 кВт - Мощность при отоплении: 109,5÷354,6 кВт

- Высокопроизводительная серия с расширенными эксплуатационными ограничениями
- Широкий ассортимент комплектующих
- Компактная версия В для рынков замещения

Чиллеры и реверсивные тепловые компактные насосы с воздушной конденсацией и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 2,3 или 4 ступени регулировки с высокой эффективностью на частичных нагрузках.
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками и дифференциальным реле давления потока воды.
- Воздушный теплообменник: с микроканалами или с оребренным змеевиком с медными трубами и алюминиевым оребрением в зависимости от моделей/ размеров.
- Вентилятор: электровентиляторы осевого типа с внешним ротором с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- термомагнитные выключатели, компрессоры и

вентиляторы;

- отображение высокого и низкого давления охладительной цепи;
- плата часового датчика.

Варианты исполнения

- В Базовая версия (ТСАЕВҮ ТНАЕВҮ).
- S Звукоизолированная версия, в комплект входит звукоизоляция технического отсека, вентиляторы на пониженной скорости (TCAESY-THAESY).

Модели

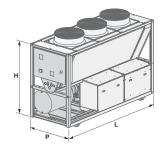
- TCAEBY: базовая версия предусмотрена только для охлаждения.
- TCAESY: агрегат со звукоизоляцией предусмотрен только для охлаждения.
- ТНАЕВҮ: агрегат теплового насоса.
- THAESY: звукоизолированный агрегат теплового насоса.

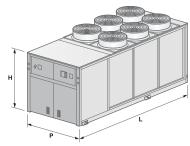
Аксессуары, установленные на заводе

- Кожухотрубный испаритель.
- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением. Электронасосы предоставляются в версиях с низким и высоким напором.
- TANK&PUMP со встроенным накопительным баком от 300 до 700 литров (в зависимости от модели) с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр со стороны воды.

- Управление насосами с переменной производительностью.
- Пароохладитель.
- Теплоутилизатор 100%.
- Электронный расширительный клапан.
- Контроль конденсации -10°С (серийный в версии S).
- Контроль конденсации —15°C с вентиляторами с ЕС-двигателем.
- Контроль конденсации с вентиляторами повышенного давления.
- Усилоистер конпректировки моницести (сос. ф. 2.0.4)
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Принудительное ограничение электрической мощности.
- Принудительное ограничение шума.
- Измеритель показателей энергопотребления.
- Оптимизация энергоэффективности.
- Плавный пускатель.
- Звукоизолированная компрессорная коробка или звукоизоляция технического отсека.
- Звукоизоляционные кожухи компрессоров.
- Краны на всасывании и нагнетании охладительного контура.
- Детектор утечки хладагента (leak detector).
- Манометры высокого и низкого давления охладительной цепи.
- Металлические фильтры или защитные решётки змеевика.
- Змеевики с микроканалами с обработкой E-coating.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент испарителя, электрощит, накопительный бак, электронасосы и теплообменники для теплоутилизатора, если установлен таковой.
- Встроенные нагревательные элементы накопителя
- Производство воды при низкой температуре.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие опоры.

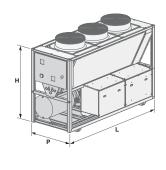
- Удаленный кнопочный пульт с дисплеем.
- Термостат с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

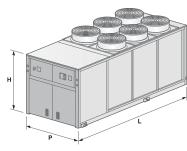

WinPACK SE с низким энергопотреблением


TCAEY-THAEY 2110÷4340

	МОДЕЛЬ ТСАЕВУ-ТСАЕSY		2110	2120	2140	2150	2170	2200	2220
0	Номинальная холодопроизводительность	кВт	106,5	114,4	127,4	147,3	165,2	188,1	212,1
0	Номинальная холодопроизводительность	кВт	102,5	110,4	122,4	142,3	159,2	183,2	205,1
0	E.E.R.		2,81	2,79	2,8	2,81	2,81	2,8	2,8
0	E.E.R.		2,72	2,67	2,65	2,71	2,7	2,66	2,7
•	E.S.E.E.R.		3,91	3,94	3,96	3,85	3,93	4	3,87
0	E.S.E.R.+		4,62	4,63	4,66	4,52	4,61	4,75	4,57
0	Потребляемая мощность	кВт	37,9	41	45,5	52,4	58,8	67,2	75,8
0	Потребляемая мощность	кВт	37,7	41,3	46,2	52,5	59	68,9	76
	МОДЕЛЬ ТНАЕВУ-ТНАЕЅУ		2110	2120	2140	2150	2170	2200	2220
0	Номинальная тепловая мощность	кВт	112,6	123,7	139,7	158,8	176,9	198	229,1
0	Номинальная тепловая мощность	кВт	109,5	121,7	135,7	155,8	173,9	195,9	226
0	C.O.P.		3,05	3,08	3,08	3,04	3,06	3,07	3,07
0	C.O.P.		3,1	3,13	3,1	3,13	3,1	3,09	3,13
0	Номинальная холодопроизводительность	кВт	99,5	110,4	123,4	142,3	159,3	182,2	206,1
0	Номинальная холодопроизводительность	кВт	97,6	106,5	117,5	136,4	152,3	175,3	199,2
0	Потребляемая мощность	кВт	36,9	40,2	45,4	52,2	57,8	64,5	74,6
0	Потребляемая мощность	кВт	35,3	38,9	43,8	49,8	56,1	63,4	72,2
	МОДЕЛЬ ТСАЕВУ-ТСАЕЅУ-ТНАЕВУ-ТНАЕЅУ		2110	2120	2140	2150	2170	2200	2220
6	Звуковое давление ТСАЕВУ	дБ(А)	55	56	56	57	58	58	59
6	Звуковое давление ТНАЕВУ	дБ(А)	53	54	54	55	56	56	57
6	Звуковое давление TCAESY	дБ(А)	49	50	50	51	52	52	53
6	Звуковое давление THAESY	дБ(А)	49	50	50	51	52	52	53
4	Звуковая мощность ТСАЕВҮ	дБ(А)	87	88	88	89	90	90	91
4	Звуковая мощность ТНАЕВУ	дБ(А)	85	86	86	87	88	88	89
4	Звуковая мощность ТСАЕЅҮ	дБ(А)	81	82	82	83	84	84	85
4	Звуковая мощность ТНАЕЅҮ	дБ(А)	81	82	82	83	84	84	85
	Компрессор спиральный/ступенчатый	кол-во	2/3	2/3	2/2	2/3	2/2	2/3	2/2
	Контуры	кол-во	1	1	1	1	1	1	1
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС		2110	2120	2140	2150	2170	2200	2220
	L - Ширина TCAEBY-TCAESY	MM	2.650	2.650	2.650	3.600	3.600	3.600	4.550
	L - Ширина THAEBY-THAESY	MM	2.650	2.650	2.650	3.600	3.600	3.600	4.550
	Н - Высота ТСАЕВУ-ТСАЕЅУ	MM	2.440	2.440	2.440	2.440	2.440	2.440	2.440
	Н - Высота THAEBY-THAESY	MM	2.440	2.440	2.440	2.440	2.440	2.440	2.440
	P - Глубина TCAEBY-TCAESY	MM	1.350	1.350	1.350	1.350	1.350	1.350	1.350
	Р - Глубина THAEBY-THAESY	MM	1.350	1.350	1.350	1.350	1.350	1.350	1.350
6	Bec TCAEBY	КГ	990	1.000	1.010	1.160	1.180	1.180	1.340
6	Bec TCAESY	КГ	1.110	1.120	1.130	1.280	1.300	1.300	1.460
	Do a TILA CDV		1 250	1 210	1 220	1.470	1.480	1 505	1.730
6	Bec THAEBY	КГ	1.250	1.310	1.320	1.4/0	1.400	1.565	1./30

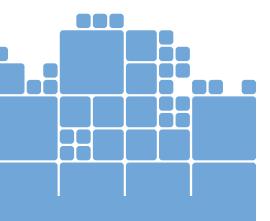
Данные при следующих условиях:


- Воздух: 35°С Вода: 12/7°С
- **❷** Воздух: 7°С, В.S. (сухая колба) 6°С В.U.- Вода: 40/45°С
- **3** На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес относится к пустому агрегату без комплектующих.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии со звукоизоляцией TCAESY-THAESY.



МОДЕЛЬ TCAEBY-TCAESY		4150	4170	4200	4220	4240	4270	4310	4340
Номинальная холодопроизводительность	кВт	146,3	166,4	189,2	213,2	229,2	256	299,9	328,7
Номинальная холодопроизводительность	кВт	142,3	161,4	182,3	207,2	224,2	250,0	291	319,7
E.E.R.		2,99	2,9	2,83	2,92	2,8	2,8	2,81	2,76
E.E.R.		2,93	2,82	2,67	2,82	2,68	2,66	2,68	2,61
E.S.E.E.R.		4,11	4,13	4,12	4,12	4,05	4,09	3,96	3,96
E.S.E.E.R.+		4,85	4,87	4,87	4,85	4,8	4,84	4,7	4,69
Потребляемая мощность	кВт	48,9	57,4	66,9	73	81,9	91,4	106,7	119,1
Потребляемая мощность	кВт	48,6	57,2	68,3	73,5	83,7	94	108,6	122,5
МОДЕЛЬ ТНАЕВУ-ТНАЕЅУ		4150	4170	4200	4220	4240	4270	4310	4340
• Номинальная тепловая мощность	кВт	152,7	172,6	197,8	225,9	249	281,3	319,3	354,6
Номинальная тепловая мощность	кВт	147,7	167,6	192,8	219,9	245	278,3	315,2	345,5
• C.O.P.		3,09	3,14	3,04	3,04	3,03	3,01	3,01	2,98
C.O.P.		3,1	3,12	3,09	3,09	3,09	3,05	3,07	3,03
Номинальная холодопроизводительность	кВт	141,3	163,4	186,2	209,1	227,1	253,9	295,9	324,7
Номинальная холодопроизводительность	кВт	136,4	156,4	180,3	200,2	220,2	248	286,1	313,8
• Потребляемая мощность	кВт	49,4	55	65,1	74,3	82,2	93,5	106,1	119
• Потребляемая мощность	кВт	47,6	53,7	62,4	71,2	79,3	91,2	102,7	114
МОДЕЛЬ ТСАЕВУ-ТСАЕЅУ-ТНАЕВУ-ТНАЕЅУ		4150	4170	4200	4220	4240	4270	4310	4340
Звуковое давление ТСАЕВУ	дБ(А)	57	57	57	58	60	60	60	61
Звуковое давление ТНАЕВҮ	дБ(А)	54	54	56	56	58	60	60	61
Звуковое давление TCAESY	дБ(А)	51	51	51	52	54	54	56	57
Звуковое давление ТНАЕЅҮ	дБ(А)	50	50	52	52	54	55	56	57
Звуковая мощность ТСАЕВУ	дБ(А)	89	89	89	90	92	92	92	93
Звуковая мощность ТНАЕВУ	дБ(А)	86	86	88	88	90	92	92	93
Звуковая мощность TCAESY	дБ(А)	83	83	83	84	86	86	88	89
Звуковая мощность THAESY	дБ(А)	82	82	84	84	86	87	88	89
Компрессор спиральный/ступенчатый	кол-во	4/4	4/4	4/4	4/4	4/4	4/4	4/4	4/4
Контуры	кол-во	2	2	2	2	2	2	2	7
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		4150	4170	4200	4220	4240	4270	4310	4340
L - Ширина TCAEBY-TCAESY	MM	3600	3600	3600	4550	4.550	4.550	4.800	4.800
L - Ширина THAEBY-THAESY	MM	3450	3450	3700	3700	4.800	4.800	4.800	4.800
Н - Высота ТСАЕВҮ-ТСАЕЅҮ	MM	2440	2440	2440	2440	2.440	2.440	2.030	2.030
Н - Высота ТНАЕВҮ-ТНАЕЅҮ	MM	2000	2000	2030	2030	2.030	2.030	2.030	2.030
P - Глубина TCAEBY-TCAESY	MM	1350	1350	1350	1350	1.350	1.350	2.090	2.090
P - Глубина THAEBY-THAESY	MM	1520	1520	2090	2090	2.090	2.090	2.090	2.09
Bec TCAEBY	КГ	1165	1185	1190	1335	1.670	1.690	2.400	2.410
⋑ Bec TCAESY	КГ	1300	1320	1325	1470	1.830	1.850	2.440	2.450
Bec THAEBY	КГ	1450	1525	1725	1800	2.375	2.460	2.580	2.595
Bec THAESY	КГ	1475	1550	1765	1840	2.415	2.500	2.620	2.635

- Воздух: 35°C Вода: 12/7°C
- Воздух: 7°С, В.Ѕ. (сухая колба) 6°С В.И.- Вода: 40/45°С
- $oldsymbol{3}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес относится к пустому агрегату без комплектующих.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии со звукоизоляцией TCAESY-THAESY.



Web code: YKF11

Y-Pack СВОБОДНОЕ ОХЛАЖДЕНИЕ

TFAEY-TGAEY 4160 ÷ 4320

Мощность при охлаждении: 170÷361 кВт

- В наличии имеется версия без гликоля NO GLYCOL
- Гамма Plug&Play (Подключи и Работай)
- Программное обеспечение для оценки энергосбережения

Чиллеры с режимом "Free Cooling" (Свободное охлаждение) (TFAEY) е" "свободного охлаждения" NO-GLYCOL (TGAEY)

с воздушным охлаждением и осевыми вентиляторами.

Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 4 ступени регулировки с высокой эффективностью на частичных нагрузках.
- Теплообменник со стороны воды (испаритель): с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды (TFAEY) или реле потока (TGAEY).
- Теплообменник (вода-вода) в "свободном охлаждении NO-GLYCOL: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды.
- Теплообменник со стороны воздуха (конденсатор): оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- термомагнитные выключатели, компрессоры и вентиляторы;
- плата часового датчика.
- трехходовой модулирующий клапан со стороны воды.

Варианты исполнения

- Т Высокоэффективная версия (TFAETY-TGAETY).
- S Звукоизолированная версия, в комплект входит звукоизоляция технического отсека, компрессоры и вентиляторы на пониженной скорости (TFAESY-TGAESY).

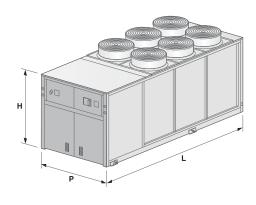
Модели

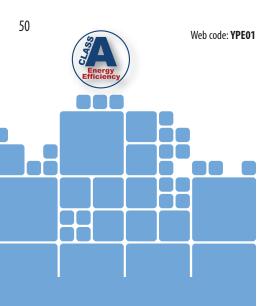
- TFAETY: высокоэффективный агрегат в исполнении "Свободного охлаждения".
- TFAESY: агрегат с пониженным уровнем шума в исполнении "Свободного охлаждения".
- TGAETY: высокоэффективный агрегат в исполнении "Свободного охлаждения" БЕЗ ГЛИКОЛЯ.
- TGAESY: агрегат с пониженным уровнем шума в исполнении "Свободного охлаждения" БЕЗ ГЛИКОЛЯ.

Аксессуары, установленные на заводе

- РИМР с отдельным или двойным электронасосом, один из которых находится в режиме ожидания, с автоматическим подключением, с предохранительным клапаном. Электронасосы предоставляются в версиях с низким и высоким напором.
- Электронный расширительный клапан.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- "Плавный" пускатель.
- Манометр высокого и низкого давления цепи охлаждения.
- Металлические фильтры или защитные решётки змеевика.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент испарителя и электронасосов при наличии таковых.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.


МОДЕЛЬ ТГАЕТҮ-ТГАЕЅҮ		4160	4180	4200	4230	4260	4290	4320
СВОБОДНОЕ ОХЛАЖДЕНИЕ ВЫКЛ								
• Номинальная холодопроизводительность	кВт	178	202	224	251	286	326	361
• Номинальная холодопроизводительность	кВт	170	197	215	240	274	312	344
• E.E.R.		3,31	3,41	3,27	3,20	3,34	3,20	3,09
• E.E.R.		3,21	3,32	3,11	3,11	3,22	3,09	2,92
Потребляемая мощность	кВт	53,8	59,3	68,4	78,5	85,6	102,0	117,0
• Потребляемая мощность	кВт	53,0	59,3	69,2	77,2	85,2	100,9	117,9
СВОБОДНОЕ ОХЛАЖДЕНИЕ ВКЛ 100%								
Номинальная холодопроизводительность	кВт	178	202	224	251	286	326	361
Номинальная холодопроизводительность	кВт	170	197	215	240	274	312	344
❷ E.E.R.		21,3	24,4	26,9	20,5	22,8	19,5	21,5
❷ E.E.R.		33,0	37,8	41,4	31,7	35,2	30,0	32,9
Потребляемая мощность	кВт	8	8	8	12	12	16	16
Потребляемая мощность	кВт	5	5	5	7,5	7,5	10	10
Температура общего свободного охлаждения	°C	0,3	1	0,4	0,7	0,9	0,4	-0,8
Температура общего свободного охлаждения	°C	-1,3	-0,8	-1,5	-1,3	-1,1	-1,6	-3,0
МОДЕЛЬ ТГАЕТҮ-ТГАЕЅҮ		4160	4180	4200	4230	4260	4290	4320
Звуковое давление	дБ(А)	60	63	63	65	65	66	66
3вуковое давление	дБ(А)	55	56	56	58	59	60	60
Звуковая мощность	дБ(А)	89	91	91	93	93	94	94
Звуковая мощность	дБ(А)	85	86	86	88	89	90	90
Компрессор спиральный/ступенчатый	кол-во	4/4	4/4	4/4	4/4	4/4	4/4	4/4
Контуры	кол-во	2	2	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3+N-50						
РАЗМЕРЫ И ВЕС		4160	4180	4200	4230	4260	4290	4320
L - Ширина	MM	4.800	4.800	4.800	4.800	5.300	5.300	5.300
Н - Высота	MM	2.030	2.030	2.030	2.030	2.030	2.030	2.030
Р - Глубина	MM	2.090	2.090	2.090	2.090	2.090	2.090	2.090
⑤ BecTFAETY-TFAESY	КГ	2.370	2.820	2.920	3.020	3.230	3.380	3.430
ூ Bec TGAETY-TGAESY	КГ	2.470	2.970	3.070	3.170	3.280	3.430	3.480


- Воздух: 30°С Вода: 15/10°С Этиленгликоль 30%.
- **2** Вода: 15/10°C - Этиленгликоль 30%.
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата, со стороны батареи.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614. 4
- Вес порожнего агрегата с комплектующими деталями.
- Версия со звукоизоляцией TFAESY.

ПРИМЕР ВЫХОДА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ ПРИМЕРНОГО РАСЧЁТА ЭНЕРГОЗАТРАТ

- Охладители КЛАССА А
- До 6 ступеней регулировки
- ESEER с программой Adaptive Function Plus (усовершенствованная функция адаптации) до 5,21

Y-Power HE-A низкого потребления

TCAEY-THAEY 4370 ÷ 6660

Мощность при охлаждении: 342,7÷665,1 кВт - Мощность при отоплении: 370,6÷686,2 кВт

Чиллеры и реверсивные тепловые насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 4, 5 или 6 ступеней регулировки с высокой эффективностью на частичных нагрузках.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками (версия Т); вентиляторы с ЕС-двигателем с постоянной настройкой скорости вращения вентиляторов (версия Q).
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- магнитотермические выключатели, компрессоры и вентиляторы;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- Т Высокоэффективная версия с увеличенной конденсатной секцией (ТСАЕТУ-ТНАЕТУ).
- Q Сверхтихая версия с вентиляторами, с ЕС-двигателями на сверхнизкой скорости, с шумопоглащающей обшивкой с высокой звукоизоляцией компрессоров, с увеличенной конденсатной секцией (ТСАЕQY-THAEQY).

Модели

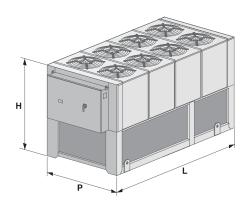
• ТСАЕТУ: агрегат предусмотрен только для охлаждения.

- ТСАЕQY: сверхтихий агрегат, предусмотрен только для охлаждения.
- ТНАЕТУ: агрегат теплового насоса.
- THAEQY: сверхтихий агрегат теплового насоса.

Аксессуары, установленные на заводе

- Кожухотрубный испаритель.
- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением. Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАНК&PUMP со встроенным накопительным баком 1 000 литров с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапан стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/пароохладителя.
- Контроль конденсации -10°С.
- Контроль конденсации —15°С с вентиляторами с ЕС-двигателями (в серийном оснащении для версии Q).
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Принудительное ограничение электрической мощности.
- Звукоизолированная компрессорная коробка.
- "Плавный" пускатель.
- • Краны на всасывании и нагнетании охладительного контура.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Противообледенительный нагревательный элемент, накопительный бак, теплообменники для теплоутилизатора, если установлен таковой.
- Двойной комплект установок с цифровым подтверждением.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА
- Производство воды при низкой температуре.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

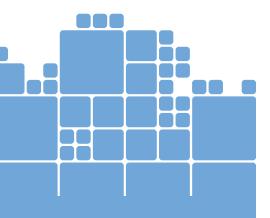
- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



МОДЕЛЬ ТСАЕТУ-ТСАЕQY		4370	4400	4440	5470	6520	6580	6620	6660
• Номинальная холодопроизводительность	кВт	376,5	398,4	446,3	479,7	524,5	587,4	630,4	665,1
Номинальная холодопроизводительность	кВт	353,7	376,8	419,5	457,9	493,7	555,6	596,6	624,4
• E.E.R.		3,1	3,1	3,1	3,1	3,1	3,11	3,1	3,1
• E.E.R.		2,87	2,85	2,84	2,84	2,78	2,76	2,8	2,79
● E.S.E.E.R.		4,26	4,27	4,21	4,37	4,34	4,36	4,34	4,24
○ E.S.E.E.R.+		4,95	4,98	4,89	5,04	5,12	5,21	5,10	5,00
• Потребляемая мощность	кВт	121,45	128,52	143,97	154,74	169,19	188,87	203,35	214,55
• Потребляемая мощность	кВт	123,24	132,21	147,71	161,23	177,59	201,3	213,07	223,8
МОДЕЛЬ ТНАЕТУ-ТНАЕQY		4370	4400	4440	5470	6520	6580	6620	6660
Номинальная тепловая мощность	кВт	386,7	411,5	461	497,4	533,6	617,8	649,9	686,2
Номинальная тепловая мощность	кВт	370,6	395,4	438,8	475,3	516,5	596,7	627,7	659
② C.O.P.		3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2
② C.O.P.		2,97	3,03	2,99	2,98	3,08	3,02	3,02	2,98
• Номинальная холодопроизводительность	кВт	354,6	378,7	423,3	459,7	497,5	567,4	606,3	632,1
• Номинальная холодопроизводительность	кВт	342,7	365,8	408,5	442,9	480,6	548,6	588,5	610,3
Потребляемая мощность	кВт	120,84	128,59	144,06	155,44	166,75	193,06	203,09	214,44
Потребляемая мощность	кВт	124,78	130,5	146,76	159,5	167,69	197,58	207,85	221,14
МОДЕЛЬ ТСАЕТУ-ТСАЕQY-ТНАЕТУ-ТНАЕQY		4370	4400	4440	5470	6520	6580	6620	6660
Звуковое давление	дБ(А)	64	64	64,5	64,5	64,5	64,5	65	66
Звуковое давление	дБ(А)	53	53	54	54	54	54	54	55
Звуковая мощность	дБ(А)	96	96	97	97	97	97	98	99
Эвуковая мощность	дБ(А)	86	86	87	87	87	87	88	89
Компрессор спиральный/ступенчатый	кол-во	4/4	4/4	4/4	5/5	6/6	6/6	6/6	6/6
Контуры	кол-во	2	2	2	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		4370	4400	4440	5470	6520	6580	6620	6660
L - Ширина	MM	4.830	4.830	4.830	5.830	5.830	5.830	6.650	6.650
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430	2.430	2.430	2.430
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260	2.260	2.260	2.260

- Воздух: 35°С Вода: 12/7°С
- Воздух: 7°C, В.S. (сухая колба) 6°C В.U.- Вода: 40/45°C
- На открытом воздухе (Q=2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии с повышенной звукоизоляцией TCAEQY-THAEQY.

Aгрегат THAEY проходит испытательные проверки в лаборатории Rhoss: R&D Lab.



Web code: YP001

Y-Power SE низкого энергопотребления

TCAEY-THAEY 4350÷6640

Мощность при охлаждении: 333,7÷634 кВт - Мощность при отоплении: 358,4÷671,1 кВт

- Компактная версия В для рынка реконструкции
- До 6 ступеней регулировки
- Упрощенная установка с комплектующим Tank&Pump (Бак и Hacoc)

Чиллеры и реверсивные тепловые насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

Tank&Pump

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 4, 5 или 6 ступеней регулировки с высокой эффективностью на частичных нагрузках.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды и соединения Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы винтового типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (только версия S).
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- магнитотермические выключатели, компрессоры и вентиляторы;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (ТСАЕВУ-ТНАЕВУ).
- S Версия со звукоизоляцией с низкоскоростными вентиляторами и с шупомоглащающей обшивкой компрессоров (TCAESY-THAESY).

Модели

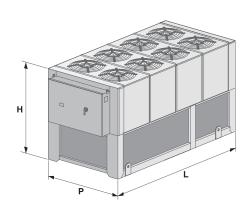
- TCAEBY: агрегат предусмотрен только для охлаждения.
- TCAESY: агрегат со звукоизоляцией предусмотрен только для охлаждения.

- ТНАЕВУ: агрегат теплового насоса.
- ТНАЕЅУ: агрегат теплового насоса с пониженным уровнем шума.

Аксессуары, установленные на заводе

- Кожухотрубный испаритель.
- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением. Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАНК&PUMP со встроенным накопительным баком 1 000 литров с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапан стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/пароохладителя.
- Контроль конденсации 10°С (серийный в версии S).
- Контроль конденсации 15°С с вентиляторами с ЕСдвигателем.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Принудительное ограничение электрической мощности.
- Звукоизолированная компрессорная коробка.
- "Плавный" пускатель.
- • Краны на всасывании и нагнетании охладительного контура.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Противообледенительный нагревательный элемент, накопительный бак, теплообменники для теплоутилизатора, если установлен таковой.
- Двойной комплект установок с цифровым подтверждением.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Производство воды при низкой температуре.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.





МОДЕЛЬ ТСАЕВҮ-ТСАЕЅҮ		4350	4380	4410	5450	6500	6560	6600	6640
• Номинальная холодопроизводительность	кВт	352,5	376,3	415,2	455,1	495,8	559,3	601,2	634
• Номинальная холодопроизводительность	кВт	338,6	362,4	400,3	438,3	478	539,4	578,3	611,2
• E.E.R.		2,79	2,77	2,75	2,79	2,75	2,77	2,77	2,78
• E.E.R.		2,64	2,61	2,62	2,64	2,63	2,65	2,64	2,66
● E.S.E.E.R.		3,99	4,02	3,92	4,01	4,03	3,98	3,96	3,94
© E.S.E.E.R.+		4,62	4,65	4,62	4,67	4,68	4,63	4,60	4,57
Потребляемая мощность	кВт	126,34	135,85	150,98	163,12	180,29	201,91	217,04	228,06
• Потребляемая мощность	кВт	128,26	138,85	152,79	166,02	181,75	203,55	219,05	229,77
МОДЕЛЬ ТНАЕВУ-ТНАЕЅУ		4350	4380	4410	5450	6500	6560	6600	6640
Номинальная тепловая мощность	кВт	373,6	395,8	436,9	483,9	514,3	591,8	635,8	671,1
Иоминальная тепловая мощность	кВт	358,4	382,7	421,8	461,8	497,1	568,6	610,7	644,9
② C.O.P.		3	2,98	2,99	3,01	2,99	3,02	3,03	2,99
② C.O.P.		2,86	2,86	2,85	2,82	2,84	2,89	2,86	2,85
• Номинальная холодопроизводительность	кВт	340,6	364,4	403,3	441,3	481	543,4	584,4	615,2
• Номинальная холодопроизводительность	кВт	333,7	355,5	389,4	428,4	468,1	526,6	566,5	597,3
Потребляемая мощность	кВт	124,53	132,82	146,12	160,76	172,01	195,96	209,87	224,45
Потребляемая мощность	кВт	125,31	133,81	148	163,76	175,04	196,75	213,53	226,28
МОДЕЛЬ ТСАЕВУ-ТСАЕЅУ-ТНАЕВУ-ТНАЕЅУ		4350	4380	4410	5450	6500	6560	6600	6640
Звуковое давление	дБ(А)	63,0	63,0	64,0	64,0	64,0	64,0	64,5	65,5
Звуковое давление	дБ(А)	58,0	58,0	59,0	59,0	59,0	59,0	59,5	60,5
Звуковая мощность	дБ(А)	95	95	96	96	96	96	97	98
Звуковая мощность	дБ(А)	90	90	91	91	91	91	92	93
Компрессор спиральный/ступенчатый	кол-во	4/4	4/4	4/4	5/5	6/6	6/6	6/6	6/6
Контуры	кол-во	2	2	2	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		4350	4380	4410	5450	6500	6560	6600	6640
L - Ширина	MM	3.830	3.830	3.830	4.830	4.830	4.830	5.830	5.830
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430	2.430	2.430	2.430
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260	2.260	2.260	2.260
⑤ Bec TCAEBY	КГ	2.500	2.550	2.590	3.040	3.190	3.320	3.640	3.680
ூ Bec THAEBY	КГ	2.730	2.800	2.840	3.450	3.600	3.670	4.130	4.170

- Воздух: 35°С Вода: 12/7°С
- Воздух: 7°C, В.S. (сухая колба) 6°C В.U.- Вода: 40/45°C
- На $\,$ открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес порожнего агрегата с дополнительными принадлежностями RPE KRP.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии со звукоизоляцией TCAESY-THAESY.

- С расширенными эксплуатационными возможностями
- 6 ступеней регулирования с ESEER до 4,4

WinPOWER HE-A низкого потребления

TCAEY 6700÷8920

Мощность при охлаждении: 632,5÷916,8 кВт

Чиллеры с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 6 ступеней регулировки с высокой эффективностью на частичных нагрузках.
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, в комплекте с дифференциальным реле давления потока воды и фланцевыми соединениями Victaulic.
- Воздушный теплообменник: с микроканалами.
- Вентилятор: электровентиляторы осевого типа с внешним ротором с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- магнитотермические выключатели, компрессоры и вентиляторы:
- отображение высокого и низкого давления цепи охлаждения,
- электронный расширительный клапан.
- плата часового датчика.

Варианты исполнения

- Т Версия с высокой эффективностью с увеличенной конденсатной секцией (ТСАЕТУ).
- Q Версия со сверх низким уровнем шума, в комплект входит звукоизоляция технического отсека компрессоров, вентиляторы на сверхпониженной скорости и увеличенная конденсатная секция (TCAEQY).

Модели

- ТСАЕТУ: высокоэффективный агрегат, предусмотрен только для охлажления
- TCAEQY: агрегат с повышенной звукоизоляцией предусмотрен только для охлаждения.

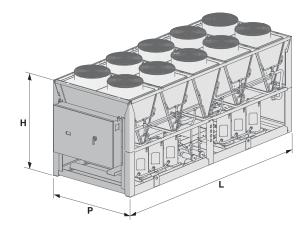
Аксессуары, установленные на заводе

- Кожухотрубный испаритель.
- PUMP с отдельным или двойным электронасосом, один из

которых находится в режиме ожидания с автоматическим подключением. Электронасосы предоставляются в версиях с низким и высоким напором.

- ТАНК&PUMP со встроенным накопительным баком 1000 литров с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапан стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель.
- Теплоутилизатор 100%.
- Контроль конденсации -10°С.
- Контроль конденсации -15°С с вентиляторами с ЕС-двигателями (в серийном оснащении для версии Q).
- Контроль конденсации с вентиляторами повышенного давления.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Принудительное ограничение электрической мощности.
- Принудительное ограничение шума.
- Измеритель показателей энергопотребления.
- Оптимизация энергоэффективности.
- Плавный пускатель.
- Звукоизолированная компрессорная коробка.
- Звукоизоляционные кожухи компрессоров.
- Краны на всасывании и нагнетании охладительного контура.
- Детектор утечки хладагента (leak detector).
- Манометры высокого и низкого давления охладительной цепи.
- Двойные предохранительные клапаны.
- Защитные решётки змеевика.
- Змеевики с микроканалами с обработкой E-coating.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент испарителя, электрощит, накопительный бак, электронасосы и теплообменники для теплоутилизатора, если установлен таковой.
- Производство воды при низкой температуре.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие опоры.

- Удаленный кнопочный пульт с дисплеем.
- Термостат с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



МОДЕЛЬ ТСАЕТУ-ТСАЕQY		6700	7760	8820	8870	8920
• Номинальная холодопроизводительность	кВт	695	758,3	819,9	870,0	916,8
• Номинальная холодопроизводительность	кВт	632,5	694,7	753,3	791,5	827,3
● E.E.R.		3,13	3,14	3,15	3,14	3,13
● E.E.R.		2,65	2,67	2,67	2,64	2,60
● E.S.E.E.R.		4,27	4,40	4,40	4,37	4,32
♥ E.S.E.E.R.+		4,99	5,09	5,09	5,05	5,00
• Потребляемая мощность	кВт	222,0	241,5	260,3	277,1	292,9
• Потребляемая мощность	кВт	238,7	260,2	282,1	299,8	318,2
МОДЕЛЬ ТСАЕТУ-ТСАЕQY		6700	7760	8820	8870	8920
Звуковое давление ТСАЕТУ	дБ(А)	65,5	65,5	65,5	66,0	67,0
Акустическое давление TCAEQY	дБ(А)	56,5	57,0	57,0	58,0	59,0
Звуковая мощность ТСАЕТҮ	дБ(А)	98	98	98	99	100
Звуковая мощность ТСАЕQY	дБ(А)	89	90	90	91	92
Компрессор спиральный/ступенчатый	кол-во	6/6	7/6	8/6	8/6	8/6
Контуры	кол-во	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		6700	7760	8820	8870	8920
L - Ширина	ММ	7100	8250	9350	9350	9350
Н - Высота	MM	2450	2450	2450	2450	2450
Р - Глубина	MM	2260	2260	2260	2260	2260
⑤ Bec TCAETY	КГ	3700	4250	4650	4750	4770
⑤ Bec TCAEQY	КГ	4050	4655	5105	5205	5225

- **●** Воздух: 35°С Вода: 12/7°С
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес относится к пустому агрегату без комплектующих.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии с повышенной звукоизоляцией TCAEQY.

WinPOWER SE низкого потребления

TCAEY 6670 ÷8860

Мощность при охлаждении: 638,2÷861,8 кВт

- Компактная и производительная версия В для рынков замещения
- 6 ступеней регулирования
- Упрощенная установка благодаря встроенной насосной станции

Чиллеры с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 6 ступеней регулировки с высокой эффективностью на частичных нагрузках.
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, в комплекте с дифференциальным реле давления потока воды и фланцевыми соединениями Victaulic.
- Воздушный теплообменник: с микроканалами.
- Вентилятор: электровентиляторы осевого типа с внешним ротором с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- магнитотермические выключатели, компрессоры и вентиляторы:
- отображение высокого и низкого давления цепи охлаждения,
- электронный расширительный клапан.
- плата часового датчика.

Варианты исполнения

- В Базовая версия (ТСАЕВУ).
- S Звукоизолированная версия, в комплект входит звукоизоляция технического отсека, вентиляторы на пониженной скорости (TCAESY).

Модели

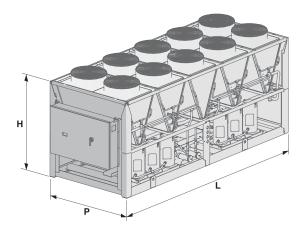
- ТСАЕЅҮ: базовая версия предусмотрена только для охлажления
- ТСАЕЅҮ: агрегат со звукоизоляцией предусмотрен только для охлажления

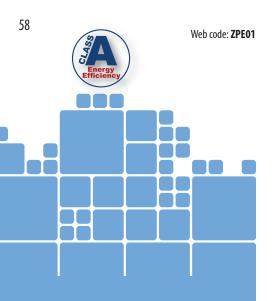
Аксессуары, установленные на заводе

• Кожухотрубный испаритель.

- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением. Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАNK&PUMP со встроенным накопительным баком 1000 литров с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапан стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель.
- Теплоутилизатор 100%.
- Контроль конденсации -10°С (серийный в версии S).
- Контроль конденсации —15°С с вентиляторами с ЕСдвигателем.
- Контроль конденсации с вентиляторами повышенного давления.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Принудительное ограничение электрической мощности.
- Принудительное ограничение шума.
- Измеритель показателей энергопотребления.
- Оптимизация энергоэффективности.
- Плавный пускатель.
- Звукоизолированная компрессорная коробка.
- Звукоизоляционные кожухи компрессоров.
- Краны на всасывании и нагнетании охладительного контура.
- Детектор утечки хладагента (leak detector).
- Манометры высокого и низкого давления охладительной цепи.
- Двойные предохранительные клапаны.
- Защитные решётки змеевика.
- Змеевики с микроканалами с обработкой E-coating.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент испарителя, электрощит, накопительный бак, электронасосы и теплообменники для теплоутилизатора, если установлен таковой.
- Производство воды при низкой температуре.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие опоры.

- Удаленный кнопочный пульт с дисплеем.
- Термостат с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.





МОДЕЛЬ ТСАЕВУ-ТСАЕЅУ		6670	7730	8790	8830	8860
• Номинальная холодопроизводительность	кВт	667,0	732,4	784,0	827,1	861,8
• Номинальная холодопроизводительность	кВт	638,2	705,6	752,3	790,4	825,1
• E.E.R.		2,91	2,93	2,84	2,81	2,80
❶ E.E.R.		2,73	2,76	2,63	2,61	2,60
● E.S.E.E.R.		4,11	4,19	4,12	4,11	4,08
© E.S.E.E.R.+		4,76	4,84	4,76	4,75	4,72
• Потребляемая мощность	кВт	229,2	250,0	276,1	294,3	307,8
• Потребляемая мощность	кВт	233,8	255,7	286,0	302,8	317,3
МОДЕЛЬ ТСАЕВУ-ТСАЕЅУ		6670	7730	8790	8830	8860
Звуковое давление	дБ(А)	64,5	64,5	64,5	65,0	66,0
Звуковое давление	дБ(А)	60,0	60,0	60,0	60,5	61,5
Звуковая мощность	дБ(А)	97,0	97,0	97,0	98,0	99,0
Звуковая мощность	дБ(А)	92,5	92,5	92,5	93,0	94,0
Компрессор спиральный/ступенчатый	кол-во	6/6	7/6	8/6	8/6	8/6
Контуры	кол-во	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		6670	7730	8790	8830	8860
L - Ширина	MM	5940	7150	7150	7150	7150
Н - Высота	ММ	2450	2450	2450	2450	2450
Р - Глубина	MM	2260	2260	2260	2260	2260
⑤ Bec TCAEBY	КГ	3250	3870	4020	4100	4120
⑤ Bec TCAESY	КГ	3550	4210	4410	4490	4510

- **●** Воздух: 35°С Вода: 12/7°С
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес относится к пустому агрегату без комплектующих.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- Версии со звукоизоляцией TCAESY

- Эффективная гамма до КЛАССА A с EER ≥3,1
- Работает до 55°C (комплектация НТ)
- Широкий ассортимент комплектующих

Z-Power HE

TCAVZ 2330÷2700

Мощность при охлаждении: 315,4÷690,7 кВт

TCAVSZ 2460 H.E. с комплектующим Tank&Pump

Высокоэффективные чиллеры, компактные с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме "звезда-треугольник" с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды (мод. 2330÷2460): с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Теплообменник со стороны воды (мод. 2510÷2700): кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (только версия S) и вентиляторами с двигателем ЕС с непрерывной регулировкой скорости и (только версия Q).
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В -Базовая версия с высокой энергоэффективностью (TCAVBZ).
- S Версия со звукоизоляцией с вентиляторами на низкой скорости и с шумопоглащающей обшивкой компрессоров (TCAVSZ).
- І Высокоэффективная версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TCAVIZ).
- Q Сверхтихая версия с вентиляторами с ЕС-двигателями на сверхнизкой скорости, с шумопоглащающей обшивкой, с высокой звукоизоляцией компрессоров и с увеличенной конденсатной секцией (TCAVQZ).

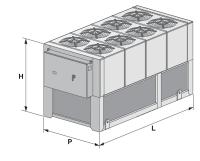
Модели

- TCAVBZ: агрегат предусмотрен только для охлаждения.
- TCAVSZ: агрегат с пониженным уровнем шума, предусмотрен только для охлаждения.
- TCAVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.
- TCAVQZ: сверхтихий агрегат, предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

- Оснащение НТ для температуры наружного воздуха до 55°C.
- Кожухотрубный испаритель (мод. 2330÷2460).
- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением.
 Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАНК&PUMP (мод. 2330÷2460) со встроенным накопительным баком 1.100 литров с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/пароохладителя.
- Контроль конденсации 10°С (серийный в версии S).
- Контроль конденсации 15°С с вентиляторами с ЕС-двигателями (в серийном оснащении для версии Q).
- Конденсатор корректировки мощности (соѕф > 0,94).
- Магнитотермические выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- Отсекающие вентили компрессоров на всасывании.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Компрессоры с контролем линейной нагрузки (25-100%).
- Противообледенительный нагревательный элемент, накопительный бак, теплообменники для теплоутилизатора, если установлен таковой.
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



Модель TCAVBZ-TCAVSZ-TCAVIZ-TCAVQZ		2330	2350	2370	2390	2420	2460	2510
Номинальная холодопроизводительность	кВт	332,5	352,6	372,9	389,7	415,7	457,1	509,1
Номинальная холодопроизводительность	кВт	324,3	343,5	361,1	378,7	406,1	442,9	494,3
Номинальная холодопроизводительность		315,4	335,4	353,3	369,2	394,2	432	482,8
E.E.R.		3,12	3,11	3,11	3,10	3,11	3,11	3,11
E.E.R.		3,07	3,04	3,02	2,94	3,05	3,02	2,99
E.E.R.		2,93	2,93	2,9	2,82	2,92	2,9	2,87
E.S.E.E.R.		4	4,02	4,04	4,02	4	3,98	4
E.S.E.E.R.		3,93	3,94	3,95	3,95	3,95	3,92	3,85
E.S.E.E.R.		4,05	4,06	4,08	4,07	4,06	4,05	4,01
● IPLV		4,20	4,22	4,24	4,22	4,20	4,22	4,24
● IPLV		4,13	4,14	4,15	4,15	4,15	4,12	4,09
● IPLV		4,25	4,26	4,28	4,27	4,26	4,26	4,25
Потребляемая мощность	кВт	106,57	113,38	119,90	125,71	133,67	146,98	163,70
Потребляемая мощность	кВт	105,64	112,99	119,57	128,81	133,15	146,66	165,32
Потребляемая мощность	кВт	107,65	114,47	121,83	130,92	135	148,97	168,22
МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVQZ		2330	2350	2370	2390	2420	2460	2510
3 Звуковое давление	дБ(А)	65	65	65	65	65	65	65
3 Вуковое давление	дБ(А)	59	59	59	59	59	59	59
3 Вуковое давление	дБ(А)	55	55	55	55	55	55	55
Э Звуковая мощность	дБ(А)	98	98	98	98	98	98	98
Э Звуковая мощность	дБ(А)	92	92	92	92	92	92	92
Э Звуковая мощность	дБ(А)	88	88	88	88	88	88	88
Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6	2/6	2/6
Контуры	кол-во	2	2	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		2330	2350	2370	2390	2420	2460	2510
L - Ширина	MM	4.830	4.830	4.830	4.830	5.830	5.830	5.830
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430	2.430	2.430
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260	2.260	2.260
▶ Bec TCAVBZ	КГ	3490	3530	3570	3600	3860	4290	4950
▶ Bec TCAVIZ-TCAVSZ	КГ	3810	3850	3890	3920	4180	4610	5270
Bec TCAVQZ	КГ	3970	4010	4050	4080	4340	4770	5430

№ Номинальная холодопроизводительность 514,6 537,4 574,6 607,5 636,1 653,9 В. Е.R. 3,13 3,12 3,10 3,11 3,11 3,11 В. Е.R. 3,07 3,04 3,03 2,97 3,04 3,31 В. Е.К. 2,95 2,91 2,91 2,87 2,92 2,88 Е. S.E.E.R. 4,05 4,04 4,07 4,04 4,01 4,03 4,13 4,14 4,15 4,27 4,34 4,34 4,34 4,34 4,34 4,34 4,35 4,37 9,43 4,31 4,34 4,35 4,37 9,43 4,31 4,34 4,35 4,33 4,31 4,34 4,35 <		Модель TCAVBZ-TCAVSZ-TCAVIZ-TCAVQZ		2550	2570	2610	2640	2680	2700
Онимиальная холодопроизводительность 514,6 537,4 574,6 607,5 636,1 653,9 ОЕЕ.R. 3,13 3,12 3,10 3,11 3,11 3,11 ОЕЕ.R. 3,07 3,04 3,03 2,97 3,04 3,31 ОЕЕ.R. 2,95 2,91 2,91 2,87 2,92 2,88 ОЕБ.ЕЕ.R. 4,05 4,04 4,07 4,04 4,01 4,01 ОЕБ.ЕЕ.R. 3,85 3,89 3,92 3,9 3,85 3,89 3,92 3,9 ОЕБ.ЕЕ.R. 3,99 4 4,03 4,13 4,14 4,15 ОРГУ 4,27 4,34 <td>0</td> <td>Номинальная холодопроизводительность</td> <td>кВт</td> <td>543,5</td> <td>568,4</td> <td>609,1</td> <td>642,6</td> <td>672,2</td> <td>690,7</td>	0	Номинальная холодопроизводительность	кВт	543,5	568,4	609,1	642,6	672,2	690,7
© EER 3,13 3,12 3,10 3,11 3,11 3,11 © EER 3,07 3,04 3,03 2,97 3,04 3 © EER 2,95 2,91 2,91 2,87 2,92 2,28 © ES.EER. 4,05 4,04 4,07 4,04 4,01 4,01 © ES.EER. 3,85 3,8 3,85 3,89 3,92 3,9 © ES.EER. 3,99 4 4,03 4,13 4,14 4,15 © IPLY 4,22 4,34 4,34 4,34 4,34 4,34 4,34 © IPLY 4,08 4,08 4,12 4,17 4,20 4,22 © IPLY 4,27 4,30 4,31 4,34<	0	Номинальная холодопроизводительность	кВт	529,6	553,3	591,3	622,6	654,8	673,8
№ E.E.R. 3,07 3,04 3,03 2,97 3,04 3 № E.E.R. 2,95 2,91 2,91 2,87 2,92 2,88 € S.E.E.R. 4,05 4,04 4,07 4,04 4,01 4,01 € E.S.E.E.R. 3,85 3,85 3,8 3,85 3,89 3,92 3,9 € E.S.E.E.R. 3,99 4 4,03 4,13 4,14 4,15 € IPLV 4,29 4,34 4,34 4,34 4,34 4,34 4,35 € IPLV 4,08 4,08 4,12 4,17 4,20 4,22 € IPLV 4,27 4,30 4,31 4,34 4,35 4,37 € IDTOPEGINEWARA MOULHOCTD RBT 173,64 182,18 196,48 206,62 216,14 222,09 € IDTOPEGINEWARA MOULHOCTD RBT 174,44 184,67 197,46 211,67 217,84 227,05 MOLEID TCANBZ-TCAVSZ-TCAVQZ 2550 2570 2610 <t< td=""><td>0</td><td>Номинальная холодопроизводительность</td><td></td><td>514,6</td><td>537,4</td><td>574,6</td><td>607,5</td><td>636,1</td><td>653,9</td></t<>	0	Номинальная холодопроизводительность		514,6	537,4	574,6	607,5	636,1	653,9
№ E.E.R. 2.95 2.91 2.91 2,87 2.92 2,88 № E.S.E.E.R. 4.05 4.04 4.07 4.04 4,01 4,01 № E.S.E.E.R. 3,85 3,85 3,85 3,89 3,92 3,9 № E.S.E.E.R. 3,99 4 4,03 4,13 4,14 4,15 № IPLV 4,29 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,35 4,35 4,37 1,00 4,22 1,11 4,17 4,20 4,22 1,11 4,14 4,15 4,17 4,20 4,23 4,31 4,34 4,34 4,34 4,35 4,33 4,33 4,34 4,34 4,35 4,37 1,00 1,00 4,22 4,27 4,30 4,31 4,34 4,34 4,33 4,33 4,33 4,33 4,33 4,33 4,33 4,33 0 1,00 1,00 1,00 1,00 1,00 1,00 1,00 <td>0</td> <td>E.E.R.</td> <td></td> <td>3,13</td> <td>3,12</td> <td>3,10</td> <td>3,11</td> <td>3,11</td> <td>3,11</td>	0	E.E.R.		3,13	3,12	3,10	3,11	3,11	3,11
E.S.E.E.R. 4,05 4,04 4,07 4,04 4,01 4,01 E.S.E.E.R. 3,85 3,85 3,85 3,89 3,92 3,9 E.S.E.E.R. 3,99 4 4,03 4,13 4,14 4,15 IPLV 4,29 4,34 4,35 4,27 4,30 4,31 4,34 4,35 4,27 IPLV 4,07 4,08 4,08 4,12 4,17 4,20 4,22 IPLV 4,08 4,08 4,18 196,48 20,662 216,14 222,09 IPLV 4,08 173,64 182,18 196,48	0	E.E.R.		3,07	3,04	3,03	2,97	3,04	3
€ E.S.E.E.R. 3,85 3,8 3,85 3,89 3,92 3,92 3,92 3,99 4 4,03 4,13 4,14 4,15 9 IPLV 4,29 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,35 4,27 4,30 4,31 4,34 4,35 4,27 4,30 4,31 4,34 4,35 4,37 4,30 1 Intrpe6nлeman mouthoctb кВт 172,51 182,18 196,48 206,62 216,14 222,09 10 Intrpe6nлeman mouthoctb кВт 172,51 182,01 195,15 209,63 215,39 224,6 10 Intrpe6nлeman mouthoctb кВт 172,51 182,01 195,15 209,63 215,39 224,6 10 Intrpe6nлeman mouthoctb кВт 172,51 182,01 195,15 209,63 215,39 224,6 10 Intrpe6nлeman mouthoctb 4,14 4,14 4,15 4,27 4,30 4,31 4,34 4,34 4,37 4,37 4,37	0	E.E.R.		2,95	2,91	2,91	2,87	2,92	2,88
€ E.S.E.E.R. 3,99 4 4,03 4,13 4,14 4,15 № IPIV 4,29 4,34 4,34 4,34 4,34 4,34 4,35 № IPIV 4,08 4,08 4,12 4,17 4,20 4,22 № IPIV 4,027 4,30 4,31 4,34 4,35 4,33 ● IDTPEGDREMAR MOUHOCTD KBT 173,64 182,18 196,48 206,62 216,14 222,09 ● IDTPEGDREMAR MOUHOCTD KBT 172,51 182,01 195,15 209,63 215,39 224,6 ● IDTPEGDREMAR MOUHOCTD KBT 174,44 184,67 197,46 211,67 217,84 227,05 MOQEND TCAVBZ-TCAVSZ-TCAVQZ 2550 2570 2610 2640 2680 2700 ® ЗВуковае давление ДБ(A) 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 <td></td> <td>E.S.E.E.R.</td> <td></td> <td>4,05</td> <td>4,04</td> <td>4,07</td> <td>4,04</td> <td>4,01</td> <td>4,01</td>		E.S.E.E.R.		4,05	4,04	4,07	4,04	4,01	4,01
№ IPLV 4,29 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,34 4,20 4,22 PIV 4,27 4,30 4,31 4,34 4,34 4,35 4,37 4,34 4,34 4,35 4,32 4,22 9,20 10 ppe finaremas mouthoctb RBT 173,64 182,18 196,48 206,62 216,14 222,09 224,6 10 ppe finaremas mouthoctb RBT 172,51 182,01 195,15 209,63 215,39 224,6 10 ppe finaremas mouthoctb RBT 174,44 184,67 197,46 211,67 217,84 227,05 2700 MOJE/IB CAUSE-TCAVSZ-TCAVSZ 2550 2570 2610 2640 2680 2700 2610 2640 2680 2700 2610 2640 2680 2700 2610 2640 2680 2700 2610 2640 2660 66 66 66		E.S.E.E.R.		3,85	3,8	3,85	3,89	3,92	3,9
№ IPLV 4,08 4,08 4,12 4,17 4,20 4,22 № IPLV 4,27 4,30 4,31 4,34 4,35 4,37 ● Потребляемая мощность кВт 173,64 182,18 196,48 206,62 216,14 222,09 ● Потребляемая мощность кВт 172,51 182,01 195,15 209,63 215,39 224,6 № Потребляемая мощность кВт 172,51 182,01 197,46 211,67 217,84 227,05 МОДЕЛЬ ТСАУВZ-ТСАУSZ-ТСАУЗZ 2550 2570 2610 2640 2680 2700 ® Звуковое давление ДБ(A) 66 6		E.S.E.E.R.		3,99	4	4,03	4,13	4,14	4,15
№ IPIV 4,27 4,30 4,31 4,34 4,35 4,37 • Потребляемая мощность кВт 173,64 182,18 196,48 206,62 216,14 222,09 • Потребляемая мощность кВт 172,51 182,01 195,15 209,63 215,39 224,6 • Потребляемая мощность кВт 174,44 184,67 197,46 211,67 217,84 227,05 • МОДЕЛЬ ТСАУВZ-ТСАУЗ-ТСАУУЗ-ТСАУОУ 2550 2570 2610 2640 2680 2700 • Зауковое давление ДБ(A) 66	2	IPLV		4,29	4,34	4,34	4,34	4,34	4,35
Потребляемая мощность кВт 173,64 182,18 196,48 206,62 216,14 222,09 Потребляемая мощность кВт 172,51 182,01 195,15 209,63 215,39 224,6 Потребляемая мощность кВт 174,44 184,67 197,46 211,67 217,84 227,05 МОДЕЛЬ ТСАИВZ-ТСАИВZ-ТСАИВ СТОКВ	2	IPLV		4,08	4,08	4,12	4,17	4,20	4,22
Потребляемая мощность кВт 172,51 182,01 195,15 209,63 215,39 224,6 Потребляемая мощность кВт 174,44 184,67 197,46 211,67 217,84 227,05 МОДЕЛЬ ТСАУВZ-ТСАУSZ-ТСАУОZ 2550 2570 2610 2640 2680 2700 Заруковое давление ДБ(A) 66 6	2	IPLV		4,27	4,30	4,31	4,34	4,35	4,37
Потребляемая мощность кВт 174,44 184,67 197,46 211,67 217,84 227,05 МОДЕЛЬ ТСАVВZ-ТСАVSZ-ТСАVQZ 2550 2570 2610 2640 2680 2700 Звуковое давление дБ(A) 66<	0	Потребляемая мощность	кВт	173,64	182,18	196,48	206,62	216,14	222,09
МОДЕЛЬ TCAVBZ-TCAVSZ 2550 2570 2610 2640 2680 2700 З вуковое давление ДБ(A) 66	0	Потребляемая мощность	кВт	172,51	182,01	195,15	209,63	215,39	224,6
Звуковое давление ДБ(A) 66 60<	0	Потребляемая мощность	кВт	174,44	184,67	197,46	211,67	217,84	227,05
Звуковое давление дБ(A) 60<		МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVQZ		2550	2570	2610	2640	2680	2700
В звуковое давление дБ(A) 56 5	6	Звуковое давление	дБ(А)	66	66	66	66	66	66
Звуковая мощность ДБ(A) 99<	•	Звуковое давление	дБ(А)	60	60	60	60	60	60
Звуковая мощность дБ(A) 93 89<	6	Звуковое давление	дБ(А)	56	56	56	56	56	56
Звуковая мощность дБ(A) 89<	4	Звуковая мощность	дБ(А)			99			
Винтовой/ступенчатый компрессор кол-во 2/6 400-3-50	4	Звуковая мощность	дБ(А)	93	93	93	93	93	93
Контуры кол-во 2 3 2 430 2 2 2 2	4	Звуковая мощность	дБ(А)	89	89	89	89	89	89
Электропитание B-фаз-Гц 400-3-50 260 270 261 260 270 261 260 7.680 <		Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6	2/6
РАЗМЕРЫ И ВЕС 2550 2570 2610 2640 2680 2700 L - Ширина мм 6.680 6.680 6.680 7.680 7.680 H - Высота мм 2.430 2.430 2.430 2.430 2.430 2.430 P - Глубина мм 2.260 2.260 2.260 2.260 2.260 2.260 2.260 Вес TCAVBZ кг 5560 5680 5720 5740 6010 6030 Вес TCAVIZ-TCAVSZ кг 5880 6000 6040 6060 6330 6350		Контуры	КОЛ-ВО	2	2	2	2	2	2
L - Ширина мм 6.680 6.680 6.680 7.680 7.680 H - Высота мм 2.430 2.430 2.430 2.430 2.430 2.430 P - Глубина мм 2.260 2.260 2.260 2.260 2.260 2.260 2.260 Вес TCAVBZ кг 5560 5680 5720 5740 6010 6030 Вес TCAVIZ-TCAVSZ кг 5880 6000 6040 6060 6330 6350		Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
H - Высота MM 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.430 2.260		РАЗМЕРЫ И ВЕС		2550	2570	2610	2640	2680	2700
Р - Глубина MM 2.260		L - Ширина	MM	6.680	6.680	6.680	6.680	7.680	7.680
Θ Bec TCAVBZ KΓ 5560 5680 5720 5740 6010 6030 Θ Bec TCAVIZ-TCAVSZ KΓ 5880 6000 6040 6060 6330 6350		Н - Высота	MM	2.430	2.430	2.430	2.430	2.430	2.430
⑤ BecTCAVIZ-TCAVSZ KT 5880 6000 6040 6060 6330 6350		Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260	2.260
			КГ						
⑤ Bec TCAVQZ κΓ 6088 6208 6248 6268 6538 6558			КГ	5880	6000	6040	6060	6330	6350
	6	Bec TCAVQZ	КГ	6088	6208	6248	6268	6538	6558

- Воздух: 35°С Вода: 12/7°С
- IPLV (Itegrated Part Load Value Показатель суммарной неполной нагрузки) ARI стандарт 550/590.
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес порожнего агрегата с дополнительными принадлежностями RPE KRP.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- Версии со звукоизоляцией TCAVSZ.
- Версии с повышенной звукоизоляцией TCAVQZ.

Z-Power HE

TCAVZ 2770÷21290

Мощность при охлаждении: 721,7÷1 277,7 кВт

TCAVQZ 21010 HE

- Эффективная гамма КЛАССА A с EER >3,2 и ESEER до 4,45
- Работает до 55°С (комплектация НТ)
- Электронный расширительный клапан в серийном оснащении

Высокоэффективные чиллеры, компактные с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме "звезда-треугольник" с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды и соединения Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (только версия S) и вентиляторами с двигателем ЕС с непрерывной регулировкой скорости и (только версия Q).
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В -Базовая версия с высокой энергоэффективностью (TCAVBZ).
- S Версия со звукоизоляцией с вентиляторами на низкой скорости и с шумопотлащающей обшивкой компрессоров (TCAVSZ).
- I Высокоэффективная версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TCAVIZ).
- О Сверхтихая версия с вентиляторами с ЕС-двигателями на сверхнизкой скорости, с шумопоглащающей обшивкой с высокой звукоизоляцией компрессоров с увеличенной конденсатной секцией (TCAVQZ).

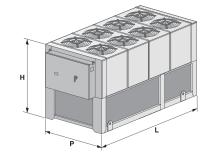
Модели

- TCAVBZ: агрегат предусмотрен только для охлаждения.
- TCAVSZ: агрегат с пониженным уровнем шума, предусмотрен только для охлаждения.
- TCAVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.
- TCAVQZ: сверхтихий агрегат, предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

- Оснащение НТ для температуры наружного воздуха до 55°C.
- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/пароохладителя.
- Контроль конденсации 10°С (серийный в версии S).
- Контроль конденсации —15°С с вентиляторами с ЕС-двигателями (в серийном оснащении для версии Q).
- Конденсатор корректировки мощности (соsф > 0,94).
- Магнитотермические выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- "Плавный" пускатель.
- Отсекающие вентили компрессоров на всасывании.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Компрессоры с контролем линейной нагрузки. (25-100%).
- Противообледенительный нагревательный элемент, теплообменники для теплоутилизатора, если установлен таковой.
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Производство воды при низкой температуре.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



Модель TCAVBZ-TCAVSZ-TCAVIZ-TCAVQZ		2770	2830	2890	2960	21010	2104
Номинальная холодопроизводительность	кВт	762,1	828,2	884	953,9	1006,1	103
Номинальная холодопроизводительность	кВт	743,7	808,1	861,8	921,3	970,2	1000
Номинальная холодопроизводительность	кВт	721,7	784,9	841,5	894,3	946,9	972
E.E.R.		3,31	3,26	3,2	3,32	3,3	3,2
E.E.R.		3,19	3,12	3,04	3,12	3,08	3,
E.E.R.		3,07	3,01	2,95	2,99	2,98	3,
E.S.E.E.R.		4,32	4,21	4,17	4,35	4,29	4,
E.S.E.E.R.		4,18	4,05	3,96	4,07	3,99	4,
E.S.E.E.R.		4,41	4,34	4,26	4,38	4,34	4,
IPLV		4,63	4,57	4,51	4,66	4,65	4,
IPLV		4,48	4,39	4,28	4,37	4,33	4,
IPLV		4,65	4,57	4,48	4,61	4,58	4,
Потребляемая мощность	кВт	230,24	254,05	276,25	287,32	304,88	313,
Потребляемая мощность	кВт	233,13	259,01	283,49	295,29	315	321,
Потребляемая мощность	кВт	235,08	260,76	285,25	299,10	317,75	32
МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVQZ		2770	2830	2890	2960	21010	210
Звуковое давление	дБ(А)	67	67	67	68	68	
Звуковое давление	дБ(А)	61	61	61	62	62	
Звуковое давление	дБ(А)	57	58	58	59	59	
Звуковая мощность	дБ(А)	100	100	100	101	101	
Звуковая мощность	дБ(А)	94	94	94	95	95	
Звуковая мощность	дБ(А)	90	91	91	92	92	
Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6	
Контуры	кол-во	2	2	2	2	2	
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3
РАЗМЕРЫ И ВЕС		2770	2830	2890	2960	21010	210
L - Ширина	MM	7.680	7.680	7.680	8.980	8.980	9.9
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430	2.4
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260	2
) Bec TCAVBZ	КГ	6070	6690	7190	7820	7840	83
Bec TCAVIZ-TCAVSZ	КГ	6390	7040	7540	8170	8190	87
Bec TCAVOZ	КГ	6598	7280	7780	8410	8430	89

Модель TCAVBZ-TCAVSZ-TCAVIZ-TCAVQZ		21080	21130	21150	21220	21290
Номинальная холодопроизводительность	кВт	1076,7	1122,4	1148,6	1213,3	1277,7
• Номинальная холодопроизводительность	кВт	1048,1	1096,6	1112,8	1173,9	1235,1
• Номинальная холодопроизводительность	кВт	1016,9	1069,8	1079,7	1139,4	1206
• E.E.R.		3,32	3,18	3,38	3,35	3,32
• E.E.R.		3,19	3,04	3,17	3,09	3,03
• E.E.R.		3,05	2,94	3,04	2,97	2,93
● E.S.E.E.R.		4,35	4,16	4,39	4,35	4,33
● E.S.E.E.R.		4,16	3,98	4,14	3,99	3,94
● E.S.E.E.R.		4,42	4,23	4,45	4,37	4,33
IPLV		4,66	4,46	4,75	4,71	4,69
IPLV		4,47	4,26	4,44	4,33	4,26
IPLV		4,65	4,45	4,69	4,61	4,56
• Потребляемая мощность	кВт	324,31	352,96	339,82	362,18	384,85
• Потребляемая мощность	кВт	328,56	360,72	351,04	379,9	407,62
• Потребляемая мощность	кВт	333,41	363,88	355,16	383,63	411,60
МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVQZ		21080	21130	21150	21220	21290
Звуковое давление	дБ(А)	69	69	69	69	69
Звуковое давление	дБ(А)	63	63	63	63	63
Звуковое давление	дБ(А)	59	59	59	60	60
Звуковая мощность	дБ(А)	102	102	102	102	102
Звуковая мощность	дБ(А)	96	96	96	96	96
Звуковая мощность	дБ(А)	92	92	92	93	93
Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6
Контуры	кол-во	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		21080	21130	21150	21220	21290
L - Ширина	MM	10.980	10.980	10.980	10.980	10.980
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260
❸ Bec TCAVBZ	КГ	8670	8670	8690	9020	9050
❸ Bec TCAVIZ-TCAVSZ	КГ	9020	9020	9310	9370	9400
⑤ Bec TCAVQZ	КГ	9260	9260	9550	9610	9640

- Воздух: 35°С Вода: 12/7°С
- IPLV (Itegrated Part Load Value Показатель суммарной неполной нагрузки) ARI стандарт 550/590.
- $f \Theta$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес порожнего агрегата с дополнительными принадлежностями RPE KRP.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- Версии со звукоизоляцией TCAVSZ.
- Версии с повышенной звукоизоляцией TCAVQZ.

Web code: ZP001

• Эффективная и компактная серия, заправленная хладагентом R134a

- Работает до 50°C
- Серия с одним компрессором до 390 кВт

Z-Power SE

TCAVZ 1270÷1390

Мощность при охлаждении: 259,1÷392,7 кВт

Чиллеры компактные с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме "звездатреугольник" с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: кожухотрубный с сухим расширением, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды и соединения Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы винтового типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (только версия S).
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (TCAVBZ).
- S Версия со звукоизоляцией с вентиляторами на низкой скорости и с шумопоглащающей обшивкой компрессоров (TCAVSZ).
- I Версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TCAVIZ).

Модели

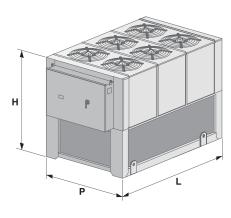
• TCAVBZ: агрегат предусмотрен только для охлаждения.

- TCAVSZ: агрегат с пониженным уровнем шума, предусмотрен только для охлаждения.
- TCAVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением. Электронасосы предоставляются в версиях с низким и высоким напором.
- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/ пароохладителя.
- Контроль конденсации —10°С (серийный в версии S).
- Контроль конденсации −15°С с вентиляторами с ЕСдвигателем.
- Конденсатор корректировки мощности ($\cos \phi > 0,94$).
- Магнитотермические выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- Отсекающие вентили компрессоров на всасывании.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Компрессор с контролем линейной нагрузки.
- Противообледенительный нагревательный элемент, теплообменники для теплоутилизатора, если установлен таковой.
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Производство воды при низкой температуре.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

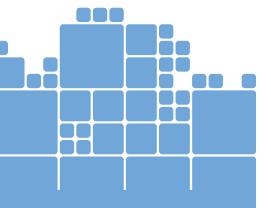
- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



МОДЕЛЬ TCAVBZ-TCAVIZ-TCAVSZ		1270	1310	1350	1390
• Номинальная холодопроизводительность	кВт	269.1	307.9	352.9	392.7
• Номинальная холодопроизводительность	кВт	259.1	298.9	339.0	372.8
• E.E.R.		2.67	2.77	2.7	2.7
• E.E.R.		2.59	2.68	2.57	2.52
● E.S.E.E.R.		3.37	3.48	3.38	3.37
● E.S.E.E.R.		3.19	3.31	3.2	3.16
• Потребляемая мощность	кВт	100.79	111.16	130.7	145.41
• Потребляемая мощность	кВт	100.04	111.53	131.91	147.94
МОДЕЛЬ TCAVBZ-TCAVSZ		1270	1310	1350	1390
Звуковое давление	дБ(А)	64	65	65	65
Звуковое давление	дБ(А)	58	59	59	59
Звуковая мощность	дБ(А)	97	98	98	98
Звуковая мощность	дБ(А)	91	92	92	92
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		1270	1310	1350	1390
L - Ширина	MM	3830	3830	3830	3830
Н - Высота	MM	2430	2430	2430	2430
Р - Глубина	MM	2260	2260	2260	2260
⑤ Bec TCAVBZ	КГ	2850	2970	3430	3530
⑤ Bec TCAVSZ	КГ	3010	3130	3590	3690

- **●** Воздух: 35°С Вода: 12/7°С
- $oldsymbol{\Theta}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес порожнего агрегата с дополнительными принадлежностями RPE KRP.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- Версии со звукоизоляцией TCAVSZ.

Aгрегат TCAVZ проходит испытательные проверки в лаборатории Rhoss: R&D Lab.



Web code: ZP001

Z-Power SE TCAVZ 2331÷2701

Мощность при охлаждении: 320÷688,5 кВт

TCAVSZ 2391 с комплектующим Tank&Pump

- Эффективная серия, заряженная хладагентом R134a
- Работает до 50°C
- Оснащение TANK&PUMP до 500 кВт

Чиллеры компактные с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полутерметичный винтовой с высокой энергоэффективностью, запуск по схеме "звезда-треугольник" с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды (мод. 2331÷2511): с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Теплообменник со стороны воды (мод. 2551÷2701): кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы винтового типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (только версия S).
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (TCAVBZ).
- S Версия со звукоизоляцией с вентиляторами на низкой скорости и с шумопоглащающей обшивкой компрессоров (TCAVSZ).
- I Версия со звукоизоляцией с шумопотлащающей обшивкой компрессоров (TCAVIZ).

Модели

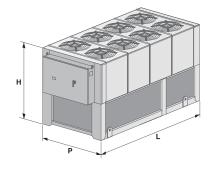
- TCAVBZ: агрегат предусмотрен только для охлаждения.
- TCAVSZ: агрегат с пониженным уровнем шума, предусмотрен только для охлаждения.

• TCAVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

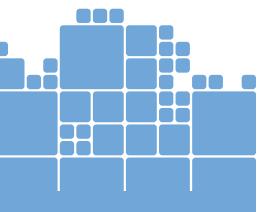
- Кожухотрубный испаритель (мод. 2331÷2511).
- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением.
 Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАНК&РUMР (мод. 2331÷2511) со встроенным накопительным баком 1.000 литров с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/пароохладителя.
- Контроль конденсации 10°С (серийный в версии S).
- Контроль конденсации –15°С с вентиляторами с ЕС-двигателем.
- Конденсатор корректировки мощности (cosф > 0,94).
- Магнитотермические выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- "Плавный" пускатель.
- Отсекающие вентили компрессоров на всасывании.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Компрессоры с контролем линейной нагрузки (25-100%).
- Противообледенительный нагревательный элемент, накопительный бак, теплообменники для теплоутилизатора, если установлен таковой.
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Производство воды при низкой температуре.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVIZ		2331	2351	2371	2391	2421	2461	2511
• Номинальная холодопроизводительность	кВт	330,5	350	369,8	389,3	412,8	453,4	506,8
Номинальная холодопроизводительность	кВт	320	338,3	358,4	372,6	400,3	438,1	485,8
D E.E.R.		2,92	2,93	2,9	2,9	2,91	2,9	2,9
D E.E.R.		2,83	2,81	2,78	2,69	2,83	2,78	2,74
■ E.S.E.E.R.		3,92	3,93	3,93	3,95	3,95	3,88	3,81
■ E.S.E.E.R.		3,72	3,75	3,78	3,8	3,82	3,7	3,54
② IPLV		4,11	4,11	4,12	4,13	4,15	4,07	3,98
2 IPLV		3,90	3,93	3,96	3,99	4,01	3,88	3,74
Потребляемая мощность	кВт	113.18	119.45	127.52	134.24	141.86	156.34	174.76
Потребляемая мощность	кВт	113,07	120,39	128,92	138,51	141,45	157,59	177,3
МОДЕЛЬ TCAVBZ-TCAVSZ		2331	2351	2371	2391	2421	2461	2511
Звуковое давление	дБ(А)	64	64	64	64	65	65	65
3 Звуковое давление	дБ(А)	58	58	58	58	59	59	59
Звуковая мощность	дБ(А)	97	97	97	97	98	98	98
Звуковая мощность	дБ(А)	91	91	91	91	92	92	92
Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6	2/6	2/6
Электропитание	В-фаз-Гц	2	2	2	2	2	2	2
Контуры	кол-во	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		2331	2351	2371	2391	2421	2461	2511
L - Ширина	MM	3.830	3.830	3.830	3.830	4.830	4.830	4.830
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430	2.430	2.430
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260	2.260	2.260
ூ Bec TCAVBZ	КГ	3080	3100	3130	3200	3520	3950	4300
ூ Bec TCAVIZ-TCAVSZ	КГ	3400	3420	3450	3520	3840	4270	4620

	МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVIZ		2551	2571	2611	2641	2681	2701
0	Номинальная холодопроизводительность	кВт	539,4	563	607,1	644,8	669,1	688,5
0	Номинальная холодопроизводительность	кВт	523,1	545,1	583,3	615,4	649,7	669,3
0	E.E.R.		2,93	2,9	2,9	2,9	2,88	2,86
0	E.E.R.		2,85	2,8	2,74	2,72	2,78	2,75
•	E.S.E.E.R.		3,8	3,83	3,85	3,84	3,8	3,8
•	E.S.E.E.R.		3,62	3,72	3,72	3,72	3,7	3,65
0	IPLV		4,07	4,15	4,13	4,11	4,11	4,12
0	IPLV		3,87	3,99	3,98	3,97	3,96	3,95
0	Потребляемая мощность	кВт	184.1	194.14	209.34	222.34	232.33	240.73
0	Потребляемая мощность	кВт	183,54	194,68	212,88	226,25	233,71	243,38
	МОДЕЛЬ TCAVBZ-TCAVSZ		2551	2571	2611	2641	2681	2701
6	Звуковое давление	дБ(А)	65	65	65	65	66	66
6	Звуковое давление	дБ(А)	59	59	59	59	60	60
4	Звуковая мощность	дБ(А)	98	98	98	98	99	99
4	Звуковая мощность	дБ(А)	92	92	92	92	93	93
	Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6	2/6
	Электропитание	В-фаз-Гц	2	2	2	2	2	2
	Контуры	кол-во	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС		2551	2571	2611	2641	2681	2701
	L - Ширина	MM	5.830	5.830	5.830	5.830	6.680	6.680
	Н - Высота	MM	2.430	2.430	2.430	2.430	2.430	2.430
	Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260	2.260
6	Bec TCAVBZ	КГ	4780	4800	4920	5010	5560	5580
6	Bec TCAVIZ-TCAVSZ	КГ	5100	5120	5240	5330	5880	5900


- Воздух: 35°С Вода: 12/7°С
- IPLV (Itegrated Part Load Value Показатель суммарной неполной нагрузки) ARI стандарт 550/590.
- $oldsymbol{3}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес порожнего агрегата с дополнительными принадлежностями RPE KRP.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- Версии со звукоизоляцией TCAVSZ.

Web code: ZP001

Z-Power SE TCAVZ 2710÷21600

Мощность при охлаждении: 687÷1 609,7 кВт

TCAVSZ 21600 с комплектующими DS и насосным блоком

- Эффективная серия, заряженная хладагентом R134a
- Гибкость установки до 1.600 кВт
- Электронный расширительный клапан в серийном оснащении

Чиллеры компактные с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме "звездатреугольник" с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды и соединения Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы винтового типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (только версия S).
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (TCAVBZ).
- S Версия со звукоизоляцией с вентиляторами на низкой скорости и с шумопоглащающей обшивкой компрессоров (TCAVSZ).
- I Версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TCAVIZ).

Модели

- TCAVBZ: агрегат предусмотрен только для охлаждения.
- TCAVSZ: агрегат с пониженным уровнем шума, предусмотрен только для охлаждения.
- TCAVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/ пароохладителя.
- Контроль конденсации —10°С (серийный в версии S).
- Контроль конденсации —15°С с вентиляторами с ЕСдвигателем.
- Конденсатор корректировки мощности ($\cos \varphi > 0,94$).
- Магнитотермические выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- "Плавный" пускатель.
- Отсекающие вентили компрессоров на всасывании.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Компрессоры с контролем линейной нагрузки (25-100%)
- Противообледенительный нагревательный элемент, теплообменники для теплоутилизатора, если установлен такорой
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Производство воды при низкой температуре.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVIZ		2710	2750	2810)	2870	2940	2990	21020
• Номинальная холодопроизводительность	кВт	706,7	747,7	806,5	5	860,1	932,7	981,2	1011,4
• Номинальная холодопроизводительность	кВт	687	728,8	783,3	3	835	906,1	950,9	980,8
• E.E.R.		2,91	2,93	2,92	2	2,87	2,98	2,94	
• E.E.R.		2,77	2,8	2,79)	2,73	2,83	2,77	2,8
● E.S.E.E.R.		3,8	3,57	3,54	1	3,39	3,65	3,59	3,6
● E.S.E.E.R.		3,65	3,42	3,39)	3,22	3,46	3,36	3,4
❷ IPLV		4,10	4,12	4,09)	4,03	4,17	4,14	4,2
2 IPLV		3,92	3,94	3,9		3,83	3,95	3,89	3,9
• Потребляемая мощность	кВт	242,85	255,19	276,2	2 2	99,69	312,99	333,74	337,1
• Потребляемая мощность	кВт	248,01	260,29	280,75	5 3	05,86	320,18	343,29	346,5
МОДЕЛЬ TCAVBZ-TCAVSZ		2710	2750	2810)	2870	2940	2990	2102
Звуковое давление	дБ(А)	67	67	67	7	70	68	68	6
Звуковое давление	дБ(А)	61	61	6		64	62	62	6
Звуковая мощность	дБ(А)	100	100	100)	103	101	101	10
Звуковая мощность	дБ(А)	94	94	94	1	97	95	95	9
Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	5	2/6	2/6	2/6	2/
Контуры	кол-во	2	2		2	2	2	2	
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400	-3-50	400-3-50	400-3-50	400-3-5
РАЗМЕРЫ И ВЕС		2710	2750	2810)	2870	2940	2990	2102
L - Ширина	MM	6.680	6.680	7.680)	7.680	7.680	7.680	7.68
Н - Высота	MM	2.430	2.430	2.430)	2.430	2.430	2.430	2.43
Р - Глубина	MM	2.260	2.260	2.260)	2.260	2.260	2.260	2.26
ூ Bec TCAVBZ	КГ	5590	5600	6490)	6990	7020	7040	722
❸ Bec TCAVIZ-TCAVSZ	КГ	5910	5920	6840)	7340	7370	7390	757
МОДЕЛЬ TCAVBZ-TCAVSZ-TCAVIZ		21060	21110	21180	21250	21330	21400	21500	21600
• Номинальная холодопроизводительность	кВт	1048,6	1104	1175,6	1249,7	1327,7	1404,4	1497,6	1609,
• Номинальная холодопроизводительность	кВт	1016,9	1068,7	1138,9	1207,3	1283,5	1347,9	1441,7	1542,
• E.E.R.		3,1	2,95	3,03	3,1	3,1	3,1	3,1	3,
• E.E.R.		2,92	2,75	2,81	2,86	2,87	2,87	2,84	2,7
● E.S.E.E.R.		3,81	3,63	3,69	3,77	3,8	3,85	3,9	4,0
- LISILILINI			3,37	3,4	3,48	3,5	3,67	3,66	3,6
• E.S.E.E.R.		3,58	3,37						
● E.S.E.E.R.		3,58 4,34	4,14	4,25	4,35	4,36	4,30	4,33	4,3
● E.S.E.E.R.		,		•	4,35 4,02	4,36 4,02		4,33 4,00	
● E.S.E.E.R.	кВт	4,34	4,14	4,25			4,01		3,8
● E.S.E.E.R. ② IPLV ② IPLV	кВт кВт	4,34 4,09	4,14 3,85	4,25	4,02	4,02	4,01	4,00	3,8 519,2
 ■ E.S.E.E.R. ❷ IPLV ❷ IPLV ● Потребляемая мощность 		4,34 4,09 338,26	4,14 3,85 374,24	4,25 3,93 387,99	4,02 403,13	4,02 428,29	4,01 453,03 469,65	4,00 483,10	3,8 519,2 558,8
 E.S.E.E.R. IPLV IPLV Потребляемая мощность Потребляемая мощность 		4,34 4,09 338,26 348,25	4,14 3,85 374,24 388,62	4,25 3,93 387,99 405,3	4,02 403,13 422,13	4,02 428,29 447,21	4,01 453,03 469,65 21400	4,00 483,10 507,64	4,3' 3,8 519,2' 558,8 2160 0 7

● Воздух: 35°С - Вода: 12/7°С

Звуковое давление

Звуковая мощность

Звуковая мощность

Электропитание

РАЗМЕРЫ И ВЕС

Контуры

L - Ширина

Н - Высота

Р - Глубина

⑤ Bec TCAVIZ-TCAVSZ

6 Bec TCAVBZ

Винтовой/ступенчатый компрессор

- IPLV (Itegrated Part Load Value Показатель суммарной неполной нагрузки) ARI стандарт 550/590.
- ❸ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614. 4

дБ(А)

дБ(А)

дБ(А)

кол-во

кол-во

В-фаз-Гц

мм

мм

мм

ΚГ

ΚГ

63

102

96

2/6

2

400-3-50

21060

7.680

2.430

2.260

7383

7733

63

102

96

2/6

400-3-50

21110

8.980

2.430

2.260

7760

8110

2

63

102

96

2/6

400-3-50

21180

8.980

2.430

2.260

8170

8520

2

63

102

96

2/6

400-3-50

21250

8.980

2.430

2.260

8190

8540

2

63

102

96

2/6

2

400-3-50

21330

9.980

2.430

2.260

8820

9170

64

103

97

2/6

400-3-50

21400

10.980

2.430

2.260

9310

9660

2

104

98

2/6

400-3-50

21500

12.980

2.430

2.260

10220

10540

2

104

98

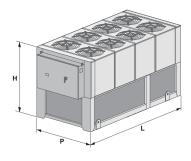
2/6

2

400-3-50

21600

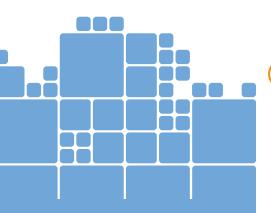
12.980


2.430

2.260

10460

10780


- 6 Вес порожнего агрегата с дополнительными принадлежностями RPE - KRP.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- Версии со звукоизоляцией TCAVSZ.

Z-Power VFD

TCAIZ 2520 ÷ 2900

Мощность при охлаждении: 516÷903 кВт

- Винтовой компрессор с переменным внутренним объёмным соотношением (Vi) подходит для любых целей
- Плавная регулировка мощности: 20-100%
- Вентиляторы ЕС (бесколлекторные) с высокой энергоэффективностью
- ESEER до 4,9

Чиллеры компактные с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия с полугерметичными винтовыми компрессорами с переменным внутренним объёмным соотношением (VI), с инверторной настройкой и хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, с переменным внутренним объёмным соотношением (Vi), запуск с ограниченным пусковым током, инверторное регулирование вращения, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе всасывания/подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: кожухотрубный с сухим расширением, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды и соединения Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с ЕС-двигателем, с постоянной настройкой скорости вращения вентиляторов оснащены внутренней тепловой защитой и предохранительными решётками.
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;

- термомагнитные выключатели, компрессоры и вентиляторы;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- I Версия со звукоизоляцией с шумопоглащающей обшивкой с высокой звукоизоляцией компрессоров (ТСАVIZ)
- S Версия со звукоизоляцией, с низкоскоростными вентиляторами и с шумопоглащающей обшивкой компрессоров (TCAISZ).

Модели

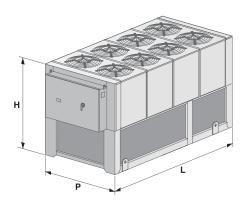
- TCAIIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.
- TCAISZ: агрегат с пониженным уровнем шума, предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Противообледенительный нагревательный элемент испарителя.
- Двойной комплект установок с цифровым подтверждением.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими
- Виброизолирующие пружинные опоры.

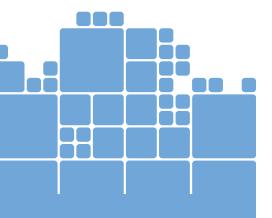
Комплектующие, поставляемые отдельно

• Удаленный кнопочный пульт с дисплеем.



МОДЕЛЬ ТСАНИ		2520	2600	2670	2780	2900
• Номинальная холодопроизводительность	кВт	516	600	673	780	903
• E.E.R.		2,85	2,91	2,90	2,95	2,90
● E.S.E.E.R.		4,82	4,88	4,87	4,89	4,85
• Потребляемая мощность	кВт	180,9	205,9	231,7	264,2	311,8
Звуковое давление	дБ(А)	63	64	64	65	66
Звуковая мощность	дБ(А)	95	96	97	98	99
Винтовой/ступенчатый компрессор	кол-во	2/БЕСКОНЕЧНО	2/БЕСКОНЕЧНО	2/БЕСКОНЕЧНО	2/БЕСКОНЕЧНО	2/БЕСКОНЕЧНО
Контуры	кол-во	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		2520	2600	2670	2780	2900
L - Ширина	MM	5.830	5.830	6.680	6.680	7.680
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260

- **●** Воздух: 35°С Вода: 12/7°С
- $oldsymbol{3}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.



Web code: ZPF01

Z-Power СВОБОДНОЕ ОХЛАЖДЕНИЕ

TFAVBZ - TFAVIZ - TFAVSZ 2420÷21100

Мощность при охлаждении: 469÷1 216 кВт

- Высокая
 энергетическая
 эффективность
- Электронный расширительный клапан в серийном оснащении
- С расширенными эксплуатационными возможностями

Чиллеры с режимом свободного охлаждения, с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме "звезда-треугольник" с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- 2 контура/6 ступеней регулирования
- Водный теплообменник: кожухотрубный с прямым испарением в противотоке, в комплекте с дифференциальным реле давления, клапаном выпуска воздуха, краном для слива воды, резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, с плёнкой для защиты от лучей УФА. Соединения Victaulic.
- Теплообменник со стороны воздуха: состоит из медных труб змеевика с алюминиевым оребрением, разделенным на две секции: одна предназначена для конденсации газового хладагента, а другая для охлаждения воды в режиме свободного охлаждения.
- Трехходовой модулирующий клапан: для отвода потока воды из агрегата по направлению к батарее свободного охлаждения или напрямую к испарителю.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки под давлением скорости вращения вентиляторов до температуры наружного воздуха —15°C.
- Контроль: электронный с микропроцессором, предусмотрен для подключения основных BMS на рынке (MODBUS RTU, LON, BacNet).
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.

Также в комплект агрегата входит:

- отображение высокого и низкого давления охладительной
- плата часового датчика.

Варианты исполнения

- В Базовая версия высокой эффективности (TFAVBZ).
- І Версия со звукоизоляцией с фоноизолирующим покрытием

отсека компрессоров (TFAVIZ).

 - S - Версия со звукоизоляцией с фоноизолирующим покрытием отсека компрессоров и вентиляторами с ограниченной скоростью (TFAVSZ).

Модели

- TFAVBZ: высокоэффективный базовый агрегат в исполнении "Свободного охлаждения".
- TFAVIZ : звукоизолированный агрегат в исполнении "Свободного охлаждения".

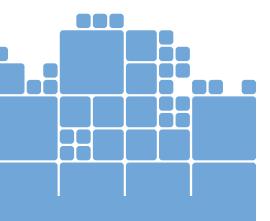
TFAVSZ: звукоизолированный агрегат в исполнении "Свободного охлаждения".

Аксессуары, установленные на заводе

- Контроль конденсации -20°C с вентиляторами с ЕС-двигателем.
- Конденсатор корректировки мощности ($\cos \phi > 0,94$).
- Термомагнитные выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- Отсекающие вентили компрессоров на всасывании.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Защитный металлический фильтр змеевиков.
- Компрессоры с контролем линейной нагрузки (25-100%).
- Противообледенительный нагревательный элемент испарителя.
- Двойной комплект установок с цифровым подтверждением.
- Низкая температура воды.
- Двойной предохранительный клапан высокого давления с вентилем обмена.
- Контур охлаждения из нержавеющей стали
- ТЭН электрощита.
- Плавный пускатель.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

СВОБОДНОЕ ОХЛА	TFAVIZ - TFAVSZ		2420	2450	2500	2560	2660	275
	д опроизводительность	кВт	481	512	574	636	756	82
	допроизводительность	кВт	469	499	555	618	730	8.
E.E.R.	допроизводительность	וטא	3,79	3,79	3,7	3,72	3,74	3,
D E.E.R.			3,78	3,78	3,6	3,68	3,74	3,
Потребляемая моц	IIIOCTL	кВт	127	135	155	171	202	2
Потребляемая моц		кВт	124	132	154	168	196	2
•	ЖДЕНИЕ ВКЛ 100%	וטא	124	132	134	100	190	2
	допроизводительность	кВт	481	512	574	636	756	
	допроизводительность	кВт	469	499	555	618	737	8
Э поминальная холо,Э Е.Е.R.	циприизвидительность	KDI	24,05	25,6	28,7	26,5	23,63	25
9 E.E.R.			37,50	39,89			36,84	40
		D=	-		44,43	41,19		40
Потребляемая моц		кВт	20	20	20	24	32	
Потребляемая моц		кВт	12,5	12,5	12,5	15	20	
	о свободного охлаждения	°C	2,4	1,8	1,1	1,8	2,3	
МОДЕЛЬ TFAVBZ -		°C	1,2	0,5	0	0,8	1,1	
Звуковое давление		дБ(А)	65	65	65	66	68	
Звуковое давление		дБ(А)	60	60	60	60	62	
Звуковая мощност		дБ(А)	98	98	98	99	101	
Звуковая мощност	Ь	дБ(А)	92	92	92	93	95	
Компрессор спирал	ьный/ступенчатый	кол-во	2/6	2/6	2/6	2/6	2/6	
Контуры		кол-во	2	2	2	2	2	
Электропитание		В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3
РАЗМЕРЫ И ВЕС								
L - Ширина		MM	6130	6130	6130	7160	10080	10
Н - Высота		MM	2580	2580	2580	2580	2580	2
		MM	2260	2260	2260	2260	2260	2
Р - Глубина МОДЕЛЬ TFAVBZ -		MIM	2260 2800	2850	2920	2990	21050	211
МОДЕЛЬ TFAVBZ - СВОБОДНОЕ ОХЛА	ЖДЕНИЕ ВЫКЛ		2800	2850	2920	2990	21050	211
МОДЕЛЬ ТFAVBZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО,	ЖДЕНИЕ ВЫКЛ допроизводительность	кВт	2800 885	2850 944	2920 1019	2990 1093	21050 1155	21 1
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО,	ЖДЕНИЕ ВЫКЛ		2800 885 867	2850 944 922	2920 1019 1000	2990 1093 1071	21050 1155 1129	21 1 1: 1:
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R.	ЖДЕНИЕ ВЫКЛ допроизводительность	кВт	2800 885 867 3,71	2850 944 922 3,66	2920 1019 1000 3,69	2990 1093 1071 3,72	21050 1155 1129 3,68	211 1. 1
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, E.E.R.	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность	кВт кВт	2800 885 867 3,71 3,66	944 922 3,66 3,57	2920 1019 1000 3,69 3,68	2990 1093 1071 3,72 3,69	21050 1155 1129 3,68 3,61	211 1. 1 3
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность цность	кВт кВт кВт	2800 885 867 3,71 3,66 238,5	2850 944 922 3,66 3,57 258	2920 1019 1000 3,69 3,68 276	2990 1093 1071 3,72 3,69 294	21050 1155 1129 3,68 3,61 314	211 1. 1 3
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц Потребляемая моц	ждение выкл допроизводительность допроизводительность цность цность	кВт кВт	2800 885 867 3,71 3,66	944 922 3,66 3,57	2920 1019 1000 3,69 3,68	2990 1093 1071 3,72 3,69	21050 1155 1129 3,68 3,61	211 1. 1 3
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. ПОТРЕбляемая моц Потребляемая моц СВОБОДНОЕ ОХЛА	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность цность жДЕНИЕ ВКЛ 100%	кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237	2850 944 922 3,66 3,57 258 258	2920 1019 1000 3,69 3,68 276 272	2990 1093 1071 3,72 3,69 294 290	21050 1155 1129 3,68 3,61 314 313	211 1. 1 3 3
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО НОМИНАЛЬНАЯ ХОЛО НОМИНАЛЬНАЯ ХОЛО	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность цность жДЕНИЕ ВКЛ 100% допроизводительность	кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237	2850 944 922 3,66 3,57 258 258	2920 1019 1000 3,69 3,68 276 272 1019	2990 1093 1071 3,72 3,69 294 290	21050 1155 1129 3,68 3,61 314 313	211 1: 1: 3 3
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО,	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность цность жДЕНИЕ ВКЛ 100%	кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867	2850 944 922 3,66 3,57 258 258	2920 1019 1000 3,69 3,68 276 272 1019 1000	2990 1093 1071 3,72 3,69 294 290	21050 1155 1129 3,68 3,61 314 313 1155 1129	211 1. 1. 3. 3.
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R.	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность цность жДЕНИЕ ВКЛ 100% допроизводительность	кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867 27,66	2850 944 922 3,66 3,57 258 258 944 922 29,5	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88	211 1. 1. 3. 3. 3. 1. 1.
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, В.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, В.Е.R. Е.E.R.	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность дность ЖДЕНИЕ ВКЛ 100% допроизводительность	кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12	2920 1019 1000 3,69 3,68 276 272 1019 1000	2990 1093 1071 3,72 3,69 294 290 1093 1071	21050 1155 1129 3,68 3,61 314 313 1155 1129	211 1. 1. 3. 3. 3. 1. 1.
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Потребляемая моц Потребляемая моц СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Потребляемая моц Потребляемая моц Потребляемая моц Потребляемая моц	ЖДЕНИЕ ВЫКЛ допроизводительность допроизводительность цность ЖДЕНИЕ ВКЛ 100% допроизводительность допроизводительность	кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867 27,66	2850 944 922 3,66 3,57 258 258 944 922 29,5	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88	211 1. 1. 3. 3. 3. 1. 1.
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. ПОТРЕбляемая МОЦ СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. ПОТРЕбляемая МОЦ ПОТРЕБЛЯЕМАЯ МОЦ ПОТРЕБЛЯЕМАЯ МОЦ	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность	кВт кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15	21: 1 1 :: ::
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Потребляемая моц Потребляемая моц Температура общег	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность дность	кВт кВт кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1	21: 1 1 :: ::
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Е.Е.R. Потребляемая моц СВСЕВ СВСЕ	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность дность дность дность дность	кВт кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25	21: 1 1 :: ::
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Е.Е.R. Потребляемая моц Температура общег МОДЕЛЬ ТГАVВZ -	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения теаvsz	кВт кВт кВт кВт кВт кВт кВт	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1	211 1. 13 3 3 3 1. 1. 1. 1. 1. 3 47
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц Потребляемая моц Е.Е.R. Потребляемая моц Температура общег МОДЕЛЬ ТГАVВZ - Звуковое давление	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность до свободного охлаждения техьхо	KBT KBT KBT KBT KBT KBT KBT C C	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5	21: 1 1 :: ::
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, СЕ.Е.R. Потребляемая моц Температура общег МОДЕЛЬ ТГАVВZ - Звуковое давление Звуковое давление	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения теаvsz	кВт кВт кВт кВт кВт кВт с с с	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5	21° 1 1 1 3 3 1 1 1 4 4 7
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц Потребляемая моц Температура общея МОДЕЛЬ ТГАVВZ - Звуковое давление Звуковое давление	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность допроизводительность дность то свободного охлаждения т как в так в т	кВт кВт кВт кВт кВт кВт с с с с	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0 68 62	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0 69 63	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5	21° 1 1 1 3 3 1 1 1 4 4 7
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Е.Е.R. ПОТРЕбляемая МОШ ПОТРЕбляемая МОШ СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. ПОТРЕбляемая МОШ ПОТРЕбляемая МОШ Температура общег МОДЕЛЬ ТГАVВZ - ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВАЯ МОЩНОСТ	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения трауза	кВт кВт кВт кВт кВт кВт °С °С дБ(A) дБ(A)	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0 68 62 101	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7 68 62 101	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0 69 63 102	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3 69 63 102	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5 69 63 102	21° 1 1 1 3 3 1 1 1 4 4 7
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц Потребляемая моц СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая моц Потребляемая моц Потребляемая моц Потребляемая моц Потребляемая моц ЗЕ.Е.R. В Потребляемая моц Потребляемая моц Земпература общее МОДЕЛЬ ТГАVВZ - Звуковое давление Звуковое давление Звуковоя мощност Компрессор спирал	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения трауза	кВт кВт кВт кВт кВт кВт °С °С дБ(A) дБ(A) дБ(A)	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0 68 62 101 95	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7 68 62 101 95	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0 69 63 102 96	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3 69 63 102 96	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5 69 63 102 96	21
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая мош СВОБОДНОЕ ОХЛА Номинальная холо, Номинальная холо, Номинальная холо, Номинальная холо, Номинальная холо, Е.Е.R. Потребляемая мош Гемпература общег МОДЕЛЬ ТГАVВZ - Звуковое давление Звуковое давление Звуковоя мощност Компрессор спирал	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения трауза	кВт кВт кВт кВт кВт кВт °С °С дБ(A) дБ(A) дБ(A)	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0 68 62 101 95 2/6 2	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7 68 62 101 95 2/6	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0 69 63 102 96 2/6 2	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3 69 63 102 96 2/6 2	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5 69 63 102 96 2/6 2	21° 1 1 1 1 1 1 1 1 1 47
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Б.Е.R. ПОТРЕБЛЯЕМАЯ МОШ СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. ПОТРЕБЛЯЕМАЯ МОШ ПОТРЕБЛЯЕМАЯ МОШ ТЕМПЕРАТУРА ОБЩЕР ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВАЯ МОЩНОСТ КОМПРЕССОР СПИРАЛ	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения трауза	кВт кВт кВт кВт кВт кВт °С °С дБ(A) дБ(A) дБ(A) кол-во	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0 68 62 101 95 2/6	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7 68 62 101 95 2/6 2	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0 69 63 102 96 2/6	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3 69 63 102 96 2/6	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5 69 63 102 96 2/6	211 1. 13 3 3 3 47
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. Е.Е.R. ПОТРЕБЛЯЕМАЯ МОШ ПОТРЕБЛЯЕМАЯ МОШ НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, НОМИНАЛЬНАЯ ХОЛО, Е.Е.R. ПОТРЕБЛЯЕМАЯ МОШ ПОТРЕБЛЯЕМАЯ МОШ ТЕМПЕРАТУРА ОБЩЕ! ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЕ ДАВЛЕНИЕ ЗВУКОВОЯ ДАВЛЕНИЕ ЗВУКОВОЯ МОЩНОСТ КОМПРЕССОР СПИРАЛ КОНТУРЫ ЭЛЕКТРОПИТАНИЕ РАЗМЕРЫ И ВЕС	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения трауза	кВт кВт кВт кВт кВт кВт °С °С дБ(A) дБ(A) дБ(A) дБ(A) кол-во кол-во	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0 68 62 101 95 2/6 2 400-3-50	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7 68 62 101 95 2/6 2 400-3-50	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0 69 63 102 96 2/6 2 400-3-50	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3 69 63 102 96 2/6 2	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5 69 63 102 96 2/6 2 400-3-50	211 1. 1 3 3
МОДЕЛЬ ТГАVВZ - СВОБОДНОЕ ОХЛА Номинальная холо, Е.Е.R. Потребляемая мош Потребляемая мош СВОБОДНОЕ ОХЛА Номинальная холо, Е.Е.R. Потребляемая мош СВОБОДНОЕ ОХЛА Номинальная холо, Е.Е.R. Потребляемая мош Гемпература общея МОДЕЛЬ ТГАVВZ - Звуковое давление Звуковое давление Звуковоя мощност Компрессор спирал Контуры Электропитание	ждение выкл допроизводительность допроизводительность дность ждение вкл 100% допроизводительность допроизводительность допроизводительность дность дность то свободного охлаждения трауза	кВт кВт кВт кВт кВт кВт °С °С дБ(A) дБ(A) дБ(A) кол-во	2800 885 867 3,71 3,66 238,5 237 885 867 27,66 43,36 32 20 1,2 0 68 62 101 95 2/6 2	2850 944 922 3,66 3,57 258 258 944 922 29,5 46,12 32 20 0,6 -0,7 68 62 101 95 2/6 2	2920 1019 1000 3,69 3,68 276 272 1019 1000 25,48 39,99 40 25 1,1 0 69 63 102 96 2/6 2	2990 1093 1071 3,72 3,69 294 290 1093 1071 27,33 42,84 40 25 1,6 0,3 69 63 102 96 2/6 2 400-3-50	21050 1155 1129 3,68 3,61 314 313 1155 1129 28,88 45,15 40 25 1,1 -0,5 69 63 102 96 2/6 2	211 1. 1. 3 3 3 47


- Воздух: 30°С Вода: 15/10°С Этиленгликоль 30%.
- ❷ Вода: 15/10°С Этиленгликоль 30%.
- $oldsymbol{3}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата, со стороны батареи.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- Версия со звукоизоляцией TFAESY.

Web code: ZPP01

Z-Power HP

THAVZ 2400 ÷ 2680

Мощность при охлаждении: 382,6÷677,6 кВт - Мощность при отоплении: 410,6÷702,6 кВт

- Тепловые насосы, заправленные хладагентом R134a
- С расширенными эксплуатационными возможностями
- Производительность горячей воды до 55°C

Реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме "звездатреугольник"с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера, отсекающий вентиль на трубопроводе подачи газового хладагента и датчик уровня масла компрессора.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды и соединения Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы винтового типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (только версия S).
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого/низкого давления охладительного контура;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (THAVBZ).
- S Версия с пониженным уровнем шума с вентиляторами на низкой скорости и с шупомоглащающей обшивкой компрессоров (THAVSZ).
- I Версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (THAVIZ).

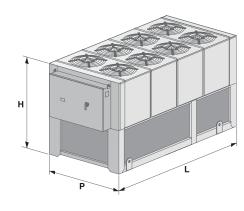
Модели

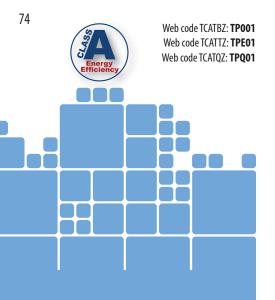
- THAVBZ: агрегат теплового насоса.
- THAVSZ: звукоизолированный агрегат теплового насоса.
- THAVIZ: агрегат со звукоизоляцией теплового насоса.

Аксессуары, установленные на заводе

- Пароохладитель.
- Термостат с дисплеем для пароохладителя.
- Контроль конденсации –10°С (серийный в версии S).
- Контроль конденсации −15°С с вентиляторами с ЕСдвигателем.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Магнитотермические выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- Отсекающие вентили компрессоров на всасывании.
- Манометры низкого и высокого давления для каждого холодильного контура.
- Защитные решётки нижнего отсека.
- Защитные решётки змеевика.
- Противообледенительный нагревательный элемент, теплообменники для теплоутилизатора, если установлен таковой.
- Двойной комплект установок с цифровым подтверждением.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.




МОДЕЛЬ THAVBZ-THAVSZ-THAVIZ		2400	2460	2530	2600	2680
Номинальная тепловая мощность	кВт	427,8	488,2	566,1	622	702,6
Номинальная тепловая мощность	кВт	410,6	469	542,8	596,8	674,4
② C.O.P.		2,98	3,03	3,13	3,13	3,15
② C.O.P.		2,88	2,93	3,02	3,02	3,04
• Номинальная холодопроизводительность	кВт	398,5	462,1	529,3	598,2	677,6
• Номинальная холодопроизводительность	кВт	382,6	444,3	508,6	574,3	650,8
• E.E.R.		2,66	2,76	2,82	2,93	2,96
• E.E.R.		2,57	2,67	2,73	2,83	2,86
Потребляемая мощность	кВт	143,56	161,12	180,86	198,72	223,05
Потребляемая мощность	кВт	142,57	160,07	179,74	197,62	221,84
• Потребляемая мощность	кВт	149,81	167,43	187,7	204,16	228,92
• Потребляемая мощность	кВт	148,87	166,4	186,3	202,93	227,55
МОДЕЛЬ THAVBZ-THAVSZ		2400	2460	2530	2600	2680
Звуковое давление	дБ(А)	64	65	65	66	67
Звуковое давление	дБ(А)	58	59	59	60	61
Звуковая мощность	дБ(А)	98	98	98	99	99
Звуковая мощность	дБ(А)	92	92	92	93	93
Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6
Контуры	кол-во	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		2400	2460	2530	2600	2680
L - Ширина	MM	5.130	6.130	6.130	6.980	7.980
Н - Высота	MM	2.430	2.430	2.430	2.430	2.430
Р - Глубина	MM	2.260	2.260	2.260	2.260	2.260
ூ Bec THAVBZ	КГ	4.315	5.350	5.740	6.320	7.210
⑤ Bec THAVSZ-THAVIZ	КГ	4.665	5.700	6.090	6.670	7.560

- Воздух: 35°С Вода: 12/7°С
- **❷** Воздух: 7°С, В.S. (сухая колба) 6°С В.U.- Вода: 40/45°С
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес порожнего агрегата с дополнительными принадлежностями RPE KRP.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- Исполнение со звукоизоляцией THAVSZ.

Эксплуатационные показатели в соответствии с EN 14511:2013.

- Гамма КЛАССА А с EER до 3,86
- Экономичный безмасляный компрессор, бесшумный с низким пусковым током
- Кожухотрубный испаритель затопленного типа

T-Power

TCATBZ 1361-41401 / TCATTZ 1321-41371 / TCATQZ 1361-41361

Мощность при охлаждении: 323,7÷1 359,9 кВт

Чиллеры компактные с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия с центробежными безмасляными компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: центробежный, безмасляный, высокоэффективный, с пониженным пусковым током, оснащён подшипниками с магнитной левитацией, интегральной защитой и отсекающими вентилями на всасывании и подаче.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Теплообменник со стороны воды: кожухотрубный затопленного типа, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальное реле давления потока воды и соединения Victaulic.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- контроль конденсации до —10°С температуры наружного воздуха;
- термомагнитные выключатели, компрессоры и вентиляторы;
- отображение высокого и низкого давления на дисплее для каждого холодильного контура.

Варианты исполнения

- В Базовая версия, эффективность класса А (ТСАТВZ).
- •Т Версия, высокая энергетическая эффективность, выше класса А (ТСАТТZ).
- Q Версия со сверхнизким уровнем шума, эффективность класса A (TCATQZ).

Модели

- ТСАТВZ: агрегат предусмотрен только для охлаждения.
- ТСАТТZ: агрегат предусмотрен только для охлаждения.
- TCATQZ: агрегат предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

- PUMP с одним электронасосом предоставляется в версиях низкого или высокого напора.
- Вентиляторы типа EC-FAN с непрерывной регулировкой скорости до температуры наружного воздуха -15°C.
- Конденсатор с фазовым переходом ($\cos \phi > 0.94$).
- Противообледенительный нагревательный элемент испарителя.
- Механическое реле потока испарителя.
- Детектор утечки хладагента (leak detector).
- Двойное электропитание.
- Интерфейс для серийной связи с другими устройствами.
- Агрегат с конденсационными батареями медь/ окрашенный алюминий или медь/медь.
- Защитные решётки нижнего отсека.
- Защитные решётки конденсационных батарей.
- Виброизолирующие пружинные опоры.

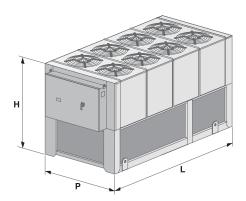
Комплектующие, поставляемые отдельно

• Защитная упаковка для транспортировки.

МОДЕЛЬ ТСАТВХ		1361	1411	1451	2511	2561	2601	2641	2681	2751	2811
• Номинальная холодопроизводительность	кВт	357,4	408,6	443,3	508,2	557,7	601,8	637,5	678	747,3	806,9
• E.E.R.		3,25	3,13	3,2	3,31	3,22	3,32	3,47	3,47	3,37	3,26
● E.S.E.E.R.		4,68	4,55	4,7	4,78	4,77	4,78	4,8	4,79	4,79	4,79
• Потребляемая мощность	кВт	109,97	130,54	138,53	153,53	173,2	181,27	183,72	195,39	221,75	247,52
Звуковое давление	дБ(А)	66,5	66,5	66,5	68	69	69	68,5	68,5	68	68
Звуковая мощность	дБ(А)	87	87	87	88	90	90	89	89	89	89
Компрессор/ступени	кол-во	1/бесконечно	1/бесконечно	1/бесконечно	2/бесконечно						
Контуры	кол-во	1	1	1	1	1	1	1	1	1	1
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		1361	1411	1451	2511	2561	2601	2641	2681	2751	2811
L - Ширина	MM	4750	4750	4750	4750	5720	5720	5720	5720	6690	6690
Н - Высота	MM	2560	2560	2560	2560	2560	2560	2560	2560	2560	2560
Р - Глубина	MM	2380	2380	2380	2380	2380	2380	2380	2380	2380	2380
⑤ Bec	КГ	3404	3960	4150	4260	4666	5151	5231	5657	6021	6518

МОДЕЛЬ ТСАТВХ		3851	3901	3981	31081	31201	31281	41401
• Номинальная холодопроизводительность	кВт	846,6	889,8	981,3	1080,9	1186	1275,2	1392,6
• E.E.R.		3,35	3,32	3,56	3,52	3,36	3,23	3,37
● E.S.E.E.R.		4,91	4,83	4,92	4,92	4,9	4,84	4,76
• Потребляемая мощность	кВт	252,72	268,01	275,65	307,07	352,98	394,8	413,23
Звуковое давление	дБ(А)	68,5	68,5	68,5	69	70	70	70
Звуковая мощность	дБ(А)	90	90	90	91	92	92	92
Компрессор/ступени	кол-во	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	4/бесконечно
Контуры	кол-во	1	1	1	1	1	1	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		3851	3901	3981	31081	31201	31281	41401
L - Ширина	MM	7670	7670	7670	9120	10570	10570	10570
Н - Высота	MM	2560	2560	2560	2560	2560	2560	2560
Р - Глубина	MM	2380	2380	2380	2380	2380	2380	2380
⑤ Bec	КГ	6740	7122	7456	8604	9860	9430	10482

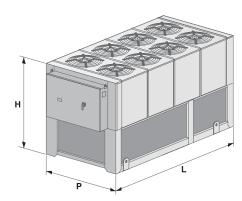
- **●** Воздух: 35°С Вода: 12/7°С
- В открытой зоне (Q = 2) на расстоянии 1 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности. Эксплуатационные показатели в соответствии с EN 14511:2013.



T-Power TCATBZ 1361-41401 / TCATTZ 1321-41371 / TCATQZ 1361-41361

МОДЕЛЬ ТСАТТХ		1321	1391	1431	2521	2581	2641	2721	2751
• Номинальная холодопроизводительность	кВт	323,7	386,6	427,3	522	581,8	643,1	721,4	751
● E.E.R.		3,57	3,69	3,58	3,7	3,6	3,86	3,81	3,81
● E.S.E.E.R.		5,53	5,55	5,55	5,36	5,34	5,32	5,32	5,32
• Потребляемая мощность	кВт	90,67	104,77	119,36	141,08	161,61	166,61	189,34	197,11
Звуковое давление	дБ(А)	77	77	77	77	78	78	79	79
Звуковая мощность	дБ(А)	97	97	97	97	99	99	100	100
Компрессор/ступени	кол-во 1/	бесконечно 1,	бесконечно 1/	бесконечно 2/	бесконечно				
Контуры	кол-во	1	1	1	1	1	1	1	1
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		1321	1391	1431	2521	2581	2641	2721	2751
L - Ширина	MM	4750	4750	4750	4750	5720	5720	6690	6690
Н - Высота	MM	2560	2560	2560	2560	2560	2560	2560	2560
Р - Глубина	MM	2380	2380	2380	2380	2380	2380	2380	2380
5 Bec	КГ	3404	3960	4150	4620	5172	5870	6234	6464

	МОДЕЛЬ ТСАТТХ		3801	3901	31001	31131	31241	41371
0	Номинальная холодопроизводительность	кВт	805	893,7	987	1128,2	1231,5	1359,9
0	E.E.R.		3,65	3,82	3,84	3,76	3,7	3,81
•	E.S.E.E.R.		5,35	5,62	5,67	5,62	5,54	5,55
0	Потребляемая мощность	кВт	220,55	233,95	257,03	300,05	332,84	356,93
8	Звуковое давление	дБ(А)	80	80	81	80	80	80
4	Звуковая мощность	дБ(А)	101	102	103	103	103	103
	Компрессор/ступени	кол-во	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	4/бесконечно
	Контуры	кол-во	1	1	1	1	1	2
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ		3801	3901	31001	31131	31241	41371
	L - Ширина	MM	7670	7670	9120	10570	10570	10570
	Н - Высота	MM	2560	2560	2560	2560	2560	2560
	Р - Глубина	MM	2380	2380	2380	2380	2380	2380
6	Bec	КГ	6840	7466	8306	9049	9440	10495


- Воздух: 35°С Вода: 12/7°С
- ❸ В открытой зоне (Q = 2) на расстоянии 1 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- 6 Порожний вес
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
 Эксплуатационные показатели в соответствии с EN 14511:2013.

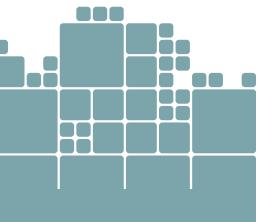
Модель TCATQZ		1361	1401	1421	2471	2531	2581	2601	2721
• Номинальная холодопроизводительность	кВт	357,4	393,6	418,4	470,3	527,8	569,9	598,6	717,4
● E.E.R.		3,4	3,32	3,28	3,38	3,34	3,33	3,41	3,42
● E.S.E.E.R.		4,6	4,59	4,5	4,69	4,68	4,67	4,53	4,53
• Потребляемая мощность	кВт	105,12	118,55	127,56	139,14	158,02	171,14	175,54	209,77
Звуковое давление	дБ(А)	60	60	60	62	62,5	62,5	62,5	62
Звуковая мощность	дБ(А)	81	81	81	82	83	83	83	83
Компрессор/ступени	кол-во 1	бесконечно 1	/бесконечно 1/	бесконечно 2/	/бесконечно 2/	бесконечно 2/	/бесконечно 2/	бесконечно 2/	бесконечно
Контуры	кол-во	1	1	1	1	1	1	1	1
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		1361	1401	1421	2471	2531	2581	2601	2721
L - Ширина	MM	4750	4750	4750	4750	5720	5720	5720	6690
Н - Высота	MM	2560	2560	2560	2560	2560	2560	2560	2560
Р - Глубина	MM	2380	2380	2380	2380	2380	2380	2380	2380
⑤ Bec	КГ	3428	3686	4150	4638	4782	5204	5262	6272

Модель TCATQZ		3811	3871	3931	3981	31131	31211	41361
• Номинальная холодопроизводительность	кВт	806,8	862,9	922,4	977,1	1126,2	1208,5	1354,8
• E.E.R.		3,3	3,3	3,31	3,38	3,25	3,1	3,5
● E.S.E.E.R.		4,62	4,61	4,65	4,68	4,62	4,59	4,63
• Потребляемая мощность	кВт	244,48	261,48	278,67	289,08	346,52	389,84	387,09
Звуковое давление	дБ(А)	62	62	63,5	63	63	63	64
Звуковая мощность	дБ(А)	84	84	85	85	85	85	86
Компрессор/ступени	кол-во	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	3/бесконечно	4/бесконечно
Контуры	кол-во	1	1	1	1	1	1	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		3811	3871	3931	3981	31131	31211	41361
L - Ширина	MM	7670	7670	7670	9120	10570	10570	10570
Н - Высота	MM	2560	2560	2560	2560	2560	2560	2560
Р - Глубина	MM	2380	2380	2380	2380	2380	2380	2380
⑤ Bec	КГ	6784	7165	7510	8664	8724	9112	10558

- **●** Воздух: 35°С Вода: 12/7°С
- ❸ В открытой зоне (Q = 2) на расстоянии 1 м от агрегата.
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- Порожний вес
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
 Эксплуатационные показатели в соответствии с EN 14511:2013.

ЧИЛЛЕРЫ - ТЕПЛОВЫЕ НАСОСЫ

Конденсаторы с воздушным охлаждением - Центробежные вентиляторы


Web code: MYC01

Mini-Y C низкого потребления

TCCEY-THCEY 105÷111

Мощность при охлаждении: 4,9 \div 10,6 кВт - Мощность при отоплении: 5 \div 10,8 кВт

• Компактные агрегаты и "Plug&Play" (Подключи и Работай)

Чиллеры и реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и центробежными вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный спирального типа с тепловой защитой.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входит защитная решётка.
- Вентилятор: электровентилятор центробежного типа с непосредственно подключённым двигателем, с внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашенная, в комплект входит лоток для сбора конденсата для ТНСЕҮ.

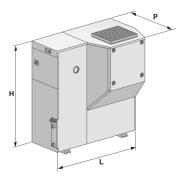
Модели

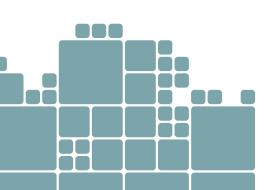
- ТССЕУ: агрегат предусмотрен только для охлаждения.
- ТНСЕҮ: агрегат теплового насоса.

Аксессуары, установленные на заводе

- Устройство "плавного запуска" (для моделей с питанием 230 Вольт).
- Контроль конденсации –10°С.
- Реле низкого давления.
- ТЭН картера компрессора.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Низкая заданная температура воды.

- Виброизолирующие резиновые опоры.
- Контроль конденсации –10°С. • Водный фильтр.
- Реле низкого давления.
- Противообледенительный нагревательный элемент на накоплении.
- Антивибрационный переходник на всасывании.
- Антивибрационный переходник на подаче.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.




	МОДЕЛЬ ТССЕУ-ТНСЕУ		105	107	109	111
0	Номинальная хладопроизводительность ТССЕУ	кВт	4,9	6	8,3	10,1/10,6
0	Потребляемая мощность ТССЕҮ	кВт	1,98	2,49	3,47	4,28/4,33
0	E.E.R. TCCEY		2,47	2,41	2,39	2,36/2,45
•	E.S.E.E.R. TCCEY		2,44	2,43	2,53	2,47/2,5
0	E.S.E.E.R.+		2,8	2,76	2,89	2,78 / 2,84
2	Номинальная тепловая мощность	кВт	4,95	6,18	8,11	10,44/10,83
2	Потребляемая мощность	кВт	2,02	2,43	3,51	4,11/4,4
2	C.O.P.		2,45	2,54	2,31	2,54/2,46
(§)	Класс энергопотребления ТНСЕҮ		A	A	A	A
6	Звуковое давление	дБ(А)	47	48	50	51
	Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1	1/1
	Контуры	кол-во	1	1	1	1
	Номинальный расход вентилятора	м ³ /ч	2450	2400	2650	2600
	Полезное статическое давление вентилятора	Па	80	70	80	70
	Содержание воды в накопительном баке	л.	19	19	30	30
0	Полезный напор циркуляционного насоса	кПа	60	60	87	79
	Электропитание	В-фаз-Гц	230-1-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50	230-1-50 /400-3+N-50
	РАЗМЕРЫ И ВЕС		105	107	109	111
	L - Ширина	MM	990	990	990	990
	Н - Высота НАСОСА	MM	940	940	1125	1125
	H - Высота TANK & PUMP (БАК И НАСОС)	MM	940	940	1330	1330
	Р - Глубина	MM	630	630	630	630
4	Bec TCCEY	КГ	143	145	164	178
4	Bec THCEY	КГ	153	155	174	188

- **●** Воздух: 35°С Вода: 12/7°С
- Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные характеристики по EN 14511:2013
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

82

Web code: CYC01

 Вертикальная или горизонтальная канальная подача

Compact-Y C низкого потребления

TCCEY-THCEY 114÷128

Мощность при охлаждении: 13,3÷26,6 кВт - Мощность при отоплении: 13,7÷29,2 кВт

Чиллеры и реверсивные тепловые компактные насосы с воздушным охлаждением конденсатора и центробежными вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный спирального типа с тепловой защитой.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входит защитная решётка.
- Вентилятор: электровентиляторы центробежного типа с непосредственно подключённым двигателем, с внутренней тепловой защитой и предохранительными решётками.
- Вертикальная подача воздуха конденсации.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из сплава "peraluman", в комплект входит поддон для сбора конденсата для ТНСЕҮ

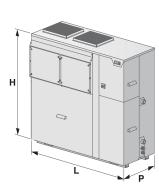
Модели

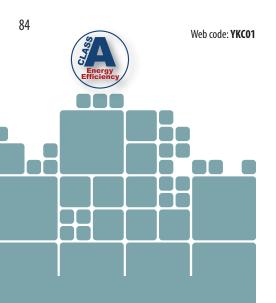
- •ТССЕҮ: агрегат предусмотрен только для охлаждения.
- •ТНСЕУ: агрегат теплового насоса.

Аксессуары, установленные на заводе

- Горизонтальная подача воздуха конденсации.
- Противообледенительный нагревательный элемент на накоплении.
- Контроль конденсации -10°С.
- ТЭН картера компрессора.
- Устройство "плавного запуска".
- Исполнение с пониженным уровнем шума.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Низкая заданная температура воды.

- Виброизолирующие резиновые опоры.
- Контроль конденсации —10°С (модели 114÷126).
- Водный фильтр.
- Антивибрационный переходник на всасывании.
- Антивибрационный переходник на подаче.
- Трехходовой клапан для производства ГВС, управляется настройкой.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.




модель тссе	/-THCEY		114	117	121	126	128
• Номинальная х	олодопроизводительность	кВт	13,3	15,9	20,1	23,2	26,6
• Потребляемая	мощность	кВт	4,68	5,46	7,56	8,96	10,08
• E.E.R.			2,84	2,91	2,66	2,59	2,64
● E.S.E.E.R.			3,1	3,09	2,97	2,81	2,84
© E.S.E.E.R.+			3,13	3,21	3,09	3,08	3,06
Номинальная т	епловая мощность	кВт	13,7	17	21,6	25,6	29,2
Потребляемая	мощность	кВт	4,71	5,57	7,06	8,26	9,39
② C.O.P.			2,91	3,05	3,06	3,1	3,11
(§) Класс энергопо	требления ТНСЕҮ		A	A+	A	A+	A
Звуковое давле	ение	дБ(А)	54	55	56	57	61
Компрессор сп	ральный/ступенчатый	кол-во	1/1	1/1	1/1	1/1	1/1
Контуры		кол-во	1	1	1	1	1
Номинальный	расход вентилятора	$M^3/4$	6900	6900	7500	6800	8400
Полезное стати	ческое давление вентилятора	Па	90	80	80	70	120
Содержание вод	цы в накопительном баке (оснащение T&P)	Л.	55	55	80	80	80
Полезный напо	р стандартного электронасоса	кПа	50	44	157	151	131
Полезный напо	р электронасоса высокого напора	кПа	179	160	-	-	-
Электропитани	e	В-фаз-Г	щ400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И В	EC		114	117	121	126	128
L - Ширина		MM	1320	1320	1710	1710	1710
Н - Высота СТАН	ІДАРТ	MM	1305	1305	1305	1305	1305
Н - Высота ТАМ	(& РИМР (БАК И НАСОС)	MM	1600	1600	1600	1600	1600
Р - Глубина		MM	558	558	643	643	643
● Bec TCCEY		ΚΓ	340	360	420	440	440
● Bec THCEY		ΚΓ	350	370	440	460	460


- Воздух: 35°С Вода: 12/7°С
- Воздух: 7°С В.S. 6°С В.U. 70% U.R. Вода: 40/45°С
- В открытой зоне (Q = 2) на расстоянии 5 м от агрегата и канальных фанкойлов.
- Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные характеристики по EN 14511:2013. Стандартное оснащение
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

- Центробежные вентиляторы "Plug-Fan" с EC-двигателем (бесколлекторным)
- 3 ступени регулирования

Y-Pack C-PF низкого потребления

TCCETY-THCETY 233÷2160

Мощность при охлаждении: 32,3 \div 160,2 кВт - Мощность при отоплении: 37,7 \div 175,6 кВт

THCETY 2130

Чиллеры и компактные тепловые насосы реверсивные, компактные и высокоэффективные с воздушной конденсацией и центробежными вентиляторами типа "Plug-Fan" с ЕСдвигателями.

Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- 2 или 3 ступени регулирования в зависимости от модели, отличная модуляция нагрузки и высокая энергоэффективность при частичной нагрузке.
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками и дифференциальным реле давления потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Центробежные электровентиляторы типа Plug-Fan с двигателями EC, оснащенные внутренней тепловой защитой, в один ряд с горизонтальной подачей.
 Горизонтальная подача воздуха конденсации/ испарения с обратной стороны змеевика с оребрением или вертикальная подача может быть легко конфигурирована на месте.
- Электронное устройство для пропорционального регулирования скорости вращения вентиляторов до внешней температуры -15°С, при работе в режиме охладителя, и до внешней температуры 40°С, при работе в режиме теплового насоса.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Несущая конструкция и панели агрегата изготовлены из оцинкованной и покрашенной (RAL 9018) листовой стали, основание из оцинкованной листовой стали

Варианты исполнения

•Т - Высокоэффективная версия (ТССЕТҮ-ТНСЕТҮ).

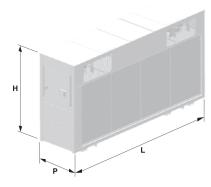
Модел

- ТССЕТҮ: агрегат только для охлаждения.
- ТНСЕТУ: агрегат реверсивного теплового насоса.

Аксессуары, установленные на заводе

- PUMP с отдельным или двойным электронасосом, один из которых в режиме ожидания с автоматическим запуском, в комплект входит расширительный бак, предохранительный клапан и водный манометр. Электронасосы предоставляются в версиях с низким и высоким напором.
- TANK&PUMP со встроенным накопительным баком, с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр воды.
- Пароохладитель.
- Теплоутилизатор 100%.
- Электронный расширительный клапан.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Плавный пускатель.
- Звукоизоляция компрессоров.
- Манометры высокого и низкого давления охладительной цепи.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительный нагревательный элемент испарителя, накопительный бак, электронасосы и теплообменники для рекуперации тепла, если таковые установлены.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие опоры.

- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



	МОДЕЛЬ ТССЕТУ		233	238	245	250	260	265	270
0	Номинальная холодопроизводительность	кВт	32,3	38,5	43.9	51.0	58,9	63,7	69,9
0	E.E.R.		2,61	2,77	2,70	2,75	2,68	2,62	2,85
0	Потребляемая мощность	кВт	12,38	13,90	16,26	18,55	21,98	24,31	24,53
•	E.S.E.E.R.		4,48	4,04	4,29	4,43	4,3	4,36	4,48
0	E.S.E.R.+		5,02	4,51	4,97	5,12	4,95	5,06	5,17
	МОДЕЛЬ ТНСЕТУ		233	238	245	250	260	265	270
0	Номинальная тепловая мощность	кВт	37,7	42,1	48,1	56,2	62,5	68,3	79,4
0	C.O.P.		3,00	3,00	3,01	2,99	2,99	2,88	3,26
§	Класс энергопотребления		A+	A+	A++	A+	A+	A+	A+
2	Потребляемая мощность в зимнем режиме работы	кВт	12,57	14,03	15,98	18,80	20,90	23,72	24,36
0	Номинальная холодопроизводительность	кВт	32,3	38,5	42,3	50,3	57,8	61,6	69,1
6	Звуковая мощность	дБ(А)	82	82	83	85	85	85	85
	Компрессор спиральный/ступенчатый	кол-во	2/2	2/2	2/3	2/3	2/3	2/3	2/3
	Контуры	кол-во	1	1	1	1	1	1	1
	Номинальный расход вентилятора	м³/ч	13.000	13.000	13.000	26.000	26.000	26.000	26.000
	Макс. полезное статическое давление вентилятора	Па	250	250	250	250	250	250	250
	Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
	РАЗМЕРЫ		233	238	245	250	260	265	270
	L - Ширина	MM	2650	2650	2650	2650	2650	2650	3.650
	Н - Высота	MM	1920	1920	1920	1920	1920	1920	1.920
	Р - Глубина	MM	870	870	870	870	870	870	1.100
	МОДЕЛЬ ТССЕТУ		280	290	2100	2115	2130	2145	2160
0	Номинальная холодопроизводительность	кВт	79,1	87,5	100,6	113,9	125,3	142,3	160,2
	E.E.R.		2,90	2,82	2,74	2,93	2,89	2,90	2,89
	Потребляемая мощность	кВт	27.28	31,03	36,72	38,87	43,36	49,07	55,43
	E.S.E.E.R.		4,18	4,11	4,09	4,04	4,4	4,53	4,14
	E.S.E.E.R.+		4,84	4,76	4,72	4,68	5,07	5,22	4,71
	модель тнсету		280	290	2100	2115	2130	2145	2160
0	Номинальная тепловая мощность	кВт	86,3	96,4					175,6
				20.4	111.5	122.5	139.6	157.6	
§	C.O.P.				111,5 3.19	122,5 3.25	139,6	157,6 3.25	3.24
4	С.О.Р. Класс энергопотребления		3,38	3,20	3,19	3,25	3,33	3,25	3,24
	Класс энергопотребления	кВт	3,38	3,20	3,19	3,25	3,33	3,25	
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы	кВт кВт	3,38 - 25,53	3,20 - 30,13	3,19 - 34,95	3,25 - 37,69	3,33 - 41,92	3,25 - 48,49	54,20
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность	кВт	3,38 - 25,53 77,4	3,20 - 30,13 84,9	3,19 - 34,95 98,9	3,25 - 37,69 110,6	3,33 - 41,92 123,4	3,25 - 48,49 140,8	54,20 159,3
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность	кВт дБ(А)	3,38 - 25,53 77,4 85	3,20 - 30,13 84,9 86	3,19 - 34,95 98,9 88	3,25 - 37,69 110,6 88	3,33 - 41,92 123,4 88	3,25 - 48,49 140,8 89	54,20 159,3 89
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность Компрессор спиральный/ступенчатый	кВт дБ(А) кол-во	3,38 - 25,53 77,4 85 2/2	3,20 - 30,13 84,9 86 2/3	3,19 - 34,95 98,9 88 2/3	3,25 - 37,69 110,6 88 2/3	3,33 - 41,92 123,4 88 2/2	3,25 - 48,49 140,8 89 2/3	54,20 159,3 89 2/2
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность Компрессор спиральный/ступенчатый Контуры	кВт дБ(А) кол-во кол-во	3,38 - 25,53 77,4 85 2/2	3,20 - 30,13 84,9 86 2/3	3,19 - 34,95 98,9 88 2/3	3,25 - 37,69 110,6 88 2/3	3,33 - 41,92 123,4 88 2/2	3,25 - 48,49 140,8 89 2/3	54,20 159,3 89 2/2
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность Компрессор спиральный/ступенчатый Контуры Номинальный расход вентилятора	кВт дБ(А) кол-во кол-во м ³ /ч	3,38 - 25,53 77,4 85 2/2 1 26,000	3,20 - 30,13 84,9 86 2/3 1 27.000	3,19 - 34,95 98,9 88 2/3 1 39.000	3,25 - 37,69 110,6 88 2/3 1 39.000	3,33 - 41,92 123,4 88 2/2 1 39.000	3,25 - 48,49 140,8 89 2/3 1 52.000	54,20 159,3 89 2/2 1 52.000
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность Компрессор спиральный/ступенчатый Контуры Номинальный расход вентилятора Макс. полезное статическое давление вентилятора	кВт дБ(А) кол-во кол-во м ³ /ч Па	3,38 25,53 77,4 85 2/2 1 26,000 250	3,20 - 30,13 84,9 86 2/3 1 27.000 250	3,19 - 34,95 98,9 88 2/3 1 39.000 250	3,25 - 37,69 110,6 88 2/3 1 39.000 250	3,33 - 41,92 123,4 88 2/2 1 39.000 250	3,25 - 48,49 140,8 89 2/3 1 52.000	54,20 159,3 89 2/2 1 52.000
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность Компрессор спиральный/ступенчатый Контуры Номинальный расход вентилятора Макс. полезное статическое давление вентилятора Электропитание	кВт дБ(А) кол-во кол-во м ³ /ч	3,38 25,53 77,4 85 2/2 1 26.000 250 400-3+N-50	3,20 - 30,13 84,9 86 2/3 1 27.000 250 400-3+N-50	3,19 - 34,95 98,9 88 2/3 1 39.000 250 400-3+N-50	3,25 - 37,69 110,6 88 2/3 1 39.000 250 400-3+N-50	3,33 - 41,92 123,4 88 2/2 1 39.000 250 400-3+N-50	3,25 - 48,49 140,8 89 2/3 1 52.000 250 400-3+N-50	54,20 159,3 89 2/2 1 52.000 250 400-3+N-50
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность Компрессор спиральный/ступенчатый Контуры Номинальный расход вентилятора Макс. полезное статическое давление вентилятора Электропитание РАЗМЕРЫ	кВт дБ(A) кол-во кол-во м ³ /ч Па В-фаз-Гц	3,38 - 25,53 77,4 85 2/2 1 26,000 250 400-3+N-50 280	3,20 - 30,13 84,9 86 2/3 1 27.000 250 400-3+N-50 290	3,19 - 34,95 98,9 88 2/3 1 39.000 250 400-3+N-50 2100	3,25 - 37,69 110,6 88 2/3 1 39.000 250 400-3+N-50 2115	3,33 - 41,92 123,4 88 2/2 1 39.000 250 400-3+N-50 2130	3,25 - 48,49 140,8 89 2/3 1 52.000 250 400-3+N-50 2145	54,20 159,3 89 2/2 1 52.000 250 400-3+N-50
0	Класс энергопотребления Потребляемая мощность в зимнем режиме работы Номинальная холодопроизводительность Звуковая мощность Компрессор спиральный/ступенчатый Контуры Номинальный расход вентилятора Макс. полезное статическое давление вентилятора Электропитание	кВт дБ(А) кол-во кол-во м ³ /ч Па	3,38 25,53 77,4 85 2/2 1 26.000 250 400-3+N-50	3,20 - 30,13 84,9 86 2/3 1 27.000 250 400-3+N-50	3,19 - 34,95 98,9 88 2/3 1 39.000 250 400-3+N-50	3,25 - 37,69 110,6 88 2/3 1 39.000 250 400-3+N-50	3,33 - 41,92 123,4 88 2/2 1 39.000 250 400-3+N-50	3,25 - 48,49 140,8 89 2/3 1 52.000 250 400-3+N-50	54,20 159,3 89 2/2 1 52.000 250 400-3+N-50

- **❶** Воздух: 35°С Вода: 12/7°С и ESP: 250 Па.
- Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С и ESP: 250 Па.
- Общий уровень звуковой мощности в дБ (A) на основании измерений, выполненных в соответствии с нормативными требованиями RS S/C/005-2009 и UNI EN-ISO 9614.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- 😂 ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.
- § В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013 Эксплуатационные показатели в соответствии с EN 14511:2013.

Comby-Flow низкого потребления - TCHEY-THHEY 105÷112

Y-Flow низкого потребления - TCHEY-THHEY 115÷240

Y-Flow E низкого потребления - TCEEY 115÷240

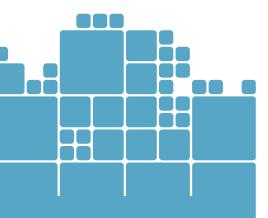
Y-Flow низкого потребления - TCHEY-THHEY 245÷4450

Z-Flow HE - TCHVZ 1201÷31631

Z-Flow SE - TCHVZ 1200÷31630

Y-Flow E низкого потребления - TCEEBY 245÷4360

Z-Flow E - TCEVZ 1200÷31630


ЧИЛЛЕРЫ - ТЕПЛОВЫЕ НАСОСЫ

С водяным охлаждением конденсатора - Бесконденсаторные чиллеры

Comby-Flow низкого потребления

TCHEY-THHEY 105÷112

Мощность при охлаждении: 5,5÷12,2 кВт - Мощность при отоплении: 6,6÷13,7 кВт

- ESEER c Adaptive Function Plus до 4,5
- Суперкомпактные и бесшумные модели

Чиллеры и компактные тепловые насосы реверсивные на цепи охлаждения с водяным охлаждением конденсатора. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный спирального типа с тепловой защитой.
- Теплообменник с первичной стороны (пользователь): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны скважины или водопровода (сточный канал): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды (для ТННЕҮ).
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской, в комплект входит звукоизоляция компрессора.

Модели

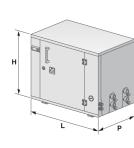
- ТСНЕУ: агрегат предусмотрен только для охлаждения.
- ТННЕҮ: агрегат теплового насоса.

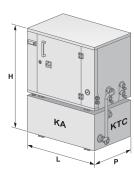
Аксессуары, установленные на заводе

- Нагнетательный клапан.
- Нагнетательный клапан и соленоидный клапан байпаса (только для моделей ТННЕҮ).
- Тепловой насос сети водоснабжения (только ля модели TCHEY).
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20mA.
- Низкая заданная температура воды.

- Накопительный бак.
- Соединительный трубопровод накопителя.
- Водный фильтр.
- Виброизолирующие резиновые опоры.
- Противообледенительный нагревательный элемент на накоплении.
- Реле низкого давления.
- Трехходовой клапан для производства ГВС.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.

модель тснеу-тннеу		105	107	109	112
Системы лучистого обогрева/охлаждения					
Тепловая мощность	кВт	7,5	9,7	12,7	15
• Потребляемая мощность	кВт	1,6	2,1	2,72	3,33
● C.O.P.		4,68	4,61	4,67	4,51
(§) Класс энергопотребления ТННЕҮ		A++	A++	A++	A++
Тепловая мощность (геометрическая)	кВт	5,4	7,3	9,4	11,3
Тепловая мощность (геометрическая)	кВт	1,5	2,15	2,78	3,34
2 С.О.Р. (геотермическая)		3,62	3,39	3,38	3,39
❸ Холодильная мощность ТСНЕҮ	кВт	7,6	10,4	13,5	17,6
❸ Потребляемая мощность ТСНЕҮ	кВт	1,56	2,22	2,84	3,86
❸ E.E.R. TCHEY		4,86	4,69	4,76	4,50
Системы с Фанкойлами					
Ф Тепловая мощность	кВт	6,58	8,1	10,63	13,7
Потребляемая мощность	кВт	2,08	2,8	3,33	4,2
④ C.O.P.		3,17	2,89	3,19	3,20
Оподильная мощность ТСНЕУ	кВт	5,5	6,8	9,2	12,2
Потребляемая мощность ТСНЕУ	кВт	1,69	2,19	2,79	3,74
6 E.E.R. TCHEY		3,25	3,11	3,3	3,20
E.S.E.E.R. TCHEY		3,43	3,65	3,91	3,87
© E.S.E.E.R.+		4	4,25	4,46	4,34
3вуковое давление	дБ(А)	49	51	51	53
Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1	1/
Содержание воды в накопительном баке КА	л.	20	20	30	30
Полезный напор циркуляционного насоса	кПа	47	55	82	77
Электропитание	В-фаз-Гц	230-1-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50
РАЗМЕРЫ И ВЕС		105	107	109	112
L - Ширина	MM	585	585	660	660
H - Высота STANDARD - PUMP	MM	535	535	535	53.
H - Высота STANDARD - PUMP + KA	MM	855	855	855	855
Р - Глубина	MM	386	386	420	420
⊘ Bec	КГ	78	83	94	97
Bec KA	КГ	28	28	33	33


- **●** Горячая вода: 30/35°С Вода испарителя: 10/7°С
- Горячая вода: 30/35°С Вода испарителя: 0/-3°С, 30% гликолят.
- Охлажденная вода: 23/18°C Вода конденсатора: 30/35°C
- Горячая вода: 40/45°C Вода испарителя: 10/7°C
- Охлажденная вода: 12/7°С Вода конденсатора: 30/35°С
- В открытой зоне (Q = 2) на расстоянии 1 м от агрегата.
- **7** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- **©** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent.


Эксплуатационные характеристики по EN 14511:2013. Стандартное оснащение

КА = Накопительный бак.

КТС = соединительный трубопровод.

(§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013


Web code: YF011

Y-Flow низкого потребления

TCHEY-THHEY 115÷240

Мощность при охлаждении: 15,5÷41,7 кВт - Мощность при отоплении: 17,4÷45,1 кВт

- Агрегат КЛАССА
 А (применение в
 системах лучистого
 обогрева/охлаждения)
- Применение с водой из скважины, водопровода или геотермальных зондов
- Arperat Plug&Play с гидравлическими присоединениями с верхней стороны

Чиллеры и компактные тепловые насосы реверсивные на контур охлаждения, с водяным охлаждением конденсатора. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменник с первичной стороны (пользователь): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны сточного канала (скважина/ водопровод/геотермальные зонды): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды (для ТННЕY).
- Контроль: электронный с микропроцессором, совместимым с iDRHOSS, с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской, внутренняя обшивка из шумопоглащающих панелей.

Модели

- ТСНЕҮ: агрегат предусмотрен только для охлаждения.
- ТННЕУ: агрегат теплового насоса.

Аксессуары, установленные на заводе

- PUMF
- Первичная сторона (пользователь): насосный блок с циркуляционным электронасосом со стандартным или усиленным напором, мембранный бак расширения, ручной клапан стравливания воздуха, предохранительный клапан, клапан для слива/наполнения воды, манометр.
- Сторона сточного канала (геотермальные зонды/ сухой охладитель): насосный блок в комплекте с электронасосом с разъединением фазы, клапан наполнения/слива воды, клапан для ручного стравливания воздуха.
- Исполнение с пониженным уровнем шума.
- Прессостатический клапан с соленодом для блокирования потока воды.
- Прессостатический клапан с соленоидом блокирования потока воды и соленоидный клапан байпаса.
- Тепловой насос сети водоснабжения (только для модели ТСНЕҮ).
- Устройство "плавного запуска".
- Низкая заданная температура воды.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.

- Трехходовой клапан для производства ГВС.
- Встроенный нагревательный элемент теплового насоса, управляется настройкой.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Комплект "свободного охлаждения".
- Водный фильтр.
- Виброизолирующие резиновые опоры.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.

МОДЕЛЬ ТСНЕҮ-ТННЕҮ		115	118	122	125	230	240
Системы лучистого обогрева/охлаждения							
Тепловая мощность ТННЕУ	кВт	18,6	21,5	26,6	30,7	38,5	47,9
Потребляемая мощность	кВт	3,29	3,55	4,45	5,04	6,63	8,09
1 C.O.P.		5,66	6,05	5,97	6,09	5,81	5,92
§) Класс энергопотребления ТННЕУ		A++	A++	A++	A++	A++	A++
Тепловая мощность ТННЕҮ (геометрическая)	кВт	13,4	15,3	18,6	21,7	27,7	33,8
С.О.Р. (геотермическая)		4,12	4,21	4,37	4,49	4,23	4,3
З Холодильная мощность ТСНЕҮ	кВт	22,1	25,7	31,6	36,5	43,2	58,8
Потребляемая мощность ТСНЕУ	кВт	3,46	3,71	4,83	5,45	6,99	8,78
③ E.E.R. TCHEY		6,38	6,92	6,54	6,7	6,18	6,7
Системы с Фанкойлами							
Тепловая мощность ТННЕУ	кВт	17,4	20,2	25,1	28,9	35,9	45,
Потребляемая мощность	кВт	3,95	4,41	5,59	6,3	8,05	10,1
④ C.O.P.		4,4	4,58	4,49	4,59	4,46	4,4
Золодильная мощность ТСНЕУ/ТННЕУ	кВт	15,5/13,9	18,4/16,3	22,7/20	26,3/23,1	30,5/27,3	41,7/35,9
6 Потребляемая мощность ТСНЕҮ	кВт	3,27	3,49	4,5	5,01	6,64	8,0
⑤ E.E.R. TCHEY		4,74	5,27	5,04	5,25	4,59	5,1
■ E.S.E.E.R. TCHEY		5,52	5,96	5,9	5,97	5,18	5,8
C E.S.E.E.R.+		6,28	6,8	6,77	6,83	6,17	6,9
Звуковое давление	дБ(А)	42	42	46	47	48	52
Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1	1/1	2/2	2/2
Контуры	кол-во	1	1	1	1	1	
⑤ Полезный напор стд электронасоса со стороны установки	кПа	88	81	73	113	105	115
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС		115	118	122	125	230	240
L - Ширина	MM	700	700	700	700	700	700
H - Высота STANDARD - PUMP	MM	1100	1100	1100	1100	1100	1100
Р - Глубина	MM	560	560	780	780	780	780
7 Bec	КГ	193	193	230	254	278	298

- **●** Горячая вода: 30/35°С Вода испарителя: 10/7°С
- Горячая вода: 30/35°C Вода испарителя: 0/-3°C, 30% гликолят.
- Охлажденная вода: 23/18°C Вода конденсатора: 30/35°C
- Горячая вода: 40/45°С Вода испарителя: 10/7°С
- Охлажденная вода: 12/7°С Вода конденсатора: 30/35°С
- **③** В открытой зоне (Q = 2) на расстоянии 1м от агрегата и звукоизоляционным оснащением.
- **7** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- **②** ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные характеристики по EN 14511:2013.
- (§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

Y-Flow E низкого потребления

TCEEY 115 ÷ 240

Мощность при охлаждении: 13,7÷36,9 кВт

• Экономные бесконденсаторные чиллеры, заряженные хладагентом R410A

Бесконденсаторные чиллеры только для охлаждения для подключения к выносным конденсаторам ССАМУ. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэсторовой краской, внутренняя обшивка из шумопоглощающих панелей.

Модели

ТСЕЕŸ: агрегат только для охлаждения.

Аксессуары, установленные на заводе

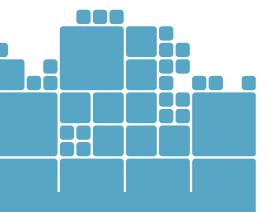
- PUMP Первичная сторона (пользователь): насосный блок с циркуляционным электронасосом, мембранный бак расширения, предохранительный клапан, клапан для наполнения/слива воды, ручной клапан стравливания воздуха, манометр.
 Электронасосы предоставляются в версиях с низким и
- Электронасосы предоставляются в версиях с низким и высоким напором.
- Устройство плавного запуска.
- Исполнение с пониженным уровнем шума с двойными звукопоглощающими панелями отсека компрессоров.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.

- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Водный фильтр.
- Виброизолирующие резиновые опоры.
- Удаленный кнопочный пульт с ЖК-дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).

Модель ТСЕЕҮ		115	118	122	125	230	240
• Номинальная холодопроизводительность	кВт	13,7	16,4	20,1	23,3	26,8	36,9
• EER		3,26	4,0	3,65	3,76	3,12	3,69
Потребляемая мощность (*)	кВт	4,2	4,1	5,5	6,2	8,6	10
• Полезный напор стандартного электронасоса	кПа	89	80	73	114	107	113
• Полезный напор электронасоса высокого напора	кПа	164	146	163	152	129	135
Звуковая мощность	дБ(А)	58	58	62	63	64	67
Звуковая мощность звукоизоляционного исполнения	дБ(А)	53	53	57	58	59	62
Компрессоры спиральные/ступенчатые	кол-во	1/1	1/1	1/1	1/1	2/2	2/2
Контуры	кол-во	1	1	1	1	1	1
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС		115	118	122	125	230	240
L - Ширина	MM	700	700	700	700	700	700
Н - Высота	MM	1140	1140	1140	1140	1140	1140
Р - Глубина	MM	560	560	780	780	780	780
❸ Bec	КГ	166	166	191	214	234	251

- Охлажденная вода: 12/7°С Температура конденсации: 50°С (точка росы)
- Уровень звуковой мощности в дБ (A) на основании измерений, выполненных в соответствии с нормативными требованиями UNI EN ISO 9614
- Вес относится к наиболее полному оснащению.
 - (*) Агрегат без электронасосов.

Примечание: агрегаты совместимы с соответствующими моделями выносных конденсаторов ССАМУ



Web code 245 ÷ 2185: YF021 Web code 4180÷4450: YF031

Y-Flow низкого потребления

TCHEY-THHEY 245÷4450

Мощность при охлаждении: 41,2÷448,8 кВт - Мощность при отоплении: 50,23÷515,49 кВт

- Агрегат КЛАССА А (применение в системах лучистого обогрева/охлаждения)
- Применение с водой из скважины, водопровода или геотермальных зондов
- Широкая гамма дополнительных опций и аксессуаров
- производства воды 65°C(°)
- Модель НТ65 для

- (°) Ознакомьтесь с документацией, чтобы проверить доступные модели и комплектующие.
- → Агрегаты можно укомплектовать максимум 2 электронасосами в мод. 245÷2185 и не более 4 насосов в мод. 4180÷4450. При наличии теплоутилизатора или пароохладителя, оснащение РИМР не предусмотрено.

Чиллеры и компактные тепловые насосы реверсивные на контур охлаждения, с водяным охлаждением конденсатора. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменник с первичной стороны (пользователь): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны сточного канала (скважина/ водопровод/геотермальные зонды): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды (для ТННЕҮ).
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.

Варианты исполнения

- LT Производство горячей воды до 52°С.
- НТ Производство горячей воды до 55⊠.

- ТСНЕҮ: агрегат предусмотрен только для охлаждения.
- ТННЕҮ: агрегат теплового насоса.

Аксессуары, установленные на заводе

• РИМР первичная сторона (пользователь): с отдельным или двойным электронасосом, один из которых в режиме ожидания с автоматическим запуском, в комплект входит расширительный бак, клапан наполнения/слива воды, клапан стравливания воздуха, предохранительный клапан, манометр. Электронасосы предоставляются в версиях низкого и высокого напора. →

- РИМР сторона сточного канала (геотермальные зонды/сухой охладитель): с одинарным или двойным электронасосом с регулировкой инвертором, один из которых находится в режиме ожидания с автоматическим запуском. →
- Пароохладитель. →
- Теплоутилизатор 100% (мод. 245÷4360). →
- Тепловой насос сети водоснабжения (только для модели ТСНЕҮ).
- Конденсатор корректировки мощности.
- Устройство "плавного запуска".
- Принудительное ограничение электрической мощности.
- Электронный расширительный клапан (стандартный для мод. 4410-4450).
- Манометры высокого и низкого давления охладительной цепи.
- Исполнение с пониженным уровнем шума.
- Низкая заданная температура воды.
- Двойной комплект установок с цифровым подтверждением.
- Аналоговый сигнал 0-10 Вольт для контроля конденсации, выполняемой на внешнем усройстве.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие резиновые опоры.

- Моделирующий 3-ходовой клапан для контроля конденсации.
- Моделирующий 2-ходовой клапан для контроля конденсации.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Комплект "свободного охлаждения" (мод. 245÷2185).
- Водный фильтр.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

2

4450

2.509

3.734

1.855

870

400-3+N-50

2

4410

2.509

3.734

1.855

870

400-3+N-50

Контуры

● L - Ширина

6 L - Ширина

Н - Высота

Р - Глубина

Электропитание

РАЗМЕРЫ И ВЕС

Модель ТСНЕҮ		245	250	260	270	275	290	2100	2115	2130	2145	2165	2185
Холодильная мощность	кВт	45	53	60,3	68,9	75,5	89,6	102,6	116,8	130,5	145,1	164,9	184,0
Потребляемая мощность	кВт	9,85	11,42	13,19	15,01	16,52	19,27	22,55	25,55	29	31,82	37,06	42,0
❶ E.E.R.		4,57	4,64	4,57	4,59	4,57	4,65	4,55	4,56	4,5	4,56	4,45	4,38
● E.S.E.E.R.		6,6	6,6	6,64	6,39	6,5	6,26	6,07	6,17	6,04	6,02	6,02	5,79
♥ E.S.E.E.R.+		7,54	7,62	7,68	7,39	7,42	7,23	7,10	7,08	6,91	6,89	6,91	6,71
модель тннеу		245	250	260	270	275	290	2100	2115	2130	2145	2165	2185
Тепловая мощность	кВт	50,2	59,1	67,9	75,7	84,1	102,4	117.0	133,9	147,9	163,4	186,9	209,7
② C.O.P.		4,10	4,22	4,25	4,27	4,22	4,26	4,20	4,24	4,17	4,13	4,07	4,01
Холодильная мощность		41,2	48,5	55,2	63	69,1	81,9	95,7	109,1	120,7	134,3	152,2	169,9
Потребляемая мощность	кВт	12,24	14,00	15,98	17,73	19,93	24,04	27,86	31,58	35,47	39,56	45,92	52,29
Звуковая мощность	дБ(А)	67	67	68	68	69	70	71	72	73	74	74	75
Компрессор спиральный/ступенчатый	кол-во	2/2	2/2	2/2	2/2	2/3	2/2	2/3	2/3	2/3	2/2	2/3	2/2
Контуры	кол-во	1	1	1	1	1	1	1	1	1	1	1	
Электропитание	В-фаз-Гц	400-3+N-50											
РАЗМЕРЫ И ВЕС		245	250	260	270	275	290	2100	2115	2130	2145	2165	2185
④ L - Ширина	MM	1.000	1.000	1.000	1.000	1.000	1.000	1.250	1.250	1.250	1.250	1.250	1.250
5 L - Ширина	MM	1.250	1.250	1.250	1.250	1.250	1.250	1.500	1.500	1.500	1.500	1.500	1.500
Н - Высота	MM	1.400	1.400	1.400	1.400	1.400	1.400	1.550	1.550	1.550	1.550	1.550	1.550
Р - Глубина	MM	870	870	870	870	870	870	870	870	870	870	870	870
Модель ТСНЕУ		418	30	4205	4235	42	260	4290	4330	43	860	4410	4450
О Холодильная мощность	кВт	180	1.6	206,5	232,2	25	9,8	287,2	325,6		2,8	407,1	448,8
Потребляемая мощность	кВт	37,		43,2	48,58		,58	60,46	69,72		,39	90,87	103,17
• E.E.R.		4,		4,78	4,78		,76	4,75	4,67		,57	4,48	4,35
● E.S.E.E.R.		5,		5,95	6,11		6,1	6,09	6,01		,87	5,64	5,28
© E.S.E.E.R.+		6,3		7,03	7,19		.12	7,13	7,07		,94	6,63	6,16
МОДЕЛЬ ТННЕУ		418		4205	4235		60	4290	4330		60	4410	4450
2 Тепловая мощность	кВт	202		231,0	259,2		2,3	323,9	369,3		4,0	464,4	515,5
② C.O.P.			,4	4,33	4,26		,27	4,27	4,2		,16	3,97	4,03
О Холодильная мощность		160		183,5	206,5		1,4	255,2	292,7		0,1	373,9	412,9
 Потребляемая мощность 	кВт	45,	,	53,35	60,85		,45	75,85	87,93		,52	116,98	127,92
Звуковая мощность	дБ(А)		77	77	78		,13 79	80	81		82	83	84
Компрессор спиральный/ступенчатый			/4	4/4	4/4		4/4	4/4	4/4		4/4	4/4	4/4

2

4235

2.509

3.734

1.855

870

400-3+N-50

2

4205

2.509

3.734

1.855

870

400-3+N-50

2

400-3+N-50

4260

2.509

3.734

1.855

870

2

4180

2.509

3.734

1.855

870

400-3+N-50

кол-во

В-фаз-Гц

MM

MM

MM

MM

Данные при следующих условиях:

① Охлажденная вода: 12/7°С. - Вода конденсатора: 30/35°С

2

4290

2.509

3.734

1.855

870

400-3+N-50

- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.

2

4330

2.509

3.734

1.855

870

400-3+N-50

2

4360

2.509

3.734

1.855

870

400-3+N-50

- Ширина агрегата в стандартном оснащении или с дополнительными ● приспособлениями "теплоутилизатор" или "пароохладитель".
 - Ширина агрегата с оснащением РИМР, до 2 насосов на мод. 245÷2185 (2 насоса со стороны пользователя или со стороны сточного канала или 1 насос со стороны
- стороны пользователя или со стороны сточного канала или 1 насос со стороны пользователя + 1 со стороны сточного канала) и не более 4 насосов в мод. 4180÷4450 (2 насоса со стороны пользователя и 2 со стороны сточного канала).
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- ESEER с ПО Adaptive Function Plus. ESEER+ не сертифицирован Eurovent. Эксплуатационные показатели в соответствии с EN 14511:2013.

Web code: ZFE01

O1 Z-Flow HE

TCHVZ 1201÷31631

Мощность при охлаждении: 203,3÷1 627,6 кВт

- Эффективная серия с ESEER до 5,88
- 33 типоразмера до 1.600 кВт
- Богатый набор комплектующих в серийном оснащении

Компактные чиллеры с водяным охлаждением конденсатора. Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск с использованием части обмотки или по схеме "звезда-треугольник" (в зависимости от модели), с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Водяной теплообменник (испаритель): кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Теплообменник со стороны воды (конденсатор): кожухотрубный, в комплект входит предохранительный клапан, рабочий отвод с вентилем на контуре высокого давления газового хладагента.
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.
- Отображение высокого/низкого давления охладительной цепи.
- Аналоговый сигнал 0-10 Вольт для контроля конденсации, выполняемой на внешнем устройстве.

Варианты исполнения

- В Базовая версия (TCHVBZ).
- I Версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TCHVIZ).

Модели

- TCHVBZ: агрегат предусмотрен только для охлаждения.
- TCHVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.

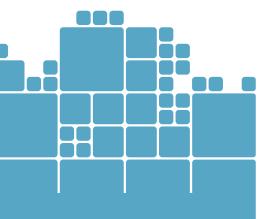
Аксессуары, установленные на заводе

- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/ пароохладителя.
- Оснащение для работы в режиме теплового насоса.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Магнитотермические выключатели.
- Принудительное ограничение электрической мощности.
- "Плавный" пускатель.
- Отсекающие вентили компрессоров на всасывании.
- Компрессоры с контролем линейной нагрузки (50-100% для каждого компрессора).
- Противообледенительный нагревательный элемент испарителя.
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.
- Виброизолирующие резиновые опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

		1201	1231	1281	1311	1351	1421	1481	1531	1611
	кВт	203.3								605.9
										4.95
										5.85
										122.4
										98
•										91
										1/3
										400.2.54
	В-фаз-Іц									400-3-50
										1611
										3.450
										1.740
										1.000
										2.697
Bec ICHVIZ	КГ	1.598	1.624	1.9/0	1.988	2.140	2.629	2.668	2.917	2.952
МОДЕЛЬ ТСНУВZ-ТСНУІZ		2411	2431	2461	2511	2561	2601	2631	2681	2711
• • •	кВт	405.5	433.6	460.4	512.7					712.5
		4.95	4.96	4.95	4.97	4.97				4.94
		5.75	5.67	5.65	5.73	5.81				5.64
	кВт	81.92	87.42	93.01	103.16					144.23
	дБ(А)	97	97	97	99					99
		95			97	97	97	97	97	97
		2/6	2/6	2/6	2/6					2/6
· · · · · · · · · · · · · · · · · · ·										2
• •										400-3-50
	7									2711
	MM									4.070
•										1.960
										1.300
,										3.447
	КГ	2.816	2.843	2.888	3.383	3.727				3.877
MORERI TOWNS TOWNS		2704	2044	2001		2041	24024	24444	24404	24264
										21261
	KBT									1253.1
										5.08
										5.73
•										246.67
										99
										97
										2/6
•										2
	в-фаз-Іц									400-3-50
										21261
										4.000
										1.950
	MM									1.300
										4.934
BEC ICHVIZ	КГ	4.350	4.836	5.066)	5.099	5.209	5.300	5.438	5.364
МОДЕЛЬ ТСНУВZ-ТСНУІZ		31301	313	351	31401	3146	1 :	31521	31591	31631
Номинальная холодопроизводительность	кВт	1303.6	135	1.2	1400.8	1457	.3	1517,8	1576,2	1627,6
E.E.R.		5.09	5	.04	5.0	4.9	18	4,98	4,99	4,97
E.S.E.E.R.		5.82	5	.77	5.81	5.7	6	5,87	5,86	5,86
Потребляемая мощность	кВт	256.11			280.16				315,87	327,48
Звуковая мощность	дБ(А)	101	1	101	101	10)2	102	102	102
Звуковая мощность	дБ(А)	99		99	99	10	00	100	100	100
Винтовой/ступенчатый компрессор	кол-во	3/9		3/9	3/9	3,	/9	3/9	3/9	3/9
Контуры	кол-во	3		3	3		3	3	3	3
, ·	В-фаз-Гц	400-3-50	400-3	-50 4	00-3-50	400-3-5	50 400	0-3-50	400-3-50	400-3-50
		31301	313		31401	3146		31521	31591	31631
РАЗМЕРЫ И ВЕС					4.940	4.94		4.940	4.940	4.940
РАЗМЕРЫ И ВЕС L - Ширина	MM	4.940	4.9	940	4.240	7.2				
	MM MM	4.940 2.220		220	2.220	2.22		2.220	2.220	2.220
L - Ширина	MM		2.2				.0	2.220 1.700		
L - Ширина Н - Высота		2.220	2.7 1.7	220	2.220	2.22	0 0		2.220	2.220 1.700 7.157
	РАЗМЕРЫ И ВЕС 1 - Ширина 1 - Высота 2 - Глубина Вес ТСНУВZ Вес ТСНУВZ Вес ТСНУВZ Вес ТСНУВZ МОДЕЛЬ ТСНУВZ-ТСНУІЗ Номинальная холодопроизводительность Е.Е.R. Е.S.E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС 1 - Ширина Н - Высота Р - Глубина Вес ТСНУІЗ МОДЕЛЬ ТСНУВZ-ТСНУІЗ Номинальная холодопроизводительность Е.Е.R. Е.S.E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС 1 - Ширина Н - Высота Р - Глубина Вес ТСНУВЗ Вес ТСНОВЗ Возвая мощность Звуковая мощность	Номинальная холодопроизводительность Е.Е.R. Е.S.E.E.R. Потребляемая мощность	Номинальная холодопроизводительность КВТ	Номинальная холодопроизводительность	Номинальная холодопроизводительность Е.Е.R. Е.Е.R. 4.95 4.96 4.97 5.5.72 1.5.72 1.5.72 1.5.72 1.5.72 1.5.72 1.5.72 1.5.73 2	Номиманьана холодопроизводительность кВт 20.33 220.2 282.1 30.8.0 E.S.E.R. 4.95 4.96 4.97 4.96 E.S.E.R. 5.88 5.71 5.72 5.63 Погребляемая мощность дБ(A) 94 94 97 7.27 Звуковая мощность дБ(A) 94 94 97 7.27 Звуковая мощность мБ(A) 92 92 95 95 Винтовой/ступенчатый компрессор кол-во 1.73 1/3	Номинальная жоподопроизводительность кВТ 203,3 230,2 282,1 308,0 352,8 ES.E.E.R. 495 496 497 496 497 496 497 ES.E.E.R. 5.88 5.71 5.72 5.63 5.82 Inorpe6neawa мощность кВТ 41.07 40.41 56.76 6.21 71.27 Sayrosaan мощность дБ(A) 94 97 97 97 97 Sayrosaan мощность кВТ 41.07 40.41 56.76 6.21 71.27 Sayrosaan мощность мол-во 1 1 1 1 1 1 1 1 1	Номинальнае жилодопроизводительность RP 203.3 230.2 282.1 308.0 332.8 416.4 EER 495 496 4.97 4.96 4.97 4.96 4.95 4.95 ES.E.E.R 5.88 5.71 5.72 5.63 5.82 5.77	Номинальнам эколорировазводительность кВТ 203,3 230,2 282,1 308,0 352,8 416,4 478,2 54,6 459,5 4,96 4,97 4,96 4,97 4,96 4,97 4,96 4,97 4,96 4,97 4	Номеманьма мощностно можения (можения можения можен

- Охлажденная вода: 7/12°С. Вода на входе конденсатора: 30/35°С
- 6 Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Порожний вес.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
- Версия со звукоизоляцией TCHVIZ.


Эксплуатационные показатели в соответствии с EN 14511:2013.

Web code: ZF001

Z-Flow SE

TCHVZ 1200÷31630

Мощность при охлаждении: 198,8÷1 624,5 кВт

- Эффективная гамма с EER >4,70
- 33 типоразмера до 1.600 кВт
- Тепловой насос с производством горячей воды до 55°C

Компактные чиллеры с водяным охлаждением конденсатора. Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск с использованием части обмотки или по схеме "звезда-треугольник" (в зависимости от модели), с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Водяной теплообменник (испаритель): кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Теплообменник со стороны воды (конденсатор): кожухотрубный, в комплект входит предохранительный клапан, рабочий отвод с вентилем на контуре высокого давления газового хладагента.
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.
- Отображение высокого/низкого давления охладительной цепи.
- Аналоговый сигнал 0-10 Вольт для контроля конденсации, выполняемой на внешнем устройстве.

Варианты исполнения

- В Базовая версия (TCHVBZ).
- I Версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TCHVIZ).

Модели

- TCHVBZ: агрегат предусмотрен только для охлаждения.
- TCHVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

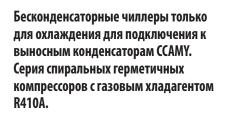
- Пароохладитель.
- Теплоутилизатор 100%.
- Термостат с дисплеем для теплоутилизатора/ пароохладителя.
- Оснащение для работы в режиме теплового насоса.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Магнитотермические выключатели.
- Принудительное ограничение электрической мощности.
- "Плавный" пускатель.
- Отсекающие вентили компрессоров на всасывании.
- Компрессоры с контролем линейной нагрузки (50-100% для каждого компрессора).
- Противообледенительный нагревательный элемент испарителя.
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.
- Виброизолирующие резиновые опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

	МОДЕЛЬ ТСНУВZ-ТСНУІХ		1200	1230	1280	1310	1350	1410	1460	1530	1590
0	Номинальная холодопроизводительность	кВт	198.8	225.4	276.2	304.6	346.1	402.7	460.5	522.7	587.1
	E.E.R.		4.81	4.8	4.79	4.76	4.8	4.79	4.79	4.78	4.81
	E.S.E.E.R.		5.73	5.55	5.5	5.46	5.73	5.65	5.52	5.49	5.76
0	Потребляемая мощность	кВт	41.33	46.96	57.66	63.99	72.1	84.07	96.14	109.35	122.06
€	Звуковая мощность	дБ(А)	94	94	97	97	97	97	97	98	98
6	Звуковая мощность	дБ(А)	92	92	95	95	95	95	95	96	96
	Винтовой/ступенчатый компрессор	кол-во	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
	Контуры	кол-во	1	1	1	1	1	1	1	1	1
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС		1200	1230	1280	1310	1350	1410	1460	1530	1590
	L - Ширина	MM	3.460	3.460	3.440	3.440	3.450	3.450	3.450	3.450	3.450
	Н - Высота	MM	1.460	1.460	1.460	1.460	1.640	1.640	1.640	1.740	1.740
	Р - Глубина	MM	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	Bec TCHVBZ	ΚΓ	1.333	1.359	1.695	1.713	1.865	2.354	2.393	2.642	2.687
6	Bec TCHVIZ	КГ	1.588	1.614	1.950	1.968	2.120	2.609	2.648	2.897	2.942
	МОДЕЛЬ ТСНУВZ-ТСНУІZ		2400	2420	2440	2510	2560	2600	2630	2680	2710
0	Номинальная холодопроизводительность	кВт	389.9	411.5	430.3	505.3	549.0	589.6		674.1	706.8
	Е.Е.R.	וטא	4.77	4.71	4.64	4.72	4.84	4.81	4.81	4.81	4.81
	E.S.E.E.R.		5.47	5.51	5.38	5.51	5.75	5.71	5.6	5.5	5.48
	Потребляемая мощность	кВт	81.74	87.37	92.74	107.06	113.43	122.58	128.67	140.15	146.94
6		дБ(А)	97	97	92.74	99	99	99	99	99	99
	Звуковая мощность	дБ(A) дБ(A)	97	95	95	99	99	99	99	99	99
v	Винтовой/ступенчатый компрессор	до(A) Кол-во	2/6	2/6	2/6	2/6	2/6	2/6	2/6	2/6	2/6
	Контуры	кол-во	2	2	2/0	2/0	2/0	2/0	2/0	2/0	2/0
		В-фаз-Гц	400-3-50		400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС	р-фаз-тц	2400	2420	2440	2510	2560	2600	2630	2680	2710
	L - Ширина	MM	3.880	3.880	4.000	4.070	4.070	4.070	4.070	4.070	4.070
	Н - Высота				1.840	1.960				1.960	
		MM	1.840 1.300	1.840 1.300	1.300	1.300	1.960 1.300	1.960 1.300	1.960 1.300	1.300	1.960 1.300
•	P - Глубина Bec TCHVBZ	MM	2.366	2.393	2.438	2.923	3.257	3.280	3.297	3.364	3.407
	Bec TCHVIZ	КГ КГ	2.796	2.823	2.868	3.353	3.687	3.710	3.227	3.794	3.837
	МОДЕЛЬ ТСНУВZ-ТСНУІХ		2750	2790	2880		2930	21030	21110	21180	21260
0	Номинальная холодопроизводительность	кВт	738.6	783.1	876.4		924.1	1014.2	1084.5	1152.2	1204.4
	E.E.R.		4.75	4.7	4.83		4.72	4.77	4.81	4.83	4.78
•			5.46	5.49	5.8		5.59	5.69	5.78	5.68	5.62
0	Потребляемая мощность	кВт	155.49	166.62	181.45		195.78	212.62	225.47	238.55	251.97
6	<u> </u>	дБ(А)	99	99	99		99	99	99	99	99
6	Звуковая мощность	дБ(А)	97	97	97		97	97	97	97	97
	Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6		2/6	2/6	2/6	2/6	2/6
	Контуры	кол-во	2	2	2		2	2	2	2	2
		В-фаз-Гц	400-3-50	400-3-50	400-3-50			400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС	- 1	2750	2790	2880		2930	21030	21110	21180	21260
	L - Ширина	MM	4.120	4.000	4.000		4.000	4.000	4.000	4.000	4.000
	Н - Высота	MM	1.840	1.840	1.910		1.910	1.950	1.950	1.950	1.950
	Р - Глубина	MM	1.300	1.300	1.300		1.300	1.300	1.300	1.300	1.300
6	Bec TCHVBZ	КГ	3.880	4.366	4.596		4.629	4.739	4.830	4.878	4.914
	Bec TCHVIZ	КГ	4.310	4.796	5.026		5.059	5.169	5.260	5.308	5.344
	MORFEL TOURS TOURS		34300	343	F0	21200	24.4		1520	21500	34730
_	МОДЕЛЬ TCHVBZ-TCHVIZ		31300			31390	3146		31520	31590	31630
	Номинальная холодопроизводительность	кВт	1280.1			1373.9	1433		1514,5	1576,5	1624,5
	E.E.R.		4.91		.86	4.8		.8	4,84	4,84	4,79
	E.S.E.E.R.		5.88		.77	5.75	5.0		5,81	5,8	5,8
	Потребляемая мощность	кВт	260.71	273		286.23	298.		312,91	325,72	339,14
	Звуковая мощность	дБ(А)	101		101	101		02	102	102	102
0	Звуковая мощность	дБ(А)	99		99	99		00	100	100	100
	Винтовой/ступенчатый компрессор	кол-во	3/9		3/9	3/9	3	/9	3/9	3/9	3/9
	Контуры	кол-во	3		3	3		3	3	3	3
		В-фаз-Гц	400-3-50			00-3-50	400-3-		0-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС		31300			31390	3146		31520	31590	31630
	L - Ширина	MM	4.940		940	4.940	4.9		4.940	4.940	4.940
	Н - Высота	MM	2.220	2.2	220	2.220	2.2		2.220	2.220	2.220
											4 700
	Р - Глубина	MM	1.700	1.7	700	1.700	1.70		1.700	1.700	
				1.7 6.7	700 767 867	1.700 6.792 7.392	1.70 6.83 7.43	31	1.700 6.920 7.520	1.700 7.008 7.608	7.097 7.697

- Охлажденная вода: 7/12°C. Вода на входе конденсатора: 30/35°C
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- 6 Порожний вес.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности.
 Версия со звукоизоляцией TCHVIZ.

Эксплуатационные показатели в соответствии с EN 14511:2013.


Web code 245÷2185: YFC21 Web code 4180÷4360: YFC31

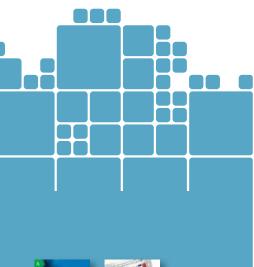
Y-Flow E низкого потребления

TCEEBY 245 ÷ 4360

Мощность при охлаждении: 39,8÷320,9 кВт

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменник со стороны воды: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.


Модели

• ТСЕЕВҮ: агрегат предусмотрен только для охлаждения.

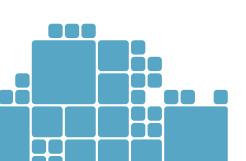
Аксессуары, установленные на заводе

- PUMP Первичная сторона (пользователь): насосный блок с одним или двумя циркуляционными электронасосами, мембранный бак расширения, предохранительный клапан, клапан для наполнения/слива воды, ручной клапан стравливания воздуха, манометр. Электронасосы предоставляются в версиях с низким и высоким напором.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Манометры высокого и низкого давления охладительной цепи.
- Конденсатор корректировки мощности.
- Устройство "плавного запуска".
- Принудительное ограничение электрической мощности.
- Исполнение с пониженным уровнем шума.
- Интерфейс для серийной связи с другими устройствами.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Виброизолирующие резиновые опоры поставляются не установленными.

- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Водный фильтр.
- Виброизолирующие резиновые опоры.
- Плата часового датчика.
- Удаленный кнопочный пульт с дисплеем.
- Последовательный преобразователь (RS485/USB).

Модель ТСЕЕВҮ		245	250	260	270	275	290	2100	2115	2130	2145	2165	218
• Номинальная холодопроизводительность	кВт	39,8	47,3	53,6	61,3	67,9	80,6	91,7	103,4	115,0	128,2	145,7	162,
• EER		3,29	3,38	3,30	3,76	3,39	3,49	3,38	3,34	3,29	3,34	3,26	3,19
Потребляемая мощность (*)	кВт	12,1	14	16,2	18,2	20	23,1	27,1	31,0	35,0	38,4	44,7	50,8
 Полезный напор стандартного электронасоса 	кПа	116	108	134	94	84	86	117	119	133	117	119	106
• Полезный напор электронасоса высокого напора	кПа	182	187	171	185	177	180	169	178	190	176	177	172
Звуковая мощность	дБ(А)	67	67	68	68	69	70	71	72	73	74	74	75
Звуковая мощность звукоизоляционного исполнения	дБ(А)	63	63	64	64	65	66	67	68	69	70	70	71
Компрессоры спиральные/ступенчатые	кол-во	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
Контуры	кол-во	1	1	1	1	1	1	1	1	1	1	1	1
Электропитание	В-фаз-Гц	400-3+N-50											
РАЗМЕРЫ И ВЕС													
L - Ширина	MM	1000	1000	1000	1000	1000	1000	1270	1270	1270	1270	1270	1270
L - Ширина (оснащение PUMP - HACOC)	MM	1250	1250	1250	1250	1250	1250	1500	1500	1500	1500	1500	1500
Н - Высота	MM	1400	1400	1400	1400	1400	1400	1550	1550	1550	1550	1550	1550
Р - Глубина	MM	870	870	870	870	870	870	870	870	870	870	870	870

Модель ТСЕЕВҮ		4180	4205	4235	4260	4290	4330	4360
• Номинальная холодопроизводительность	кВт	161,2	182,9	205,0	229,4	253,8	287,4	320,9
• EER		3,53	3,50	3,48	3,49	3,50	3,42	3,36
Потребляемая мощность (*)	кВт	45,7	52,3	58,9	65,8	72,6	84,0	95,5
• Полезный напор стандартного электронасоса	кПа	140	132	114	117	111	136	168
• Полезный напор электронасоса высокого напора	кПа	195	200	196	240	273	241	257
Звуковая мощность	дБ(А)	77	77	78	79	80	81	82
Звуковая мощность звукоизоляционного исполнения	дБ(А)	75	75	76	77	78	79	80
Компрессоры спиральные/ступенчатые	кол-во	4/4	4/4	4/4	4/4	4 / 4	4 / 4	4/4
Контуры	кол-во	2	2	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3+N-50						
РАЗМЕРЫ И ВЕС								
L - Ширина	MM	2509	2509	2509	2509	2509	2509	2509
L - Ширина (оснащение PUMP - HACOC)	MM	3734	3734	3734	3734	3734	3734	3734
Н - Высота	MM	1855	1855	1855	1855	1855	1855	1855
Р - Глубина	MM	870	870	870	870	870	870	870


- Охлажденная вода: 12/7°С Температура конденсации: 50°С (точка росы)
- Уровень звуковой мощности в дБ (А) на основании измерений, выполненных в соответствии с нормативными требованиями UNI EN ISO 9614

(*) Агрегат без электронасосов.

Примечание: модели 245÷2185 совместимы с соответствующими моделями выносных конденсаторов ССАМҮ. Что касается моделей 4180÷4360 , см. таблицу ниже

Рекомендуемая комбинация с ко	онденсаторами ССАМҮ для м	оделей ТСЕЕВҮ	4180÷4360					
Модель ТСЕЕВҮ		4180	4205	4235	4260	4290	4330	4360
Manage CCAMV	Контур 1	CCAMY 290	CCAMY 2110	CCAMY 2115	CCAMY 2130	CCAMY 2145	CCAMY 2165	CCAMY 2185
Модель ССАМҮ	Контур 2	CCAMY 290	CCAMY 2110	CCAMY 2115	CCAMY 2130	CCAMY 2145	CCAMY 2165	CCAMY 2185

Web code: ZFC01

Z-Flow E TCEVZ 1200÷31630

Мощность при охлаждении: 171,9÷1 424,8 кВт

- Экономные бесконденсаторные чиллеры, заряженные хладагентом R134a
- 33 типоразмеров в базовой версии и со звукоизоляцией
- Богатый набор комплектующих в серийном оснащении

Бесконденсаторные чиллеры только в режиме охлаждения. Серия с полугерметичными винтовыми

компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск с использованием части обмотки или по схеме "звезда-треугольник" (в зависимости от модели), с ограниченным пусковым током, в комплект входит интегральная защита, нагрев картера и отсекающий вентиль на трубопроводе подачи хладагента.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Водяной теплообменник (испаритель): кожухотрубный с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (TCEVBZ).
- I Версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TCEVIZ).

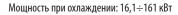
Модели

- TCEVBZ: агрегат предусмотрен только для охлаждения.
- TCEVIZ: агрегат со звукоизоляцией предусмотрен только для охлаждения.

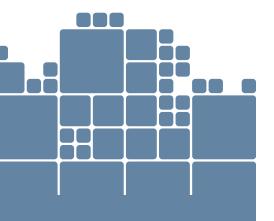
Аксессуары, установленные на заводе

- Конденсатор корректировки мощности ($\cos \phi > 0,94$).
- Магнитотермические выключатели.
- Принудительное ограничение электрической мощности.
- "Плавный" пускатель.
- Отсекающие вентили компрессоров на всасывании.
- Компрессоры с контролем линейной нагрузки (50-100% для каждого компрессора).
- Противообледенительный нагревательный элемент испарителя.
- Двойной комплект установок с цифровым подтверждением.
- Датчик уровня масла компрессора.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.
- Виброизолирующие резиновые опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



	МОДЕЛЬ ТСЕVВZ-ТСЕVIZ		1200	1230	1280	1310	1350	1410	1460	1530	1590
0	Номинальная холодопроизводительность	кВт	171,9	190,8	238,1	260,4	300,6	346,2	399,7	446,4	508,9
0	E.E.R.		3,4	3,3	3,3	3,3	3,4	3,3	3,3	3,3	3,4
0	Потребляемая мощность	кВт	50,5	58,1	72,2	79,0	88,1	104,0	122,2	135,3	149,7
6	Звуковая мощность	дБ(А)	94	94	97	97	97	97	97	98	98
6	Звуковая мощность	дБ(А)	92	92	95	95	95	95	95	96	96
	Винтовой/ступенчатый компрессор	кол-во	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
	Контуры	кол-во	1	1	1	1	1	1	1	1	1
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС		1200	1230	1280	1310	1350	1410	1460	1530	1590
	L - Ширина	MM	3.440	3.440	3.420	3.440	3.450	3.450	3.450	3.460	3.460
	Н - Высота	MM	1.460	1.460	1.460	1.460	1.640	1.640	1.640	1.740	1.740
_	Р - Глубина	MM	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	Bec TCEVBZ	КГ	1.078	1.093	1.410	1.414	1.557	2.032	2.038	2.252	2.281
9	Bec TCEVIZ	КГ	1.333	1.348	1.665	1.669	1.812	2.287	2.293	2.507	2.536
	МОДЕЛЬ TCEVBZ-TCEVIZ		2400	2420	2440	2510	2560	2600	2630	2680	2710
0	Номинальная холодопроизводительность	кВт	335,8	356,6	372,1	431,9	473,4	506,4	529,3	581,4	614,1
0	E.E.R.		3,3	3,3	3,2	3,3	3,3	3,3	3,3	3,5	3,5
0	Потребляемая мощность	кВт	100,7	108,3	115,7	130,6	144,4	151,5	158,4	168,0	176,6
6	Звуковая мощность	дБ(А)	97	97	97	99	99	99	99	99	99
•	Звуковая мощность	дБ(А)	95	95	95	97	97	97	97	97	97
	Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6	2/6	2/6	2/6	2/6
	Контуры	кол-во	2	2	2	2	2	2	2	2	2
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС		2400	2420	2440	2510	2560	2600	2630	2680	2710
	L - Ширина	MM	3.870	3.870	3.870	4.070	4.070	4.070	4.070	4.070	4.070
	Н - Высота	MM	1.490	1.490	1.490	1.610	1.610	1.610	1.610	1.610	1.610
-	Р - Глубина	MM	1.300	1.300	1.300	1.300	1.300	1.300	1.300	1.300	1.300
	Bec TCEVBZ Bec TCEVIZ	КГ КГ	1.797 2.227	1.811 2.241	1.819 2.249	2.311	2.629 3.059	2.637 3.067	2.638 3.068	2.698 3.128	2.733 3.163
0	МОДЕЛЬ TCEVBZ-TCEVIZ Номинальная холодопроизводительность	кВт	2750 647,8	2790 681,6	288 753,		2930 801,4	21030 896,1	21110 959,4	21180 1.027,8	21260 1.101,5
	МОДЕЛЬ ТСЕVBZ-ТСЕVIZ Номинальная холодопроизводительность Е.Е.R.	кВт	2750 647,8 3,4	2790 681,6 3,3	288 753,	9	2930 801,4 3,3	21030 896,1 3,5		21180 1.027,8 3,6	1.101,5
	Номинальная холодопроизводительность	кВт кВт	647,8	681,6	753,	9	801,4	896,1	959,4	1.027,8	
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность		647,8 3,4 192,1 99	681,6 3,3 207,6 99	753, 3, 226, 9	9 3 5 9	801,4 3,3 244,4 99	896,1 3,5 257,9 99	959,4 3,5 271,0 99	1.027,8 3,6 285,5 99	1.101,5 3,7 299,4 99
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность	кВт	647,8 3,4 192,1 99 97	681,6 3,3 207,6 99 97	753, 3, 226, 9	9 3 5 9 7	801,4 3,3 244,4 99 97	896,1 3,5 257,9 99 97	959,4 3,5 271,0 99 97	1.027,8 3,6 285,5 99 97	1.101,5 3,7 299,4 99
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор	кВт дБ(А)	647,8 3,4 192,1 99 97 2/6	681,6 3,3 207,6 99 97 2/6	753, 3, 226, 9 9	9 3 5 9 7	801,4 3,3 244,4 99 97 2/6	896,1 3,5 257,9 99 97 2/6	959,4 3,5 271,0 99 97 2/6	1.027,8 3,6 285,5 99 97 2/6	1.101,5 3,7 299,4 99 97 2/6
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры	кВт дБ(А) дБ(А) кол-во кол-во	647,8 3,4 192,1 99 97 2/6	681,6 3,3 207,6 99 97 2/6	753, 3, 226, 9 9	9 3 5 9 7 6	801,4 3,3 244,4 99 97 2/6 2	896,1 3,5 257,9 99 97 2/6 2	959,4 3,5 271,0 99 97 2/6	1.027,8 3,6 285,5 99 97 2/6	1.101,5 3,7 299,4 99 97 2/6
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание	кВт дБ(А) дБ(А) кол-во	647,8 3,4 192,1 99 97 2/6 2 400-3-50	681,6 3,3 207,6 99 97 2/6 2 400-3-50	753, 3, 226, 9 9 2/	9 3 5 9 7 6 2 0 40	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4	896,1 3,5 257,9 99 97 2/6 2 00-3-50	959,4 3,5 271,0 99 97 2/6 2 400-3-50	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС	кВт дБ(А) дБ(А) кол-во кол-во В-фаз-Гц	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790	753, 3, 226, 9 9 2/ 400-3-5(9 3 5 9 7 6 2 0 40	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина	кВт дБ(А) дБ(А) кол-во кол-во В-фаз-Гц	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000	753, 3, 226, 9 9 2/ 400-3-5: 288(4.00	9 3 5 9 7 6 2 0 40 0	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000
0	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота	кВт дБ(А) дБ(А) кол-во кол-во В-фаз-Гц	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000	753, 3, 226, 9 9 2/ 400-3-5: 288(4.00)	9 3 5 9 7 6 6 2 0 40 0 0	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600	959,4 3,5 271,0 99 97 2/6 2 400-3-50 2-1110 4.000 1.600	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600
6	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц мм мм	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490	753, 3, 226, 9 9 2/ 400-3-5 288 4.00 1.56 1.30	9 3 5 9 7 6 2 0 40 0 0 0	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600
6	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота P - Глубина Вес ТСЕVВZ	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц мм мм мм	647,8 3,4 192,1 99 97 2/6 2 400-3-50 4.120 1.490 1.300 3.176	681,6 3,3 207,6 99 97 2/6 2 400-3-50 4.000 1.490 1.300 3.631	753, 3, 226, 9 9 2/- 400-3-5- 288(4.00 1.56(1.30(3.84	9 9 3 3 5 5 9 9 7 7 6 6 2 2 0 0 40 0 0 0 0 0 0 0 4 4	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936	959,4 3,5 271,0 99 97 2/6 2 400-3-50 2110 4.000 1.300 3.993	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600 1.300 4.044
6	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц мм мм	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490	753, 3, 226, 9 9 2/ 400-3-5 288 4.00 1.56 1.30	9 9 3 3 5 5 9 9 7 7 6 6 2 2 0 0 40 0 0 0 0 0 0 0 4 4	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600
6 6	Номинальная холодопроизводительность E.E.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВZ Вес ТСЕУІZ	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц ММ ММ ММ	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/ 400-3-5: 288 4.00 1.566 1.300 3.84 4.27	9 9 3 3 5 5 9 9 7 7 6 6 6 2 2 0 0 40 0 0 0 0 0 0 0 4 4 2 2 3 1390	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.300 4.044 4.474
66	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВЗ Вес ТСЕУІЗ Номинальная холодопроизводительность	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц ММ ММ ММ	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606	681,6 3,3 207,6 99 97 2/6 2 400-3-50 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/- 400-3-5: 288 4.00 1.566 1.300 3.84 4.27	9 9 3 3 5 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 4 4 2 2 3 1 3 9 0 1 . 2 2 7 , 0	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.300 4.044 4.474 31630 1.424,8
0 0 8 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота P - Глубина Вес ТСЕУВZ Вес ТСЕУІZ МОДЕЛЬ ТСЕУВZ-ТСЕУІZ Номинальная холодопроизводительность Е.Е.R.	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц ММ ММ кг	647,8 3,4 192,1 99 97 2/6 2 400-3-50 4.120 1.490 1.300 3.176 3.606	681,6 3,3 207,6 99 97 2/6 2 400-3-50 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/- 400-3-5- 288(4.00 1.56(1.30(3.844 4.27.	9 3 3 5 5 9 9 7 6 6 2 0 0 40 0 0 0 0 0 4 4 2 2 3 1390 1.227,0 3,5	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 3,5	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 4.000 1.600 1.300 4.044 4.474 31630 1.424,8 3,5
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВZ Вес ТСЕУІZ МОДЕЛЬ ТСЕУВZ-ТСЕУІZ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц ммм мм кг кг	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606	681,6 3,3 207,6 99 97 2/6 2 400-3-50 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/- 400-3-5- 288(4.00 1.56(1.30(3.844 4.27: 650 8,3 3,6 1,8	9 3 3 5 9 9 7 6 6 2 0 40 0 0 0 0 0 4 4 2 2 3 1390 1.227,0 3,5 349,5	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 3,5 367,7	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 2110 4.000 1.600 1.300 3.993 4.423	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 4.000 1.600 1.300 4.044 4.474 31630 1.424,8 3,5 406,4
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУИZ Вес ТСЕУИZ МОДЕЛЬ ТСЕУВZ-ТСЕУІZ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц ммм мм кг кг	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101	681,6 3,3 207,6 99 97 2/6 2 400-3-50 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/- 400-3-56 4.00 1.566 1.30 3.84 4.27:	9 3 3 5 9 9 7 6 6 2 0 40 0 0 0 0 4 4 2 2 3 1390 1.227,0 3,5 349,5 101	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4,000 1.560 1.300 3.859 4.289 31460 1.287,5 3,5 367,1	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 2110 4.000 1.300 3.993 4.423 81520 340,1 3,5 380,4 102	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота P - Глубина Вес ТСЕУВZ Вес ТСЕУІZ МОДЕЛЬ ТСЕУВZ-ТСЕУІZ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц ммм ммм кг кг	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101 99	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/ 400-3-5: 288i 4.00i 1.56i 1.30i 3.84i 4.27: 850 88,3 3,6 1,8 101	9 9 3 3 5 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 0 4 4 2 2 3 1390 1.227,0 3,5 349,5 101 99	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 367,1 100	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 31520 3340,1 380,4 102 100	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота P - Глубина Вес ТСЕУВZ Вес ТСЕУІZ МОДЕЛЬ ТСЕУВZ-ТСЕУІZ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Звуковая мощность	кВт дБ(A) дБ(A) кол-во кол-во кол-во кол-во кол-во кол-во кол-во кол-во кол-во	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 314,1 101 99 3/9	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/ 400-3-5: 288i 4.00i 1.56i 1.30i 3.84i 4.27: 850 8,3 3,6 1,8 101 99 3/9	9 9 3 3 5 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 0 4 4 4 2 2 3 349,5 349	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 367,1 100 3/9	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 31520 3340,1 3,5 380,4 102 100 3,9	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100 3/9	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100 3/9
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВZ Вес ТСЕУІZ МОДЕЛЬ ТСЕУВZ-ТСЕУІZ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры	кВт дБ(A) дБ(A) кол-во кол-во в-фаз-Гц мм мм мм кг кг	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101 99 3/9	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/ 400-3-5: 288(4.00) 1.56(1.30) 3.844 4.27: 350 8,3 3,6 1,8 101 99 3/9 3	9 9 3 3 5 5 9 9 7 7 6 6 2 2 0 400 0 0 0 0 0 0 4 4 2 2 31390 1.227,0 3,5 349,5 101 99 3/9 3 3	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 3,5 367,7 100 3/9	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 31520 3340,1 3,5 380,4 102 100 3/9 3	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100 3/9 3	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100 3/9
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВЕ Вес ТСЕУІЕ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание	кВт дБ(A) дБ(A) кол-во кол-во кол-во кол-во кол-во кол-во кол-во кол-во кол-во	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101 99 3/9 3/9 3 400-3-50	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061	753, 3, 226, 9 9 2/- 400-3-5; 288i 4.00 1.56i 1.30i 3.844 4.27: 850 8,3 3,6 1,8 101 99 33/9 3 -50	9 3 3 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 4 4 2 2 3 1390 1.227,0 3,5 349,5 101 99 3/9 3 400-3-50	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 367,1 100 3/9 400-3-50	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 81520 .340,1 3,5 380,4 102 100 3/9 3 0-3-50	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100 3/9 3 400-3-50	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100 3/9 3 400-3-50
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВЕ Вес ТСЕУІЕ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС	кВт дБ(A) дБ(A) кол-во кол-во кол-во кол-во кол-во кол-во кол-во кол-во кол-во	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101 99 3,79 3 400-3-50 31300	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061 313 1.17	753, 3, 226, 9 9 2/- 400-3-5; 288 4.00 1.566 1.300 3.844 4.27: 850 8,3 3,6 1,8 101 99 33/9 3 -50 4	9 9 3 5 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 3,6 100 3/6 400-3-50 31460 31460	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 81520 .340,1 3,5 380,4 102 100 3/9 3 0-3-50 81520	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100 3,79 3 400-3-50 31590	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100 3/9 3 400-3-50 31630
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВЕ Вес ТСЕУІЕ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание	кВт дБ(A) дБ(A) кол-во кол-во в-фаз-Гц мм мм мм кг кг	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101 99 3/9 3/9 3 400-3-50	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061 313 1.17 333 4.003	753, 3, 226, 9 9 2/- 400-3-5; 288i 4.00 1.56i 1.30i 3.844 4.27: 850 8,3 3,6 1,8 101 99 33/9 3 -50	9 3 3 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 4 4 2 2 3 1390 1.227,0 3,5 349,5 101 99 3/9 3 400-3-50	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 367,1 100 3/9 400-3-50	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 81520 .340,1 3,5 380,4 102 100 3/9 3 0-3-50	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100 3/9 3 400-3-50	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.600 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100 3/9 3 400-3-50
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВZ Вес ТСЕУІZ МОДЕЛЬ ТСЕУВZ-ТСЕУІZ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина	кВт дБ(A) дБ(A) кол-во кол-во в-фаз-Гц ММ ММ КГ КГ КВТ КВТ КВТ КВТ КОЛ-во кол-во	647,8 3,4 192,1 99 97 2/6 2 400-3-50 2750 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101 99 3/9 3,9 400-3-50 31300 4.940	681,6 3,3 207,6 99 97 2/6 2 400-3-50 4.000 1.490 1.300 3.631 4.061 313 1.17 333 4.063	753, 3, 226, 9 9 2/- 400-3-5: 288: 4.00: 1.56: 1.30: 3.84: 4.27: 850 8,3 3,6 1,8 101 99 33 -50 40	9 3 3 5 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 0 4 4 2 2 31390 1.227,0 3,5 349,5 101 99 3/9 3 400-3-50 31390 4.940	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 3,6 367,7 102 3/9 400-3-50 31460 4.940	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 81520 .340,1 3,5 380,4 102 100 3/9 3 0-3-50 81520 4.940	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100 3/9 3 400-3-50 31590 4.940	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 21260 4.000 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100 3/9 3 400-3-50 31630 4.940
6 6	Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина Вес ТСЕУВЗ Вес ТСЕУІЗ Номинальная холодопроизводительность Е.Е.R. Потребляемая мощность Звуковая мощность Звуковая мощность Звуковая мощность Винтовой/ступенчатый компрессор Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота	кВт дБ(A) дБ(A) кол-во кол-во В-фаз-Гц ММ ММ КГ КГ КВТ ДБ(A) дБ(A) кол-во кол-во кол-во	647,8 3,4 192,1 99 97 2/6 2 400-3-50 4.120 1.490 1.300 3.176 3.606 31300 1.129,6 3,6 314,1 101 99 3/9 3 400-3-50 31300 4.940 1.620	681,6 3,3 207,6 99 97 2/6 2 400-3-50 2790 4.000 1.490 1.300 3.631 4.061 313 4.061	753, 3, 226, 9 9 2/- 400-3-5: 288: 4.00 1.56: 1.30: 3.84 4.27: 850 8,3 3,6 1,8 101 99 33/9 3 3-50 40 620	9 3 3 5 9 9 7 7 6 6 2 2 0 40 0 0 0 0 0 0 4 4 2 2 3 1390 101 99 3 /9 3 400-3-50 3 1390 4.940 1.620	801,4 3,3 244,4 99 97 2/6 2 0-3-50 4.000 1.560 1.300 3.859 4.289 31460 1.287,5 367,1 100 3/9 400-3-55 31460 4.940 1.620	896,1 3,5 257,9 99 97 2/6 2 00-3-50 21030 4.000 1.600 1.300 3.936 4.366	959,4 3,5 271,0 99 97 2/6 2 400-3-50 21110 4.000 1.600 1.300 3.993 4.423 81520 .340,1 3,5 380,4 102 100 3/9 3 0-3-50 11520 4.940 1.620	1.027,8 3,6 285,5 99 97 2/6 2 400-3-50 21180 4.000 1.600 1.300 4.024 4.454 31590 1.388,5 3,5 393,4 102 100 3/9 3 400-3-50 31590 4.940 1.620	1.101,5 3,7 299,4 99 97 2/6 2 400-3-50 1.600 1.300 4.044 4.474 31630 1.424,8 3,5 406,4 102 100 3/9 3 400-3-50 31630 4.940 1.620


- Охлажденная вода: 12/7°С Температура конденсации: 50°С (точка росы).
- Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- эровство общем эвуковом мождиести в деуху на основаниим извисрении
 Порожний вес относится к полностью укомплектованному агрегату.
 Версия со звукоизоляцией ТСЕVIZ.

Web code 118÷270: IN001 Web code 279÷2189: IN011

TCAEY 118÷2189

- Экономичная и гибкая промышленная серия, заправленная хладагентом R410A
- 17 типоразмеров для контуров не под давлением
- Богатые серийные оснащения и широкая серия комплектующих деталей

Промышленное и технологическое охлаждение

Чиллеры компактные с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия спиральных герметичных компрессоров, заправленных хладагентом R410A.

Конструктивные характеристики

Агрегаты созданы для работы на контурах не под

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера (мод.
- 2 или 3 ступеней регулировки с высокой эффективностью на частичных нагрузках (мод. 253÷2189).
- Водный теплообменник: с пластинами из нержавеющей стали с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками и дифференциальным реле давления потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входят защитные металлические фильтры.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- термомагнитные выключатели, компрессоры и вентиляторы;
- плата часового датчика (модели 279÷2189)

Модели

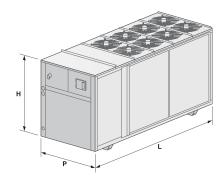
• TCAEY: агрегат предусмотрен только для охлаждения.

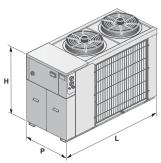
Аксессуары, установленные на заводе

• PUMP (модели 279÷2189) с одним или двойным электронасосом, один из которых находится в режиме ожидания, с автоматическим запуском, в комплект входят сапуны для стравливания воздуха, водный манометр, индикатор уровня, загрузка сверху. Электронасосы предоставляются в версиях с низким и высоким напором.

- TANK&PUMP с инертным накопительным баком, в комплект входит противообледенительный нагревательный элемент и одиночный или двойной электронасос, один из которых находится в режиме ожидания, с автоматическим приводом (только для мод. 253÷2189), клапаны для стравливания воздуха, манометр воды, индикатор уровня, загрузка сверху. Электронасосы, в зависимости от моделей, предоставляются в версиях с низким и высоким напором.
- Опция NON FERROUS (мод. 279÷2189) с электронасосом и/или накопителем из нержавеющей стали, трубопровод из меди и/или пластика для деминерализованной воды.
- Производство воды при низкой температуре, до -10°C (мод. 279÷2189).
- ТЭН картера компрессора (мод. 118÷131).
- Устройство "плавного запуска" (мод. 279÷2189).
- Конденсатор с фазовым переходом ($\cos \phi > 0.94$) (мод. 279÷2189).
- Металлические фильтры из нержавеющей стали для защиты батарей вместо стандартных фильтров (мод. 279÷2189).
- Манометр высокого и низкого давления цепи охлаждения (мод. 279÷2189).
- Противообледенительный нагревательный элемент электронасосов (мод. 279÷2189).
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.

- Виброизолирующие пружинные опоры.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика (модели 118÷270).
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.





	МОДЕЛЬ ТСАЕУ		118	121	128	131	135	140	253	261	270
0	Холодильная мощность	кВт	16,1	18,2	23,6	25,2	30	35,5	46,2	53,3	61,3
0	E.E.R.		2,78	2,71	2,84	2,7	2,57	2,49	2,61	2,64	2,73
•	E.S.E.E.R.		3,06	3,02	3,34	3	2,8	2,76	3,67	4,18	4,25
0	Потребляемая мощность	кВт	5,79	6,72	8,31	9,33	11,67	14,26	17,7	20,19	22,45
0	Номинальная холодопроизводительность	кВт	18,6	21,0	27,7	29,3	34,7	40,5	53,2	61,1	70,5
8	Звуковое давление	дБ(А)	50	50	50,5	50,5	55	52,1	54	54	54,5
	Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1	1/1	1/1	1/1	2/3	2/3	2/3
	Контуры	кол-во	1	1	1	1	1	1	1	1	1
	Содержание воды в накопительном баке	л.	42	42	51	51	55	80	150	150	150
0	Полезный номинальный напор электронасоса Р1	кПа	420	390	336	335	271	520	480	450	425
2	Полезный номинальный напор электронасоса Р2	кПа	-	-	-	-	-	-	-	-	_
	Электропитание	В-фаз-Гц	400-3+N-50								
	РАЗМЕРЫ И ВЕС		118	121	128	131	135	140	253	261	270
	L - Ширина	MM	510	510	510	510	610	1.710	2.315	2.315	2.315
	Н - Высота	MM	1.305	1.305	1.505	1.505	1.740	1.570	1.570	1.570	1.570
	Р - Глубина	MM	1.525	1.525	1.525	1.525	1.825	1.070	1.070	1.070	1.070
4	Bec	КГ	230	240	290	300	390	470	645	660	680

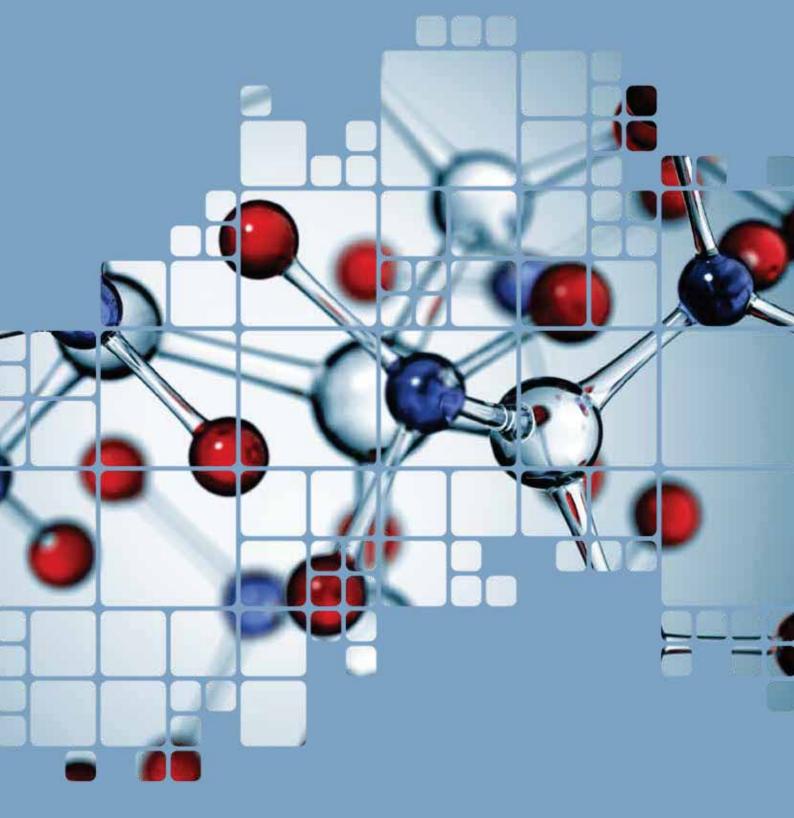
МОДЕЛЬ ТСАЕУ		279	299	2109	2119	2139	2149	2169	2189
• Холодильная мощность	кВт	64,1	79,2	88	100,3	114,3	126,2	144,1	161
• E.E.R.		2,84	2,91	2,83	2,84	2,85	2,83	2,83	2,83
● E.S.E.E.R.		3,41	3,49	3,34	3,38	3,39	3,34	3,35	3,34
• Потребляемая мощность	кВт	22,57	27,22	31,1	35,32	40,11	44,59	50,92	56,89
Номинальная холодопроизводительность	кВт	75,6	93,5	104,0	119,2	136,0	149,8	170,8	190,9
Звуковое давление	дБ(А)	50	51	52	52	55	55	56	56
Компрессор спиральный/ступенчатый	кол-во	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
Контуры	кол-во	2	2	2	2	2	2	2	2
Содержание воды в накопительном баке	Л.	250	250	250	250	450	450	450	450
Полезный номинальный напор электронасоса Р1	кПа	317	273	295	294	278	266	316	284
Полезный номинальный напор электронасоса Р2	кПа	415	375	379	390	371	355	443	412
Электропитание	В-фаз-Гц	400-3+N-50							
РАЗМЕРЫ И ВЕС		279	299	2109	2119	2139	2149	2169	2189
L - Ширина	MM	3.150	3.150	3.150	3.150	3.250	3.250	3.250	3.250
Н - Высота	MM	1.520	1.520	1.520	1.520	2.000	2.000	2.000	2.000
Р - Глубина	MM	1.210	1.210	1.210	1.210	1.520	1.520	1.520	1.520
④ Bec	КГ	1.070	1.080	1.200	1.320	1.550	1.620	1.655	1.685

- Воздух: 35°C Вода: 7/12°C
- Воздух: 27°С Вода: 10/15°С
- **③** В открытой зоне (Q = 2) на расстоянии 10 м от агрегата.
- **4** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности. Эксплуатационные показатели в соответствии с EN 14511:2013.

Compact-Y EXP SM - TXAEY 117÷130

Compact-Y EXP MD - TXAEY 133÷265

Y-Pack EXP низкого потребления - TXAEY 280÷4320


WinPOWER EXP низкого потребления - TXAEY 4400÷6660

Z-Power EXP - TXAVZ 2420÷2700

Comby-Flow EXP низкого потребления - TXHEY 105÷112

Y-Flow EXP низкого потребления - TXHEY 245÷4360

Z-Flow EXP - TXHVZ 2410÷2740

Инновация в нашем ДНК

Уверенность в качестве продукта достигается через проведение тщательных испытаний в лаборатории R&D, одной из самых крупных испытательных лабораторий в Европе.

Каждый блок Rhoss проходит серьезные функциональные испытания перед тем, как выйти на рынок, с симуляцией самых экстремальных рабочих условий.

EXPsystems - это экологичная поливалентная система, разработанная компанией RHOSS, для одновременной и независимой выработки холодной и горячей воды с помощью одного устройства. Сконструирована для работы с 2, 4-или 6-трубными системами, в любое время года.

Полная серия с воздушной и водяной конденсацией от 5 до 800 кВт, с показателем ТЕК* до 8,33.

Предложение включает новые модели в классе A с повышенной производительностью ESEER при частичных нагрузках.

Более 15 лет опыта

Сотня установок, реализованных в последние 15 лет, с применением поливалентных систем в жилом и коммерческом секторах, малоэтажных зданиях, оборудованных для офисного использования, промышленных комплексах, больницах, клиниках и приемных учреждениях в целом.

Эффективная технология

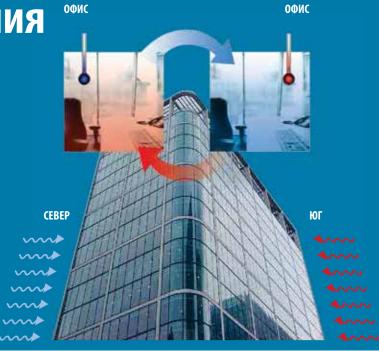
Системы EXP позволяют реализовать установку с такой климатизацией с производством ГВС, добиваясь двойного результата с единым блоком за одну покупку, а также энергией от компрессора, гарантируя высокую производительность энергопотребления.

Универсальная система

EXP Systems - это тепловой насос четвертого поколения, который производит горячую и холодную воду комбинированным или независимым способом для 4x и 2x трубных установок с производством ГВС.

Надежный блок

EXP Systems, благодаря своей инновационной логике управления, удовлетворяет потребности в охлаждении и нагреве, минимизируя остановки и перезапуски компрессоров с соответствующим благоприятным преимуществом для долгой службы всех компонентов охладительной цепи.

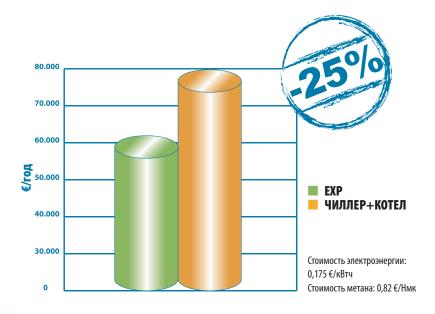

Гибкая установка

EXP Systems адаптируется к различным потребностям при установке систем благодаря своим многочисленным конфигурациям и приспособлениям, обеспечивающим автоматическое конфигурирование аппаратных средств - технология plug&play (подключи и работай).

Экологическое решение

EXP Systems может назвать себя экологичной поливалентной системой, берегущей окружающую среду, так как представляет собой эффективную эволюционную версию электрического теплового насоса, отвечающую самым строгим европейским директивам. Высокая производительность в режиме с рекуперацией тепла еще сильнее отличает систему от традиционных установок, тем самым ограничивая прямые и косвенные выбросы, являющиеся причиной образования парниковых газов.

Умное решение для реального энергосбережения



EXP Systems представляет собой интеллектуальное, эффективное и универсальное решение для систем, в которых необходимость отопления объединена, одновременно или независимо, с необходимостью охлаждения, максимизируя, таким образом, энергосбережение.

Блоки подгоняются под разные типологии установки, гарантируя, таким образом, уникальную эффективность и многофункциональность.

Выбор наиболее подходящего для установки блока становится простой задачей, так как можно рассчитывать на 25 моделей с воздушной конденсацией, к которым присоединяются 27 моделей с водной конденсацией со спиральной и винтовой технологией и, соответственно, хладагентами R410A и R134a.

Анализ проведен в здании для офисных помещений, расположенном в Милане, сравнивая годовой расход поливалентного блока EXP Systems TXAVBZ 2550 от 550 кВт с традиционной системой, состоящей из чиллера для летнего/зимнего кондиционирования, или с котлом для обогрева.

EXP Systems сегодня представляет собой технологию, которая высокоэффективное решение при производстве горячей и холодной воды, и показатель TER наилучшим образом ее характеризует. Показатель TER, суммой вырабатываемой тепловой и холодильной мощности и потребляемой мощностью, достигает максимальных значений при сбалансированных

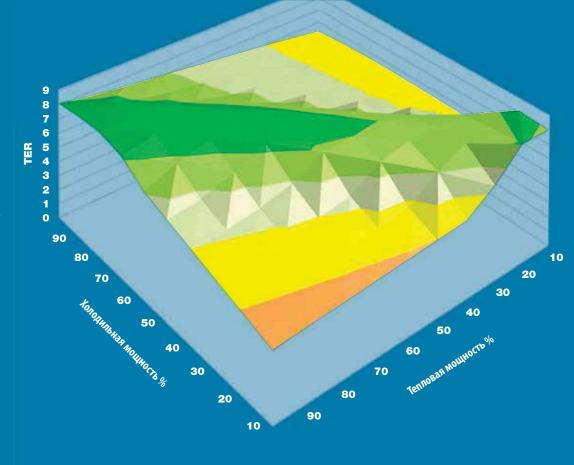


График показывает динамику TER для блока EXP Systems TXAETY 6520 в типичной 4х трубной установке, работающей с заданной нагрузкой. Условия: холодная вода 7°C, горячая вода 45°C и температура внешнего воздуха 15°C.

Блоки серии Ү-РАСК EXP и Y-FLOW EXP. WinPOWER ЕХР, оснащенные революционной технологией AF+ (Adaptive Function Plus), запатентованной компанией Rhoss, позволяют осуществлять корректировку уставок при работе с заданной нагрузкой в целях энергосбережения.

TER: Общий КПД

Реальное измерение эффективности

Блоки EXP Systems разработаны для работы в 2x, 4x и 6 трубных установках в новых сериях.

Эта гибкость обеспечивает использование в многих конструкционных типологиях, позволяя в дальнейшем изменять назначение использования.

Система представлена новейшим электронным устройством управления и логикой управления, разработанными компанией Rhoss для удовлетворения всех потребностей установки в 2 режимах работы *AUTOMATIC* и *SELECT*.

2-трубная установка Режим AUTOMATIC или SELECT

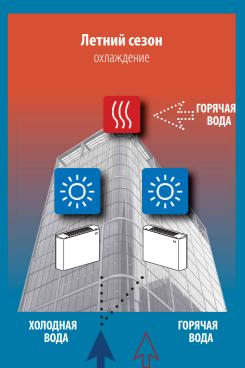
Довольно часто в жилом секторе - в домах и сооружениях с индивидуальными и кондоминиальными установками с централизованными системами: в отелях, санаториях, в тренажерных залах и приемных учреждениях в целом - потребности в климатизации и обработке воздуха совмещаются с потребностями в производстве горячей воды для бытового использования.

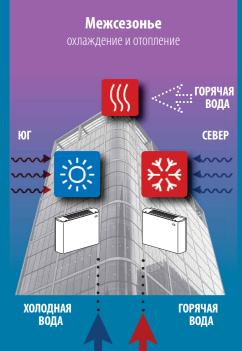
EXP Systems, в конфигурации для 2х трубных установок, решает эту задачу с максимальной гибкостью в течение всего года. Кроме того, блоки серии WinPOWER EXP позволяют производить посредством теплообменника горячую воду с температурой до 70°С в любом режиме работы.

4 и 6-трубные системы Режим AUTOMATIC на весь год

В зданиях под офисные площадки и в третичном секторе современные климатизационные установки все чаще требуют одновременное производство горячей и охлажденной воды.

Улучшение теплоизоляции конструкций, увеличение тепловых нагрузок в связи с освещением и наличие крупных стеклянных поверхностей приводят к тому, что в межсезонье установка должна охлаждать некоторые зоны и вместе с тем обогревать другие. В этом случае EXP Systems, в конфигурации для 4х трубных установок, представляет собой очень удобное комплексное решение.


Кроме того, блоки серии WinPOWER EXP позволяют производить посредством теплообменника горячую воду с температурой до 70°С, удовлетворяя требования современных 6-трубных установок.


Агрегаты ЕХР для 2, 4 и 6 трубных систем

• T.E.R. * до 6,72

Compact-Y EXP SM

TXAEY 117÷130

Мощность при охлаждении: 17,7÷29,1 кВт - Мощность при отоплении: 17,6÷34 кВт

EXPsystems - Экологическая поливалентная система с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменники основной и вторичный: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входят защитные решётки.
- Вентилятор: электровентиляторы винтового типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором, с логической системой AdaptiveFunction.
- Конструкция: из оцинкованной листовой стали, окрашенная, в комплект входит поддон для сбора конденсата.

Модели

• TXAEY: arperat EXPsystems.

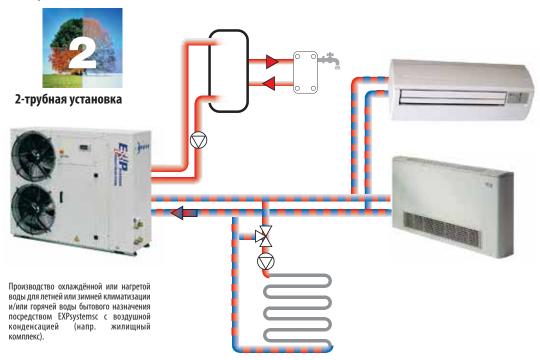
Оснашение PUMP

 Насосный блок для основного контура укомплектован следующими устройствами: циркуляционный насос или циркуляционный электронасос, мембранный расширительный бак, ручной клапан стравливания воздуха, предохранительный клапан, манометр.

Аксессуары, установленные на заводе

- Звукоизоляционное оснащение.
- Противообледенительный нагревательный элемент , основание для работы в режиме теплового насоса при низкой температуре внешнего воздуха
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.

- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.



МОДЕЛЬ ТХАЕҮ		117	124	130
Системы лучистого обогрева/охлаждения				
Холодильная мощность (AUTOMATIC 1)	кВт	23,8	32,2	38,9
❸ Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	27,2	39,8	48,3
Тепловая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	18,3	26,8	35,4
(§) Класс энергопотребления		A+	A+	A+
Системы с Фанкойлами				
Холодильная мощность (AUTOMATIC 1)	кВт	17,7	24	29,1
Тепловая мощность рекуперации (AUTOMATIC 2)	кВт	20,8	30,4	37,2
	в) кВт	17,6	25,7	34,0
Потребляемая мощность (AUTOMATIC 1)	кВт	6,6	9,4	11,8
	кВт	4,9	7,4	9,8
⑤ Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	6,2	9,1	11,3
T.E.R. (AUTOMATIC 2)		6,62	6,72	6,13
Звуковое давление	дБ(А)	50	52	53
Звуковое давление звукоизоляционного исполнения	дБ(А)	46	49	50
Компрессор спиральный/ступенчатый	кол-во	1/1	1/1	1/1
Контуры	кол-во	1	1	1
Полезный напор стандартного электронасоса	кПа	130	131	112
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС		117	124	130
L - Ширина	MM	1.522	1.522	1.822
Н - Высота	MM	1.090	1.280	1.510
Р - Глубина	MM	580	600	695
BecTXAEY	КГ	220	280	370

- Воздух: 35°С Вода: 23/18°С
- **❷** Воздух: 7°С В.S. 6°С В.U. Вода: 30/35°С
- ❸ Вода испарителя: 18/23°C. Вода на выходе рекуперации 45°C Номинальная подача.
- **④** Воздух: 35°С Вода: 12/7°С
- **6** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- **③** В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.
- (*) Агрегат без электронасоса.

Эксплуатационные показатели в соответствии с EN 14511:2013. Оснащен электронасосом. Т.Е.R.: Общий КПД

(§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013

• T.E.R. (°) до 7,48

Compact-Y EXP MD

TXAEY 133 ÷ 265

Мощность при охлаждении: 33,8÷61,6 кВт - Мощность при отоплении: 39,4÷68,3 кВт

EXPsystems - Экологическая поливалентная система с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменники основной и вторичный: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входят защитные решётки.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль: электронный с микропроцессором, с логической системой AdaptiveFunction.
- Конструкция: из оцинкованной окрашенной листовой стали.
- Также в комплект агрегата входит плата часового датчика.

Модели

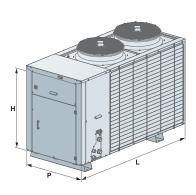
• TXAEY: базовый агрегат EXPsystems.

Аксессуары, установленные на заводе

- РИМР (только для главного контура) с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением (мод. 245÷265), укомплектованный расширительным баком, клапанами стравливания воздуха, предохранительным клапаном и манометром со стороны воды.
- Электронасосы предоставляются в версиях низкого и высокого напора.
- ТАNK&PUMP (только для главного контура) с инертным накопительным баком, отдельным или двойным электронасосом, один из которых в режиме ожидания с автоматическим запуском (мод. 245÷265), укомплектованный расширительным баком, клапанами стравливания воздуха, предохранительным клапаном и манометром со стороны воды.
- Электронасосы предоставляются в версиях низкого и высокого напора.
- Звукоизоляционное оснащение.
- Манометр высокого и низкого давления цепи охлаждения.
- Противообледенительный нагревательный элемент, бак накопления и электронасосы.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20mA.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.

- Виброизолирующие резиновые опоры.
- Водный фильтр.
- Удаленный кнопочный пульт с дисплеем.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.

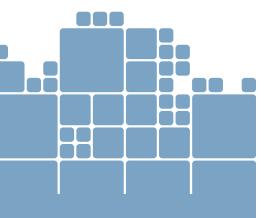
	МОДЕЛЬ ТХАЕУ		133	245	250	260	265
0	Холодильная мощность (AUTOMATIC 1)	кВт	33,8	42,4	50,3	57,9	61,6
6	Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	44,2	54,4	65,0	71,8	81,1
0	Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт	39,4	48,1	56,2	62,5	68,3
(§)	Класс энергопотребления		A	A+	A+	A+	A+
0	Потребляемая мощность (AUTOMATIC 1)	кВт	13,5	17,0	18,8	21,9	24,4
6	Потребляемая мощность (AUTOMATIC 2)	кВт	11,5	13,6	15,5	17,1	19,0
0	Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	13,6	16,8	18,9	20,9	23,7
6	T.E.R. (AUTOMATIC 2)		6,25	6,94	7,30	7,32	7,48
4	Звуковое давление	дБ(А)	54	56	56	57	57
4	Звуковое давление звукоизоляционного исполнения	дБ(А)	51	53	53	54	54
	Компрессор спиральный/ступенчатый	кол-во	1/1	2/1	2/1	2/1	2/1
	Контуры	кол-во	1	1	1	1	1
	Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
	РАЗМЕРЫ И ВЕС			245	250	260	265
	L - Ширина	MM	1.660	2.260	2.260	2.260	2.260
	Н - Высота	MM	1.570	1.570	1.570	1.570	1.570
	Р - Глубина	MM	1.000	1.000	1.000	1.000	1.000
	BecTXAEY	КГ	470	735	775	795	825


- Воздух: 35°С Вода: 12/7°С
- **❷** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- **❸** Вода испарителя: 12/7°С Вода на выходе рекуперации 45°С Номинальная подача.
- lacktriangledawd В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.

Эксплуатационные показатели в соответствии с EN 14511:2013.

Т.Е.R.: Общий КПД

(§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013


120

Web code: YKX11

Y-Pack EXP низкого потребления

TXAEY 280÷4320

Мощность при охлаждении: 81÷334 кВт - Мощность при отоплении: 84÷353 кВт

• T.E.R. * до 8,18

EXPsystems - Экологическая поливалентная система с воздушным охлаждением конденсатора и оосевыми вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Расширительный электронный клапан: в серийном оснащении на всех моделях.
- Первичный и вторичный теплообменники: с пластинами из нержавеющей стали с перекрёстными потоками, с противообледенительным нагревательным элементом, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, в комплект входит дифференциальное реле давления потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы винтового типа с ЕС-двигателем, с постоянной настройкой скорости вращения вентиляторов оснащены внутренней тепловой защитой и предохранительными решётками.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- магнитотермические выключатели, компрессоры и вентиляторы;
- плата часового датчика для отображения даты/ времени и и программирования расписания работы агрегата на временных отрезках,
- отображение высокого/низкого давления охладительной цепи

Варианты исполнения

- Т Высокоэффективная версия с вентиляторами с двигателем ЕС.
- S Звукоизолированная версия, в комплект входит звукоизоляции технического отсека, компрессоры и вентиляторы с ЕС-двигателями на пониженной скорости.

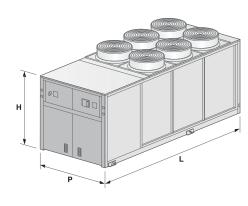
Модели

- TXAETY: arperat EXPsystems.
- TXAESY: агрегат EXPsystems со звукоизоляцией.

Аксессуары, установленные на заводе

- РИМР (для главного и вторичного контура) с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением. Электронасосы предоставляются в версиях с низким и высоким напором.
- ТАNК & PUMP (только для основного контура) со встроенным накопительным баком и с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр воды.
- Конденсатор корректировки мощности (cosф > 0,94).
- Принудительное ограничение электрической мощности плавного запуска.
- Манометр высокого и низкого давления цепи охлаждения.
- Металлические фильтры или сетки для защиты батарей.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Противообледенительные нагревательные элементы накопительного бака, электронасосов, если имеются.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.



	модель тхаету		280	2100	2130	4160	4200	4260	4320
0	Холодильная мощность (AUTOMATIC 1)	кВт	84	108	135	163	207	264	334
4	Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	108	140	174	215	272	346	440
2	Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт	86	111	139	171	227	281	353
0	Потребляемая мощность (AUTOMATIC 1)	кВт	26,8	34,8	43,4	56,1	72,7	92,1	117,3
4	Потребляемая мощность (AUTOMATIC 2)	кВт	23,6	32,2	39,3	51,5	65,2	81,4	106,5
2	Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	25,3	33,5	42,4	54,5	73,1	91,5	116,5
	E.E.R. (AUTOMATIC 1)		3,13	3,1	3,11	2,91	2,85	2,87	2,85
	T.E.R. (AUTOMATIC 2)		8,18	7,76	7,89	7,36	7,39	7,53	7,36
	C.O.P. (SELECT 1-2 AUTOMATIC 3)		3,40	3,31	3,28	3,14	3,11	3,07	3,03
•	Звуковое давление	дБ(А)	52	52	53	54	59	61	61
6	Звуковая мощность	дБ(А)	84	84	85	86	91	93	93
	МОДЕЛЬ ТНАЕҮ		280	2100	2130	4160	4200	4260	4320
0	Холодильная мощность (AUTOMATIC 1)	кВт	81	104	130	157	200	255	317
4	Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	108	140	174	215	272	346	440
2	Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт	84	108	136	167	221	274	344
0	Потребляемая мощность (AUTOMATIC 1)	кВт	27,0	35,2	43,9	56,6	73,7	92,9	118,8
4	Потребляемая мощность (AUTOMATIC 2)	кВт	23,6	32,2	39,3	51,5	65,2	81,4	106,5
0	Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	24,3	32,1	40,7	53,4	70,4	88,4	111,8
	E.E.R. (AUTOMATIC 1)		3,00	2,95	2,96	2,77	2,71	2,74	2,67
	C.O.P. (SELECT 1-2 AUTOMATIC 3)		3,46	3,36	3,34	3,13	3,14	3,1	3,08
8	Звуковое давление	дБ(А)	49	49	50	51	54	57	57
6	Звуковая мощность	дБ(А)	81	81	82	83	86	89	89
	модель		280	2100	2130	4160	4200	4260	4320
	Компрессор спиральный/ступенчатый	кол-во	2/2	2/2	2/2	4/4	4/4	4/4	4/4
	Контуры	кол-во	2	2	2	2	2	2	2
	Электропитание	В-фаз-Гц	400-3+N-50						
	РАЗМЕРЫ		280	2100	2130	4160	4200	4260	4320
	L - Ширина	MM	2.600	2.600	3.700	3.700	4.800	4.800	4.800
	Н - Высота	MM	2.000	2.000	2.000	2.000	2.030	2.030	2.030
	Р - Глубина	MM	2.090	2.090	2.090	2.090	2.090	2.090	2.090

- **●** Воздух: 35°С Вода: 12/7°С
- **❷** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Вода испарителя: 12/7°С Вода на выходе рекуперации 45°С Номинальная подача.
- б Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.

WinPOWER EXP низкого потребления

TXAEY 4400÷6660

Мощность при охлаждении: 362÷650 кВт - Мощность при отоплении: 404÷704 кВт

EXPsystems - Экологическая поливалентная система с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- до 6 ступеней регулировки с высокой эффективностью на частичных нагрузках.
- Первичный и вторичный теплообменники: с пластинами из нержавеющей стали с перекрёстными потоками, с противообледенительным нагревательным элементом, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, в комплект входит дифференциальное реле давления потока воды.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащенные внутренней тепловой защитой, предохранительными решетками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов (версия Т; в версии Q только серии вентиляторов с двигателем EC)
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- магнитотермические выключатели, компрессоры и вентиляторы, теплообменники с противообледенительным нагревательным элементом;
- отображение высокого и низкого давления охладительной цепи;
- электронный расширительный клапан;
- плата часового датчика.

Варианты исполнения

- •Т Высокоэффективная версия.
- Q Звукоизолированная версия, в комплект входит звукоизоляции технического отсека, компрессоры и вентиляторы с ЕС-двигателями на пониженной скорости.

Модели

- TXAETY: arperar EXPsystems.
- TXAEQY: arperat EXPsystems со звукоизоляцией.

Аксессуары, установленные на заводе

- Первичный и вторичный кожухотрубные теплообменники
- PUMP с отдельным или двойным электронасосом, один из которых находится в режиме ожидания с автоматическим подключением.
 Электронасосы доступны в версиях с низким и высоким напором со стороны главного и вторичного (рекуперация) теплообменника.
- ТАНК&PUMP со встроенным накопительным баком от 700-1000 до 700 литров (в зависимости от модели) с одинарным или двойным электронасосом, в комплект входит расширительный бак, клапаны стравливания воздуха, предохранительный клапан и манометр со стороны воды.
- Пароохладитель.
- Контроль конденсации -15°C с вентиляторами с ЕС-двигателями (в серийном оснащении для версии Q).
- Контроль конденсации с вентиляторами повышенного давления (только версия Т).
- Конденсатор корректировки мощности (cosф > 0,94).
- Принудительное ограничение электрической мощности.
- Принудительное ограничение шума.
- Измеритель показателей энергопотребления.
- Оптимизация энергоэффективности.
- Плавный пускатель.
- Звукоизолированная компрессорная коробка.
- Звукоизоляционные кожухи компрессоров.
- Краны на всасывании и нагнетании охладительного контура. • Детектор утечки хладагента (leak detector).
- Манометры высокого и низкого давления охладительной цепи.
- Двойные предохранительные клапаны.
- двоиные предохранительные клапаны
- Металлические фильтры или защитные решётки змеевика.
- Защитные решётки нижнего отсека.
- •Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА
- •Противообледенительный нагревательный элемент электрощита, накопительный бак, электронасосы и пароохладитель, если есть.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Термостат с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

- Поливалентные системы в КЛАССЕ А с TER до 7,9
- С расширенными эксплуатационными возможностями
- Для 2, 4 и 6 трубных систем

МОДЕЛЬ ТХАЕТҮ		4400	4440	6520	6580	6660
Холодильная мощность (AUTOMATIC 1)	кВт	398	436	527	579	650
 Тепловая мощность рекуперации(AUTOMATIC 2) 	кВт	515	567	685	759	845
№ Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)) кВт	425	469	568	628	704
Потребляемая мощность (AUTOMATIC 1)	кВт	131,0	144,0	175,0	197,0	216,0
Потребляемая мощность (AUTOMATIC 2)	кВт	116,6	128,6	157,0	179,0	194,4
❷ Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	130,0	143,0	175,0	193,0	215,0
E.E.R. (AUTOMATIC 1)		3,04	3,03	3,01	2,94	3,01
T.E.R. (AUTOMATIC 2)		7,9	7,8	7,8	7,5	7,7
C.O.P. (SELECT 1-2 AUTOMATIC 3)		3,27	3,28	3,25	3,25	3,27
Звуковое давление	дБ(А)	76	76,5	76,5	76,5	78
Звуковая мощность	дБ(А)	96	97	97	97	99
МОДЕЛЬ ТХАЕQY		4400	4440	6520	6580	6660
Холодильная мощность (AUTOMATIC 1)	кВт	362	391	476	517	582
● Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	515	567	685	759	845
№ Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)) кВт	404	444	546	597	668
Потребляемая мощность (AUTOMATIC 1)	кВт	141,0	158,0	191,0	221,0	235,0
Потребляемая мощность (AUTOMATIC 2)	кВт	116,6	128,6	157,0	179,0	194,4
❷ Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	124,0	136,0	167,0	183,0	204,0
E.E.R. (AUTOMATIC 1)		2,57	2,47	2,49	2,34	2,48
C.O.P. (SELECT 1-2 AUTOMATIC 3)		3,26	3,26	3,27	3,26	3,27
Звуковое давление	дБ(А)	53	54	54	54	56
Эвуковая мощность	дБ(А)	86	87	87	87	89
модель		4400	4440	6520	6580	6660
Компрессор спиральный/ступенчатый	кол-во	4/4	4/4	6/6	6/6	6/6
Контуры	кол-во	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ		4400	4440	6520	6580	6660
L - Ширина	MM	4840	4840	5940	5940	6840
Н - Высота	MM	2450	2450	2450	2450	2450
P - Глубина	MM	2260	2260	2260	2260	2260
③ BecTXAETY	КГ	3650	3760	4480	4580	5250
❸ Bec TXAEQY	КГ	4340	4360	5270	5370	6070

- Воздух: 35°С Вода: 12/7°С
- **❷** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- **3** На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Вода испарителя: 12/7°C Вода на выходе рекуперации 45°C Номинальная подача.
- **⊙** Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **6** Вес порожнего агрегата.

124

Web code: ZPX01

Z-Power EXP

TXAVZ 2420÷2700

Мощность при охлаждении: 408÷698 кВт - Мощность при отоплении: 413÷707 кВт

TXAVSZ 2700

• T.E.R. * до 8,33

EXPsystems - Экологическая поливалентная система с воздушным охлаждением конденсатора и осевыми вентиляторами.

Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме звездатреугольник с пониженным пусковым током, в комплект входит интегральная защита, нагрев картера, отсекающий вентиль на трубопроводе всасывания и подачи газового хладагента и датчик уровня масла компрессора.
- Электронный расширительный клапан: в серийном оснащении на всех моделях.
- Основной и вторичный теплообменники: кожухотрубные с сухим расширением с теплообменом в противотоке, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды и соединениями Victaulic.
- Воздушный теплообменник: змеевик с оребрением с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки скорости вращения вентиляторов.
- Контроль электронный с микропроцессором
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэсторовой краской.
- Также в комплект агрегата входит: - отображение высокого/низкого давления охладительного контура;
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (ТХАVВZ).
- S Версия со звукоизоляцией с вентиляторами на низкой скорости и с шупомоглащающей обшивкой компрессоров (TXAVSŽ).
- І Версия со звукоизоляцией с шумопоглащающей обшивкой компрессоров (TXAVIZ).

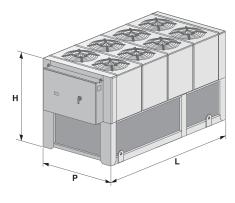
Модели

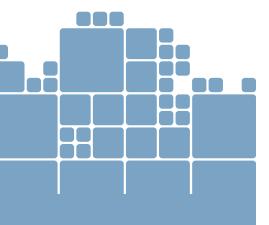
- TXAVBZ: базовый агрегат EXPsystems.
- TXAVSZ: arperat EXPsystems со звукоизоляцией.
- TXAVIZ: агрегат EXPsystems со звукоизоляцией.

Аксессуары, установленные на заводе

- •• Контроль конденсации –15°С с вентиляторами с ЕСдвигателем.
- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Магнитотермические выключатели, компрессоры и вентиляторы.
- Принудительное ограничение электрической мощности.
- Защитные решётки змеевика.
- Защитные решётки нижнего отсека.
- Двойной комплект установок с цифровым подтверждением.
- Манометры низкого и высокого давления для каждого холодильного контура.
- ТЭН электрошита.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры.
- Инструмент раздельного регулирования





_							
	МОДЕЛЬ ТХАVВZ		2420	2480	2550	2610	2700
0	Холодильная мощность (AUTOMATIC 1)	кВт	425	482	555	617	698
4		кВт	545	622	709	786	888
2	Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт	430	490	568	625	707
0	Потребляемая мощность (AUTOMATIC 1)	кВт	143,8	165,3	179,2	198,4	224,1
4	Потребляемая мощность (AUTOMATIC 2)	кВт	121,0	142,0	155,8	170,7	190,9
0	Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	141,1	158,8	177,7	194,8	220,8
	E.E.R. (AUTOMATIC 1)		2,96	2,92	3,10	3,11	3,11
	T.E.R. (AUTOMATIC 2)		8,03	7,79	8,13	8,24	8,33
	C.O.P. (SELECT 1-2 AUTOMATIC 3)		3,05	3,09	3,20	3,21	3,20
6	Звуковое давление	дБ(А)	65	65	65	66	67
0	Звуковая мощность	дБ(А)	98	98	98	99	99
	МОДЕЛЬ TXAVSZ		2420	2480	2550	2610	2700
0	Холодильная мощность (AUTOMATIC 1)	кВт	408	463	533	592	670
4	Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	545	622	709	786	888
0	Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт	413	470	545	600	679
0	Потребляемая мощность (AUTOMATIC 1)	кВт	143,1	164,5	178,3	197,4	223,0
4	Потребляемая мощность (AUTOMATIC 2)	кВт	121,0	142,0	155,8	170,7	190,9
2	Потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	141,1	158,0	176,8	193,8	219,7
	E.E.R. (AUTOMATIC 1)		2,85	2,81	2,99	3,00	3,00
	C.O.P. (SELECT 1-2 AUTOMATIC 3)		2,93	2,97	3,08	3,10	3,09
8	Звуковое давление	дБ(А)	59	59	59	60	61
6	Звуковая мощность	дБ(А)	92	92	92	93	93
	модель		2420	2480	2550	2610	2700
	Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6
	Контуры	кол-во	2	2	2	2	2
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	ГАБАРАИТНЫЕ РАЗМЕРЫ И BEC TXAVBZ-TXAVSZ		2420	2480	2550	2610	2700
	L - Ширина	MM	6.130	6.130	6.130	6.980	7.980
	Н - Высота	MM	2.430	2.430	2.430	2.430	2.430
	Р - Глубина	ММ	2.260	2.260	2.260	2.260	2.260
6	Bec TXAVBZ	КГ	5.530	6.300	6.360	7.460	8.380

- **●** Воздух: 35°С Вода: 12/7°С
- **❷** Воздух: 7°С В.S. 6°С В.U. Вода: 40/45°С
- $oldsymbol{\Theta}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Вода испарителя: 12/7°C Вода на выходе рекуперации 45°C Номинальная подача.
- **⊙** Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.

Comby-Flow EXP низкого потребления

TXHEY 105÷112

Мощность при охлаждении: 5,5÷12,2 кВт - Мощность при отоплении: 6,4÷13,7 кВт

EXPsystems - Экологическая поливалентная система с водяным охлаждением конденсатора. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

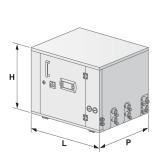
Конструктивные характеристики

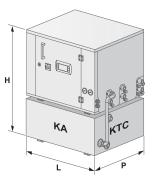
- Компрессор: герметичный ротационный спирального типа с тепловой защитой.
- Теплообменник с первичной стороны (пользователь), вторичной стороны (рекуперация) и сточного канала: с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит противообледенительный нагревательный элемент и дифференциальное реле давления для потока воды.
- Контроль: электронный с микропроцессором, совместимым с iDRHOSS, с логической системой AdaptiveFunction.
- Контроль конденсации: прессостатический клапан и соленоидный клапан байпаса.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской, в комплект входит звукоизоляция компрессора.

Модели

• TXHEY: arperat EXPsystems.

Оснащение PUMP


 Первичная сторона (пользователь): насосный блок с циркуляционным электронасосом, мембранный расширительный бак, предохранительный клапан,


- клапан для слива воды, ручной клапан стравливания воздуха, манометр.
- Сторона скважины/градирни (сточный канал): сливной клапан, клапан стравливания воздуха. Внутренний вентиль для наполнения установки на первичном контуре (пользователь) с внешней сети (сторона сточного канала: скважина или градирни).
- Вторичная сторона (рекуперация): насосный блок с циркуляционным электронасосом, мембранный расширительный бак, предохранительный клапан, клапан для слива и наполнения воды, ручной клапан стравливания воздуха, манометр.

Аксессуары, установленные на заводе

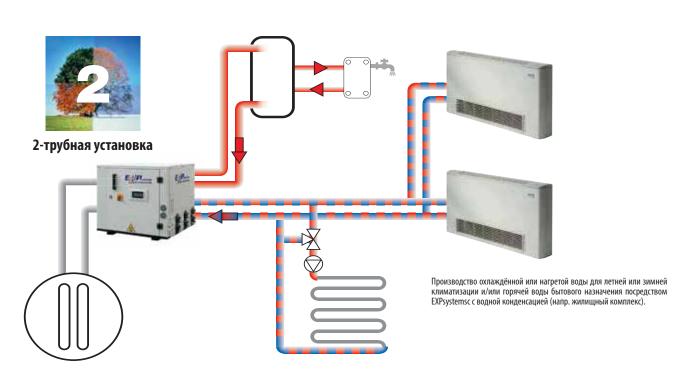
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20mA.

- Накопительный бак.
- Соединительный трубопровод накопителя.
- Водный фильтр.
- Виброизолирующие резиновые опоры.
- Противообледенительный нагревательный элемент на накоплении.
- Удаленный кнопочный пульт с дисплеем.
- Плата часового датчика.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.

модель тхнеу		105	107	109	112
Системы лучистого обогрева/охлаждения					
О Холодильная мощность (AUTOMATIC 1)	кВт	7,8	10,6	13,8	18
Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	8,7	10,7	14,7	18,8
❸ Тепловая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	7,6	9,8	12,8	15,1
(§) Класс энергопотребления		A++	A++	A++	A++
Системы с Фанкойлами					
О Холодильная мощность (AUTOMATIC 1)	кВт	5,5	6,9	9,5	12,2
 Т епловая мощность рекуперации(AUTOMATIC 2)	кВт	6,7	8,7	11,3	14,5
⑥ Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт	6,4	8,1	10,6	13,7
Потребляемая мощность (*) (AUTOMATIC 1)	кВт	1,69	2,22	2,91	3,74
 Потребляемая мощность (*) (AUTOMATIC 2)	кВт	2,00	2,83	3,57	4,75
⑥ Потребляемая мощность (*) (SELECT 1-2 AUTOMATIC 3)	кВт	1,93	2,8	3,33	4,21
⑤ T.E.R. (AUTOMATIC 2)		5,72	5,14	5,42	5,67
Звуковое давление	дБ(А)	49	51	51	53
Компрессор спиральный/ступенчатый	кол-во	1	1	1	1
Контуры	кол-во	1	1	1	1
Содержание воды в накопительном баке КА	Л.	20	20	30	30
• Полезный номинальный напор насоса на главном теплообменнике	кПа	47,0	54,7	82,2	78,2
6 Полезный номинальный напор на второстепенном теплообменнике рекуперации	кПа	32,4	42,4	72,1	66,7
Электропитание	В-фаз-Гц	230-1-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50	230-1-50 / 400-3+N-50
РАЗМЕРЫ И ВЕС		105	107	109	112
L - Ширина	MM	585	585	660	660
Н - Высота ТХНЕҮ Р	MM	535	535	535	535
H - Высота ТХНЕҮ Р + КА	MM	855	855	855	855
Р - Глубина	MM	520	520	560	560
Bec TXHEY	КГ	112	118	122	130
Bec KA	КГ	38	38	43	43

- **①** Охлажденная вода: 23/18°C Вода конденсатора: 30/35°C
- ② Охлажденная вода: 23/18°C Вода рекуперации: 40/45°C
- ❸ Горячая вода: 30/35°C Вода испарителя: 10/7°C
- Охлажденная вода: 12/7°С Вода конденсатора: 30/35°С
- **6** Охлажденная вода: 12/7°С Вода рекуперации: 40/45°С
- **⑤** Горячая вода: 40/45°С Вода испарителя: 10/7°С
- ${f 0}$ В открытой зоне (Q = 2) на расстоянии 1 м от агрегата.

(*) Агрегат без электронасосов.

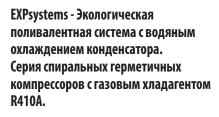

Эксплуатационные показатели в соответствии с EN 14511:2013.

Т.Е.R.: Общий КПД

 $\mathsf{KA} = \mathsf{Ha}$ копительный бак.

КТС = соединительный трубопровод.

(§) В умеренных климатических условиях в соответствии с Регламентом ЕС n°811/2013


Web code 245÷2185: **YFX21** Web code 4180÷4360: **YFX31**

Y-Flow EXP низкого потребления

TXHEY 245÷4360

Мощность при охлаждении: 47÷379,9 кВт - Мощность при отоплении: 54÷447,3 кВт

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменники с первичной стороны (пользователь), с вторичной стороны (рекуперация) и со стороны сточного канала: с пластинами из нержавеющей стали с перекрёстными потоками, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, дифференциальным реле давления потока воды.
- Контроль: электронный с микропроцессором с логической системой Adaptive Function Plus.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- термомагнитные выключатели компрессоров,
- электронный расширительный клапан,
- отображение высокого и низкого давления цепи охлаждения,
- часовая плата,
- температурный датчик внешнего воздуха для компенсации заданных значений,
- аналоговый сигнал 0-10 Вольт для контроля конденсации/испарения, выполняемый на внешнем устройстве.

Варианты исполнения

• В - Стандартная версия.


Модели

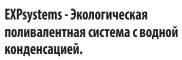
• TXAEBY: arperat EXPsystems.

Аксессуары, установленные на заводе

- Манометры высокого и низкого давления охладительной цепи.
- Принудительное ограничение электрической мощности.
- Плавный пускатель.
- Исполнение с пониженным уровнем шума.
- Двойной комплект установок с цифровым подтверждением.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Интерфейсы для последовательной взаимосвязи с другими устройствами.
- Виброизолирующие опоры.

- Моделирующий 3-ходовой клапан для контроля конденсации.
- Моделирующий 2-ходовой клапан для контроля конденсации.
- Водный фильтр.
- Удаленный кнопочный пульт с дисплеем.
- Последовательный преобразователь (RS485/USB).
- Супервизоры Rhoss для мониторинга и удаленного управления агрегата.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.

Модель ТХНЕВУ		245	250		270	290	2115	2130	2145	2165	2185
Холодильная мощность (AUTOMATIC 1)	кВт	47	55,6		71,8	92,8	123,8	137,5	153,9	173,3	193,2
, ,			,	,.			. ,				211,1
										,	225,5
								,			36,3
			13,7			23,4		34,9	38,9	45,3	51,4
	кВт		13,8	15,7			31	34,8	38,9	45,3	51,3
E.E.R. (AUTOMATIC 1)			5,69	5,55	5,51	5,48	5,75	5,57	5,76	5,44	5,32
C.O.P. (SELECT 1-2 AUTOMATIC 3)		4,5	4,63	4,65	4,67	4,67	4,63	4,55	4,52	4,43	4,39
T.E.R. (AUTOMATIC 2)		7,46	7,72	7,75	7,78	7,82	7,7	7,56	7,5	7,32	7,24
Модель ТХНЕВҮ		245	250	260	270	290	2115	2130	2145	2165	2185
Звуковая мощность	дБ(А)	67	67	68	68		72	73	74	74	75
Компрессор спиральный/ступенчатый	кол-во	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
Контуры	кол-во	1	1	1	1	1	1	1	1	1	1
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС		245	250	260	270	290	2115	2130	2145	2165	2185
L - Ширина	MM	1000	1000	1000	1000	1000	1250	1250	1250	1250	1250
Н - Высота	MM	1400	1400	1400	1400	1400	1550	1550	1550	1550	1550
Модель ТХНЕВУ		4	180	4205	42	35	4260	4290)	4330	4360
Модель ТХНЕВУ Холодильная мощность (AUTOMATIC 1)	кВт		180 88,5	4205 214,7	42 24		4260 270,2	429 0		4330 341,1	4360 379,9
	кВт кВт	18				1,2			7		
Холодильная мощность (AUTOMATIC 1)		18	88,5	214,7	24 25	1,2	270,2	302,	7	341,1	379,9
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	18 20	88,5 02,4	214,7 231,2	24 25	1,2 9,5	270,2 292,5	302,7 325,7	7 2 9	341,1 370,2	379,9 416,1
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт кВт	11 20	88,5 02,4 216	214,7 231,2 246,8	24 25 2 4	1,2 9,5 77	270,2 292,5 313,2	302,7 325,7 347,9	7 2 9	341,1 370,2 398	379,9 416,1 447,3
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1)	кВт кВт кВт	11 20	88,5 02,4 216 32,2	214,7 231,2 246,8 37,2	24 25 2 4 5	1,2 9,5 77 1,9	270,2 292,5 313,2 46,6	302,; 325,; 347,9 50,4	7 2 9 4 8	341,1 370,2 398 59,1	379,9 416,1 447,3 67,2
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2)	кВт кВт кВт кВт	11 20	88,5 02,4 216 32,2 43,4	214,7 231,2 246,8 37,2 50,5	24 25 2 4 5	1,2 9,5 77 1,9	270,2 292,5 313,2 46,6 64,8	302,7 325,7 347,9 50,4 71,8	7 2 9 4 8 8	341,1 370,2 398 59,1 83,1	379,9 416,1 447,3 67,2 94,2
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт кВт кВт кВт	11 20 	88,5 02,4 216 32,2 43,4 43,3	214,7 231,2 246,8 37,2 50,5 50,5	24 25 2 4 5 5	1,2 9,5 77 1,9 7,7	270,2 292,5 313,2 46,6 64,8 64,8	302,; 325,; 347,; 50,; 71,;	7 2 9 4 8 2	341,1 370,2 398 59,1 83,1 83,3	379,9 416,1 447,3 67,2 94,2 94,5
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1)	кВт кВт кВт кВт	11 20	88,5 02,4 216 32,2 43,4 43,3 5,85	214,7 231,2 246,8 37,2 50,5 50,5 5,77	24 25 2 4 5 5	1,2 9,5 77 1,9 7,7 7,6	270,2 292,5 313,2 46,6 64,8 64,8 5,8	302,7 325,7 347,9 50,7 71,4 77	7 2 9 4 3 3 2	341,1 370,2 398 59,1 83,1 83,3 5,77	379,9 416,1 447,3 67,2 94,2 94,5 5,65
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3)	кВт кВт кВт кВт	11 20	88,5 D2,4 216 32,2 43,4 43,3 5,85 4,98	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89	24 25 24 4 5 5 5 4	1,2 9,5 .77 1,9 7,7 7,6 76	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83	302,; 325,; 347,; 50,; 71,; 6,0°	7 2 9 4 8 2 1 4	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) T.E.R. (AUTOMATIC 2)	кВт кВт кВт кВт	11 20	88,5 02,4 216 32,2 43,4 43,3 5,85 4,98	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89 8,18	24 25 2 4 5 5 5 4 8 42	1,2 9,5 77 1,9 7,7 7,6 76 81	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83 8,05	302, 325, 347, 50, 71, 72 6,0 4,84	77 22 99 44 88 22 11 44 83 90	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77 7,93	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73 7,86
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) T.E.R. (AUTOMATIC 2) Модель ТХНЕВУ	кВт кВт кВт кВт кВт	113 20	88,5 02,4 216 32,2 43,4 43,3 5,85 4,98 3,35 180	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89 8,18 4205	24 25 2 4 5 5 5 5 4 8 8	1,2 9,5 77 1,9 77,6 76 81 02	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83 8,05 4260	302,; 325,; 347,; 50,; 71,; 7; 6,0; 4,8; 8,0; 4290	7 2 9 4 4 8 2 1 1 4 3 3 0	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77 7,93	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73 7,86 4360
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) T.E.R. (AUTOMATIC 2) Модель ТХНЕВУ Звуковая мощность	кВт кВт кВт кВт кВт	113 20	88,5 02,4 216 32,2 43,4 43,3 5,85 4,98 83,35	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89 8,18 4205	24 25 2 4 5 5 5 5 4 8 8	1,2 9,5 77 77,7 7,6 76 81 02 335	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83 8,05 4260	302, 325, 347, 50, 71, 72 6,0 4,8 8,0 8 4296 81	7 2 9 4 4 8 2 1 1 4 3 3 0	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77 7,93 4330 81	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73 7,86 4360 82
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) T.E.R. (AUTOMATIC 2) Модель ТХНЕВУ Звуковая мощность Компрессор спиральный/ступенчатый	кВт кВт кВт кВт кВт	113 20	888,5 002,4 216 32,2 43,3 5,85 4,98 83,35 180 77 4/4	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89 8,18 4205 77	24 25 2 4 5 5 5 5 4 8 8	1,2 9,5 7,7 1,9 7,7 7,6 81 02 335 7,8	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83 8,05 4260 79 4/4	302, 325, 347, 50, 71, 72 6,0 4,8 8,0 8 4296 81	7 2 2 9 4 4 3 3 3 0 0 4 4	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77 7,93 4330 81 4/4	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73 7,86 4360 82 4/4
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) T.E.R. (AUTOMATIC 2) Модель ТХНЕВУ Звуковая мощность Компрессор спиральный/ступенчатый	кВт кВт кВт кВт кВт	1: 2!	888,5 002,4 216 32,2 43,3 5,85 4,98 83,35 180 77 4/4	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89 8,18 4205 77 4/4	24 25 2 4 5 5 5 5 4 8 4 2	1,2 9,5 7,7 1,9 7,7 7,6 81 02 335 78 4/4 2	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83 8,05 4260 79 4/4	302, 325, 347, 50, 71, 6,0° 4,8° 8,00 4290	7 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77 7,93 4330 81 4/4 2	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73 7,86 4360 82 4/4
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) T.E.R. (AUTOMATIC 2) Модель ТХНЕВУ Звуковая мощность Компрессор спиральный/ступенчатый Контуры Электропитание	кВт кВт кВт кВт кВт	1: 2(888,5 202,4 216 32,2 43,4 43,3 5,85 4,98 83,35 180 77 4/4 2	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89 8,18 4205 77 4/4 2 400-3-50	24 25 24 4 5 5 5 5 4 4 8 42 400-3-42	1,2 9,5 7,7 1,9 7,7 7,6 81 02 335 78 4/4 2	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83 8,05 4260 79 4/4 2	302, 325,347, 50, 71,4 6,0° 4,84 8,00 4290 8(4/-	7 2 2 3 4 4 3 2 1 4 4 3 0 0 4 4 2 0 0 4 6 6 6 6 6 7 6 7 7 7 8 7 8 7 8 7 8 7 8 7	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77 7,93 4330 81 4/4 2	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73 7,86 4360 82 4/4 2 400-3-50
Холодильная мощность (AUTOMATIC 1) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) Т.E.R. (AUTOMATIC 2) Модель ТХНЕВУ Звуковая мощность Компрессор спиральный/ступенчатый Контуры Электропитание РАЗМЕРЫ И ВЕС	кВт кВт кВт кВт кВт дБ(А) кол-во кол-во	11: 2(4 4 400-3+N 4	888,5 202,4 216 32,2 43,4 43,3 5,85 4,98 3,35 180 77 4/4 2 1-50	214,7 231,2 246,8 37,2 50,5 50,5 5,77 4,89 8,18 4205 77 4/4 2 400-3-50 4205	24 25 2 4 5 5 5 4 8 42 400-3-	1,2 9,5 7,7 1,9 7,7 7,6 81 002 335 78 4/4 2	270,2 292,5 313,2 46,6 64,8 64,8 5,8 4,83 8,05 4260 79 4/4 2	302,; 325,; 347,; 50,; 71,; 6,0° 4,8; 8,00 4290 80 4/-	7 2 2 9 9 4 4 4 8 8 2 2 1 1 4 4 8 8 9 9 9 4 9 0 9 9 9 9 9	341,1 370,2 398 59,1 83,1 83,3 5,77 4,77 7,93 4330 81 4/4 2 D-3-50 4330	379,9 416,1 447,3 67,2 94,2 94,5 5,65 4,73 7,86 4360 82 4/4 2 400-3-50 4360
	Тепловая мощность рекуперации(AUTOMATIC 2) Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) Общая потребляемая мощность (AUTOMATIC 1) Общая потребляемая мощность (AUTOMATIC 2) Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) E.E.R. (AUTOMATIC 1) C.O.P. (SELECT 1-2 AUTOMATIC 3) T.E.R. (AUTOMATIC 2) Модель ТХНЕВУ Звуковая мощность Компрессор спиральный/ступенчатый Контуры Электропитание РАЗМЕРЫ И ВЕС L - Ширина	Тепловая мощность рекуперации (AUTOMATIC 2) кВт Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) кВт Общая потребляемая мощность (AUTOMATIC 1) кВт Общая потребляемая мощность (AUTOMATIC 2) кВт Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) кВт Е.Е. (AUTOMATIC 1) с.О.Р. (SELECT 1-2 AUTOMATIC 3) Т.Е. R. (AUTOMATIC 2) колем Модель ТХНЕВУ ДБ(A) Звуковая мощность дБ(A) Контуры кол-во Электропитание В-фаз-Гц РАЗМЕРЫ И ВЕС L - Ширина	Тепловая мощность рекуперации (AUTOMATIC 2) кВт 50,6 Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) кВт 54 Общая потребляемая мощность (AUTOMATIC 1) кВт 8,5 Общая потребляемая мощность (AUTOMATIC 2) кВт 12 Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) кВт 12 E.E.R. (AUTOMATIC 1) 5,51 5,51 C.O.P. (SELECT 1-2 AUTOMATIC 3) 4,5 7,46 Модель ТХНЕВУ 245 Звуковая мощность ДБ(A) 67 Контуры кол-во 2/2 Контуры кол-во 2 Электропитание В-фаз-Гц 400-3+N-50 РАЗМЕРЫ И ВЕС 245 L-Ширина мм 1000	Тепловая мощность рекуперации (AUTOMATIC 2) кВт 50,6 59,6 Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) кВт 54 63,6 Общая потребляемая мощность (AUTOMATIC 1) кВт 8,5 9,8 Общая потребляемая мощность (AUTOMATIC 2) кВт 12 13,7 Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) кВт 12 13,8 E.E.R. (AUTOMATIC 1) 5,51 5,69 C.O.P. (SELECT 1-2 AUTOMATIC 3) 4,5 4,63 T.E.R. (AUTOMATIC 2) 7,46 7,72 Модель ТХНЕВУ 245 250 Звуковая мощность ДБ(A) 67 67 Контуры кол-во 2/2 2/2 Контуры кол-во 1 1 Электропитание В-фаз-Гц 400-3+N-50 400-3+N-50 РАЗМЕРЫ И ВЕС 245 250 L - Ширина мм 1000 1000	Тепловая мощность рекуперации (AUTOMATIC 2) кВт 50,6 59,6 68,5 Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3) кВт 54 63,6 73,1 Общая потребляемая мощность (AUTOMATIC 1) кВт 8,5 9,8 11,3 Общая потребляемая мощность (AUTOMATIC 2) кВт 12 13,7 15,7 Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3) кВт 12 13,8 15,7 Б.Е.R. (AUTOMATIC 1) 5,51 5,69 5,55 С.О.Р. (SELECT 1-2 AUTOMATIC 3) 4,5 4,63 4,65 Т.Е.R. (AUTOMATIC 2) 7,46 7,72 7,75 Модель ТХНЕВУ 245 250 260 Звуковая мощность ДБ(A) 67 67 68 Компрессор спиральный/ступенчатый кол-во 2/2 2/2 2/2 Контуры кол-во 1 1 1 1 Электропитание В-фаз-Гц 400-3+N-50 400-3+N-50 400-3+N-50 400-3+N-50 РАЗМЕРЫ И ВЕС 245 250	Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 Общая потребляемая мощность (AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 Б.Е. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 С.О.Р. (SELECT 1-2 AUТОМАТІС 2) 4,6 4,63 4,65 4,67 Т.Е. (AUТОМАТІС 2) 7,46 7,72 7,75 7,78 Модель ТХНЕВУ 245 250 260 270 ЗВуковая мощность ДБ(A) 67 67 68 68 Контуры кол-во 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2<	Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 Общая потребляемая мощность (AUTOMATІС 2) кВт 8,5 9,8 11,3 13 16,9 Общая потребляемая мощность (AUTOMATІС 2) кВт 12 13,7 15,7 17,4 23,4 Общая потребляемая мощность (SELECT 1-2 AUTOMATІС 3) кВт 12 13,8 15,7 17,4 23,5 E.E. (AUTOMATІС 1) 5,51 5,69 5,55 5,51 5,48 C.O.P. (SELECT 1-2 AUTOMATІС 3) 4,5 4,63 4,65 4,67 4,67 T.E.R. (AUTOMATІС 2) 7,46 7,72 7,75 7,78 7,82 MOGENT TXHEBY 245 250 260 270 290 Звуковая мощность ДБ(A) 67 68 68 70 Контуры кол-во 2/2 2/2 2/2 2/2 2/2 </td <td>Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 1) кВт 54 63,6 73,1 81,3 109,8 143,7 Общая потребляемая мощность (AUТОМАТІС 2) кВт 8,5 9,8 11,3 13 16,9 21,5 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,8 15,7 17,4 23,5 31 E.E. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 C.O.P. (SELECT 1-2 AUТОМАТІС 3) 4,5 4,63 4,65 4,67 4,67 4,63 T.E.R. (AUТОМАТІС 2) 7,46 7,72 7,75 7,78 7,82 7,7 Модель ТХНЕВУ 245 250 260 270 290 211 Контуры кол-во 2/2 2/2 <</td> <td>Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 Общая потребляемая мощность (AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,5 31 34,8 E.E.R. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,57 C.O.P. (SELECT 1-2 AUТОМАТІС 2) 7,46 7,72 7,75 7,78 7,82 7,7 7,56 Модель ТХНЕВУ 25 260 270 290 2115 213 Компрессор спиральный/ступенчатый кол-во 2/2 2/2 <td< td=""><td>Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 164,8 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 175,8 Общая потребляемая мощность (AUТОМАТІС 2) кВт 8,5 9,8 11,3 13 16,9 21,5 24,7 26,7 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 38,9 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 38,9 Б.Е. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,76 С.О.Р. (SELECT 1-2 AUТОМАТІС 2) 7,46 7,72 7,75 7,78 7,82 7,7 7,56 7,5 модель ТХНЕВУ 245 250 260 270 290 2115 21</td><td>Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 164,8 187,8 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 175,8 200,5 Общая потребляемая мощность (AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 38,9 45,3 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 38,9 45,3 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,5 31 34,8 38,9 45,3 E.E.R. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,57 5,76 5,74 C.O.P. (SELECT 1-2 AUТОМАТІС 2) 7,4 7,72 7,75 7,78 7,22 7,7 7,56 7,5 7,5 7,</td></td<></td>	Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 1) кВт 54 63,6 73,1 81,3 109,8 143,7 Общая потребляемая мощность (AUТОМАТІС 2) кВт 8,5 9,8 11,3 13 16,9 21,5 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,8 15,7 17,4 23,5 31 E.E. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 C.O.P. (SELECT 1-2 AUТОМАТІС 3) 4,5 4,63 4,65 4,67 4,67 4,63 T.E.R. (AUТОМАТІС 2) 7,46 7,72 7,75 7,78 7,82 7,7 Модель ТХНЕВУ 245 250 260 270 290 211 Контуры кол-во 2/2 2/2 <	Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 Общая потребляемая мощность (AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,5 31 34,8 E.E.R. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,57 C.O.P. (SELECT 1-2 AUТОМАТІС 2) 7,46 7,72 7,75 7,78 7,82 7,7 7,56 Модель ТХНЕВУ 25 260 270 290 2115 213 Компрессор спиральный/ступенчатый кол-во 2/2 2/2 <td< td=""><td>Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 164,8 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 175,8 Общая потребляемая мощность (AUТОМАТІС 2) кВт 8,5 9,8 11,3 13 16,9 21,5 24,7 26,7 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 38,9 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 38,9 Б.Е. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,76 С.О.Р. (SELECT 1-2 AUТОМАТІС 2) 7,46 7,72 7,75 7,78 7,82 7,7 7,56 7,5 модель ТХНЕВУ 245 250 260 270 290 2115 21</td><td>Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 164,8 187,8 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 175,8 200,5 Общая потребляемая мощность (AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 38,9 45,3 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 38,9 45,3 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,5 31 34,8 38,9 45,3 E.E.R. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,57 5,76 5,74 C.O.P. (SELECT 1-2 AUТОМАТІС 2) 7,4 7,72 7,75 7,78 7,22 7,7 7,56 7,5 7,5 7,</td></td<>	Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 164,8 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 175,8 Общая потребляемая мощность (AUТОМАТІС 2) кВт 8,5 9,8 11,3 13 16,9 21,5 24,7 26,7 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 38,9 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 2) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 38,9 Б.Е. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,76 С.О.Р. (SELECT 1-2 AUТОМАТІС 2) 7,46 7,72 7,75 7,78 7,82 7,7 7,56 7,5 модель ТХНЕВУ 245 250 260 270 290 2115 21	Тепловая мощность рекуперации (АUТОМАТІС 2) кВт 50,6 59,6 68,5 76,2 102,9 134,9 148,9 164,8 187,8 Тепловая номинальная мощность (SELECT 1-2 AUТОМАТІС 3) кВт 54 63,6 73,1 81,3 109,8 143,7 158,6 175,8 200,5 Общая потребляемая мощность (AUТОМАТІС 2) кВт 12 13,7 15,7 17,4 23,4 31,1 34,9 38,9 45,3 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,4 31,1 34,9 38,9 45,3 Общая потребляемая мощность (SELECT 1-2 AUТОМАТІС 3) кВт 12 13,8 15,7 17,4 23,5 31 34,8 38,9 45,3 E.E.R. (AUТОМАТІС 1) 5,51 5,69 5,55 5,51 5,48 5,75 5,57 5,76 5,74 C.O.P. (SELECT 1-2 AUТОМАТІС 2) 7,4 7,72 7,75 7,78 7,22 7,7 7,56 7,5 7,5 7,


- Охлажденная вода (пользователь): 12/7°С. Вода конденсатора (сточный канал-источник): 14/30°С
- Охлажденная вода (пользователь): 12/7°С Вода конденсатора (рекуперация): 40/45°С
- Вода испарителя (источник): 14/10°С . Горячая вода (пользователь): 40/45°С.

¹ Z-Flow EXP

TXHVZ 2410÷2740

Мощность при охлаждении: 434÷782 кВт - Мощность при отоплении: 482÷878 кВт

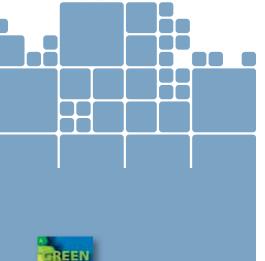
Серия с полугерметичными винтовыми компрессорами, с хладагентом R134a.

Конструктивные характеристики

- Компрессор: полугерметичный винтовой с высокой энергоэффективностью, запуск по схеме звездатреугольник с пониженным пусковым током, в комплект входит интегральная защита, нагрев картера, отсекающий вентиль на трубопроводе всасывания и подачи газового хладагента и датчик уровня масла компрессора.
- Электронный расширительный клапан: в серийном оснащении на всех моделях.
- Теплообменник с первичной стороны (пользователь): вторичный (рекуперация) и сточный канал: кожухотрубный и с сухим расширением, с резиновой изоляцией из вспененного полиуретана с закрытыми ячейками, с дифференциальным реле давления потока воды и соединения Victaulic.
- Контроль электронный с микропроцессором
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской.
- Также в комплект агрегата входит:
- отображение высокого и низкого давления цепи охлаждения,
- часовая плата для отображения даты/времени и программирования расписания работы агрегата на временных отрезках.

Варианты исполнения

- В Базовая версия (ТХНVВZ).
- I Версия со звукоизоляцией с шумопоглащающей обшивкой агрегата (ТХНVIZ).

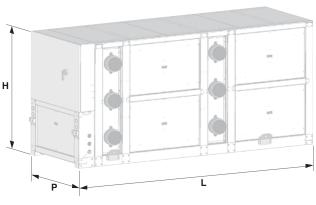

Модели

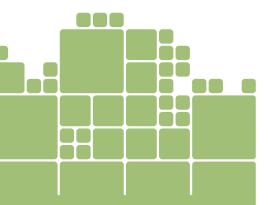
- TXHVBZ: базовый агрегат EXPsystem.
- TXHVIZ: агрегат EXPsystems со звукоизоляцией.

Аксессуары, установленные на заводе

- Конденсатор корректировки мощности ($\cos \phi > 0.94$).
- Плавный пускатель
- Магнитотермические выключатели компрессоров.
- Принудительное ограничение электрической мощности.
- Двойной комплект установок с цифровым подтверждением.
- Контроль мин/макс напряжения электропитания.
- Скользящие заданные значения за счёт аналогового сигнала 4-20 мА.
- Интерфейс для серийной связи с другими устройствами.
- Виброизолирующие пружинные опоры.

- Удаленный кнопочный пульт с дисплеем.
- Контроллеры Rhoss для мониторинга и удаленного управления агрегатом.
- Инструмент раздельного регулирования Rhoss для встроенного управления несколькими чиллерами.




МОДЕЛЬ ТХНVВZ - TXHVIZ		2410	2450	2500	2590	2660	2740
Холодильная мощность (AUTOMATIC 1)	кВт	434	476	531	626	698	782
Холодильная мощность (AUTOMATIC 1)	кВт	408	450	501	592	660	738
❸ Тепловая мощность рекуперации(AUTOMATIC 2)	кВт	462	512	563	663	738	838
● Тепловая номинальная мощность (SELECT 1-2 AUTOMATIC 3)	кВт	482	539	589	694	773	878
Общая потребляемая мощность (AUTOMATIC 1)	кВт	78,8	87,6	92,8	107,2	121,8	138,2
Общая потребляемая мощность (AUTOMATIC 1)	кВт	86,6	96,4	101,8	119,6	132,4	151,0
❸ Общая потребляемая мощность (AUTOMATIC 2)	кВт	104,6	116,2	122,5	143,8	159,2	181,7
● Общая потребляемая мощность (SELECT 1-2 AUTOMATIC 3)	кВт	105,6	119,0	123,6	144,6	160,8	184,4
• E.E.R. (AUTOMATIC 1)		5,51	5,43	5,72	5,84	5,73	5,66
❷ E.E.R. (AUTOMATIC 1)		4,71	4,67	4,92	4,95	4,98	4,89
② T.E.R.		7,86	7,85	8,22	8,25	8,30	8,25
C.O.P. (SELECT 1-2 AUTOMATIC 3)		4,56	4,53	4,77	4,80	4,81	4,76
модель тхнvвz		2410	2450	2500	2590	2660	2740
Звуковая мощность	дБ(А)	97	97	98	99	99	99
Винтовой/ступенчатый компрессор	кол-во	2/6	2/6	2/6	2/6	2/6	2/6
Контуры	кол-во	2	2	2	2	2	2
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		2410	2450	2500	2590	2660	2740
L - Ширина	MM	4.480	4.480	4.480	4.480	4.480	4.480
Н - Высота	MM	2.030	2.030	2.030	2.030	2.030	2.030
P - Глубина	MM	1.620	1.620	1.620	1.620	1.620	1.620
Bec TXHVBZ	КГ	3.900	4.745	5.330	5.720	6.000	6.020
BecTXHVIZ	ΚΓ	4.020	4.865	5.450	5.840	6.120	6.140

- Охлажденная вода (пользователь): 12/7°С. Вода конденсатора (сточный канал-источник): 14/30°С
- Охлажденная вода (пользователь): 12/7°С Вода конденсатора: 30/35°С
- Охлажденная вода (пользователь): 12/7°С Вода конденсатора (рекуперация): 40/45°С
- Вода испарителя (источник): 14°C. Расход как в летнем режиме (●). Горячая вода (пользователь): 40/45°C
- Ф Уровень общей звуковой мощности в дБ(A) на основании измерений в соответствии со стандартом UNI EN-ISO 9614.
- **③** Порожний вес.

- Агрегаты для внутренней установки с рекуперативным теплообменником.
- Передовая логическая схема контроля.
- Высокая
 энергетическая
 эффективность.
- Гидравлические соединения с верхней стороны.
- Применение с водой из скважины, водопровода или геотермальных зондов.

GEO-Flow DHW

THHEY 106 ÷ 230

Мощность при охлаждении: 6,5÷31,5 кВт - Мощность при отоплении: 7,2÷34,8 кВт

Геотермические тепловые насосы, реверсивные на охладительном контуре, с конденсатором с водным охлаждением и интегрированным производством ГВС. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный высокоэффективный спирального типа с тепловой защитой.
- Расширительный клапан: электронный.
- Теплообменник с первичной стороны (пользователь): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит дифференциальное реле давления для потока воды.
- Теплообменник со стороны сточного канала (скважина/ водопровод/геотермальные зонды): с пластинами из нержавеющей стали с соответствующей изоляцией, в комплект входит дифференциальное реле давления для потока воды (для геотермического использования) или реле потока (для использования с проточной водой)
- Рекуперативный теплообменник (водоснабжение): с пластинами из нержавеющей стали с соответствующей изоляцией.
- Контроль: электронный с микропроцессором, управляющим оптимальным образом всеми гидравлическим органами, имеющимися в системе.
- Температурный датчик внешнего воздуха для компенсации заданных значений.
- Конструкция: из оцинкованной листовой стали, окрашена порошковой полиэстровой краской, в комплект входит звукоизоляция ниши компрессора и антивибрационные опоры.

Модели

 ТННЕУ: блок теплового насоса с интегрированным производством ГВС.

Варианты исполнения

ТННЕҮ - для использования с проточной водой

Первичная сторона (пользователь): насосный блок с циркуляционным насосом низкого потребления, расширительный бак, предохранительный клапан, манометр.

Сторона рекуперации (водоснабжение): насосный блок с циркуляционным насосом с инвертором. Сторона сточного канала (скважина/водопровод): двухходовой клапан для контроля конденсации (скважина/водопровод).

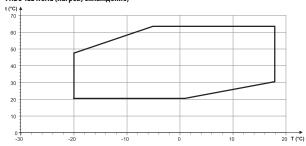
ТННЕУ - для геотермического использования Первичная сторона (пользователь): насосный блок с циркуляционным насосом низкого потребления, расширительный бак, предохранительный клапан, манометр.

Сторона рекуперации (водоснабжение): насосный блок с циркуляционным насосом с инвертором.
Сторона сточного канала (геотермальные зонды): насосный блок с циркуляционным насосом с инвертором для контроля конденсации, расширительный бак, предохранительный клапан, манометр.

Аксессуары, установленные на заводе

- Устройство плавного запуска (для моделей 230 Вольт).
- Исполнение с пониженным уровнем шума.

- Комплект "свободного охлаждения".
- Комплект солнечных батарей.
- Комплект управления помещениями.
- Удаленный кнопочный пульт с дисплеем.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).



МОДЕЛЬ ТННЕҮ		106	108	111	114	116	220	230
Системы лучистого обогрева/охлаждения	И							
Тепловая мощность	кВт	7,5	9,9	13,3	16,7	22,2	26,1	33,5
Потребляемая мощность (*)	кВт	1,27	1,6	2,2	3,6	4	4,4	5,6
● C.O.P.		5,85	6,1	6,14	4,67	5,52	5,99	6,02
Полезный напор установки	кПа	60	56	49	37	54	46	88
Тепловая мощность (геометрическая)	кВт	5,8	7,5	10,2	13,2	17,1	21	25,4
Тепловая мощность (геометрическая) (*) кВт	1,3	1,7	2,2	2,9	3,7	4,4	5,5
С.О.Р. (геотермическая)		4,43	4,57	4,68	4,6	4,6	4,82	4,6
Полезный напор установки	кПа	65	62	58	50	67	60	111
Полезный напор зондов	кПа	59	55	89	61	51	41	87
Тепловая мощность ГВС	кВт	5,3	7	9,4	11,9	15,7	18,6	23,7
❸ Полезный напор ГВС	кПа	66	62	57	55	41	52	53
Холодильная мощность	кВт	9,5	12,5	16,6	23,6	31	32,4	41,6
Потребляемая мощность (*)	кВт	1,3	1,5	2,1	2,8	7,1	4,3	5,7
● E.E.R.		7,39	8,19	7,84	8,4	4,38	7,61	7,35
Полезный напор установки	кПа	58	50	37	30	33	33	66
Полезный напор зондов	кПа	51	45	54	31	34	42	41
Системы с Фанкойлами								
• Тепловая мощность	кВт	7,05	9,23	12,38	15,62	20,77	24,39	31,25
Потребляемая мощность (*)	кВт	1,7	2,1	2,8	4,6	5,1	5,6	7,1
⑤ C.O.P.		4,15	4,4	4,42	3,4	4,07	4,36	4,4
О Холодильная мощность	кВт	6,7	8,8	11,8	14,9	19,7	23,1	29,7
Потребляемая мощность (*)	кВт	1,3	1,7	2,1	3,6	4	4,3	5,5
⑥ E.E.R.		5,15	5,18	5,62	4,14	4,93	5,37	5,4
● E.S.E.E.R.		5,04	4,79	4,6	4,57	5,14	5,37	6,18
Звуковое давление	дБ(А)	48	49	50	52	54	56	60
Компрессор спирального типа	кол-во	1	1	1	1	1	2	2
Электропитание	В-фаз-Гц	230-1-50/400-3N-50	230-1-50/400-3N-50	230-1-50/400-3N-50	400-3N-50	400-3N-50	400-3N-50	400-3N-50
РАЗМЕРЫ И ВЕС		106	108	111	114	116	220	230
L - Ширина	MM	620	620	620	620	620	800	800
Н - Высота	MM	971	971	1051	1051	1051	1000	1000
Р - Глубина	MM	575	650	650	650	650	875	875
③ Bec	КГ	151	158	175	200	220	270	310

- **●** Горячая вода: 30/35°С, вода испарителя 10/5°С.
- Горячая вода: 30/35°С, вода испарителя 0/—3°С, 20% гликолят.
- Горячее водоснабжение: 45/50°C, вода испарителя 0/—3°C, 30% гликолят.
- Охлажденная вода: 23/18°C, вода конденсатора 30/35°C, 20% гликолят.
- Горячая вода: 40/45°C, вода испарителя 10/5°C.
- Охлажденная вода: 12/7°С, вода конденсатора 30/35°С.
- В открытой зоне (Q = 2) на расстоянии 1 м от агрегата.
- **③** Вес относится к наиболее полному оснащению.
- ESEER (European Sesonal EER) Европейский сезонный коэффициент энергоэффективности. (*) Агрегат без циркулярных насосов.

Эксплуатационные показатели в соответствии с EN 14511:2013.

РАБОЧЕЕ ПОЛЕ (нагрев, охлаждение)

- t (°C) = Температура произведённой воды. T (°C) = Температура внешнего воздуха.

Компрессорно-конденсаторные агрегаты

MCAEBY 115÷130

Мощность при охлаждении: 16,4÷31,5 кВт

Компрессорно-конденсаторные агрегаты с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия герметичных компрессоров с хладагентом R410A.

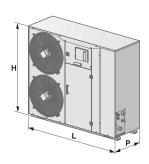
Конструктивные характеристики

- Компрессор: герметичный спирального типа и с тепловой защитой и ТЭН картера.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением, в комплект входит защитная решётка.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для постоянной настройки под давлением скорости вращения вентиляторов до температуры наружного воздуха — 10°C.
- Управление: электронное с микропроцессором.
- Конструкция: из оцинкованной и окрашенной листовой стали.

Модели

• МСАЕВҮ: агрегат предусмотрен только для охлаждения.

Аксессуары, установленные на заводе


• Исполнение с пониженным уровнем шума.

Комплектующие, поставляемые отдельно

- Виброизолирующие резиновые опоры.
- Интерфейс RS485 для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).

Модель МСАЕВУ		115	117	122	124	127	130
• Номинальная холодопроизводительность	кВт	16,4	18,5	24,7	26,5	29	31,5
• Потребляемая мощность	кВт	5,5	6,3	7,9	9	9,8	11
Модель МСАЕВҮ		115	117	122	124	127	130
Звуковое давление	дБ(А)	50	50	52	52	53	53
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС		233	238	245	250	260	265
L - Ширина	MM	1230	1230	1230	1230	1535	1535
Н - Высота	MM	1090	1090	1280	1280	1510	1510
Р - Глубина	MM	580	580	600	600	695	695
Bec MCAEBY	КГ	140	150	200	225	270	300

- Воздух: 35°С Насыщенный всасываемый газ: 5°С.
- **3** В открытой зоне (Q = 2) на расстоянии 5 м от агрегата.

Компрессорно-конденсаторные агрегаты

Мощность при охлаждении: 34,5÷162,6 кВт

MCAEBY 233÷2160

Компрессорно-конденсаторные агрегаты с воздушным охлаждением конденсатора и осевыми вентиляторами. Серия спиральных герметичных компрессоров с газовым хладагентом R410A.

Конструктивные характеристики

- Компрессор: герметичный ротационный, спирального типа, с тепловой защитой и ТЭН картера.
- Теплообменник со стороны воздуха: оребренная батарея с медными трубами и алюминиевым оребрением.
- Вентилятор: электровентиляторы осевого типа с внешним ротором, оснащены внутренней тепловой защитой, предохранительными решётками и электронным пропорциональным устройством для непрерывной настройки скорости вращения вентиляторов.
- Управление: электронное с микропроцессором.
- Конструкция: из горячеоцинкованной стали, окрашенной порошковой полиуретановой краской.

- Также в комплект агрегата входит:
- магнитотермические выключатели, компрессоры и вентиляторы;
- предварительное заполнение газом R410A.

Модели

МСАЕВУ: агрегат предусмотрен только для охлаждения.

Аксессуары, установленные на заводе

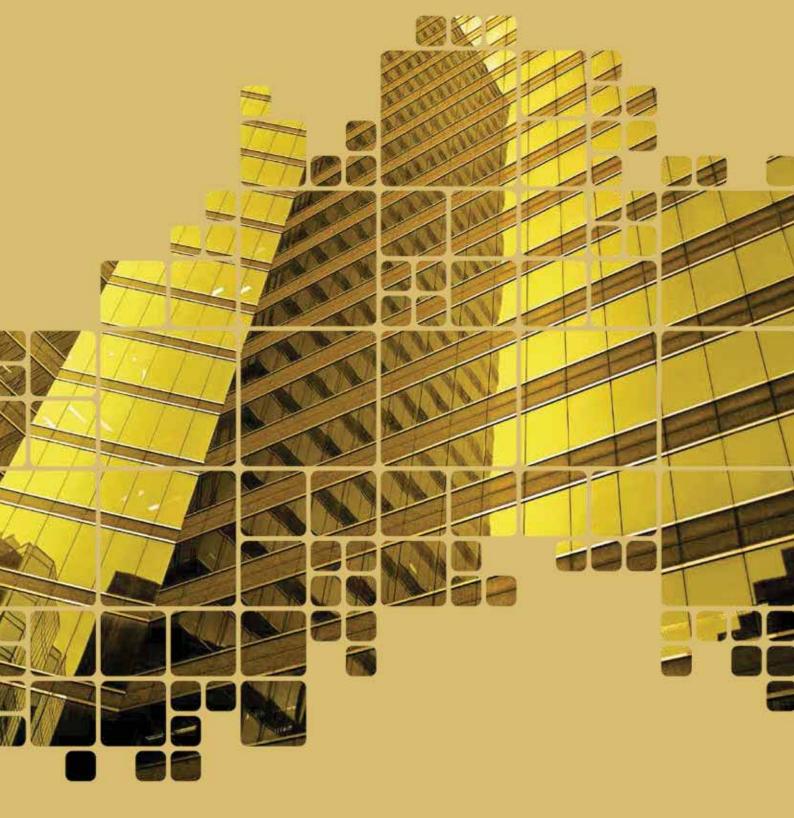
- Звукоизоляционное оснащение
- Защитные металлические фильтры змеевиков.
- Манометр высокого и низкого давления цепи охлаждения.
- Приёмник жидкости.
- Змеевик медь/медь или медь/предварительно окрашенный алюминий.
- Виброизолирующие резиновые опоры.

Комплектующие, поставляемые отдельно

- Комплект термостатического клапана.
- Интерфейс для серийной связи с другими устройствами.
- Последовательный преобразователь (RS485/USB).

Модель МСАЕВҮ		233	238	245	250	260	265	280
• Номинальная холодопроизводительность	кВт	34,5	41,2	46,7	54,3	62,5	67,7	79,1
• Потребляемая мощность	кВт	12,5	14,7	17,6	19,9	22,4	24,3	28,4
Модель МСАЕВҮ		233	238	245	250	260	265	280
Звуковое давление	дБ(А)	46,5	47	48	48	49	49	50
Электропитание	В-фаз-Гц	400-3+N-50						
РАЗМЕРЫ И ВЕС		233	238	245	250	260	265	280
L - Ширина	MM	1710	2315	2315	2315	2315	2315	2650
Н - Высота	MM	1570	1570	1570	1570	1570	1570	1700
Р - Глубина	MM	1000	1000	1000	1000	1000	1000	1210
Bec MCAEBY	КГ	400	546	536	570	586	624	880

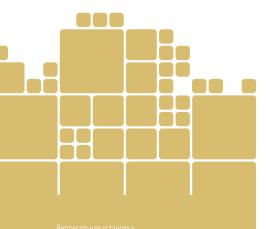
Модель МСАЕВҮ		290	2100	2115	2130	2145	2160
Номинальная холодопроизводительность	кВт	87,1	101	116,2	126,5	145,6	162,6
Потребляемая мощность	кВт	32,9	36,2	41,2	46,2	52,9	60,2
Модель МСАЕВУ		290	2100	2115	2130	2145	2160
Звуковое давление	дБ(А)	52	52	58	58	58	59
Электропитание	В-фаз-Гц	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50	400-3+N-50
РАЗМЕРЫ И ВЕС		290	2100	2115	2130	2145	2160
L - Ширина	MM	3150	3150	3150	3150	3150	3450
Н - Высота	MM	1700	1700	1730	1730	1730	1700
Р - Глубина	MM	1210	1210	1210	1210	1210	1210
Bec MCAEBY	КГ	935	950	998	998	1052	1108
	Номинальная холодопроизводительность Потребляемая мощность Модель МСАЕВУ Звуковое давление Электропитание РАЗМЕРЫ И ВЕС L - Ширина H - Высота Р - Глубина	Номинальная холодопроизводительность кВт Потребляемая мощность кВт Модель МСАЕВУ Звуковое давление дБ(A) Электропитание В-фаз-Гц РАЗМЕРЫ И ВЕС L - Ширина мм H - Высота мм	Номинальная холодопроизводительность кВт 87,1 Потребляемая мощность кВт 32,9 Модель МСАЕВУ 290 Звуковое давление ДБ(A) 52 Электропитание В-фаз-Гц 400-3+N-50 РАЗМЕРЫ И ВЕС 290 L - Ширина мм 3150 H - Высота мм 1700 Р - Глубина мм 1210	Номинальная холодопроизводительность кВт 87,1 101 Потребляемая мощность кВт 32,9 36,2 Модель МСАЕВҮ 290 2100 Звуковое давление дБ(A) 52 52 Электропитание В-фаз-Гц 400-3+N-50 400-3+N-50 РАЗМЕРЫ И ВЕС 290 2100 L - Ширина мм 3150 3150 H - Высота мм 1700 1700 Р - Глубина мм 1210 1210	Номинальная холодопроизводительность кВт 87,1 101 116,2 Потребляемая мощность кВт 32,9 36,2 41,2 Модель МСАЕВҮ 290 2100 2115 Звуковое давление дБ(A) 52 52 58 Электропитание В-фаз-Гц 400-3+N-50 400-3+N-50 400-3+N-50 РАЗМЕРЫ И ВЕС 290 2100 2115 L - Ширина мм 3150 3150 3150 H - Высота мм 1700 1700 1730 Р - Глубина мм 1210 1210 1210	Номинальная холодопроизводительность кВт 87,1 101 116,2 126,5 Потребляемая мощность кВт 32,9 36,2 41,2 46,2 Модель МСАЕВУ 290 2100 2115 2130 Звуковое давление ДБ(A) 52 52 58 58 Электропитание В-фаз-Гц 400-3+N-50 400-3+N-50 400-3+N-50 PA3MEPЫ И ВЕС 290 2100 2115 2130 L - Ширина мм 3150 3150 3150 3150 3150 H - Высота мм 1700 1700 1730 1730 P - Глубина мм 1210 1210 1210 1210	Номинальная холодопроизводительность кВт 87,1 101 116,2 126,5 145,6 Потребляемая мощность кВт 32,9 36,2 41,2 46,2 52,9 Модель МСАЕВҮ 290 2100 2115 2130 2145 Звуковое давление дБ(A) 52 52 58 58 58 Электропитание В-фаз-Гц 400-3+N-50 400-3+N-50 400-3+N-50 400-3+N-50 400-3+N-50 400-3+N-50 215 2130 2145 L - Ширина мм 3150 3150 3150 3150 3150 3150 3150 1730

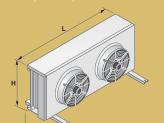

- Воздух: 35°С Насыщенный всасываемый газ: 5°С.
- $oldsymbol{\Theta}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.

Выносные конденсаторы - CCAMY 115÷218

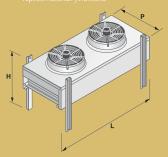
Башенная градирня - CEHV CEHP 46÷2791

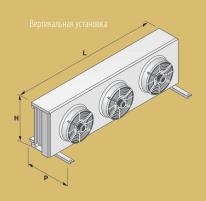
Насосные блоки - AS 0300÷2500

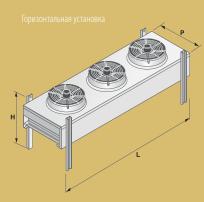

Насосные блоки - PBHI 0200-0400



Web code Mod. 115÷240: **CRYA1** Mod. 245÷2185: **CRYA2**


Выносные конденсаторы


CCAMY 115÷2185



Горизонтальная установка

Выносные воздушные конденсаторы с осевыми вентиляторами для хладагента R410A. Для подключения к бесконденсаторным чиллерам TCEEY.

Конструктивные характеристики

- Теплообменник: высокоэффективный змеевик с оребрением с медными трубами с механическим расширением на алюминиевом оребрении. Крепления для подключения охладительного контура выполняются спайкой. Проектировочное давление 40 бар изб. Каждый теплообменник проходит испытания на утечки сухим воздухом и поставляется заправленным азотом.
- Вентиляторы: осевого типа с внешним ротором с крыльчаткой из инновационных лопастей из полимерного материала, оснащены встроенной тепловой защитой для предохранения от перегрева. Степень защиты IP54, в соответствии со стандартом DIN 40050. Кроме того, электровентиляторы укомплектованы в серийном оснащении устройством контроля скорости с разъединением фазы.
- Конструкция: из оцинкованной предварительно окрашенной листовой стали с эпоксидной отделкой (RAL 9002)

Конструкция батареи сделана из алюминиевого сплава (AlMg3) для защиты от вибраций и теплового расширения.

. Конденсаторы поставляются с комплектом опорных кронштейнов для вертикальной установки с горизонтальным потоком воздуха (CCAMY V) или горизонтальной установки и вертикальным потоком воздуха (CCAMY H).

Опорные кронштейны сделаны из оцинкованной стали.

Электрощит укомплектован следующими элементами:

- электрические кабели, предназначенные для электропитания 400 Вольт-3 фазы-50 Гц;
- распределительная коробка электропитания с рубильником, где подсоединять общее электропитание Выносного конденсатора;
- самогасящаяся пластиковая оболочка (IP55) с устройством непрерывного контроля скорости вращения вентиляторов при помощи устройства разъединения фазы.
- датчик давления,
- электрические кабели вентиляторов,
- контакт для внешнего сигнала срабатывания термозащиты вентиляторов, контакт дистанционного вкл/выкл.

Варианты исполнения

- Удалённые конденсаторы серии ССАМУ предоставляются в 3 конструктивных версиях в соответствии с разными проектными требованиями по показателям звуковой эмиссии в помещении:
- Версия "В" Базовая (за исключением мод. 115)
- Версия "S" с пониженным уровнем шума
- Версия «Q» Сверхтихая

Мо	одель ССАМВҮ			118	122	125	230	240
BE	РСИЯ В "Базовая"							
• Но	минальная тепловая мощность	кВт		22,8	25,55	29,37	39,88	48,9
3By	уковое давление	дБ(А)		41	41	44	47	4
Хол	лодильные контуры	кол-во		1	1	1	1	
Bei	нтиляторы	кол-во		1	1	1	2	
Ho	минальный расход вентиляторов	м³/ч		6419	6068	7019	15560	1476
	орость вращения	об/мин		1180	1180	1390	1390	139
1 По	требляемая мощность	кВт		0,55	0,55	0,72	1,44	1,4
Эле	ектропитание	В-фаз-Гц		400-3-50	400-3-50	400-3-50	400-3-50	400-3-5
	ЗМЕРЫ И ВЕС							
Гор	ризонтальная установка Н							
	Ширина	MM		1115	1115	1115	2015	201
	Высота	MM		846	846	846	846	84
	Глубина	MM		868	868	868	868	86
	ртикальная установка V							
	Ширина	MM		1115	1115	1115	2015	201
	- Высота	MM		828	828	828	828	828
	Глубина	MM		470	470	470	470	47
Bed	•	KL		49	54	54	83	9:
Det	· ·	NI NI		47		J4	03	J.
Ма	одель CCAMSY		115	118	122	125	230	240
			115	110	122	123	230	240
	рсия "Ѕ" со звукоизоляцией	D	10.00	20.76	20.00	22.0	26.04	40.4
	минальная тепловая мощность	кВт	18,96	20,76	29,08	33,9	36,94	48,9
	уковое давление	дБ(А)	36	36	36	36	39	4
	лодильные контуры	КОЛ-ВО	1	1	1	1	1	
	нтиляторы	кол-во	1	1	2	2	2	
	минальный расход вентиляторов	M ³ /4	4865	4599	9224	8643	9730	1551
	орость вращения	об/мин	930	930	800	800	930	93
	требляемая мощность	кВт	0,27	0,27	0,38	0,38	0,54	0,8
Эле	ектропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	ЗМЕРЫ И ВЕС							
Гор	ризонтальная установка Н							
L-	Ширина	MM	1115	1115	2015	2015	2015	291
Н-	- Высота	MM	846	846	846	846	846	84
Р-	- Глубина	MM	868	868	868	868	868	86
Bej	ртикальная установка V							
L-	Ширина	MM	1115	1115	2015	2015	2015	291.
Н-	- Высота	MM	828	828	828	828	828	828
Р-	Глубина	MM	470	470	470	470	470	470
Bed	C*	КГ	49	54	83	92	92	12
Мо	одель CCAMQY		115	118	122	125	230	240
BE	РСИЯ Q "Co сверхнизким уровнем шума	a"						
1 Ho	минальная тепловая мощность	кВт	18,89	21,02	25,83	30,65	37,83	5(
	уковое давление	дБ(А)	33	34	34	34	36	3
-	лодильные контуры	кол-во	1	1	1	1	1	
	нтиляторы	кол-во	1	1	1	1	2	
	минальный расход вентиляторов	M ³ /4	4071	7285	6724	6262	8141	1280
	орость вращения	об/мин	800	690	690	690	800	80
	требляемая мощность	кВт	0,19	0,4	0,4	0,4	0,38	0,5
	ектропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-5
	ЗМЕРЫ И ВЕС	р-фаз-1ц	400-3-30	400-3-30	400-3-30	400-5-50	400-3-30	400-3-3
	ризонтальная установка Н	****	1115	1241	1741	17/1	2015	291
	Ширина	MM		1261	1261	1261	2015	
	- Высота	MM	846	1171	1171	1171	846	84
	- Глубина	MM	868	1100	1100	1100	868	86
	ртикальная установка V							
	Ширина	MM	1115	1261	1261	1261	2015	291
	- Высота	MM	828	1034	1034	1034	828	82
P -	- Глубина	MM	470	750	750	750	470	47
Be		КГ	54	78	85	94	101	13:

- Температура внешнего воздуха 35°C В.S., температура конденсации 50°C (точка росы), устранение перегрева 25°К. Максимальная скорость
- $oldsymbol{Q}$ На открытом воздухе (Q = 2) на расст. 10 м от агрегата.
- Порожний вес

Коррекция уровня звукового д	авления на расстоянии, отличн	юм от 10 м							
Расстояние	(M)	2	3	4	5	7	10	15	20
Коррекция	дБ(А)	11	8.5	7	5	2.5	0	-3	-5.5

Выносные конденсаторы

CCAMY 115÷2185

	Модель ССАМВУ		245	250	260	270	275	290
	ВЕРСИЯ В "Базовая"							
0	Номинальная тепловая мощность	кВт	56,92	74	76,34	80,16	87,39	108,49
2	Звуковое давление	дБ(А)	47	49	49	50	51	5.
	Холодильные контуры	кол-во	1	1	1	1	1	
	Вентиляторы	кол-во	2	3	3	4	2	
	Номинальный расход вентиляторов	м³/ч	14040	22100	22130	31130	21160	3310
	Скорость вращения	об/мин	1390	1390	1390	1390	1330	1330
0	Потребляемая мощность	кВт	1,44	2,16	2,16	2,88	2,5	3,7
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-5
	РАЗМЕРЫ И ВЕС							
	Горизонтальная установка Н							
	L - Ширина	MM	2015	2915	2915	3815	2261	326
	Н - Высота	MM	846	846	846	846	1171	117
	Р - Глубина	MM	868	868	868	868	1100	110
	Вертикальная установка V							
	L - Ширина	MM	2015	2915	2915	3815	2261	326
	Н - Высота	MM	828	828	828	828	1034	1034
	Р - Глубина	MM	470	470	470	470	750	750
	Bec*	KΓ	101	136	140	174	169	23
	DEC	NI NI	101	130	140	1/4	109	23.
	Модель CCAMSY		245	250	260	270	275	29
	Версия "Ѕ" со звукоизоляцией							
0	Номинальная тепловая мощность	кВт	53,99	69,69	74,74	92,21	95,37	106,28
2	Звуковое давление	дБ(А)	46	46	46	47	49	4
	Холодильные контуры	кол-во	1	1	1	1	1	
	Вентиляторы	кол-во	3	3	3	4	3	
	Номинальный расход вентиляторов	M ³ /4	20480	19260	18210	25670	27190	2569
	Скорость вращения	об/мин	1180	1180	1180	1180	1070	1070
0	Потребляемая мощность	кВт	1,65	1,65	1,65	2,2	2,52	2,52
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
	РАЗМЕРЫ И ВЕС	- 1						
	Горизонтальная установка Н							
	L - Ширина	MM	2915	2915	2915	3815	3261	326
	Н - Высота	MM	846	846	846	846	1171	117
	Р - Глубина	MM	868	868	868	868	1100	1100
	Вертикальная установка V	IVIIVI	000	000	000	000	1100	110
	L - Ширина	MM	2915	2915	2915	3815	3261	326
	Н - Высота	MM	828	828	828	828	1034	1034
	Р - Глубина	MM	470	470	470	470	750	750
	Вес*		121	136		193	237	25
	BEC	КГ	121	130	149	193	237	25.
	Модель CCAMQY		245	250	260	270	275	290
	ВЕРСИЯ Q "Со сверхнизким уровнем шума"							
0	Номинальная тепловая мощность	кВт	52,99	63,91	77,91	83,27	94,29	10.
0	Звуковое давление	дБ(А)	38	41	42	42	44	4.
	Холодильные контуры	кол-во	1	1	1	1	1	
	Вентиляторы	кол-во	3	3	4	4	3	
	Номинальный расход вентиляторов	м ³ /ч	12960	13800	19460	18400	25490	3380
	Скорость вращения	об/мин	800	930	930	930	890	89
0	Потребляемая мощность	кВт	0,57	0,81	1,08	1,08	1,8	2,
	Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-5
	РАЗМЕРЫ И ВЕС							
	Горизонтальная установка Н							
	L - Ширина	MM	2915	2915	3815	3815	3261	426
	Н - Высота	MM	846	846	846	846	1171	117
	Р - Глубина	MM	868	868	868	868	1100	110
	Вертикальная установка V	141141	000	000	000	000	1100	110
	L - Ширина	MM	2915	2915	3815	3815	3261	426
	Н - Высота	MM	828	828	828	828	1034	103
	Р - Глубина	MM	470	470	470	470	750	75
	Вес*	MM KГ	140	149	192	210	216	274
	DCC	NI.	140	147	174	∠ I U	۷.10	214

[•] Температура внешнего воздуха 35°C В.S., температура конденсации 50°С (точка росы), устранение перегрева 25°К. Максимальная скорость

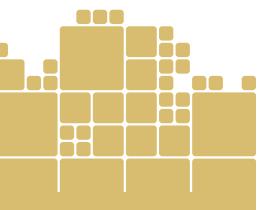
② На открытом воздухе (Q = 2) на расст. 10 м от агрегата.

^{*} Порожний вес

Модель ССАМВҮ		2100	2115	2130	2145	2165	218
ВЕРСИЯ В "Базовая"							
Номинальная тепловая мощность	кВт	123,65	135	149	169,23	200,8	217,2
Звуковое давление	дБ(А)	53	54	54	54	55	
Холодильные контуры	кол-во	1	1	1	1	1	
Вентиляторы	кол-во	3	4	4	4	5	
Номинальный расход вентиляторов	м³/ч	31730	44140	44240	42310	52920	6621
Скорость вращения	об/мин	1330	1330	1330	1330	1330	133
Потребляемая мощность	кВт	3,75	5	5	5	6,25	7
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-5
РАЗМЕРЫ И ВЕС							
Горизонтальная установка Н							
L - Ширина	MM	3261	4261	4261	4261	5261	626
Н - Высота	MM	1171	1171	1171	1171	1171	117
Р - Глубина	MM	1100	1100	1100	1100	1100	110
Вертикальная установка V							
L - Ширина	MM	3261	4261	4261	4261	5261	626
Н - Высота	MM	1034	1034	1034	1034	1034	103
Р - Глубина	MM	750	750	750	750	750	7.5
Bec *	КГ	257	302	310	327	421	4.
Модель CCAMSY		2100	2115	2130	2145	2165	218
Версия "Ѕ" со звукоизоляцией							
Номинальная тепловая мощность	кВт	130,58	135	149	173,43	190,91	212,0
Звуковое давление	дБ(А)	50	50	50	51	52	
Холодильные контуры	кол-во	1	1	1	1	1	
Вентиляторы	кол-во	4	4	4	5	6	
Номинальный расход вентиляторов	м³/ч	36250	34100	34250	42820	54380	5138
Скорость вращения	об/мин	1070	1070	1070	1070	1070	107
Потребляемая мощность	кВт	3,36	3,36	3,36	4,2	5,04	5,0
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-5
РАЗМЕРЫ И ВЕС							
Горизонтальная установка Н							
L - Ширина	MM	4261	4261	4261	5261	6261	626
Н - Высота	MM	1171	1171	1171	1171	1171	117
Р - Глубина	MM	1100	1100	1100	1100	1100	11
Вертикальная установка V							
L - Ширина	MM	4261	4261	4261	5261	6261	626
Н - Высота	MM	1034	1034	1034	1034	1034	103
Р - Глубина	MM	750	750	750	750	750	7.5
Bec *	КГ	302	327	335	421	451	48
u canov		2400	2445	2424	2445	2445	
Модель ССАМQY ВЕРСИЯ Q "Со сверхнизким уровнем шума"	•	2100	2115	2130	2145	2165	218
Номинальная тепловая мощность	кВт	125	138,65	160	176	195,63	217,0
Звуковое давление	дБ(А)	45	45	46	46	47	217,
Холодильные контуры	кол-во	1	1	1	1	1	
Вентиляторы	кол-во	4	4	5	5	6	
Номинальный расход вентиляторов	M ³ /4	33990	32110	40000	40130	47900	4810
Скорость вращения	об/мин	890	890	890	890	890	8
Потребляемая мощность	кВт	2,4	2,4	3	3	3,6	3
Электропитание	В-фаз-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-
РАЗМЕРЫ И ВЕС	υ φασ τις	400-3-30	400-3-30	400 3-30	400 3-30	T00 3 30	700 5
Горизонтальная установка Н							
L - Ширина	MM	4261	4261	5261	5261	6261	620
Н - Высота	MM	1171	1171	1171	1171	1171	11
Р - Глубина	MM	1100	1100	1100	1100	1100	11
Вертикальная установка V							
L - Ширина	MM	4261	4261	5261	5261	6261	62
Н - Высота	MM	1034	1034	1034	1034	1034	10
	141141						
Р - Глубина	MM	750	750	750	750	750	7.

фанные при следующих условиях.

Температура внешнего воздуха 35°C в.S., температура конденсации 50°C (точка росы), устранение перегрева 25°К. Максимальная скорость на открытом воздухе (Q = 2) на расст. 10 м от агрегата.


Порожний вес

Порожний вес

Web code: TEA01

Башенная градирня

CEHV CEHP 46÷2791

- Версия со значительно пониженным уровнем шума
- Компактный агрегат и простота в установке

Охладительные градирни для чиллеров с водным охлаждением конденсатора. Серия осевых вентиляторов.

Конструктивные характеристики

- Распределительная система: трубы из поливинилхлорида, пластиковые распылительные сопла.
- Пакет теплообменника: пластмассовые панели с ячеистой структурой с широкими проходами.
- Каплеотделитель: из пластмассы.
- Вентилятор: осевой с прямым подключением, оснащен защитной решёткой.
- Сборочный поддон: из усиленной полиэфирной смолы со стекловолокном, в комплект входят элементы для защиты от разбрызгивания, сливные крепления, поплавковый датчик наполнения и перелива.
- Конструкция: из полиэфирной смолы со стекловолокном и самонесущей структурой с инспекционным окном для моделей серии СЕНV; с профилями из горячеоцинкованной стали и боковым буферами из многослойных панелей 22 мм из полиэфирной смолы со стекловолокном для моделей серии СЕНР-СЕНРS.

Модели

- СЕНУ 46÷639 Башенные градирни со структурой из полиэстера со стекловолокном, самонесущая структура.
- СЕНР 744-2791 Башенные градирни с профилями из горячеоцинкованной стали, боковая защита из многослойных панелей 22 мм из полиэфирной смолы с укреплением из стекловолокна.
- ĆЕНРS 744÷2791 Башенные градирни в исполнении со звукоизоляцией, с профилями из горячеоцинкованной стали, боковая защита из многослойных панелей 22 мм из полиэфирной смолы с укреплением из стекловолокна.

Аксессуары, установленные на заводе Серия СЕНV

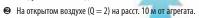
• Противообледенительный нагревательный элемент на ёмкости для сбора воды.

Серия СЕНР – СЕНРЅ

- Демонтируемая боковая стенка.
- Противообледенительный нагревательный элемент на ёмкости для сбора воды с выключателем минимального уровня.

	МОДЕЛЬ CEHV		4	6	87	105	139	16	9 2	203	238	337	395	47	7	506	599	639
0	Номинальная утилизированная тепловая мощность	кВт	46,			104,7	139,5	168,			238,4	337,2	395,3			05,8	598,8	639,
	Установленная электрическая мощность электровентилятора	кВт	0,5	5 (),75	0,75	1,1	1,	1	1,1	1,1	2,2	2,2		4	4	4	
	Звуковая мощность	дБ(А)	7	4	75	75	75	7	5	77	77	80	80) (33	83	85	8
2	Звуковое давление	дБ(А)	4	6	47	47	47	4	7	49	49	52	52		55	55	57	5
	Электропитание	В-фаз-Гц								220/38	0-3-50							
	РАЗМЕРЫ И ВЕС		4	6	87	105	139	16	9 2	203	238	337	395	47	7	506	599	639
	L - Ширина	MM	80	0 1	000	1000	1200	120	0 1	400	1400	1740	1740	210	00 2	2100	2300	2300
	Н - Высота	MM	211	0 2	595	2595	2800	280	0 2	360	2860	3140	3140	338	30 3	380	3450	345
	Р - Глубина	MM	80	0 1	000	1000	1200	120	0 1	400	1400	1740	1740	190	00 1	1900	2100	2100
	Порожний вес	КГ	7	5	85	95	155	17	0	195	210	380	410	50	00	525	555	580
	Рабочий вес	КГ	18	0	215	285	470	48	5	755	780	1380	1410	180	00 1	1825	1955	1980
	МОДЕЛЬ СЕНР		744	826	878	971	1070	1186	1256	1395	1488	1651	1756	1948	2139	2366	2512	279
0	Номинальная утилизированная тепловая мощность	кВт	744,2	825,6	877,9	970,9	1069,8	1186	1255,8	1395,3	1488,4	1651,2	1755,8	1947,7	2139,5	2366,3	2511,6	2790,
	Установленная электрическая мощность электровентилятора	кВт	4	5,5	5,5	7,5	7,5	11	11	11	2X4	2X5,5	2X5,5	2X7,5	2X7,5	2X11	2X11	2X1
	Звуковая мощность	дБ(А)	90	90	92	92	94	94	95	95	93	93	95	95	97	97	98	98
0	Звуковое давление	дБ(А)	62	62	64	64	66	66	67	67	65	65	67	67	69	69	70	70
	Электропитание В	3-фаз-Гц								380/66	0-3-50							
	РАЗМЕРЫ И ВЕС		744	826	878	971	1070	1186	1256	1395	1488	1651	1756	1948	2139	2366	2512	2791
	L - Ширина	MM	2025	2025	2365	2365	2875	2875	3370	3370	4080	4080	4750	4750	5770	5770	6770	6770
	Н - Высота	MM	3650	3650	3650	3650	3650	3650	3650	3650	3650	3650	3650	3650	3950	3950	3950	3950
	Р - Глубина	MM	2365	2365	2365	2365	2365	2365	2365	2365	2365	2365	2365	2365	2365	2365	2365	236
	Порожний вес	КГ	885	920	965	1000	1115	1165	1220	1270	1630	1700	1790	1860	2125	2225	2375	247
	Рабочий вес	КГ	2485	2520	2865	2900	3815	3865	4320	4370	4680	4750	5430	5500	7325	7425	8375	8475
	МОДЕЛЬ СЕНРЅ		744	826	878	971	1070	1186	1256	1395	1488	1651	1756	1948	2139	2366	2512	279
0	Номинальная утилизированная тепловая мощность	кВт	744,2	825,6	877,9	970,9	1069,8	1186							2139,5			
_	Установленная электрическая мощность электровентилятора	кВт	5,5	5,5	7,5	7,5	11	11	11	11	2X5,5	2X5,5	2X7,5	2X7,5	2X11	2X11	2X11	2X1
	Звуковая мощность	дБ(А)	79	79	80	80	82	82	83	83	82	82	83	83	85	85	86	
2	Звуковое давление	дБ(А)	51	51	52	52		54	55	55	54	54	55	55	57	57	58	
_	· · · · · · · · · · · · · · · · · · ·	В-фаз-Гц							- 33	380/66							- 50	
	РАЗМЕРЫ И ВЕС	r4	744	826	878	971	1070	1186	1256		1488	1651	1756	1948	2139	2366	2512	2791
	L - Ширина	MM	2025	2025	2365	2365	2875	2875	3370	3370	4080	4080	4750	4750	5770	5770	6770	
							20.3	20.5	5570	55.0	.000				50	50	00	0.70

Данные при следующих условиях:


• Воздух: 24°С В.И. - Вода : 35/30° С.

Н - Высота

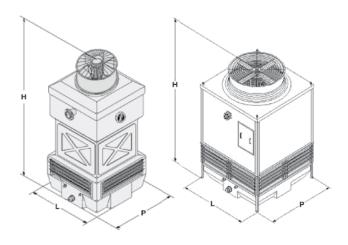
Р - Глубина

Порожний вес

Рабочий вес

мм 3905

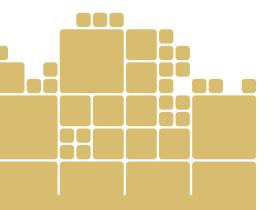
MM


ΚГ

кг 2485

965 1000

1860 2125


8375 8475

Web code: GPA01

Насосные станции

AS 0300÷2500

- Накопительные баки от 300 до 2.500 л.
- Возможность многочисленных комбинаций электронасосов со стороны пользователя
- Подключение к системе на подаче или на возврате

Насосные станции с накопительным баком.

Конструктивные характеристики

- Накопительный бак: из углеродистой стали ёмкостью 300, 500, 750, 1.000, 1.500, или 2.500 литров.
- Гидравлические компоненты: отдельный или двойной насос центробежного типа, шаровой отсекающий клапан на всасывании и подаче каждого электронасоса, вентиль автоматического наполнения, предохранительный клапан, автоматический клапан стравливания воздуха, кран слива воды из бака, расширительный мембранный бак, обратный клапан (только двойной насос), манометр.
- Гидравлический контур с изоляцией из полиуретана соответствующей толщины с закрытыми ячейками.
- Конструкция: несущая, выполнена из оцинкованной и окрашенной стали.
- Контроль: электромеханический

Варианты исполнения

• AS - Базовая версия с двумя креплениями.

Модели

- AS 0300 PU или DPU 1÷5: насосный блок, оснащенный одинарным насосом пользователя (PU) или двойным насосом пользователя (DPU).
- AS 0500 PU или DPU 1÷5:насосный блок, оснащенный одинарным насосом пользователя (PU) или двойным насосом пользователя (DPU).
- AS 0750 PU или DPU 6÷10: насосный блок, оснащенный одинарным насосом пользователя (PU) или двойным насосом пользователя (DPU).
- AS 1000 PU или DPU 6÷10: насосный блок, оснащенный одинарным насосом пользователя (PU) или двойным насосом пользователя (DPU).
- AS 1500 PU или DPU 6÷14: насосный блок, оснащенный одинарным насосом пользователя (PU) или двойным насосом пользователя (DPU).
- AS 2500 PU или DPU 6÷14: насосный блок, оснащенный одинарным насосом пользователя (PU) или двойным насосом пользователя (DPU).

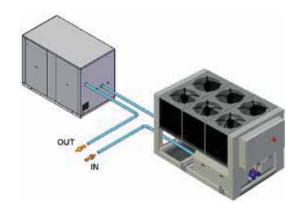
Аксессуары, установленные на заводе

 Противообледенительный нагревательный элемент бака с исполнительным механизмом.

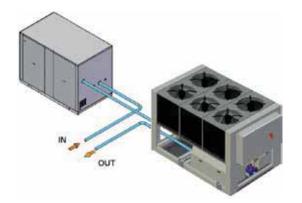
Комплектующие, поставляемые отдельно

• Соединения Victaulic.

_
<u> </u>
S
Ш
F
U
5
U
\mathbf{z}
\vdash
00
0
_
¥
TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT
5
d
⋖
I
<u> </u>
Δ.
PIE
<u> </u>
Ā
5
Щ
Ë
흦
王
5
<u>0</u>
<u>o</u>
ロ

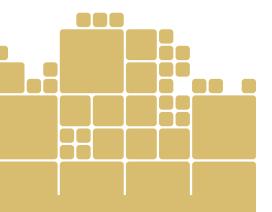

модель		AS 0300	AS 0500	AS 0750	AS 1000	AS 1500	AS 2500
Ёмкость бака	л.	300	500	750	1000	1500	2500
Модель электронасоса		1-2-3-4-5	1-2-3-4-5	6-7-8-9-10	6-7-8-9-10	6-7-8-9-10-11-12-13-14	6-7-8-9-10-11-12-13-14
Объём расширительного бака	л.	25	25	25	25	3X25	3X25
Предварительная заправка расширительного бака	бар	1,5	1,5	1,5	1,5	1,5	1,5
Тарирование предохранительного клапана	бар	3	3	3	3	3	3
Максимальное рабочее давление	бар	3	3	3	3	3	3
ТЭН (факультативно)	Вт	1300	1300	1300	1300	1.300X2	1.300X2
Гидравлические крепления (гнездовые)	Ø (Газ)	21/2"	21/2"	3"	3"	4"	4"
Минимальная температура жидкости	°C	-10	-10	-10	-10	-10	-10
Электропитание	Вольт-фазы-Гц	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС		AS 0300	AS 0500	AS 0750	AS 1000	AS 1500	AS 2500
L - Ширина	MM	1504	1504	2044	2044	2260	2260
Н - Высота	MM	1265	1265	1510	1510	1782	1782
Р - Глубина	MM	1120	1120	1200	1200	1900	1900
Bec (*)	КГ	194	215	377	400	660	712
Bec (**)	КГ	231	253	501	528	878	930

^(*) Порожний вес с 1 насосом


^(**) Порожний вес с 2 насосами

БАК	HACOC	Электропитание	Максимальная потребляемая мощность	Пропускная способность	Полезный напор	Пропускная способность	Полезный напор	Пропускная способность	Полезный напор
Емкость (л)	Модель	Вольт-фазы-Гц	кВт	м³/ч	m.c.a.	м³/ч	m.c.a.	м ³ /ч	m.c.a.
300 или 500	1	400-3-50	1,1	12	15,5	15	13,5	18	11,1
300 или 500	2	400-3-50	1,5	12	19	15	17	18	14,7
300 или 500	3	400-3-50	1,5	21	12,4	24	10,8	30	7,5
300 или 500	4	400-3-50	2,2	21	18,2	24	16,6	30	13,3
300 или 500	5	400-3-50	3	21	20,4	24	18,8	30	15,6
750 или 1000	6	400-3-50	3	36	18,5	42	16,5	48	14
750 или 1000	7	400-3-50	5,5	42	27	48	25	60	20
750 или 1000	8	400-3-50	5,5	60	20	72	17	84	12,5
750 или 1000	9	400-3-50	7,5	72	22	84	18,5	96	14,5
750 или 1000	10	400-3-50	11	72	31	84	27,5	96	24
1 500 или 2 500	11	400-3-50	15	72	38,5	84	35	96	31
1 500 или 2 500	12	400-3-50	15	108	29	120	27	138	24,5
1 500 или 2 500	13	400-3-50	18,5	108	34	120	32	138	29,5
I 500 или 2 500	14	400-3-50	22	108	40	120	38,5	138	36

Схема с насосным блоком АЅ на подаче


Схема с насосным блоком АЅ на возврате

Web code: GPH01

Насосные станции

PBHI 0200-0400

- Управление первичным и вторичным контуром
- Версия со "СВОБОДНЫМ ОХЛАЖДЕНИЕМ"
- Опция электронасоса со встроенным инвертором

Насосные станции с накопительным баком.

Конструктивные характеристики

- Накопительный бак: из углеродистой стали, окрашенной, ёмкостью 200 или 425 литров.
- Гидравлические компоненты: первичный контур оснащён одним насосом, вторичный контур оснащён одним насосом с базовым напором, накопительным баком, расширительным баком, предохранительным клапаном, отсекающими клапанами, вентилями наполнения/слива воды из бака и клапанами автоматического и ручного стравливания воздуха.
- Теплообменник: со спаяно-сваренными пластинами, в комплект входит тарируемое реле потока (только на версиях со "свободным охлаждением").
- Контроль: электромеханический.
- Конструкция: несущая конструкция выполнена из оцинкованной листовой стали, окрашена порошковой полиэстеровой краской. Панели съемные, для простого доступа к внутренним компонентам.

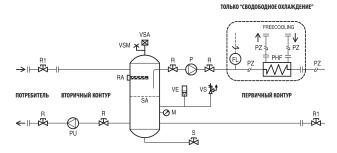
Варианты исполнения

- В Базовая версия: с одним насосом для первичного и вторичного контура (базовый напор).
- F Версия свободного охлаждения: оснащена теплообменником косвенного "свободного охлаждения".

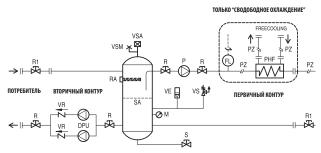
Модели

- РВНІ 0200 В: базовый насосный блок.
- РВНІ 0400 В: базовый насосный блок
- PBHI 0200 F: насосный блок версии "свободного охлаждения".
- PBHI 0400 F: насосный блок версии "свободного охлаждения".

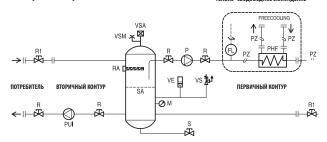
Аксессуары, установленные на заводе


- Один электронасос вторичного контура с увеличенным напором.
- Двойной электронасос вторичного контура с базовым или увеличенным напором, один из насосов находится в режиме ожидания с автоматическим запуском.
- Один центробежный насос со встроенным инвертором поддерживает постоянное давление при изменении расхода системы.
- Противообледенительный нагревательный элемент 300 Вт (230 Вольт) в комплект входит исполнительный механизм.

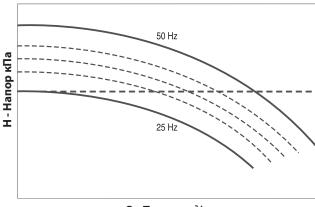
Комплектующие, поставляемые отдельно


- Виброизолирующие резиновые опоры.
- Гибкие трубы для подключения к охладителю/ тепловому насосу.

	0200	0400
Л.	200	425
Л.	8	12
кПа	150	150
кПа	600	600
кПа	600	600
Вт	300	300
Ø (Газ)	2" F	21/2" F
дБ(А)	71	74
В-фаз-Гц	400-3+N-50	400-3+N-50
	0200	0400
MM	1.340	1.919
MM	1.206	1.706
MM	861	863
	л. кПа кПа вт Ø (Газ) дБ(А) В-фаз-Гц мм	л. 200 л. 8 кПа 150 кПа 600 кПа 600 Вт 300 Ø (Газ) 2" F ДБ(А) 71 В-фаз-Гц 400-3+N-50 мм 1.340 мм 1.206


Гидравлический контур РВНІ с одним насосом со стороны потребителя

ДОПОЛНИТЕЛЬНЫЕ ДЕТАЛИ НАСОСОВ ВТОРИЧНОГО КОНТУРА: Гидравлический контур РВНІ с двумя насосами со стороны потребителя


Гидравлический контур РВНІ с одним насосом с инвертором со стороны потребителя только «сводоводн

- Р Циркуляционный насос первичного контура.
- PU Циркуляционный насос вторичного контура.
- DPU Двойной циркуляционный насос вторичного контура (комплектующая деталь, устанавливается на заводе-изготовителе).
- PUI Циркуляционный насос с инвертором вторичного контура (комплектующая деталь, устанавливается на заводе-изготовителе).
- FL Реле потока.
- М Манометр
- РZ Отверстия с внутренним диаметром 6,2 мм.
- PHF Пластинчатый теплообменник для "СВОБОДНОГО ОХЛАЖДЕНИЯ".
- RA Противообледенительный нагревательный элемент (комплектующий элемент, установлен на заводе-изготовителе).
- R Вентиль.
- R1 Вентиль устанавливается монтажником (предоставляется в оснащении).
- S Вентиль для слива/наполнения воды (снаружи накопительного бака).
- SA Накопительный бак
- VE Расширительный бак, рассчитанный для содержания воды только для накопления ($-10^{\circ}\text{C} \div +60^{\circ}\text{C}$).
- VR Обратный клапан.
- VS Предохранительный клапан.
- VSA Автоматический клапан стравливания воздуха.
- VSM Ручной клапан стравливания воздуха.
- II Разъемы.

ЭЛЕКТРОНАСОС С ИНВЕРТЕРОМ

Настройка при постоянном давлении

Q - Подача м³/ч

Комплексное управление системой - РЕГУЛИРОВКА ДЛЯ СИСТЕМЫ ТЕПЛОВЫХ НАСОСОВ

Комплексное управление установкой - RHOSS TOUCH MANAGER

Комплексное управление системой - iDRHOSS

Дистанционный мониторинг - МОНИТОРИНГ RHOSS: Мобильная технология - Облачная технология - Реальное время

Контроль и мониторинг через ETHERNET - BEБ-СЕРВЕР RHOSS

Программное обеспечение для управления чиллерами - ИНСТРУМЕНТ РАЗДЕЛЬНОГО РЕГУЛИРОВАНИЯ RHOSS

Контроль "All in one" & "Touch screen" - RHOSS СУПЕРВИЗОР

РЕШЕНИЯ ДЛЯ КОМПЛЕКСНОГО УПРАВЛЕНИЯ СИСТЕМОЙ, МОНИТОРИНГА И КОНТРОЛЯ

Комплексное управление системой РЕГУЛИРОВКА ДЛЯ СИСТЕМЫ ТЕПЛОВЫХ НАСОСОВ

РЕШЕНИЯ RHOSS ДЛЯ ЖИЛОГО СЕКТОРА.

Rhoss предлагает широкий выбор установочных решений и комплексных систем для нагрева, охлаждения и производства горячей сантехнической воды.

От самого простого решения, при котором тепловой насос удовлетворяет нужды по обогреву дома автономным образом, до более передовых решений, предлагающих умную регулировку, которая обеспечивает централизованное управление всей установкой и удовлетворяет нужды по обогреву, охлаждению, осушению и производству горячей сантехнической воды в течение всего года. Все это призвано самым оптимальным образом удовлетворить самые разные инженерные потребности как существующих, так и новых сооружений, оптимизируя эффективное потребление энергии и обеспечивая легкость монтажа.

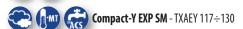
Предлагаемые решения:

- Обогрев с помощью радиаторов.
- Обогрев/охлаждение с помощью Фанкойлов.
- Обогрев с помощью радиаторов и/или Фанкойлов и производства ACS.
 Возможность охлаждения с помощью фанкойлов.
- Обогрев с помощью фанкойлов и/или излучающих панелей и производство ACS. Возможность охлаждения с помощью фанкойлов.
- Обогрев/охлаждение с помощью фанкойлов и/или излучающих панелей и производство ACS.
- Обогрев с помощью теплового насоса или котла.



СОВМЕСТИМЫЕ ПРОДУКТЫ

Тепловые насосы



Фанкойлы

Фанкойлы с бесколлекторным электродвигателем -

YARDY-I EV3 **WYERTER**

Фанкойлы - YARDY EV3

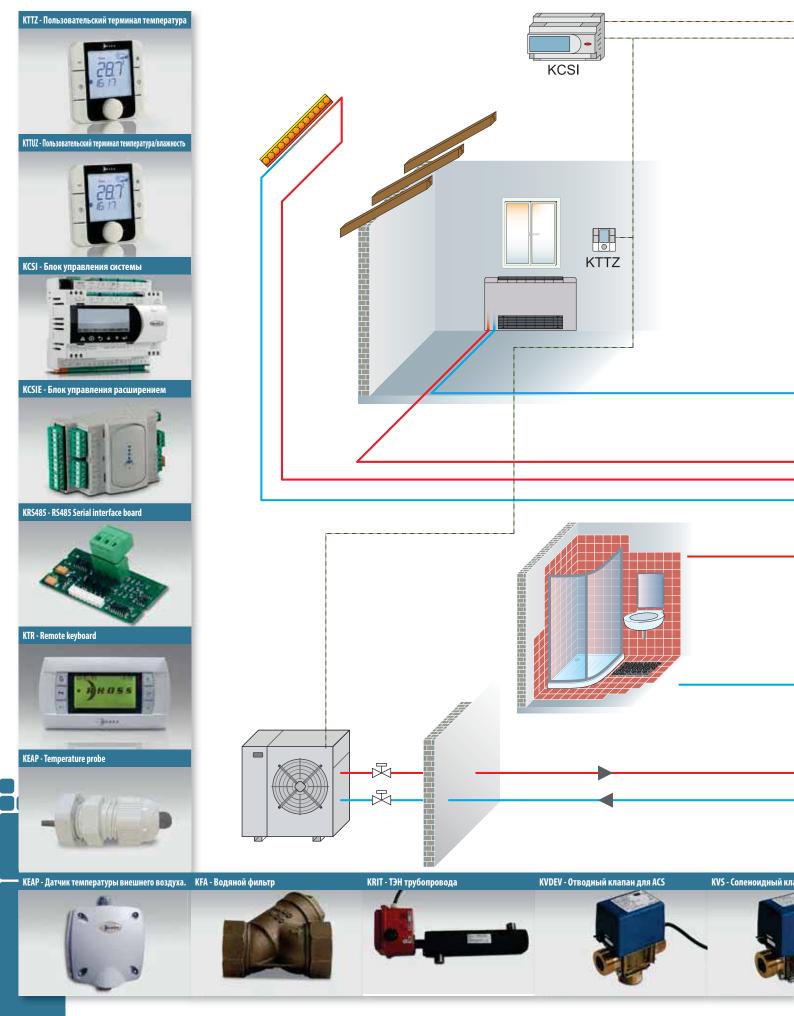
Фанкойлы канального типа с бесколлекторным

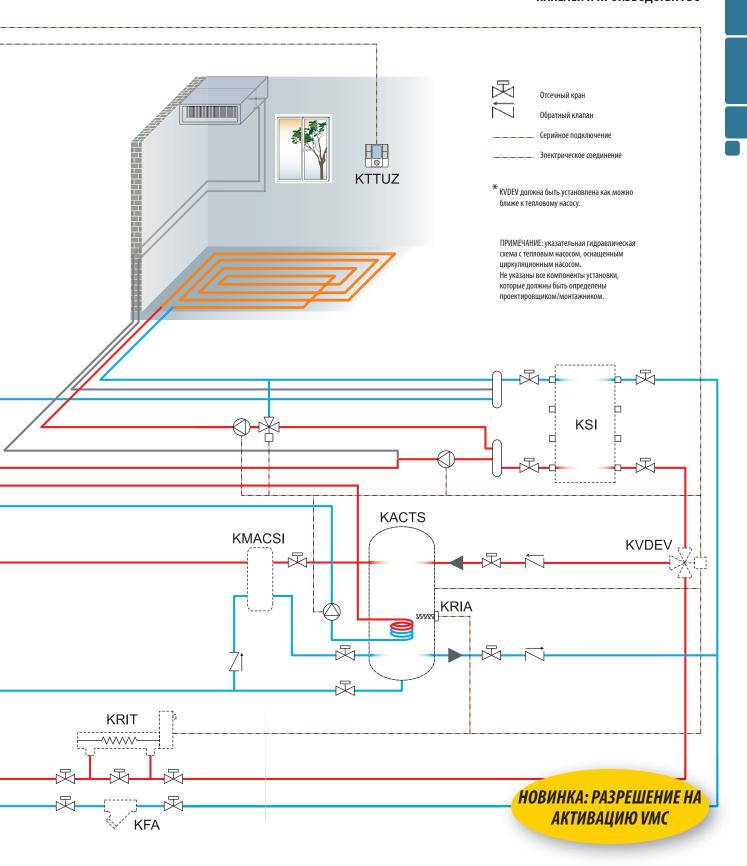
электродвигателем - YARDY-ID2 **DIVERTER**Фанкойлы канального типа - YARDY-DUCT2

Канальные воздухораспределители - YARDY-HP

Фанкойлы с бесколлекторным

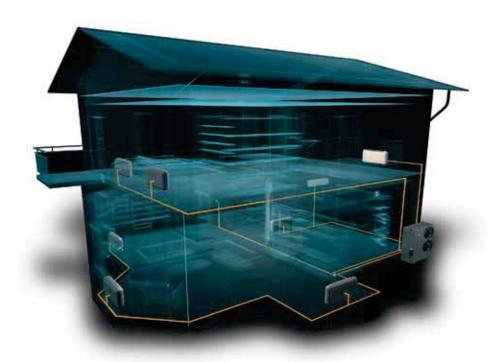
электродвигателем - DIVA-I **WERTER**


Фанкойлы - DIVA



Комплексное управление системой

РЕГУЛИРОВКА ДЛЯ СИСТЕМЫ ТЕПЛОВЫХ НАСОСОВ


ПРИМЕР РЕШЕНИЯ: ОБОГРЕВ/ОХЛАЖДЕНИЕ С ПОМОЩЬЮ ФАНКОЙЛОВ И/ИЛИ ИЗЛУЧАЮЩИХ ПАНЕЛЕЙ И ПРОИЗВОДСТВА ГВС

Комплексное управление установкой

RHOSS TOUCH MANAGER

- Решения для небольшого и среднего бизнес сектора
- Простое и интуитивное управление каждой зоной здания индивидуальным образом в зависимости от требований жильцов
- Подключение через сеть RS485 или сеть Ehernet
- подсоединяемые устройства Rhoss
- Опция 1: сеть единичных холодильных агрегатов От 1 до 5 холодильных агрегатов
- Опция 2: сеть единичных фанкойлов От 1 до 64 фанкойлов
- Опция 3: сеть с фанкойлами и холодильными агрегатами
 1 холодильный агрегат и от 1 до 64 фанкойлов
- Страницы со сводками основных компонентов, графиков, возможностями изменений основных

параметров, отображением сигналов тревог.

• Подключается к сети LAN ethernet, совместимость с Internet Explorer через plug-in

Устройства управления для фанкойлы

Прочие компоненты системы:

ТЕПЛОУТИЛИЗАТОР

КОТЕЛ

ЦИРКУЛЯЦИОННЫЙ НАСОС УСТАНОВКИ

Пульт дистанционного управления

Проводная панель

Встраиваемая панель

Узел холодильный

сенсорный экран

РЕШЕНИЕ В СЕТИ RS485 (ПРОТОКОЛ MODBUS RTU)

Панель управления для централизованного контроля всех управления всеми блоками установки.

ФУНКЦИИ TOUCH MANAGER

ОСНОВНЫЕ ФУНКЦИИ

- Включение и выключение всей системы (холодильный агрегат и терминалы)
- Отображение состояния и режима работы в реальном времени
- Централизованное управление несколькими зонами и изменение основных параметров терминалов (заданные значения, режим работы, скорость вентилятора, спящий/экономичный режим)
- Два уровня настройки комфорт/экономия, которые предопределены и настраиваются центральным образом

РАСПИСАНИЕ ПО ЧАСАМ И ДНЯМ НЕДЕЛИ ДЛЯ ГЕНЕРАТОРОВ И ЗОН

- Расписания по часам дня, ежечасно
- Управление временным диапазоном, различное для разных дней недели

СЕЗОННОЕ ПЕРЕКЛЮЧЕНИЕ

Управление по данным

СОСТОЯНИЕ АВАРИЙНЫХ СИГНАЛОВ

Отображение возможных сигналов тревоги

РАЗРЕШЕНИЕ НА КОТЕЛ

В ручном режиме или по данным через цифровые контакты (опция по запросу)

РАЗРЕШЕНИЕ НА ТЕПЛОУТИЛИЗАТОР

В ручном режиме или по данным через цифровые контакты (опция по запросу)

РАЗРЕШЕНИЕ НА НАСОС УСТАНОВКИ

В ручном режиме или по данным через цифровые контакты (опция по запросу)

ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ

- Резистивный сенсорный экран с графическим интерфейсом, простым в использовании
- Размеры дисплея: 7.0"

АДРЕСАЦИЯ ТЕРМИНАЛОВ в сети RS485


Через панель КРСМ

УПРАВЛЯЕМЫЕ ФАНКОЙЛЫ И ВОЗДУХОРАСПРЕДЕЛИТЕЛИ

	IDROWALL-I	YARDY-I EV3 / YARDY EV3	YARDY-ID2/YARDY-DUCT2	YARDY-HP	DIVA-I / DIVA	UTNA
Устройства управления iDRHOSS						
СТАНДАРТНЫЕ устройства управления		KTVDM - KTVDIM	KTVDM - KTVDIM	KTVDM	KTVDM - KTVDIM	KTVDM - KTVDIM

Комплексное управление системой

- Решения для небольшого и среднего третичного сектора.
- iDRHOSS это развитая система управления гидросистемами кондиционирования, разработанная для обеспечения комфорта во всех жилых и гражданских областях.
- iDRHOSS предлагает серию решений, такие как централизованное управление, автоматическое переключение лето/зима, временные интервалы работы, с целью энергосбережения.

Устройства управления для фанкойлы

Проводная панель

Встраиваемая панель

Терминал

Панель управления для централизованного контроля всех управления всеми блоками установки.

РЕШЕНИЕ В СЕТИ CAN-BUS

Настенный

ОСНОВНЫЕ ФУНКЦИИ

- Включение и выключение всей системы (холодильный агрегат и терминалы)
- Отображение состояния и режима работы в реальном времени
- Централизованное управление несколькими зонами и изменение основных параметров терминалов (заданные значения, режим работы, скорость вентилятора, спящий/экономичный режим)

РАСПИСАНИЕ ПО ЧАСАМ И ДНЯМ НЕДЕЛИ ДЛЯ ГЕНЕРАТОРОВ И ЗОН

- Два временных диапазона включения для настройки в пределах дня
- Управление временным диапазоном, различное для разных дней недели
- Управление вне дома

СЕЗОННОЕ ПЕРЕКЛЮЧЕНИЕ

 Управление по данным или в автоматическом режиме в зависимости от состояния терминалов

СОСТОЯНИЕ АВАРИЙНЫХ СИГНАЛОВ

Отображение возможных сигналов тревоги

УПРАВЛЕНИЕ КОТЛОМ

- В ручном режиме или по данным

ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ

Полуграфический дисплей с задней подсветкой и 6-кнопочная панель Размеры 156х82х30 мм

АДРЕСАЦИЯ ТЕРМИНАЛОВ в сети CanBUS

Через панель KPCM или dip-переключатель на серийной плате Can bus

УПРАВЛЯЕМЫЕ ФАНКОЙЛЫ И ВОЗДУХОРАСПРЕДЕЛИТЕЛИ

Дистанционный мониторинг

МОНИТОРИНГ RHOSS: Мобильная технология - Облачная технология - Реальное время

- Дистанционное управление холодильными агрегатами, станциями обработки и небольшими установками для жилых помещений при помощи системы PDC (*)
- 3 разных решения для дистанционного мониторинга через сеть GSM-GPRS
- Подключение мобильное или smartphone
- Веб-интерфейс с облачной технологией
- Отображение состояния в реальном времени
- Функция записи данных data logger
- Уведомление о сигналах тревоги и неисправностях
- Установка устройства на рейку DIN, внутрь электрощита блока

ХОЛОДИЛЬНЫЙ AГРЕГAT RHOSS + СЕРИЙНЫЙ ИНТЕРФЕЙС

мониторинг	основные функции	УСТРОЙСТВО УПРАВЛЕНИЯ	СЕРВИС ИНТЕРНЕТ-ОБЛАКО	SIM-KAPTA	
МОБИЛЬНЫЙ для жилого или третичного секторов	Управление при мобильного телефона входом/выходом и их изменение посредством SMS. Уведомление о сигналах тревоги и неисправностях Считывание до 8 значений.	КММС - Устройство	Не предусмотрено (доступно только управление через SMS)		
Облачные технологии для жилого или третичного сектора	Управление через интерфейс internet или через ПРИЛОЖЕНИЯ IOS и ANDROID основными параметрами и их изменение. Почасовое отображение сигналов тревоги и неисправностей и запись истории динамики. Считывание до 8 значений.	дистанционного управления с мобильной/облачной технологией со слотом для SIM-KAPTЫ	Сервис Интернет-Облако с подпиской (минимум 1 год)	За счёт пользователя или при подписке (необязательно при использовании локального подключения к Интернету)	
РЕАЛЬНОЕ ВРЕМЯ ДЛЯ третичного и промышленного секторов	Управление параметрами через интерфейс internet или через ПРИЛОЖЕНИЯ IOS и ANDROID и их изменение. Отображение сигналов тревоги и неисправностей в реальном времени и запись истории. Считывание до 100 значений.	КМRТ - Устройство дистанционного управления с технологией реального времени со слотом для SIM-KAPTЫ	обязательный		

УСТРОЙСТВО УПРАВЛЕНИЯ + SIM-карта

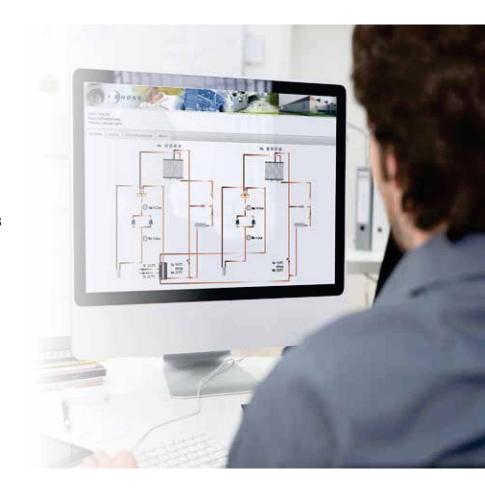
MOBILE (подвижн.)

УПРАВЛЕНИЕ ЧЕРЕЗ СМС

ОБЛАЧНЫЕ ТЕХНОЛОГИИ

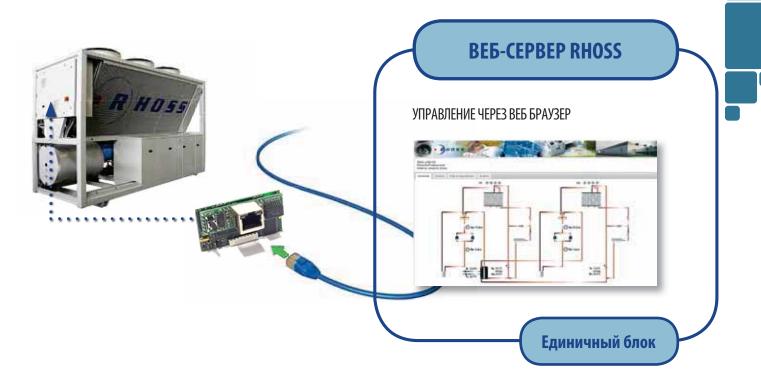
РЕАЛЬНОЕ ВРЕМЯ

УПРАВЛЕНИЕ С СЕРВИСОМ ИНТЕРНЕТ-ОБЛАКО ЧЕРЕЗ ВЕБ-БРАУЗЕР ИЛИ С ПРИЛОЖЕНИЯМИ ios и android



УСТРОЙСТВА УПРАВЛЕНИЯ	Серийный интерфейс на блоке Rhoss	Входы/выходы, управляемые дистанционно		иторируемые истемы Rhoss	Считывание значений
КММС - Устройство удаленного управления для мобильного или облачного мониторинга Rhoss, установка на рейку DIN (4 модуля) внутрь электрощита агрегата, слот для СИМ-КАРТЫ, LED-индикатор для сигнализации состояния и входов/выходов, антенна с кабелем 3м, степень защиты IP40, двухдиапазонный модуль GSM 900-1800 МГц, буферная батарея (около 1 часа); серийные порты; Питание 15÷40В пост.т. или 11÷28В пер.т. 50Гц.	Серийный интерфейс RS485 (комплектующее KRS485 или SS)	• 2 цифровых выхода, которые настраиваются и активируются через SMS • 2 цифровых входа для внешних сигналов тревоги • 1 конфигурируемый аналоговый выход (0-10 V, 0-20 мА, 4-20 мА)	1шт.	• холодильный агрегат • станция обработки воздуха • система PDC (KCSI)	до 8 значений
КМRТ- Устройство удаленного управления для мониторинга Rhoss в реальном времени, установка на рейку DIN (6 модулей) внутрь электрощита агрегата, слот для СИМ-КАРТЫ, 3 LED-индикатора для сигнализации состояния, антенна с кабелем 3м, степень защиты IP40, Модем GSM/GPRS, серийные порты; аппаратное обеспечение сторожевой таймер Watchdog, часы реального времени; Питание 9-36В пост.т. (12-24В пер.т. +/-10%). ПРИМЕЧАНИЕ: устройство КМRТ оснащено дополнительным интерфейсом Ethernet для использования подключения Internet локально (без SIM-КАРТЫ).	Серийный интерфейс RS485 (приспособление KRS485 или SS) • Интерфейс Ethernet (приспособление KBE) [только при наличии сети Ethernet, используемой на месте]	Недоступно	5 шт.	• холодильный агрегат • станция обработки воздуха • система PDC (KCSI)	до 100 значений

Контроль и мониторинг через ETHERNET


ВЕБ-СЕРВЕР RHOSS

- Управление отдельным холодильным агрегатом через сеть ETHERNET
- Веб-страница с состоянием блока и детальной картой с отображением:
- перечень основных компонентов
- график изменений основных переменных
- возможность изменения основных параметров (вкл/ выкл, режим, настройки)
- статус и сброс сигналов тревоги
- Установка интерфейса ethernet внутрь электрощита блока

ВЕБ-СЕРВЕР ОСНОВНЫЕ ФУНКЦИИ	ОСНОВНЫЕ КОМПОНЕНТЫ	дополнительные компоненты
Веб-страница с состоянием установки и детальной картой с отображением: - перечень основных компонентов - график изменений основных переменных - возможность изменения основных параметров (вкл/выкл, режим, настройки) - состояние аварийных сигналов и сброс аварийных сигналов	1) Карта Веб Сервер для Ethernet 2) Графический пользовательский интерфейс	КСSI - Блок управления системы, предусмотренный только для серии: - ELECTA - T-POWER

ХОЛОДИЛЬНЫЙ AГРЕГAT RHOSS + Beб Cepвep для Ethernet + графический пользовательский интерфейс

Программное обеспечение для управления чиллерами

ИНСТРУМЕНТ РАЗДЕЛЬНОГО РЕГУЛИРОВАНИЯ RHOSS

- Управление несколькими чиллерами, установленными с параллельным гидравлическим подсоединением
- Управление режимами лето/зима на тепловых насосах
- Управление заданными значениями системы
- Управление рабочими параметрами чиллеров
- Отображение возможных сигналов тревоги.

- Инструмент раздельного регулирования Multichiller Rhoss позволяет параллельно управлять установками климат-контроля гидравлической системой средних/больших размеров.
- Оптимизация рабочего времени и ввод отдельных агрегатов управляется логическими системами, действующими по правилами энергосбережения и гарантирующими надёжность и долговечность.
- Для управления агрегатом можно выбрать два варианта, между FL-Full Load Unit Manager (для чиллеров с винтовыми компрессорами) и PL-Part Load Unit Manager (для чиллеров со спиральными компрессорами).
- Доступен инструмент раздельного регулирования, предназначенный для поливалентных установок EXP, управляющий всеми специальными функциями в данной технологии.
- Программа, это сердце системы, она разработана и тестирована в исследовательской лаборатории Rhoss и в состоянии принимать и управлять основными переменными подключённых чиллеров. Инструмент раздельного регулирования, который также взаимодействует с основными BMS, присутствующими на рынке, гарантируя тем самым полный контроль каждой системы.

Контроль "All in one" & "Touch screen"

RHOSS СУПЕРВИЗОР

- Местное отображение и управление (встроенный сенсорный экран)
- Соединение через местную сеть (Internet Explorer)
- Возможность удаленного соединения через интернет
- Соединение напрямую с установками/сетью без дополнительных деталей

- Новый супервизор RHOSS это глобальное, простое и исчерпывающее решение для мониторинга и управления системой.
- Это изделие предоставляет устройство взаимосвязи со встроенным сенсорным экраном и включает все местные и удаленные соединения для подключения устройств системы Rhoss, подсоединенных в сети RS485.
- Позволяет следить за работой охладителей, тепловых насосов, поливалентных установок, фанкойлов и воздухораспределителей RHOSS через простой в использовании интерфейс Microsoft Internet Explorer.
- Новый супервизор позволяет осуществлять непосредственный контроль благодаря встроенному экрану, он также доступен с других устройств местной сети (Ethernet LAN) или для удаленных пользователей, имеющих простую интернет-связь (пользователь должен отконфигурировать подходящим образом сеть для разрешения удаленного доступа).
- Имеющиеся языки: итальянский, английский, немецкий.
- Установка Rhoss, подключенная к сети супервизора, должна иметь плату RS485.
- По запросу поставляется синоптическая система с графическим персонализированным интерфейсом и подключение к другим устройствам не RHOSS или другим супервизорам в сети RS485 Modbus RTU.

Новый супервизор предоставляет следующие функции:

- ✓ Отображение данных имеющихся устройств (температура, давление, состояние ВХ/ВЫХ) и отображение/настройка параметров конфигурации (уставки и т.д) отдельной подключенной установки.
- ✓ Интерфейс системы, архивирование данных, отчеты с графиками всех архивированных при установке данных, создание отчетов в формате pdf/Excel с возможностью периодической отправки по электронной почте и регистрация деятельности.
- ✓ Централизованная конфигурация устройств (например, ON/OFF), смена рабочего режима, уставки температуры и скорости для фанкойла).
- Удаленное техобслуживание.
- Управление сигналами тревоги с автоматическими сообщениями и вмешательствами с местным отображением через реле или с отправкой сообщения по электронной почте, факсу, SMS (с модемом GSM, не поставляемым компанией RHOSS).
- ✓ Программирование недельного расписания подключенных устройств с возможностью конфигурировать группы устройств, общих для одной и той же зоны (например, для одного этажа).

Супервизор Rhoss имеется в двух конфигурациях:

- KRSE90 СУПЕРВИЗОР RHOSS (90 УСТРОЙСТВ)
- KRSE300 СУПЕРВИЗОР RHOSS (300 УСТРОЙСТВ)

Фанкойлы с бесколлекторным электродвигателем - IDROWALL-I

Фанкойлы с бесколлекторным электродвигателем - YARDY-I EV3

Фанкойлы - YARDY EV3

Фанкойлы канального типа с бесколлекторным электродвигателем - YARDY-ID2

Фанкойлы канального типа - YARDY-DUCT2

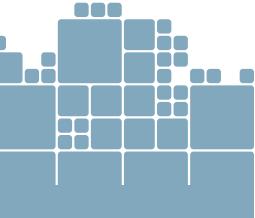
Канальные воздухораспределители - YARDY-HP

Фанкойлы с бесколлекторным электродвигателем - DIVA-I

Фанкойлы - DIVA

Фанкойлы - VTNC

170


Web code: IDR01

Фанкойлы с бесколлекторным электродвигателем IDROWALL-I

Мощность при охлаждении: 2,0÷3,5 кВт - Мощность при отоплении: 3,0÷5.4 кВт

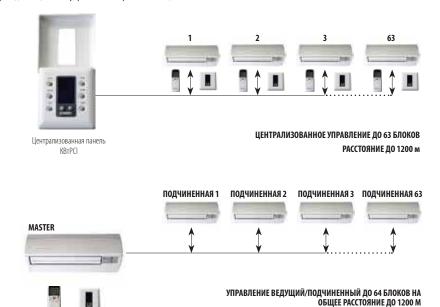
- Потребление ниже на 50% относительно традиционного двигателя
- Трехходовой клапан на оборудовании
- Встроенные функции ведущий/ведомый и последовательный интерфейс

Настенные фанкойлы.

Конструктивные характеристики

- Теплообменник: змеевик с оребрением.
- Вентилятор: тангенциальный с электронным бесколлекторным двигателем ЕС с инвертором с непрерывной настройкой скорости.
- Дефлектор: моторизированный с различными позициями.
- Конструкция: из термостойкого полимера АБС, цвет RAL 9003, с регенерируемым фильтром из полипропилена, регулируемое оребрение и поддон для сбора конденсата с естественным сливом.
- Агрегат оснащен 3-ходовым клапаном ВКЛ/ВЫКЛ и последовательным интерфейсом RS485.

Пульт дистанционного управления
•
Проводная панель КВТР!


Управление: электронное с микропроцессором.
 Функции настройки: full auto, cool, dry, fan, autofan, heat. Функции комфорт: orienting, swing, timer, sleep, hot start, memory.
 Пульт дистанционного управления в серийном оснащении.

Комплектующие, поставляемые отдельно

- KV2V Комплектующая 2-х ходовый клапан ВКЛ/ВЫКЛ.
 Монтаж на оборудование возлагается на установщика.
- К2ТF Комплектующая для использования внешнего по отношению к агрегату электроклапана. Монтаж возлагается на установщика.
- КVAM Короб для встраивания в стену.
- KION Ионизатор.
- KUV УФ-лампа и фотокаталитический фильтр.

Устройства управления, поставляемые отдельно

- КВтРІ Электронная панель для настенной установки.
- КВтРСІ Централизованная электронная панель для настенной установки Питание V230-1-50.
- KGTW-BAC- Gateway RS485/BACnet (макс. 64 фанкойлов).
- KGW-LON Gateway RS485/FTT10-LonWorks (макс. 64 фанкойлов).

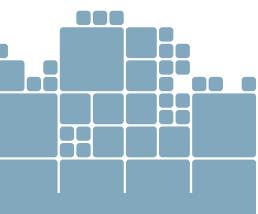
IDROWALL-I				21	31	41
	MAKC.	кВт	E	2,01	2,98	3,54
• Общая холодильная мощность	СРЕДН.	кВт	E	1,64	2,15	2,47
	мин.	кВт	E	1,33	1,9	1,9
Obuse vere ruri use mouniceri	MAKC.	кВт	E	1,99	2,95	3,5
•• Общая холодильная мощность [EN1397:2015] (§)	СРЕДН.	кВт	E	1,63	2,14	2,45
[EN1397.2013] (9)	мин.	кВт	E	1,32	1,89	1,89
	MAKC.	кВт	E	3,05	4,78	5,14
❷ Тепловая мощность (50°С)	СРЕДН.	кВт	E	2,34	3,46	4,11
	мин.	кВт	E	1,72	2,98	2,98
З Тепловая мощность (70°С)	MAKC.	кВт		5,11	7,92	8,86
	MAKC.	$M^3/4$		556	722	814
Скорость расхода воздуха	СРЕДН.	м ³ /ч		413	473	581
	мин.	$M^3/4$		295	396	396
	MAKC.	дБ(А)	E	52	55	59
Звуковая мощность	СРЕДН.	дБ(А)	E	43	46	51
	мин.	дБ(А)	E	34	42	42
	MAKC.	дБ(А)		43	46	50
Звуковое давление	СРЕДН.	дБ(А)		34	37	42
	мин.	дБ(А)		25	33	33
	MAKC.	Вт	E	22	27	38
Потребляемая мощность	СРЕДН.	Вт	E	14	15	19
	мин.	Вт	E	11	12	12
Электропитание		В-фаз-Ги		230-1-50	230-1-50	230-1-50
РАЗМЕРЫ И ВЕС				21	31	41
L - Ширина		MM		795	990	990
Н - Высота		MM		290	290	290
Р - Глубина		MM		230	230	230
Bec		КГ		9,3	11,6	11,6

Данные при следующих условиях:

- Воздух: 27°С В.S.; 19°С В.U. Вода: 7/12°С.
 - (§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность.
- ❷ Воздух: 20°С Вода: 50°С, подача как при охлаждении.
- **❸** Воздух: 20°С Вода: 70/60°С
- **4** Для помещения объемом равным 100 м 3 и времени отражения = 0,5 сек
- E Эксплуатационные характеристики, сертифицированные Eurovent



Пульт дистанционного управления


Централизованная панель

Проводная панель

Web code accessories:

ACMEC

- Повышенные эксплуатационные показатели с 4-х рядным змеевиком
- Потребление ниже на 50% относительно традиционного двигателя
- Постоянная настройка скорости вентилятора
- Пониженный уровень шума во время работы
- Повышенный комфорт помещения

Фанкойлы с бесколлекторным электродвигателем YARDY-I EV3

Мощность при охлаждении: 1,9÷8,9 кВт - Мощность при отоплении: 2,5÷12,3 кВт

Фанкойлы в корпусе, напольные или потолочные, встраиваемые в стену или в подвесной потолок

Конструктивные характеристики

- Теплообменник: змеевик с оребрением с левым креплением, перестраиваемым направо.
- Центробежный вентилятор с электронным бесколлекторным двигателем с инвертором с непрерывной настройкой скорости.
- Конструкция версий с кожухом: шкаф из листового предварительно окрашенного металла, в комплект входит регенерируемый фильтр, полимерные решётки из АБС и поддон для сбора конденсата с естественным сливом.
- Конструкция встраиваемых версий: из оцинкованной стали, в комплект входит поддон для сбора конденсата с естественным сливом и регенерируемый фильтр.

Варианты исполнения

- MVP Вертикальный агрегат с кожухом с нижним воздухозаборником и верхней подачей, для настенной установки или напольной на ножках.
- MVT Вертикальный агрегат с кожухом с передним воздухозаборником и верхней подачей, для напольной установки.
- МХР Горизонтальный/вертикальный агрегат с кожухом, с нижним воздухозабоником и верхней подачей, для потолочной установки, настенной или напольной на ножках.
- МХТ Горизонтальный/вертикальный агрегат с кожухом, с передним воздухозаборником и верхней подачей, для потолочной или напольной установки.
- IVP Вертикальный агрегат встраиваемый с нижним воздухозаборником и верхней подачей, для настенной установки.
- IVF Вертикальный агрегат встраиваемый с нижним воздухозаборником и передней подачей, для настенной
- ІХР Горизонтальный/вертикальный агрегат, с нижним воздухозаборником и верхней подачей, для установки на навесных потолках или встраивания в стену.

Комплектующие

- →
 ф Дополнительный змеевик нагрева воды.
- → 2-ходовой электромагнитный клапан ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- → З-ходовые электромагнитные клапаны ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- → Дополнительный поддон для сбора конденсата.

- Заслонка с ручным управлением.
- Заслонка с приводом.
- Задняя панель.
- Закрывающаяся задняя панель.
- Закрывающаяся задняя панель с решёткой и фильтром.
- Опорные ножки с чехлами для труб.
- Рамка с фильтром (G2) снимается в любом направлении.
- Прямой переходник на подаче
- Патрубок в 90° на подаче и всасывании.
- Выдвижной патрубок на подаче/всасывании.
- Воздухозаборная решетка с фильтром.
- Решётка подачи.
- Защитная панель с решётками (только IXP).
- Фланцованная рамка для подсоединения к каналу.
- Антивибрационный переходник для подключения к канал всасывания/подачи.
- Воздухораспределительная камера на всасывании /подаче с круглыми патрубками.

СТАНДАРТНЫЕ устройства

управления

Для настенной установки

→ Электронная панель с дисплеем и последовательным интерфейсом RS485, полувстраиваемая для установки на стену.

Устройства управления iDRHOSS

- Настенный приёмник для дистанционного управления с пультом управления.
- Электронный пульт для настенной установки или для установки на оборудовании.
- Электронный пульт, встраиваемый в стену.

Для установки на оборудовании

- → Электронная плата master/slave, модуль управления клапанами ОТКР/ЗАКР и электронагревателем, температурный датчик для горячего режима.
- Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол владельца; протокол Modbus
- Последовательный преобразователь RS485/USB.
- Серийный интерфейс (CAN-bus Controller Area Network) для системы iDRHOSS.
- KGTW-BAC- Gateway RS485/BACnet (макс. 64 фанкойлов).
- KGW-LON Gateway RS485/FTT10-LonWorks (Makc. 64 фанкойлов).

Экспликация: • Заводской установки

→ Поставляется отдельно

	МАКС. кВт E 1,88 2,25 3 3,4 4,15 4,64 6,37 7,41 8,4 Общая холодильная мощность СРЕДН. кВт E 1,45 1,69 2,33 2,77 3,06 3,49 4,62 5,27 5,92													
	YARDY-I EV3 MVP-MVT-MXP-MXT-IV													
№ Общая холодильная мощность СРЕДН. кВт Е МИН. кВт Е СРЕДН. кВт Е СРЕДН. кВт Е СРЕДН. кВт Е СРЕДН. кВт Е ОБЩАЯ ХОЛОДИЛЬНАЯ МОЩНОСТЬ (\$0°C) МАКС. кВт Е СРЕДН. кВт Е СРЕДН. кВт Е ОБЩАЯ КВТ Е ОБЩАЯ МОЩНОСТЬ (\$0°C) МАКС. кВт Е ОБЩАЯ СВЕТИЯ КВТ Е ОБЩАЯ К						, .	-,-							
U	Общая холодильная мощность					,					•		7,41 8,4 8,89 5,27 5,92 6,38 2,11 2,11 2,26 7,32 8,26 8,74 5,24 5,87 6,32 2,1 2,1 2,25 8,8 11,76 12,25 6,37 8,39 8,75 2,35 3,07 3,22 14,79 19,41 20,51 10,74 13,82 14,62 3,98 5,11 5,39 5,98 7,52 7,14 5,01 6,07 5,77 2,37 2,89 2,75 1235 1503 1458 780 965 965 256 300 300 62 66 66 50 56 56 27 32 32 23 32 32 39 5136 146 30 50 56 7 <td< td=""></td<>	
		МАКС. КВТ Е 1,88 2,25 3 3,4 щность СРЕДН. кВт Е 1,45 1,69 2,33 2,77 мин. кВт Е 0,75 0,81 1,09 1,35 щность МАКС. кВт Е 1,86 2,23 2,97 3,37 МИН. кВт Е 1,44 1,68 2,32 2,75 МИН. кВт Е 0,75 0,8 1,08 1,34 РСО ФЕДН. кВт Е 0,75 0,8 1,08 1,34 МИН. кВт Е 2,47 2,59 3,87 4,06 РСО ФЕДН. кВт Е 0,91 0,96 1,42 1,49 РСО ФЕДН. кВт Е 0,91 0,96 1,42 1,49 РСО ФЕДН. кВт Е 2,91 3,09 4,95 5,14 РСО ФЕДН. <td>1,54</td> <td>1,74</td> <td></td> <td></td> <td></td> <td></td>		1,54	1,74									
_	Общая холодильная мощность				,				4,11	4,6	-	6,37 7,41 8,4 4,62 5,27 5,92 1,79 2,11 2,11 6,28 7,32 8,26 4,6 5,24 5,87 1,78 2,1 2,1 8,38 8,8 11,76 1 6,07 6,37 8,39 2,24 2,35 3,07 14,01 14,79 19,41 2 10,08 10,74 13,82 1 3,74 3,98 5,11 6,29 5,98 7,52 5,27 5,01 6,07 2,49 2,37 2,89 1235 1235 1503 1 780 780 965 256 256 300 62 62 66 66 50 50 56 277 27 32 533 53 57 41 41 47 18 18 23 89 95 136 23 30 50 6 7 7 230-1-50 230-1-50 230-1 60 74 80 1500 1500 1500 1500 11250 1250 1250 1570 570 570 570 570 570 570 545 545 545	,	
Общая холодильная мощность (БИЗ97:2015] (§) Тепловая мощность (50°C) Тепловая мощность (70°C) Тепловая мощность дополнительно батареи Скорость расхода воздуха Звуковая мощность Звуковое давление						,-		3,05	3,48					
№ Общая холодильная мощность МАКС. КВТ Е Д.45 Е Д.45 Д.69 2,33 МИН. КВТ Е Д.45 Д.69 2,33 Д.75 Д.75 Д.81 1,09 Общая холодильная мощность [EN1397:2015] (§) МАКС. КВТ Е Д.46 Е Д.44 1,68 2,23 2,97 МИН. КВТ Е Д.47 Е Д.59 3,87 Д.88 Е Д.47 2,59 3,87 Тепловая мощность (50°C) ФЕДН. КВТ Е Д.47 Е Д.79 3,87 Д.88 2,99 МИН. КВТ Е Д.47 Д.59 3,87 Д.29 3,87 Д.29 3,87 Тепловая мощность (50°C) ФЕДН. КВТ Е Д.47 2,59 3,87 3,99 3,87 3,99 3,99		1,53	1,73											
									5,28	5,54				4 8,89 2 6,38 1 2,26 6 8,74 7 6,32 1 2,25 6 12,25 9 8,75 7 3,22 1 20,51 2 14,62 1 5,39 2 7,14 7 5,77 9 2,75 3 1458 5 965 0 300 6 66 6 56 2 32 7 57 7 47 3 23 6 146 0 56 7 10 0 230-1-50 0 88 0 1500 0 1250 0 570 5 545 0 100 0 220 2 212
@	Тепловая мощность (50°C)								3,74	3,93				
				E		,			1,81	1,9				8,89 6,38 2,26 8,74 6,32 2,25 12,25 8,75 3,22 20,51 14,62 5,39 7,14 5,77 2,75 1458 965 300 66 56 32 57 47 23 146 566 10 230-1-50 88 1500 1250 570 545
									8,66	9,15				20,51
❸	Тепловая мощность (70°C)	СРЕДН.	кВт		2,91	3,09	4,95	5,14	6,14	6,48	10,08	10,74	13,82	14,62
		МИН.	кВт		1,5	1,63	2,38	2,49	2,98	3,13	3,74	3,98	5,11	8,4 8,89 ,92 6,38 ,11 2,26 ,26 8,74 ,87 6,32 2,1 2,25 ,76 12,25 ,39 8,75 ,07 3,22 ,41 20,51 ,82 14,62 ,11 5,39 ,52 7,14 ,07 5,77 ,89 2,75 ,300 300 ,665 965 ,503 1458 ,65 56 ,56 56 ,57 57 ,47 47 ,23 23 ,33 146 ,50 56 ,7 10 ,50 230-1-50 ,80 88 ,50 1500 ,50 1250 ,50 570 ,545 545 ,100 100 ,200 220 ,212 212
	Теппорад мошность пополнительной	MAKC.	кВт	E	2,19	2,08	3,3	3,14	3,79	3,6	6,29	5,98	7,52	7,14
6		СРЕДН.	кВт	E	1,91	1,81	2,63	2,5	3,29	3,13	5,27	5,01	6,07	5,77
	оатареи	МИН.	кВт	E	1	0,95	1,47	1,4	1,78	1,69	2,49	7 7,41 8,4 8,89 2 5,27 5,92 6,38 9 2,11 2,11 2,26 8 7,32 8,26 8,74 6 5,24 5,87 6,32 8 2,1 2,1 2,25 8 8,8 11,76 12,25 7 6,37 8,39 8,75 4 2,35 3,07 3,22 11 14,79 19,41 20,51 8 10,74 13,82 14,62 4 3,98 5,11 5,39 9 5,98 7,52 7,14 7 5,01 6,07 5,77 9 2,37 2,89 2,75 5 1235 1503 1458 9 780 965 965 96 256 300 300 2 62 66 66 0 50 56		
		MAKC.	м ³ /ч		331	331	523	523	645	645	1235	1235	1503	1458
	Скорость расхода воздуха	СРЕДН.	м ³ /ч		230	230	400	400	450	450	780	780	965	3,4 8,89 92 6,38 11 2,26 26 8,74 87 6,32 2,1 2,25 76 12,25 39 8,75 07 3,22 41 20,51 82 14,62 11 5,39 52 7,14 07 5,77 89 2,75 03 1458 65 965 50 30 66 66 56 56 57 57 47 47 23 32 36 146 50 230-1-50 80 88 00 1500 50 1250 70 570 45 545 00 100 20 220 112 212
		МИН.	м ³ /ч		97	97	167	167	198	198	256	256	300	
		MAKC.	дБ(А)	E	48	48	50	50	51	51	62	62	66	66
	Звуковая мощность	СРЕДН.	дБ(А)	Е	40	40	43	43	42	42	50	50	56	56
	•	МИН.	дБ(А)	Е	23	23	24	24	25	25	27	27	32	32
		MAKC.	дБ(А)		39	39	41	41	42	42	53	53	57	57
4	Звуковое давление	СРЕДН.	дБ(А)		31	31	34	34	33	33	41	41	47	47
	,	MNH.			14	14	15	15	16	16	18	18	23	23
				Е	23	25	26	28	39	42	89	95	136	146
	Потребляемая мошность	СРЕДН.	Вт		13	14	15	16	14	15	23	30	50	56
			Вт	Е	5	6	6	6	7	8	6	7	7	4 8,89 2 6,38 1 2,26 6 8,74 7 6,32 1 2,25 6 12,25 9 8,75 7 3,22 1 20,51 2 14,62 1 5,39 2 7,14 7 5,77 9 2,75 3 1458 5 965 0 300 6 66 6 656 2 32 7 57 7 47 3 23 6 146 0 566 7 10 0 230-1-50 0 88 0 1500 0 1250 0 570 5 545 0 100 0 220 2 212
	Электропитание		3-фаз-Гц		230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
					20	24	30	34	45	48	60	74	80	88
	L - Ширина MXP-MXT-MVP-MVT		MM		800	800	1000	1000	1200	1200	1500	1500	1500	1500
	L - Ширина IVP-IXP-IVF		MM		550	550	750	750	950	950	1250	1250	1250	1250
	H - Высота МХР-МХТ-МVР-МVТ		MM		570	570	570	570	570	570				
	H - Высота IVP-IXP-IVF		MM		545	545	545	545	545	545	545		545	545
	Высота ножек МVР-МVТ-МХР-МХТ		MM		100	100	100	100	100	100	100	100	100	
	Р - Глубина МХР-МХТ-МVР-МVТ		MM		220	220	220	220	220	220	220	220	220	8,89 6,38 2,26 8,74 6,32 2,25 12,25 8,75 3,22 20,51 14,62 5,39 7,14 5,77 2,75 1458 965 300 66 56 32 57 47 23 146 566 10 230-1-50 888 1500 1250 570 545
	P - Глубина IVP-IXP-IVF		MM		212	212	212	212	212	212	212	212	212	
	Bec MXP-MXT-MVP-MVT		КГ		20	20,5	21	22	28	29	35	36	37	
	Bec IVP-IXP-IVF		КГ		16,5	17	20,5	21,5	25,5	27	34,5	35,5	36,5	37,5
	Dec /// 111		141		10,5	- 17	20,3	21,3	23,3		3 1,3	33,3	30,3	3,13

- Воздух: 27°C В.S.; 19°C В.U. Вода: 7/12°С. (§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность.
- ❷ Воздух: 20°С Вода: 50°С, подача как при охлаждении.
- **❸** Воздух: 20°С Вода: 70/60°С
- **4** Для помещения объемом равным 100 м 3 и времени отражения = 0,5 сек
- E Эксплуатационные характеристики, сертифицированные Eurovent Скорость МАКС, СРЕД, МИН с входом 10 В пост.т., 6 В пост.т., 1 В пост.т. YARDY-I EV3 24 - 34 - 48 - 74 - 88 с батареей, увеличенной до 4х рядов.

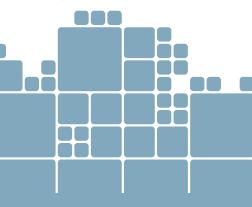
МХТ для горизонтальной установки

MVP-MXP для вертикальной установки

MVT-MXT для вертикальной установки

ІХР для горизонтальной установки

IVP-IXP для вертикальной установки


IVF для вертикальной установки

Web code: YARV3

Web code accessories:

ACMEC

- Повышенные эксплуатационные показатели с 4-х рядным змеевиком
- Акустический комфорт
- Шестискоростной вентилятор
- Гибкость при установке
- Предварительно установленные комплектующие детали и устройства управления

Фанкойлы

YARDY EV3

Мощность при охлаждении: 1,1÷8,8 кВт - Мощность при отоплении: 1,6÷12,2 кВт

Фанкойлы в корпусе, напольные или потолочные, встраиваемые в стену или в подвесной потолок

Конструктивные характеристики

- Теплообменник: змеевик с оребрением с левым креплением, перестраиваемым направо.
- Центробежный вентилятор: с 6 скоростями, из которых 3 подсоединены к клеммной коробке.
- Конструкция версий с кожухом: шкаф из листового предварительно окрашенного металла, в комплект входит регенерируемый фильтр, полимерные решётки из АБС и поддон для сбора конденсата с естественным сливом.
- Конструкция встраиваемых версий: из оцинкованной стали, в комплект входит поддон для сбора конденсата с естественным сливом и регенерируемый фильтр.

Варианты исполнения

- MVP Вертикальный агрегат с кожухом, оснащенный нижним воздухозаборником и верхней подачей, для настенной установки или напольной на ножках.
- MVT Вертикальный агрегат с кожухом с передним воздухозаборником и верхней подачей, для напольной установки.
- МХР горизонтальный/вертикальный агрегат с кожухом, с нижним воздухозаборником и верхней подачей, для потолочной установки, настенной или напольной на ножках.
- МХТ Горизонтальный/вертикальный агрегат с

- кожухом, с передним воздухозаборником и верхней подачей, для потолочной или напольной установки.
- IVP Вертикальный агрегат встраиваемый с нижним воздухозаборником и верхней подачей, для настенной установки.
- IVF Вертикальный агрегат встраиваемый с нижним воздухозаборником и передней подачей, для настенной установки.
- IXP Горизо́нтальный/вертикальный агрегат, с нижним воздухозаборником и верхней подачей, для установки на навесных потолках или встраивания в стену.

Комплектующие

- → Дополнительный змеевик нагрева воды.
- **→**�TЭH.
- →• 2-ходовой электромагнитный клапан ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- → 3-ходовые электромагнитные клапаны ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- → Дополнительный поддон для сбора конденсата.
- → Заслонка с ручным управлением.
- → Заслонка с приводом.
- → Задняя панель.
- → Закрывающаяся задняя панель.
- → Закрывающаяся задняя панель с решёткой и фильтром
- → Опорные ножки с чехлами для труб.

YARDY EV3 MVP-MVT-MXP-MXT-IVP-IVF-IXP		15	20	24	25	30	34	40	45	48	55	58	60	74	80	88
РАЗМЕРЫ И ВЕС																
L - Ширина MXP-MXT-MVP-MVT	ММ	700	800	800	1000	1000	1000	1200	1200	1200	1500	1500	1500	1500	1500	1500
L - Ширина IVP-IXP-IVF	ММ	450	550	550	750	750	750	950	950	950	1250	1250	1250	1250	1250	1250
H - Высота MXP-MXT-MVP-MVT	ММ	570	570	570	570	570	570	570	570	570	570	570	570	570	570	570
H - Высота IVP-IXP-IVF	ММ	545	545	545	545	545	545	545	545	545	545	545	545	545	545	545
Высота ножек MVP-MVT-MXP-MXT	MM	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Р - Глубина МХР-МХТ-МVР-МVT	MM	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
P - Глубина IVP-IXP-IVF	MM	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
Bec MXP-MXT-MVP-MVT	КГ	16	20	20,5	20	21	22	27	28	29	35	35	35	36	37	38
Bec IVP-IXP-IVF	КГ	14,5	16,5	17	20,5	20,5	21,5	24	25,5	27	34,5	34,5	34,5	35,5	36,5	37,5

СТАНДАРТНЫЕ устройства управления Для настенной установки

- → Панель с переключателем скорости и режима «лето/зима».
- → Панель с комнатным термостатом, переключателем «лето/зима», переключателем скорости, управлением клапаном «Откр./Закр.» и электрическим нагревателем.
- → Термостат минимальной температуры (для установки на оборудовании).
- → Электронная панель с автоматическим переключением переключением «лето/зима» для двухтрубных систем.
- → Электронная панель с автоматическим переключением режима «лето/зима», с автоматическим регулированием скорости для двухтрубных систем с электрическим нагревателем или 4 трубных систем.
- → Электронная панель с дисплеем и последовательным интерфейсом RS485, полувстраиваемая для установки на стену.

Для установки на оборудовании (версии MVP и MVT)

- → Пульт с переключателем скорости.
- →•Панель с комнатным термостатом, переключателем «лето/зима», переключателем скорости.
- → *Термостат минимальной температуры.
- →◆Панель с комнатным термостатом, переключателем «лето/зима», переключателем скорости, управлением клапаном «Откр./Закр.» и электрическим нагревателем.
- →•Электронная панель с автоматическим переключением «лето/зима» для двухтрубных установок.
- →◆Электронная панель с автоматическим переключением режима «лето/зима», с автоматическим регулированием скорости для двухтрубных систем с электрическим нагревателем или 4 трубных систем.
- → Плата интерфейса для управления до 4 фанкойлов.

Устройства управления iDRHOSS

→ Настенный приёмник для дистанционного управления с пультом управления.

- → Электронный пульт для настенной установки или для установки на оборудовании.
- → Электронный пульт, встраиваемый в стену.

Для установки на оборудовании

- → ◆Электронная плата master/slave (ведущ./ ведом.).
- → *Температурный датчик горячей воды.
- → «Модуль управления клапанами «Откр./Закр.» и электрическим нагревателем.
- → Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол владельца; протокол Modbus RTU).
- → Последовательный преобразователь RS485/
- → Серийный интерфейс (CAN-bus Controller Area Network) для системы iDRHOSS.
- → KGTW-BAC- Gateway RS485/BACnet (макс. 64 фанкойлов).
- → KGW-LON Gateway RS485/FTT10-LonWorks (макс. 64 фанкойлов).

Экспликация:

- Заводской установки
- → Поставляется отдельно

МХТ для горизонтальной установки

MVP-MXP для вертикальной установки

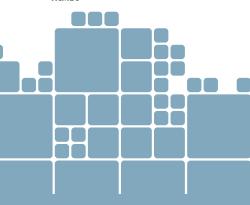
ІХР для горизонтальной установки

IVP-IXP для вертикальной установки

IVF для вертикальной установки

YARDY EV3 MVP-MVT-MXP-MX1	-IVP-IV	F-IXP	15		20		24		25		30	3	84		40		45		48		55		58		60		74		80		88	
	VI	кВт	1,14		2,02		2,24	•E	2,54	•E	3,27	3	3,34	•E	3,79		4,33	٠E	4,84	•E	5,49	•E	6,01	•E	6,69	•E	7,16	•E	8,32	•E	8,78	
06	٧	кВт	1,07		1,8		2,13		2,27		2,85		3,11			٠E	3,9		4,53		4,95		5,36		6,22		6,61		7,99		8,43	
Общая У ХОЛОДИЛЬНАЯ В ООЩАЯ ООЩАЯ ООЩАЯ ООЩАЯ ООЩАЯ ООЩАЯ ООЩНОСТЬ [EN1397:2015] (\$) Тепловая МОЩНОСТЬ (50°C) П Тепловая МОЩНОСТЬ (70°C) П Тепловая МОЩНОСТЬ (70°C) П Тепловая ООЩНОСТЬ ООМНОСТЬ ООМНОСТЬ ООМНОСТЬ ООМНОСТЬ ООМНОСТЬ	кВт	0,99		1,56		1,89		2,05	•E	2,61			•E	2,88	_	3,35	٠E	3,61	•E	4,48	•E	4,85	•E	5,54	•E	6,13		7,26		7,34		
холодильная		кВт	0,91	•F	1,39		1,7		1,71		2,49		2,58	_	2,66	•E	3,03	_	3,39	_	3,97		4,31		5,37	_	5,8	•E	6,9	•E		
Оощая холодильная IV III III	кВт	0,78	_	1,2	_	1,47	•F	1,64	•F	2,1			•E	2,5	_	2,84		3,14		3,39	•E	3,62	•E	4,49		5,15	_	6,43	_	6,96		
	кВт	0,65	•F	1,14	•F	1,36		1,4	-		•E 2		-	2,09	•E	2,52	•E	2,88	•E	2,73	-	3,07	-	4,31	•E	4,73	•E	6,36	•E	6,61		
	VI	кВт	1,1		1,98		2,2			•E	3,21			٠E	3,72		4,26	•E	4,76	•E	5,38	•E	5,89	•E	6,53	•E	6,99	•E	8,14	•E	8,58	
Общая		кВт	1,04	. С	1,77		2,1	*L	2,24	*L			3,05	*L	3,36	•E	3,84	*L	4,46	*L	4,86	*L	5,26	*L	6,12	*L	6,48	*L	7,82	*L	8,25	
	·				1,77			г		г				г		•Ľ		г		г		г		г		г					7,19	
		кВт	0,96				1,87		2,02	•[2,57			•E	2,84	г	3,31	•E	3,57	٠E	4,4	٠E	4,76	•E	5,42	•E	6,01	г	7,12	г		
•		кВт	0,89		1,37		1,68		1,69	_	2,46		2,55	_	2,63	•E	2,99		3,35		3,9	_	4,24	-	5,26		5,68	•E	6,77	•E	7,32	
[EN1397:2015] (§)	11	кВт	0,76		1,19		1,45		1,62	•Ł	2,07			•E	2,47	_	2,81	_	3,11	_	3,34	•E	3,57	•E	4,4	_	5,05	_	6,31	_	6,83	
	I	кВт	0,64	•E	1,13		1,35		1,38		1,78		1,98		2,06	٠E	2,49	٠E	2,85	•E	2,69		3,03		4,22	•E	4,63	•E	6,24	•E	6,49	
	VI	кВт	1,59		2,65		2,78	•E	3,47	•E	4,21	4	1,42	•E	5,11		5,51	•E	5,79	•E	7,17	•E	8,34	•E	8,78	•E	9,22	•E	10,6	•E	12,15	
Общая	٧	кВт	1,36	•E	2,31	•E	2,43		3,14		3,85	•E 4	1,04		4,45	٠E	5,03		5,28		6,39		7,81		8,22		8,63		10,06		11,62	
	кВт	1,25		1,91		2,06	•E	2,71	•E	3,36	3	3,53	٠E	3,79		4,11	٠E	4,32	•E	5,74	٠E	6,89	٠E	7,25	•E	7,61		9,56		11,05		
	кВт	1,15	•E	1,74	•E	1,83		2,28		3,14	•E 3	3,3		3,5	٠E	3,79		3,98		4,87		6,69		7,04		7,39	٠E	9,14	٠E	10,49		
. , ,	II	кВт	1,07		1,49)	1,72	•E	2,18	•E	2,67	2	2,8	•E	3,26		3,35		3,52		4,22	•E	5,85	٠E	6,16		6,47		8,36		9,6	
мощность (50°С) Тепловая мощность (70°С) Тепловая мощность дополнительной	Ι	кВт	0,77	•E	1,46		1,53		1,84		2,37		2,59		2,93	٠E	3,08	•E	3,23	•E	3,47		5,24		5,52	•E	5,8	•E	8,27	•E	9,49	
	VI	кВт	2,6		4,35		4,52		5,65		6,91		7,37		8,27		9,04		9,57		11,72		13,85		14,6		15,56		19,25		20,4	
		кВт	2,42		3,79		3,93		5,1		6,34		5,71		7,2		8,28		8,72		10,41		12,94		13,64		14,56		18,24		19,48	
Тепловая IV мощность (70°С) III I Тепловая VI I п тепловая VI тепловая VI дополнительной III н	•	кВт	2,24		3,13		3,33		4,39		5,53		5,87		6,13		6,72		7,12		9,35		11,4		12		12,77		17,31		18,4	
	_	кВт	2,04	_	2,86		2,96		3,71		5,15		5,5		5,66	_	6,21		6,55		7,91		11,05		11,62		12,38	_	16,47	_	17,5	
	кВт	1,75	•	2,46		2,78		3,54		4,4		1,66		5,28	·	5,48		5,79		6,85	_	9,68		10,24		10,87	•	15,01	·	15,9		
	-									•				•								·		•								
	I VI	кВт	1,37		2,39		2,46		3	-	3,93		1,32	_	4,81	•	5,04	•	5,31	•	5,64	_	8,61	_	9,13	•	9,72	•	14,82	•	15,8	
Тепловая V мощность Г дополнительной I батареи I		кВт	1,55		2,33		1,97	•E	3,01	•E	3,56		,	•E	4,11		3,91	•E	3,71	•E	6,08	•E	5,66	•E	6,29	•E	5,98	•E	7,46	•E	7,09	
	-	кВт	1,41	•Ł	2,16		1,9		2,92		2,99		2,84	_	3,4	•E	3,78	_	3,59	_	5,73	_	5,54		6,16	_	5,85		7,42		7,05	
	IV	кВт	1,41		2,06		1,65		2,55	•E	2,91			•E	3,57		3,4	•E	3,23	•E	5,13	•E	5,19	•E	5,77	•E	5,48		7,34		6,97	
дополнительной	Ш	кВт	1,19	•E	1,72	•E	1,52		2,24		2,55	•E 2	2,43		3,24	٠E	3,19		3,03		4,76		4,83		5,95		5,1	•E	6,8	•E	6,56	
батареи		кВт	1,21		1,72		1,37	•E	2,06	•E	2,4			•E	3,17		3,15		2,99		4,02	•E	4,15	•E	5,84		4,38		6,72		6,38	
	1	кВт	0,98	•E	1,47	•E	1,33		1,9		2,15	•E 2	2,04		3,02	٠E	2,54	٠E	2,41	٠E	3,58		3,68		4,68	•E	3,89	•E	6,17	•E	5,86	
	VI	м³/ч	229		339		339	•	484	•	547	5	547	•	676		681	•	681	•	1077	•	1077	•	1235	•	1235	•	1480	•	1480	
	٧	$M^3/4$	209	•	288	•	288		405		483	• 4	183		587	•	627		627		916		916		1109		1109		1388		1388	
Скорость расхода	IV	м³/ч	183		238		238	•	339	•	434	4	134		472		474		474		802		802		948		948		1220		1220	1
дополнительной батареи Скорость расхода воздуха	Ш	м³/ч	163		207		207		281		383	• 3	383		419		431		431		662		662		882		882		1171		1171	
	II	м³/ч	138		177		177		252		329	3	321		390		392		392		537		537		757		757		1031		1031	
Общая V	ī	м³/ч	100		155		155		217				281		365		338		338		420		420		672		672		994		994	
	VI	дБ(А)			48		48	•E	48	•E	50		50	•E	51		52	٠E	52	•E	58	•E	58	•E	62	•E	62	•E	66	•E	66	
мощность [III] [EN1397:2015] (S) II V V V Тепловая IV Мощность (50°C) III I I I I I I I I	V	дБ(А)		•E	44	•E	44	_	42	_			16	-	48	٠E	50	_	50	_	56	_	56	_	60	_	60	_	65	_	65	
	iv	дБ(А)		-	41	-	40	•E	38	•E	43		13	•E	43	-	43	•E	43	•E	52	•E	52	•E	56	•E	56		62		62	
		дБ(А)		•E	35	•E	35		33		40		10		40	•E	41		41	- L	47		47		54		54	•E	61	•E	61	
мощность	111	дБ(A)		-L	34		32	•E	30	•E	36		10 36	•E	38	-L	38		38		41	•E	41	•E	50		50	-L	59	-L	59	
	-	,		. С		.E		*C		*1.						.г		.г		,E		-6		•6		.E		.E	57	.E		
	I VI	,		•E	30	•E	31		26				32		35	•E	35	•E	35	•E	36		36		48	•E	48	•E		•E	57	
		дБ(А)			39		39	•	39	•	41		11	•	42		43	•	43	•	49	•	49	•	53	•	53	•	57	•	57	
		дБ(А)		•	35	•	35		33				37		39	•	41		41		47		47		51		51		56		56	
Звуковое лавления		дБ(А)			32		31	•	29	•	34		34	•	34		34	•	34	•	43	•	43	•	47	•	47		53		53	
, Habiteting	Ш	дБ(А)		٠	26	•	26		24				31		31	٠	32		32		38		38		45		45	٠	52	٠	52	
	Ш	дБ(А)			25		23	•	21	•	27		27	•	29		29		29		32	•	32	•	41		41		50		50	
	I	дБ(А)		•	21	•	22		17			• 2	23		26	•	26	•	26	•	27		27		39	•	39	•	48	•	48	
	VI	Вт	38		38		41	•E	45	•E	60	6	55	٠E	72		70	٠E	76	•E	115	•E	124	٠E	161	•E	172	•E	184	•E	197	
	٧	Вт	32	•E	30	•E	32		34		54	•E 5	8		58	•E			66		95		103		104		133		173		185	
Потребляемая	IV	Вт	26		23		25	•E	26	•E	36		39	•E			41	٠E		•E		•E	87	•E		•E	125		142		152	
•	111	Вт	23	•E	19	•E	21		22				33	_	34	•E	36	_	39	_	66	_	71	_	109	_		•E	133	•E	142	
ощиость		Вт	19		15		16	•E	17	•E	28		27	•E		-	31		33		51	•E		•F	95		102	_	124	-	133	
		<i>-</i> 1						-		-			22	-	28	г	28	г	30	٠E		-	44	-	92	•E		, E		•E	124	
	ī	Вт	14	•E	13	٠E	14		16		75	•F							511						97		98	• [

Данные при следующих условиях:


- Воздух: 27°C В.S.; 19°C В.U. Вода: 7/12°С. (§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность.
- ❷ Воздух: 20°С Вода: 50°С.
- **❸** Воздух: 20°С Вода: 70/60°С
- Для помещения объемом равным 100 м 3 и времени отражения = 0,5 сек
- Приводная скорость в клеммной коробке.
- E Наличие сертификации Eurovent.

Yardy EV3 24 - 34 - 48 - 74 - 88 с батареей, увеличенной до 4х рядов.

Web code accessories:

ACMEC

- Потребление ниже на 50% относительно традиционного двигателя
- Плавное регулирование скорости вентилятора
- Пониженный уровень шума во время работы
- Повышенный комфорт помещения

Фанкойлы канального типа с бесколлекторным электродвигателем YARDY-ID2

Мощность при охлаждении: 2,4÷6,4 кВт - Мощность при отоплении: 3,0÷8,7 кВт

Канальные фанкойлы для горизонтальной или вертикальной встраиваемой установки.

Конструктивные характеристики

- Теплообменник: змеевик с оребрением с левым креплением, перестраиваемым направо.
- Центробежный вентилятор: с электронным бесколлекторным двигателем с инвертором, с непрерывной настройкой скорости.
- Конструкция: из оцинкованной стали, в комплект входит поддон для сбора конденсата с естественным сливом и регенерируемый фильтр.
- Настройка стандартной или расширенной конфигурации посредством цифрового входа с электронной платы КСМІ.

Варианты исполнения

 СХР - Встраиваемый агрегат для горизонтальной или вертикальной установки (с нижним воздухозаборником и верхней подачей).

Комплектующие

- → Дополнительный водяной теплообменник.
- **→**\$ TЭ⊦
- → Клапан и балансировочный клапан.
- → 2-ходовой электромагнитный клапан ON/OFF для 2 и 4-трубных систем.
- → 3-ходовой электромагнитный клапан ON/OFF для 2 и 4-трубных систем.
- **→‡** Дополнительный поддон для сбора конденсата.
- → Заслонка с приводом.
- → Рамка с фильтром (G2) снимается в любом направлении.
- → Прямой переходник на подаче
- → Патрубок в 90° на подаче и всасывании.
- → Выдвижной патрубок на подаче/всасывании.
- → Воздухозаборная решетка с фильтром.
- → Решётка подачи.
- → Фланцованная рамка для подсоединения к каналу.
- → Антивибрационный переходник для подключения к канал всасывания/подачи.
- → Воздухораспределительная камера на всасывании / подаче с круглыми патрубками.

СТАНДАРТНЫЕ устройства управления

Для настенной установки

→ Электронная панель с дисплеем и последовательным интерфейсом RS485, полувстраиваемая для установки на стену.

Устройства управления iDRHOSS

- → Настенный приёмник для дистанционного управления с пультом управления.
- ightarrow Электронная панель для настенной установки.
- → Электронный пульт, встраиваемый в стену.

Для установки на оборудовании

- → Электронная плата master/slave, модуль управления клапанами ОТКР/ЗАКР и электронагревателем, температурный датчик для горячего режима.
- → Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол владельца; протокол Modbus RTU).
- → Последовательный преобразователь RS485/USB.
- → Серийный интерфейс (CAN-bus Controller Area Network) для системы iDRHOSS.
- → KGTW-BAC- Gateway RS485/BACnet (макс. 64 фанкойлов).
- → KGW-LON Gateway RS485/FTT10-LonWorks (макс. 64 фанкойлов).

Экспликация:

- * Заводской установки
- → Поставляется отдельно

	YARDY-ID2 CXP			40			48			60			74			80			88		
	Конфигурация (*)	C	ТАНДАРТНОЕ	С ПОВЫШЕННОЙ МОЩНОСТЬЮ	C	ТАНДАРТНОЕ	С ПОВЫШЕННОЙ МОЩНОСТЬЮ	C	ТАНДАРТНОЕ	С ПОВЫШЕННОЙ МОЩНОСТЬЮ		СТАНДАРТНОЕ	С ПОВЫШЕННОЙ МОЩНОСТЬЮ	(ТАНДАРТНОЕ	С ПОВЫШЕННОЙ МОЩНОСТЬЮ	C	ТАНДАРТНОЕ	С ПОВЫШЕННОЙ МОЩНОСТЬЮ	
	Общая	MAKC.	кВт	2,42	3,08	Ε	2,65	3,35	Ε	3,37	4,22	Ε	3,9	4,68	Ε	4,75	6,02	Ε	5,1	6,4	Ε
0	холодильная	СРЕДН.	кВт	2,05	2,76	Ε	2,28	3,01	Ε	3,09	3,58	Ε	3,57	4,5	Ε	3,84	5,42	Ε	4,3	5,8	Ε
	мощность	МИН.	кВт	1,2	1,2	Ε	1,29	1,29	Ε	1,59	1,59	Е	1,73	1,73	Ε	2,04	2,04	Ε	2,3	2,3	Ε
	Общая холодильная	MAKC.	кВт	2,36	3,01	Ε	2,59	3,28	Ε	3,29	4,12	Е	3,82	4,58	Ε	4,65	5,88	Ε	5	6,26	Ε
0	мощность	СРЕДН.	кВт	2,01	2,7	Ε	2,24	2,95	Ε	3,03	3,5	E	3,5	4,42	Ε	3,77	5,32	Ε	4,23	5,7	E
	[EN1397:2015] (§)	МИН.	кВт	1,19	1,19	Ε	1,28	1,28	Ε	1,58	1,58	Е	1,72	1,72	Ε	2,03	2,03	Ε	2,29	2,29	E
	Тепловая	MAKC.	кВт	3	3,86	Ε	3,06	3,94	Ε	4,46	5,52	E	4,55	5,63	Ε	6,58	8,55	Ε	6,71	8,72	E
2	мощность (50°C)	СРЕДН.	кВт	2,54	3,44	Ε	2,59	3,51	Ε	4,05	5,23	E	4,13	5,33	Е	5,39	7,69	Ε	5,5	7,84	E
	мощность (эо с)	МИН.	кВт	1,39	1,39	Ε	1,42	1,42	Ε	1,9	1,9	Е	1,94	1,94	Е	2,92	2,92	Ε	2,98	2,98	E
	Тепловая	MAKC.	кВт	4,94	6,35		5,08	6,53		7,52	9,24		7,68	9,57		10,87	14,11		11,26	14,54	
2		СРЕДН.	кВт	4,19	5,66		4,3	5,81		6,82	8,78		6,96	9,04		8,97	12,66		9,2	13,06	
	мощность (70°С)	МИН.	кВт	2,3	2,3		2,35	2,35		3,15	3,15		3,23	3,23		4,85	4,85		4,95	4,95	
	Тепловая мощность	MAKC.	кВт	2,59	3,12	Ε	2,46	2,96	Ε	3,94	4,61	Е	3,74	4,57	Ε	5,04	6,32	Ε	4,79	6	Ε
•	дополнительной	СРЕДН.	кВт	2,3	2,86	Ε	2,19	2,72	Ε	3,67	4,43	E	3,49	4,21	E	4,35	5,68	Ε	4,13	5,59	E
	батареи	МИН.	кВт	1,47	1,47	E	1,4	1,4	Ε	2,2	2,2	Е	2,19	2,19	Е	2,78	2,78	Ε	2,64	2,64	E
	Расход воздуха /	MAKC.	м³/ч / Па	350 / 70	469 / 64	Ε	350 / 70	469 / 64	Ε	573 / 61	737 / 56	E	573 / 61	737 / 56	E	767 / 76	1010 / 64	Ε	738 / 74	949 / 64	E
	Напор	СРЕДН.	м³/ч / Па	291 / 50	410 / 50	Ε	291 / 50	410 / 50	Ε	512 / 50	691 / 50	Ε	512 / 50	691 / 50	Ε	606 / 50	866 / 50	Ε	594 / 50	831 / 50	E
	панор	МИН.	м³/ч / Па	150 / 8	150 / 8	Ε	150 / 8	150 / 8	Ε	214/6	214 / 6	E	214 / 6	214 / 6	E	284 / 7	284 / 7	Ε	284 / 7	284 / 7	E
	Звуковое давление	MAKC.	дБ(А)	51	56	Ε	51	56	Ε	55	57	Е	55	57	Ε	57	58	Ε	57	58	E
4	•	СРЕДН.	дБ(А)	48	52	Ε	47	52	Ε	52	56	E	52	56	Е	56	57	Ε	56	57	E
	на подаче	МИН.	дБ(А)	30	30	E	30	30	Ε	30	30	E	30	30	Е	30	30	Ε	30	30	E
	Акустическое	MAKC.	дБ(А)	42	47		42	47		46	48		46	48		48	49		48	49	
6	давление на	СРЕДН.	дБ(А)	39	43		38	43		43	47		43	47		47	48		47	48	
	подаче	МИН.	дБ(А)	21	21		21	21		21	21		21	21		21	21		21	21	
	Потребляемая	MAKC.	Вт	57	69	Ε	60	72	Ε	80	100	E	84	105	E	105	140	Ε	105	140	E
	•	СРЕДН.	Вт	36	60	E	38	63	Ε	65	80	E	68	84	E	75	100	Ε	75	100	Е
	мощность	мин.	Вт	8	8	Ε	8	8	Ε	8	8	E	8	8	E	13	13	Ε	13	13	E
	Электропитание		В-фаз-Гц	230-1-50			230-1-50			230-1-50			230-1-50			230-1-50			230-1-50		

- Воздух: 27°С В.S.; 19°С В.U. Вода: 7/12°С.
- (§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность.
- ❷ Воздух: 20°С Вода: 50°С, подача как при охлаждении.
- Воздух: 20°С Вода: 70/60°С
- **4** Согласно испытаниям Eurovent 8/12.
- Для помещения объемом равным 100 м 3 и времени отражения = 0,5 сек
- E Наличие сертификации Eurovent.
 - (*) Эксплуатационные характеристики относятся к следующим конфигурациям: STANDARD (стандарт): выход 2/6,5/8 В пост.т. при мин./ср./макс. скорости; POTENZIATA (с повыш.мощностью): выход 2/7/10 В пост.т. при мин./ср./макс. скорости для каналов с повышенной потерей нагрузки.
 - Yardy ID2 48 74 88 с батареей, увеличенной до 4х рядов.

YARDY-ID2 CXP		40	48	60	74	80	88
РАЗМЕРЫ И ВЕС							
L - Ширина	MM	950	950	1250	1250	1250	1250
Н - Высота	MM	545	545	545	545	545	545
Р - Глубина	MM	212	212	212	212	212	212
Bec	КГ	25,5	26,5	34,5	35,5	36,5	37,5

Web code: YADC2

Web code accessories: ACMEC

- Новые модели с 4-х рядным теплообменником
- Канальная версия, шестискоростная
- Вертикальная и горизонтальная установка
- Пульт дистанционного управления

Фанкойлы канального типа

YARDY-DUCT2

Мощность при охлаждении: 2,0÷5,8 кВт - Мощность при отоплении: 2,4÷7,2 кВт

Канальные фанкойлы для горизонтальной или вертикальной встраиваемой установки.

Конструктивные характеристики

- Теплообменник: змеевик с оребрением с левым креплением, перестраиваемым направо.
- Центробежный вентилятор: с 6 скоростями с подсоединением к клеммной коробке.
- Конструкция: из оцинкованной стали, в комплект входит поддон для сбора конденсата с естественным сливом и регенерируемый фильтр.

Варианты исполнения

 СХР - Встраиваемый агрегат для горизонтальной или вертикальной установки (с нижним воздухозаборником и верхней подачей).

Комплектующие

- → Дополнительный водяной теплообменник.
- **→**\$ TЭŀ
- → 2-ходовой электромагнитный клапан ON/OFF для 2 и 4-трубных систем.
- → 3-ходовой электромагнитный клапан ON/OFF для 2 и 4-трубных систем.
- → Дополнительный поддон для сбора конденсата.
- → Заслонка с приводом.
- → Рамка с фильтром (G2) снимается в любом направлении.
- → Прямой переходник на подаче
- → Патрубок в 90° на подаче и всасывании.
- → Выдвижной патрубок на подаче/всасывании.
- → Воздухозаборная решетка с фильтром.
- → Решётка подачи.
- → Рамка с фланцем для соединения с каналом всасывания или подачи.
- → Антивибрационный переходник для подключения к канал всасывания/подачи.
- → Воздухораспределительная камера на всасывании / подаче с круглыми патрубками.

СТАНДАРТНЫЕ устройства управления Для настенной установки

→ Панель с переключателем скорости и режима «лето/ зима».

- → Панель с комнатным термостатом, переключателем «лето/зима», переключателем скорости, управлением клапаном «Откр./Закр.» и электрическим нагревателем.
- → Термостат минимальной температуры (для установки на оборудовании).
- Электронная панель с автоматическим переключением переключением «лето/зима» для двухтрубных систем.
- Электронная панель с автоматическим переключением режима «лето/зима», с автоматическим регулированием скорости для двухтрубных систем с электрическим нагревателем или 4 трубных систем.
- → Плата интерфейса для управления до 4 фанкойлов (для установки на оборудовании).
- → Электронная панель с дисплеем и последовательным интерфейсом RS485, полувстраиваемая для установки на стену.

Устройства управления iDRHOSS

- → Настенный приёмник для дистанционного управления с пультом управления.
- → Электронная панель для настенной установки.
- → Электронный пульт, встраиваемый в стену.

Для установки на оборудовании

- → Электронная плата Master/slave (ведущ./ведом.).
- → Температурный датчик для горячего режима.
- →

 Модуль управления клапанами «Откр./Закр.» и
 Тэном
- → Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол владельца; протокол Modbus RTU).
- Последовательный преобразователь RS485/USB.
- → Серийный интерфейс (CAN-bus Controller Area Network) для системы iDRHOSS.
- → KGTW-BAC- Gateway RS485/BACnet (макс. 64
- → KGW-LON Gateway RS485/FTT10-LonWorks (макс. 64 фанкойлов).

Экспликация:

- Заводской установки
- → Поставляется отдельно
- ⁶ Прежнее наименование

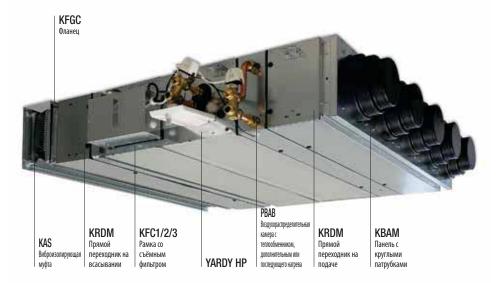
,	YARDY-DUCT2 CXP	,		40		48		50		60		74		80		88	
		VI	кВт	1,97	Ε	2,29	Е	2,66	Е	3,6	Е	4,56	Е	4,98	Ε	5,84	Е
	Общая	٧	кВт	1,82	Е	2,12	Е	2,47		3,43		4,37		4,74		5,66	
_		IV	кВт	1,54		1,73		2,32	Ε	3,27	Ε	4,09	Ε	4,51	Ε	5,53	Е
	холодильная	Ш	кВт	1,39	Ε	1,61	Ε	2		3,1		3,87		4,28		5,31	
	мощность	II	кВт	1,27		1,47		1,75	Ε	2,73	Ε	3,5	Ε	4,01	Ε	5,04	E
		I	кВт	1,1		1,28		1,34		2,49		3,22		4,04		4,89	
	0.6	VI	кВт	1,9	E	2,22	E	2,57	E	3,47	E	4,43	E	4,83	E	5,69	E
	Общая	٧	кВт	1,76	E	2,06	E	2,39		3,31		4,24		4,61		5,53	
n	холодильная	IV	кВт	1,5		1,69		2,25	E	3,18	E	4	E	4,4	E	5,42	E
	мощность	Ш	кВт	1,35	E	1,57	E	1,94		3,01		3,78		4,17		5,2	
	[EN1397:2015] (§)	II	кВт	1,24		1,44		1,7	E	2,65	E	3,41	E	3,91	E	4,94	E
		I	кВт	1,07		1,25		1,3		2,41		3,14		3,95		4,8	
		VI	кВт	2,41	E	2,53	E	3,47	E	4,74	E	4,98	E	6,84	E	7,18	E
	_	V	кВт	2,21	E	2,32	E	3,21		4,52		4,75		6,51		6,84	
2	Тепловая	IV	кВт	1,8		1,89		3,02	E	4,29	E	4,5	E	6,44	E	6,76	E
	мощность (50°C)	Ш	кВт	1,65	E	1,73	E	2,52		4,05		4,25		6,13		6,44	
		II	кВт	1,5		1,58		2,21	E	3,7	E	3,89	E	5,75	E	6,04	E
			кВт	1,3		1,37		1,79		3,39		3,56		5,75		5,99	
		VI	кВт	3,98		4,18		5,7		7,99		8,3		11,42		11,99	
	_	V	кВт	3,65		3,83		5,28		7,63		7,91		10,87		11,43	
6	Тепловая	IV	кВт	2,97		3,12		4,97		7,21		7,48		10,78		11,3	
•	мощность (70°С)	Ш	кВт	2,73		2,85		4,14		6,8		7,06		10,29		10,77	
		II	кВт	2,48		2,61		3,64		6,23		6,46		9,67		10,1	
		1	кВт	2,15		2,26		2,97		5,72		5,9		9,62		10	
	Тепловая	VI	кВт	2,22	E	2,11	E	3,54	E	4,14	E	3,93	E	5,09	E	4,84	E
		٧	кВт	2,08	E	1,98	E	3,34		4,12		3,91		4,9		4,66	
8	мощность	IV	кВт	1,93		1,83		3,2	E	4	E	3,8	E	4,8	E	4,56	E
•	дополнительной	Ш	кВт	1,71	E	1,62	E	2,81		3,9		3,71	_	4,7		4,47	
	батареи	11_	кВт	1,6		1,52		2,53	E	3,8	E	3,61	E	4,59	E	4,36	E
		I	кВт	1,44		1,37		2,14		3,72		3,53		4,48		4,26	
		VI	м³/ч / Па	275 / 56	E	275 / 56	E	450 / 69 (VI)	E	620 / 66 (VI)	Е	620 / 66	E	912 / 62 (VI)	E	862 / 62	E
	Подача воздуха/	٧	м³/ч / Па	250 / 50	E	250 / 50	E	411 / 58 (V)		587 / 59 (V)		587 / 59	_	858 / 54 (V)		828 / 54	
	Статическое	IV	м³/ч / Па	198 / 33		198 / 33		382 / 50 (IV)	E	539 / 50 (IV)	E	539 / 50	E	820 / 50 (IV)	E	800 / 50	E
	давление	III	м³/ч / Па	180 / 28	E	180 / 28	E	315 / 36 (III)		504 / 44 (III)		504 / 44	_	772 / 45 (III)		759 / 45	
	давление	11_	м³/ч / Па	163 / 24		163 / 24		270 / 26 (II)	E	445 / 34 (II)	E	445 / 34	E	715 / 39 (II)	E	708 / 39	E
		1	м³/ч / Па	140 / 18		140 / 18		210 / 19 (I)		402 / 28 (I)		402 / 28	_	685 / 35 (I)		680 / 35	
		VI	дБ(А)	50	E	50	E	48	E	54	E	54	E	57	E	57	E
	20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V	дБ(А)	48	E	48	E	46	-	54	-	54	-	55	_	55	
4	Звуковое давление		дБ(А)	43	-	43	-	45	E	54	E	54	E	54	E	54	E
	на подаче	III	дБ(А)	42	E	42	E	42	-	51	-	51	_	53	-	53	
		1	дБ(А)	38		40		40	E	50	E	50	E	51	E	51	E
		1	дБ(А)	37		38		38		48		48		50		50	
		VI	дБ(А)	41		41		39		45		45		48		48	
	Акустическое	V	дБ(А)	39		39		37		45		45		46		46	
6	давление на	IV	дБ(А)	34		34		36		45		45		45		45	
	подаче	111	дБ(А)	33		33		33		42		42		44		44	
	пода те	1	дБ(А)	29		31		31		41		41		42		42	
		I VI	дБ(А)	28	Е	29	г	29	г	39	г	39	г	41	г	41	_
		VI	Вт	68	E	71	E	94	E	128	E	134	E	154	E	154	E
	Потребляемая	-	Вт	60	E	63	E	78	г	120	г	126	г	134	Е	134	_
	•	IV	Вт	41	Е	43	Е	71	E	91	E	95	E	115	E	115	E
	мощность		Вт	36	Е	38	E	60	г	88	г	93	г	109	Е	109	_
		1	Вт	32		34		49 39	E	84	E	89	E	105	E	105	E
	Эпоктропитанна	1	BT By Tu	27		28				77 230-1-50		220 1 50		91		91 230-1-50	
	Электропитание		В-фаз-Гц	230-1-50		230-1-50		230-1-50		Z3U-1-3U		230-1-50		230-1-50		230-1-30	

- Воздух: 27°С В.S.; 19°С В.U. Вода: 7/12°С. (§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность.
- ❷ Воздух: 20°С Вода: 50°С, подача как при охлаждении.
- Воздух: 20°С Вода: 70/60°С
- Согласно испытаниям Eurovent 8/12.
- Для помещения объемом равным 100 м 3 и времени отражения = 0,5 сек
- E= Наличие сертификации Eurovent.

YARDY-DUCT2 48 - 74 - 88 с батареей, увеличенной до 4х рядов.

YARDY-DUCT2 CXP		40	48	50	60	74	80	88
РАЗМЕРЫ И ВЕС								
L - Ширина	MM	950	950	1250	1250	1250	1250	1250
Н - Высота	MM	545	545	545	545	545	545	545
Р - Глубина	MM	212	212	212	212	212	212	212
Вес	КГ	25,5	27	34,5	34,5	35,5	36,5	37,5

Web code: YAHP1


Web code accessories: ACMEC

- Горизонтальная и вертикальная установка
- Новый очищаемый поддон, извлекаемый снизу
- Оснащение с 3,4, 5-ряднымтеплообменником
- Фильтры с различной степенью эффективности
- Пульт дистанционного управления
- Продукт соответствует Регламенту (EC) N.327/2011 в исполнение директивы ERP (директива по энергопотребляющей продукции)

Фанкойлы канального типа

YARDY-HP

Мощность при охлаждении: 7,2÷20,5 кВт - Мощность при отоплении: 9,6÷28,0 кВт

Фанкойлы канального типа для горизонтальной или вертикальной встраиваемой установки.

Конструктивные характеристики

- Конструкция: самонесущая из оцинкованной стали для горизонтальной установки в подвесной потолок или вертикальной, встраиваемой в стену, установки, в комплект входит внутренний поддон для сбора конденсата с естественным сливом, фланцы для крепления к каналу всасывания/подачи. Поддон, выдвигаемый снизу. Фильтр поставляется отдельно от агрегата.
- Теплообменник: батарея с оребрением и электрическая коробка для соединительной клеммной коробки с левыми креплениями, перестраиваемыми направо, непосредственно на месте установки. Батарея, извлекаемая снизу.
- Центробежный вентилятор с двойным всасыванием с соединенным напрямую 3-х скоростным двигателем. Вентиляционный блок, извлекаемый снизу.

Варианты исполнения

 СХР - Встраиваемый агрегат для горизонтальной или вертикальной установки (с нижним воздухозаборником и верхней подачей).

Количество рядов

- 3 ряда Агрегат с 3-рядной батареей; агрегат для горизонтального/вертикального встраивания.
- 4 ряда Агрегат с 4-рядной батареей; агрегат для горизонтальной/вертикальной скрытой установки.
- 5 рядов Агрегат с 5-рядной батареей (только модели 250, 300); агрегат для горизонтального/вертикального встраивания.

Комплектующие

- →◆ Дополнительный водяной теплообменник (1 ряд) для 4-трубных систем 4T-КВАА - только для агрегата 3R с трех-рядной батареей.
- → Внешняя воздухораспределительная камера с дополнительным водным теплообменником для установок с 4 трубами (РВАВ).
- → 2-ходовые электровентиляторы ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- → 3-ходовые электровентиляторы ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- → Дополнительный поддон для сбора конденсата.
- → Рамка с фильтром снимается в любом направлении

(класс эффективности G1/G2/G3).

- → Прямой переходник подачи и всасывания.
- → Переходник на 90° подачи и всасывания.
- → Фланец для канального подключения.
- → Антивибрационный переходник для подключения к каналу всасывания/подачи.
- → Панель с круговыми патрубками для крепления к переходникам подачи/всасывания.

СТАНДАРТНЫЕ устройства управления Для настенной установки

- → Панель с переключателем скорости и режима «лето/ зима».
- → Панель с комнатным термостатом, переключателем «лето/зима», переключателем скорости, управлением клапаном «Откр./Закр.» и электрическим нагревателем.
- → Электронная панель с автоматическим переключением переключением «лето/зима» для двухтрубных систем.
- → Электронная панель с автоматическим переключением режима «лето/зима», с автоматическим регулированием скорости для двухтрубных систем с электрическим нагревателем или 4 трубных систем.
- → Датчик воздуха с удалённым управлением.
- → Плата интерфейса для управления до 4 фанкойлов (только для моделей 100-150-200, для установки на оборудовании).

Устройства управления iDRHOSS

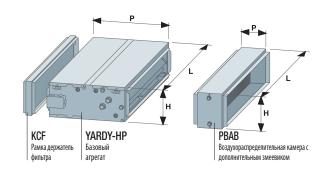
- → Настенный приёмник для дистанционного управления с пультом управления.
- Электронная панель для настенной установки.
- → Электронный пульт, встраиваемый в стену.

Для установки на оборудовании

- → э Электронная плата Master/slave (ведущ./ведом.).
- → Температурный датчик для горячего режима.
- → Модуль управления клапанами «Откр./Закр.» и Тэном
- → Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол владельца; протокол Modbus RTU).
- → Последовательный преобразователь RS485/USB.
- → Серийный интерфейс (CAN-bus Controller Area Network) для системы iDRHOSS.
- → KGTW-BAC- Gateway RS485/BACnet (макс. 64 фанкойлов).
- KGW-LON Gateway RS485/FTT10-LonWorks (макс. 64 фанкойлов).

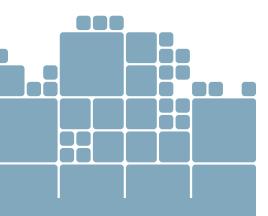
Экспликация: • Заводской установки

→ Поставляется отдельно



YARDY HP CXP			100	150	200	250	300
• Общая холодильная мощность	3R	кВт	7,16	8,37	10,13	13,55	15,25
Общая холодильная мощность [EN1397:2015] (§)			6,96	8,13	9,75	12,87	14,45
❷ Тепловая мощность (50°С)	3R	кВт	9,66	11,71	14,27	19,08	21,75
• Общая холодильная мощность	4R	кВт	8,41	9,51	11,37	16,58	18,8
Общая холодильная мощность [EN1397:2015] (§)			8,22	9,28	11,04	15,91	18,05
❷ Тепловая мощность (50°С)	4R	кВт	10,86	12,67	15,36	22,28	25,63
• Общая холодильная мощность	5R	кВт	-	-	-	18,7	20,5
Общая холодильная мощность [EN1397:2015] (§)						18,04	19,75
❷ Тепловая мощность (50°С)	5R	кВт	-	-	-	24,88	27,89
❸ Тепловая мощность дополнительной батареи (70°С)	4T -KBAA	кВт	6,69	6,78	9,35	10,44	11,31
❸ Тепловая мощность дополнительной батареи (70°С)	PBAB	кВт	12,9	14,14	16,4	29,73	32,77
Danier nachwie (Grammania nach nach	MAKC.	м³/ч / Па	1.552 / 60	1.840 / 60	2.339 / 60	3.312 / 60	3.875 / 60
Ф Расход воздуха/Статическое давление скорости (3R)	СРЕДН.	м³/ч / Па	1.369 / 50	1.620 / 50	1.717 / 50	2.189 / 50	3.075 / 50
скорости (3к)	мин.	м³/ч / Па	1.013 / 35	1.432 / 35	1.414 / 35	1.329 / 35	2.415 / 35
	MAKC.	дБ(А)	61	62	62	63	68
Звуковая мощность на подаче (3R)	СРЕДН.	дБ(А)	59	61	60	59	64
	мин.	дБ(А)	56	59	57	55	61
	MAKC.	дБ(А)	47	48	48	49	54
Звуковое давление скорости (3R)	СРЕДН.	дБ(А)	45	47	46	45	50
	мин.	дБ(А)	42	45	43	41	47
	3R	Вт	200	245	380	680	800
Номинальная потребляемая мощность МАКС.	4R	Вт	190	230	330	670	750
	5R	Вт	-	-	-	660	750
Максимальная потребляемая мощность (0 Ра)	3R	Вт	280	300	500	850	900
Электропитание		В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
РАЗМЕРЫ И ВЕС			100	150	200	250	300
L - Ширина		MM	1295	1295	1295	1295	1295
Н - Высота		MM	250	250	285	335	335
P - Глубина YARDY HP		MM	555	555	670	720	720
Р - Глубина РВАВ		MM	200	200	200	200	200
Bec YARDY HP		КГ	38	38	46	57	57

- Воздух: 27°C В.S.; 19°C В.U. Вода: 7/12°C.(§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность.
- ❷ Воздух: 20°С Вода: 50°С, подача как при охлаждении. Максимальная скорость.
- ❸ Воздух: 20°С Вода: 70/60°С Максимальная скорость.
- 3-х рядный теплообменник (3R) без фильтра.
- **С** фильтром G2 согласно тестирования Eurovent 8/12.



Web code: DIVI1

Web code controls: ACREG

Фанкойлы с бесколлекторным электродвигателем DIVA-I

Мощность при охлаждении: 2,8÷10,8 кВт - Мощность при отоплении: 3,4÷12,7 кВт

- Потребление ниже на 50% относительно традиционного двигателя
- Оснащение для 2-х трубных систем или 2-х трубных систем с ТЭНом.
- Декоративная панель из полимера АБС или из металла
- 2-х или 3-х ходовые клапаны ВКЛ/ВЫКЛ и встроенные устройства управления

Фанкойлы кассетного типа.

Конструктивные характеристики

- Фанкойлы: Кассетного типа для установки на подвесные потолки, с отводом и подачей воздуха непосредственно в помещении.
- Теплообменник: змеевик с оребрением.
- Радиальная вентиляция;
- Бесколлекторный двигатель ЕС с инвертором.
- Конструкция: самонесущая из оцинкованного металла, в комплект входит поддон для сбора конденсата и насос для подъема конденсата (максимальный напор 650 мм).
- Приточная панель PLP (комплектующая): из полимера AБС (RAL 9003) с направляемым оребрением подачи, с ручным управлением, решёткой возврата и регенерируемым фильтром.

Тип системы

- 2Т Короб для 2-трубных установок.
- 4Т Короб для 4-трубных установок.
- RE Короб для 2-трубных систем с дополнительным нагревательным элементом.

Комплектующие, поставляемые отдельно

- PLP-Приточная панель из АБС (RAL 9003)
- PLP-Металлическая приточная панель (RAL 9003) на одном уровне с подвесным потолком, только модели 60x60 см.
- → 3-ходовый электроклапан ВКЛ/ВЫКЛ для 2 и 4-трубных систем.

- →• 2-ходовые электроклапаны ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- Соединение для трубопровода первичного воздуха.
- Хвостовик для распределения воздуха на расстоянии от агрегата.
- Комплект первичного воздуха.

СТАНДАРТНЫЕ устройства управления Для настенной установки

→ Электронная панель с дисплеем и последовательным интерфейсом RS485, полувстраиваемая для установки на стену.

Устройства управления iDRHOSS

- → Пульт дистанционного управления и приемник.
- → Электронная панель для настенной установки.
- → Электронный пульт, встраиваемый в стену.

Для установки на оборудовании

- → Электронная плата master/slave, модуль управления клапанами ОТКР/ЗАКР и электронагревателем, температурный датчик для горячего режима.
- → Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол владельца; протокол Modbus RTU).
- → Последовательный преобразователь RS485/USB.
- → Серийный интерфейс (CAN-bus Controller Area Network) для системы iDRHOSS.
- → KGTW-BAC- Gateway RS485/BACnet (макс 64 фанкойлов).
- → KGW-LON Gateway RS485/FTT10-LonWorks (макс 64 фанкойлов).

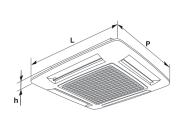
Экспликация: *Заводской установки

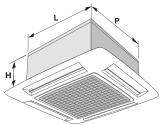
→ Поставляется отдельно

Панель управления встраиваемая

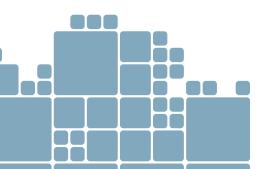
Пульт дистанционного управления со скобой для настенной установки

Настенная панель управления




DIVA-I					DIVA-	I 2T - DIVA-	I RE						DIVA-I 4T
				30	40	50	60	110	30	40	50	60	110
	MAKC.	кВт	Ε	2,75	4,33	5,02	6,33	10,75	2,77	3,93	4,53	6,51	9,87
Общая холодильная мощность	СРЕДН.	кВт	Ε	2,17	3,05	3,87	5,15	7,72	2,18	2,81	3,53	5,28	7,17
	мин.	кВт	Ε	1,84	2,24	2,56	4,21	5,29	1,85	2,09	2,38	4,3	4,98
Общая холодильная мощность	MAKC.	кВт	Ε	2,73	4,3	4,96	6,3	10,64	2,75	3,9	4,47	6,48	9,76
оощая холодильная мощность [EN1397:2015] (§)	СРЕДН.	кВт	Ε	2,16	3,04	3,85	5,13	7,69	2,17	2,8	3,51	5,26	7,14
[EN1397.2013] (9)	мин.	кВт	Ε	1,84	2,24	2,55	4,2	5,28	1,85	2,09	2,37	4,29	4,97
	MAKC.	кВт	Ε	3,44	5,24	6,2	8,01	12,73	-	-	-	-	-
❷ Тепловая мощность (50°C)	СРЕДН.	кВт	Ε	2,67	3,58	4,63	6,35	8,83	-	-	-	-	-
	мин.	кВт	Ε	2,22	2,55	2,96	5,11	5,89	-	-	-	-	-
❸ Тепловая мощность (70°С)	MAKC.	кВт		5,82	8,81	10,42	13,54	21,37	-	-	-	-	-
T	MAKC.	кВт	Ε	-	-	-	-	-	3,62	3,35	3,79	9,36	9,51
Тепловая мощность дополнительной 6 → 1 → 2 → 2 → 2 → 2 → 2 → 2 → 2 → 2 → 2	СРЕДН.	кВт	Ε	-	-	-	-	-	2,85	2,53	3,06	7,54	7,16
батареи	мин.	кВт	Ε	-	-	-	-	-	2,43	1,98	2,2	6,14	5,22
ТЭН RE	230-1-50 Вольт	кВт		1,5	2,5	2,5	3	3	-	-	-	-	_
	MAKC.	$M^3/4$		535	710	880	1165	1770	535	710	880	1165	1770
Скорость расхода воздуха	СРЕДН.	м ³ /ч		380	445	610	870	1130	380	445	610	870	1130
	мин.	$M^3/4$		310	310	360	630	710	310	310	360	630	710
	MAKC.	дБ(А)	Ε	47	54	60	48	57	47	54	60	48	57
Звуковая мощность	СРЕДН.	дБ(А)	Ε	39	43	50	39	47	39	43	50	39	47
	мин.	дБ(А)	Ε	33	33	37	33	34	33	33	37	33	34
	MAKC.	дБ(А)		38	45	51	39	48	38	45	51	39	48
Звуковое давление при скор.	СРЕДН.	дБ(А)		30	34	41	30	38	30	34	41	30	38
	мин.	дБ(А)		24	24	28	24	25	24	24	28	24	25
	MAKC.	Вт	Ε	16	31	62	33	108	16	31	62	33	108
Потребляемая мощность	СРЕДН.	Вт	Ε	8	11	21	17	32	8	11	21	17	32
	мин.	Вт	Ε	5	5	7	10	10	5	5	7	10	10
Электропитание	[В-фаз-Гц		230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
РАЗМЕРЫ И ВЕС				30	40	50	60	110	30	40	50	60	110
Короб - Размеры ШхВхГ		MM		575	x 275 x 575		820 x 303	3 x 820	57.	5 x 275 x 575	;	820 x 303	x 820
Приточная панель PLP - Размеры ШхВх	Γ	MM		67	'0x 67x 670		965 x 85	x 965	67	70x 67x 670		965 x 85	x 965
Кассета - Вес		КГ		22	24	24	36	39	24	24	24	39	39
Приточная панель PLP - Bec		ΚΓ		3	3	3	6	6	3	3	3	6	6

- Воздух: 27°C В.S.; 19°C В.U. Вода: 7/12°C.(§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность
- ❷ Воздух: 20°C Вода: 50°C, подача как при охлаждении.
- **❸** Воздух: 20°С Вода: 70/60°С
- Для помещения объемом равным 100 м 3 и времени отражения = 0,5 сек
- E Наличие сертификации Eurovent.


Приточная панель из металла PLM с эффектом Коанда

Web code: DIVA1

Web code controls: ACREG

- Оснащение для 2-х трубных систем или 2-х трубных систем с ТЭНом.
- Декоративная панель из полимера АБС или из металла
- 2-х или 3-х ходовые клапаны ВКЛ/ВЫКЛ и встроенные устройства управления

Фанкойлы кассетного типа

DIVA

Мощность при охлаждении: 2,0÷11,1 кВт - Мощность при отоплении: 2,6÷14,0 кВт

Фанкойлы кассетного типа.

Конструктивные характеристики

- Фанкойлы: Кассетного типа для установки на подвесные потолки, с отводом и подачей воздуха непосредственно в помещении.
- Теплообменник: змеевик с оребрением.
- Радиальная вентиляция.
- Двигатель с 6 скоростями, из которых 3 с подсоединением к клеммной коробке.
- Конструкция: самонесущая из оцинкованного металла, в комплект входит поддон для сбора конденсата и насос для подъема конденсата (максимальный напор 650 мм).
- Приточная панель PLP (комплектующая): из полимера АБС (RAL 9003) с направляемым оребрением подачи, с ручным управлением, решёткой возврата и регенерируемым фильтром.

Тип системы

- 2Т Короб для 2-трубных установок.
- 4Т Короб для 4-трубных установок.
- RE Короб для 2-трубных систем с дополнительным нагревательным элементом.

Комплектующие, поставляемые отдельно

- PLP-Приточная панель из АБС (RAL 9003).
- PLP-Металлическая приточная панель (RAL 9003) на одном уровне с подвесным потолком, только модели 60x60 см.
- → 3-ходовый электроклапан ОТКР/ЗАКР для 2 и 4-трубных систем.
- → № 2-ходовые электроклапаны ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- Соединение для трубопровода первичного воздуха.
- Хвостовик для распределения воздуха на расстоянии от агрегата.
- Комплект первичного воздуха.

СТАНДАРТНЫЕ устройства управления Для настенной установки

- → Панель с переключателем скорости и режима «лето/зима».
- → Панель с комнатным термостатом, переключателем «лето/ зима», переключателем скорости, управлением клапаном «Откр./Закр.» и электрическим нагревателем.
- → Электронная панель с автоматическим переключением переключением «лето/зима» для двухтрубных систем.
- → Электронная панель с автоматическим переключением режима «лето/зима», с автоматическим регулированием скорости для двухтрубных систем с электрическим нагревателем или 4 трубных систем.
- → Электронная панель с дисплеем и последовательным интерфейсом RS485, полувстраиваемая для установки на стену.
- → Плата интерфейса для управления до 4 фанкойлами.

Устройства управления iDRHOSS

- → Пульт дистанционного управления и приемник.
- → Электронная панель для настенной установки.
- → Электронный пульт, встраиваемый в стену.

Для установки на оборудовании

- →•Электронная плата master/slave (ведущ./ведом.).
- → * Температурный датчик горячей воды.
- → Модуль управления клапанами «Откр./Закр.» и электрическим нагревателем.
- → Интерфейс RS485 для последовательной взаимосвязи с другими устройствами (протокол владельца; протокол Modbus RTU).
- → Последовательный преобразователь RS485/USB.
- → Серийный интерфейс (CAN-bus Controller Area Network) для системы iDRHOSS.
- →KGTW-BAC- Gateway RS485/BACnet (макс 64 фанкойлов).
- → KGW-LON Gateway RS485/FTT10-LonWorks (макс 64 фанкойлов).

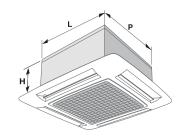
Экспликация: • Заводской установки

→ Поставляется отдельно

Панель управления ВСТРАИВАЕМАЯ

Пульт дистанционного управления со скобой для настенной установки

Настенная панель управления


DIVA						DI	VA 2T - DIVA RE			
				20	30	40	50	60	90	110
	MAKC.	кВт	Ε	1,98	2,68	4,33	5,02	6,16	9,51	11,1
Общая холодильная мощность	СРЕДН.	кВт	Ε	1,63	2,34	3,34	3,88	4,91	6,78	8,45
	МИН.	кВт	E	1,27	1,84	2,25	2,94	4,21	5,31	5,31
_ Общая холодильная мощность	MAKC.	кВт	E	1,92	2,64	4,26	4,93	6,08	9,39	10,93
0 ' ' '	СРЕДН.	кВт	E	1,6	2,31	3,3	3,82	4,86	6,72	8,36
[EN1397:2015] (§)	МИН.	кВт	E	1,25	1,82	2,23	2,91	4,18	5,27	5,27
	MAKC.	кВт	E	2,64	3,35	5,23	6,17	7,77	10,71	14
❷ Тепловая мощность (50°С)	СРЕДН.	кВт	E	2,12	2,9	3,93	4,63	6,03	7,34	10,3
	МИН.	кВт	E	1,62	2,22	2,56	3,43	5,12	5,61	6,13
❸ Тепловая мощность (70°С)	MAKC.	кВт		4,56	5,68	9,25	10,63	13,14	19,76	23,68
_ Тепловая мощность дополнительной	MAKC.	кВт	Ε	-	-	-		-	-	-
3	СРЕДН.	кВт	E	-	-	-		-	-	
батареи	МИН.	кВт	E	-	-	-	-		-	
TЭH RE	230-1-50 Вольт	кВт		-	1,5	2,5	2,5	3	3	3
	MAKC.	м ³ /ч		610	520	710	880	1140	1500	1820
Скорость расхода воздуха	СРЕДН.	м ³ /ч		420	420	500	610	820	970	1280
	МИН.	м³/ч		310	310	320	430	630	710	710
	MAKC.	дБ(А)	E	49	45	53	59	48	53	58
Звуковая мощность	СРЕДН.	дБ(А)	E	40	40	45	49	40	40	48
	МИН.	дБ(А)	E	33	33	33	41	33	34	34
	MAKC.	дБ(А)		40	36	44	50	39	44	49
Звуковое давление при скор.	СРЕДН.	дБ(А)		31	31	36	40	31	31	39
	МИН.	дБ(А)		24	24	24	32	24	25	25
	MAKC.	Вт	Ε	57	44	68	90	77	120	170
Потребляемая мощность	СРЕДН.	Вт	Ε	32	32	44	57	48	63	95
	МИН.	Вт	Ε	25	25	25	32	33	42	42
Электропитание		В-фаз-	Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
РАЗМЕРЫ И ВЕС				20	30	40	50	60	90	110
Короб - Размеры ШхВхГ		MM				5	75 x 275 x 575			820 x 303 x 820
Приточная панель PLP - Размеры ШхВхГ		MM					670x 67x 670			965 x 85 x 965
Кассета - Вес		ΚΓ		22	22	24	24	36	39	39
Приточная панель PLP - Вес		КГ		3	3	3	3	6	6	6

	DIVA									DIVA 4T					
					20	30	32	40	42	50	60	80	90	92	110
		MAKC.	кВт	Ε	2,33	2,7	3,34	3,93	3,81	4,53	6,34	7,71	8,77	8,89	10,2
0	Общая холодильная мощность	СРЕДН.	кВт	Ε	1,96	2,36	2,65	3,06	3,02	3,53	5,03	5,66	6,33	6,93	7,84
		МИН.	кВт	Ε	1,51	1,85	1,85	2,09	2,36	2,72	4,14	4,52	4,99	4,52	4,99
	Общая холодильная мощность	MAKC.	кВт	E	2,27	2,66	3,27	3,86	3,72	4,44	6,26	7,59	8,65	8,72	10,03
0		СРЕДН.	кВт	E	1,93	2,33	2,61	3,02	2,96	3,47	4,98	5,6	6,27	6,84	7,75
	[EN1397:2015] (§)	мин.	кВт	Ε	1,49	1,83	1,83	2,07	2,33	2,69	4,11	4,48	4,95	4,48	4,95
		MAKC.	кВт	E	-	-	-	-	-	-	-	-	-	-	
2	Тепловая мощность (50°C)	СРЕДН.	кВт	Ε	-	-	-	-	-	-	-	-	-	-	-
		МИН.	кВт	Ε	-	-	-	-	-	-	-	-	-	-	-
6	Тепловая мощность (70°C)	MAKC.	кВт		-	-	-	-	-	-	-	-	-	-	-
	Тепловая мощность дополнительной	MAKC.	кВт	Ε	3,03	3,46	4,4	3,35	4,95	3,79	9,1	11	8,56	12,7	9,8
6		СРЕДН.	кВт	Ε	2,54	3,02	3,46	2,71	3,97	3,06	7,19	8,1	6,42	9,98	7,74
	батареи	мин.	кВт	Ε	1,96	2,43	2,43	1,98	3,1	2,46	5,91	6,45	5,23	6,45	5,23
	TЭH RE	230-1-50 Вольт	кВт		-	-	-	-	-	-	-	-	-	-	-
		MAKC.	м³/ч		610	520	710	710	880	880	1140	1500	1500	1820	1820
	Скорость расхода воздуха	СРЕДН.	м³/ч		420	420	500	500	610	610	820	970	970	1280	1280
		мин.	м³/ч		310	310	320	320	430	430	630	710	710	710	710
		MAKC.	дБ(А)	Ε	49	45	53	53	59	59	48	53	53	58	58
	Звуковая мощность	СРЕДН.	дБ(А)	Е	40	40	45	45	49	49	40	40	40	48	48
	·	мин.	дБ(А)	Е	33	33	33	33	41	41	33	34	34	34	34
		MAKC.	дБ(А)		40	36	44	44	50	50	39	44	44	49	49
4	Звуковое давление при скор.	СРЕДН.	дБ(А)		31	31	36	36	40	40	31	31	31	39	39
	,	мин.	дБ(А)		24	24	24	24	32	32	24	25	25	25	25
		MAKC.	Вт	Ε	57	44	68	68	90	90	77	120	120	170	170
	Потребляемая мощность	СРЕДН.	Вт	Ε	32	32	44	44	57	57	48	63	63	95	95
	•	мин.	Вт	Е	25	25	25	25	32	32	33	42	42	42	42
	Электропитание		В-фаз-	Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
	РАЗМЕРЫ И ВЕС				20	30	32	40	42	50	60	80	90	92	110
	Короб - Размеры ШхВхГ		MM				575 x 27	5 x 575				82	0 x 303 x 82	0	
	Приточная панель PLP - Размеры ШхВхГ		MM				670x 67	7x 670				96	5 x 85 x 96	5	
	Кассета - Вес		ΚΓ		24	24	24	24	24	24	39	39	39	39	39
	Приточная панель PLP - Вес		ΚΓ		3	3	3	3	3	3	6	6	6	6	6

- Воздух: 27°C В.S.; 19°C В.U. Вода: 7/12°С. (§) Холодильная мощность [EN1397:2015] = холодильная мощность потребляемая мощность.

- Воздух: 20°С Вода: 50°С, подача как при охлаждении.
 Воздух: 20°С Вода: 70/60°С
 Для помещения объемом равным 100 м³ и времени отражения = 0,5 сек
 Наличие сертификации Eurovent.

Web code: VTNC1

Web code accessories: ACMEC

- Кассеты для 2 трубных и 4 трубных систем
- Моторизированное направляемое оребрение
- Дистанционное управление в серийном оснащении
- Панель централизованного управления

Фанкойлы кассетного типа

VTNC

Мощность при охлаждении: $2,9 \div 7,8$ кВт - Мощность при отоплении: $3,9 \div 9,4$ кВт

Фанкойлы кассетного типа.

Конструктивные характеристики

- Кондиционеры-доводчики: Кассетного типа для установки на подвешенные потолки, с отводом и подачей воздуха непосредственно в помещении.
- Теплообменник: змеевик с оребрением.
- Вентилятор: трехскоростной.
- Конструкция: самонесущая из оцинкованной стали, в комплект входит насос для подъёма конденсата (до 200 мм над агрегатом) и дополнительный поддон для сбора конденсата.
- Приточная панель: из полимера АБС (RAL9010) с направляемым моторизированным оребрением подачи, на нескольких позициях, решётка возврата и регенерируемый фильтр.
- Пульт дистанционного управления: в серийном оснащении.

Варианты исполнения

VTNC - Кассеты- для 2-трубных систем. VTNC/B4 - Кассеты- для 4-трубных систем.

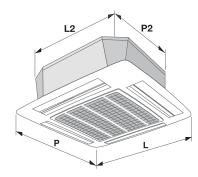
Комплектующие, поставляемые отдельно

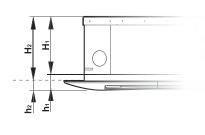
- 3-ходовый электроклапан ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- 2-ходовый электроклапан ВКЛ/ВЫКЛ для 2 и 4-трубных систем.
- Закрытие патрубка подачи.

СТАНДАРТНЫЕ устройства управления Для настенной установки

- → Электронная панель для настенной установки.
- → Панель централизованного управления последовательно соединенными агрегатами, максимум 64 шт., с программированием дневного и недельного расписания.
- →Последовательный интерфейс для серийного подключения на панели управления (собственный протокол).

Легенда: → Поставляется отдельно




Панель централизованного управления для управления по дневному/недельному расписанию

№ 1 Общая холодильная мощность КМК кВт в сощина кВТ в		VTNC			VTNC	VTNC	VTNC	VTNC	VTNC	VTNC/B4	VTNC/B4
О Общая холодильная мощность ОГДН КВТ Е 2,54 3,05 3,5 4,86 6,94 2,69 5,7 Общая холодильная мощность [EN13972015] (% МКК КВТ Е 2,17 2,269 2,296 4,04 6,04 2,34 4,4 Общая холодильная мощность [EN13972015] (% Общ кВТ Е 2,86 3,52 4,28 5,68 7,66 3,31 6,0 Общая холодильная мощность (50°C) Общ кВТ Е 2,214 2,65 2,92 3,97 5,92 2,30 4,0 № Тепловая мощность (50°C) Общ кВТ Е 3,38 4,95 5,82 6,89 9,42 <					26	36	46	60	85	46	85
МК КВТ Е 2,17 2,69 2,96 4,04 6,04 2,34 4,04 6,04 2,34 4,04 6,04 6,04 2,34 4,04 6,04 6,04 6,04 6,04 6,04 6,04 6,0			MAKC. KB	T	E 2,91	3,59	4,37	5,8	7,83	3,4	6,17
Общая холодильная мощность [EN1397:2015] (s) MML кВт Е Д,50 3,52 4,28 5,68 7,66 3,31 6,6 Общая холодильная мощность (EN1397:2015] (s) Общя кВт Е Д,50 3,00 3,45 4,78 6,80 2,64 5,5 № Тепловая мощность (50°C) Общя кВт Е З,88 4,95 5,82 6,89 9,42 - № Тепловая мощность (70°C) ММК кВт Е З,98 3,73 3,79 4,11 7,77 - № Тепловая мощность (70°C) ММК кВт Е В - 9,84 9,97 11,66 16,04 - № Тепловая мощность дополнительной батареи ВЧ Общя кВт Е	0	Общая холодильная мощность	СРЕДН. КВ	Т	E 2,54	3,05	3,5	4,86	6,94	2,69	5,13
Общая жоподильная мощность [ЕМ1397:2015] (§) Общ. КВТ Е 2,50 3,00 3,45 4,78 6,80 2,64 5,5 1			мин. кв	Т	E 2,17	2,69	2,96	4,04	6,04	2,34	4,59
МИК КВТ E 2,14 2,65 2,92 3,97 5,92 2,30 4,4 4,6 5,5 6,8 9,42			MAKC. KB	T	E 2,86	3,52	4,28	5,68	7,66	3,31	6,02
№ Тепловая мощность (50°C) ММК кВт в зада на дена в за дена в зада на дена зада на дена за дена за дена в зада на дена за		Общая холодильная мощность [EN1397:2015] (§)	СРЕДН. КВ	Т	E 2,50	3,00	3,45	4,78	6,80	2,64	5,00
№ Тепловая мощность (50°C) Общи квт в с дув в дув в ден при скор. 3,4 4,2 4,66 5,21 8,37 7,77 7,77 7,77 7,77 7,77 7,77 7,77			МИН. кВ	Т	E 2,14	2,65	2,92	3,97	5,92	2,30	4,48
Мик. кВт			MAKC. KE	Т	E 3,88	4,95	5,82	6,89	9,42	-	-
№ Тепловая мощность (70°C) МАК. кВт 6,15 8,45 9,97 11,66 16,04 - № Тепловая мощность дополнительной батареи В4 Радинальной батаре	2	Тепловая мощность (50°C)	СРЕДН. КВ	Т	E 3,4	4,2	4,66	5,21	8,37	-	-
№ Тепловая мощность дополнительной батареи В4 ММК. кВт			мин. кВ	Т	E 2,98	3,73	3,97	4,1	7,77	-	-
№ Тепловая мощность дополнительной батареи В4 СКПИ. КВТ Е С - - - - 3,91 6 ММК. КВТ Е - - - - - - 3,33 6 Скорость расхода воздуха МКС. М³/ч 560 690 840 1024 1460 650 1.4 Скорость расхода воздуха СКДИ. М³/ч 490 540 570 733 1228 570 1.10 МИК. ДБ(A) E 54 59 63 56 64 63 6 Звуковая мощность СКДИ. ДБ(A) E 47 52 56 51 58 56 .4 Звуковое давление при скор. СКДИ. ДБ(A) 45 50 54 47 55 54 .4 В дуковое давление при скор. СКДИ. ДБ(A) 38 43 47 42 49 47 .4 Потребляемая мощность (КДИ. ВТ Е 50 70 90 119 170 90	8	Тепловая мощность (70°C)	MAKC. KB	T	6,15	8,45	9,97	11,66	16,04	-	-
ММК кВт E			MAKC. KE	Т	Е -	-	-	-	-	4,95	8,06
Скорость расхода воздуха МАК. м³/ч (УЕДН. м³/ч 490 540 570 733 1228 570 1.11 МИН. м³/ч 380 440 470 460 1041 470 99 Звуковая мощность МАК. дБ(A) Е 54 59 63 56 64 63 63 6 МИН. дБ(A) Е 41 46 46 48 45 56 48 45 56 48 45 56 48 63 МИН. дБ(A) Е 41 46 46 48 45 56 48 47 55 55 54 47 55 54 Звуковое давление при скор. ФЕДН. дБ(A) 38 43 47 42 49 47 55 54 МИН. дБ(A) 32 37 39 36 47 39 39 36 47 39 39 36 47 39 39 36 47 39 39 36 47 39 39 36 30 30 30 30 30 30 30 30 30 30 30 30 30	6	Тепловая мощность дополнительной батареи B4	СРЕДН. КВ	Т	Е -	-	-	-	-	3,91	6,7
Скорость расхода воздуха СРЕДН. м³/ч 490 540 570 733 1228 570 1.11 МИК. дБ (м) Е 380 440 470 460 1041 470 90 3 вуковая мощность МКК. дБ (м) Е 54 59 63 56 64 63 64 3 вуковая мощность МКК. дБ (м) Е 47 52 56 51 58 56 48 МКК. дБ (м) Е 41 46 48 45 56 48 4 4 м д д (м) Д			МИН. кВ	T	Е -	-	-	-	-	3,3	6,5
МИН. м³/ч 380 440 470 460 1041 470 99. МАК. ДБ(А) Е 54 59 63 56 64 63 6. ОКДН. ДБ(А) Е 47 52 56 51 58 56 48 6. МИН. ДБ(А) Е 41 46 48 45 56 48 6. МИН. ДБ(А) Е 41 46 48 45 56 48 6. МИН. ДБ(А) В 41 46 48 45 56 48 6. МИН. ДБ(А) В 41 45 50 54 47 55 54 6. МИН. ДБ(А) 38 43 47 42 49 47 65 55 54 6. Потребляемая мощность (СКДН. ДБ(А) 32 37 39 36 47 39 1. Потребляемая мощность (СКДН. ВТ Е 50 70 90 119 170 90 11. Потребляемая мощность (СКДН. ВТ Е 40 50 50 50 80 140 50 1. Электропитание В-фаз-Гц 230-1-50 230-1-			MAKC. Mª	/ч	560	690	840	1024	1460	650	1.478
МАК. дБ(A) Е 54 59 63 56 64 63 6 ЗВУКОВАЯ МОЩНОСТЬ ФЕДН. дБ(A) Е 47 52 56 51 58 56 48 МИК. дБ(A) Е 41 46 48 45 56 48 4 ЗВУКОВОЕ ДАВЛЕНИЕ ПРИ СКОР. ФЕДН. ДБ(A) 45 50 54 47 55 54 4 МИК. ДБ(A) 38 43 47 42 49 47 4 МИК. ДБ(A) 32 37 39 36 47 39 3 МИК. ВТ Е 50 70 90 119 170 90 11 Электропитание В-фаз-Гц 230-1-50 <t< td=""><td></td><td>Скорость расхода воздуха</td><td>СРЕДН. м³</td><td>/ч</td><td>490</td><td>540</td><td>570</td><td>733</td><td>1228</td><td>570</td><td>1.163</td></t<>		Скорость расхода воздуха	СРЕДН. м ³	/ч	490	540	570	733	1228	570	1.163
Звуковая мощность СРЕДН. ДБ(A) E 47 52 56 51 58 56 48			MNH. Mª	/ч	380	440	470	460	1041	470	965
МИН. ДБ(A) E 41 46 48 45 56 48 45 66 48 45 46 48 45 56 48 47 55 56 48 48 48 48 48 48 48 48 48 48 48 48 48			МАКС. ДЕ	(A)	E 54	59	63	56	64	63	61
МаК. дБ(A) 45 50 54 47 55 54 54 55 64 55 64 55 65 54 55 65 65 65 65 65 65 65 65 65 65 65 65		Звуковая мощность	СРЕДН. ДЕ	(A)	E 47	52	56	51	58	56	52
Ф Звуковое давление при скор. ОРЕДН. дБ(A) 38 43 47 42 49 47 42 МИН. дБ(A) 32 37 39 36 47 39 3 Потребляемая мощность МКС. Вт Е 50 70 90 119 170 90 19 Потребляемая мощность ОРЕДН. Вт Е 40 50 50 80 140 50 12 Электропитание В-фаз-Гц 230-1-50<			МИН. дЕ	(A)	E 41	46	48	45	56	48	48
МИН. ДБ(A) 32 37 39 36 47 39 1 Потребляемая мощность МАК. Вт Е 50 70 90 119 170 90 11 Отребляемая мощность ОРЕДН. Вт Е 40 50 50 80 140 50 12 МИН. Вт Е 30 40 40 70 120 40 10 Электропитание В-фаз-Гц 230-1-50			МАКС. ДЕ	(A)	45	50	54	47	55	54	52
Потребляемая мощность МАК. Вт	4	Звуковое давление при скор.	СРЕДН. ДЕ	(A)	38	43	47	42	49	47	43
Потребляемая мощность СРЕДН. Вт. Е 40 50 50 80 140 50 17. Электропитание B-фаз-Гц 230-1-50			МИН. ДЕ	(A)	32	37	39	36	47	39	39
МИН. BT E 30 40 40 70 120 40 10 Электропитание B-фаз-Гц 230-1-50 2			MAKC. Bt		E 50	70	90	119	170	90	153
Электропитание В-фаз-Гц 230-1-50		Потребляемая мощность	СРЕДН. Вт		E 40	50	50	80	140	50	127
РАЗМЕРЫ И ВЕС2636466085468L2/H1/H2/P2 - Ширина 2/Высота 1-2/Глубина 2мм575/265/285/575575/265/285/575575/265/285/575840/230/245/840840/300/315/840575/265/285/575575/265/285/575L/h1/h2/P - Ширина/Высота/Глубинамм647/50/30/647647/50/30/647647/50/30/647950/50/35/950950/50/35/951647/50/30/647950/50/35/951Вескг181818293518:			мин. Вт		E 30	40	40	70	120	40	109
L2/H1/H2/P2 - Ширина 2/Высота 1-2/Глубина 2 MM 575/265/285/575 575/265/285/575 575/265/285/575 840/230/245/840 840/300/315/840 575/265/285/575		Электропитание	B-	фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
L/h1/h2/Р - Ширина/Высота/Глубина мм 647/50/30/647 647/50/30/647 647/50/30/647 950/50/35/950 950/50/35/951 647/50/30/647 950/50/35/95 Вес кг 18 18 18 29 35 18		РАЗМЕРЫ И ВЕС			26	36	46	60	85	46	85
Вес кг 18 18 18 29 35 18 :		L2/H1/H2/P2 - Ширина 2/Высота 1-2/Глубина 2	MI	И	575/265/285/575	575/265/285/575	575/265/285/575	840/230/245/840	840/300/315/840	575/265/285/575	575/265/285/575
		L/h1/h2/P - Ширина/Высота/Глубина	MI	Λ	647/50/30/647	647/50/30/647	647/50/30/647	950/50/35/950	950/50/35/951	647/50/30/647	950/50/35/950
Вестриточной данели кг 3 3 3 6 6 3		Bec	КГ		18	18	18	29	35	18	35
Dec il prito il		Вес приточной панели	КГ		3	3	3	6	6	3	6

- Воздух: 27°С В.S.; 19°С В.U. Вода: 7/12°С
- ❷ Воздух: 20°C Вода: 50°C, подача как при охлаждении.
- **❸** Воздух: 20°С Вода: 70/60°С
- **4** Для помещения объемом равным 100 м 3 и времени отражения = 0,5 сек
- E Наличие сертификации Eurovent.

УСТРОЙСТВА УПРАВЛЕНИЯ для фанкойлов

СОВМЕСТИМЫЕ ФАНКОЙЛЫ:

СТАН ПАРТИЫЕ VCТРОЙСТР	1	ЮЙ	d	-				- F					e e	<u>s</u>	
СТАНДАРТНЫЕ УСТРОЙСТВ <i>А</i> УПРАВЛЕНИЯ		ВКЛ/ВЫКЛ 3-скоростной переключатель	Аналоговый выход вентилятора 0-10 Вольт пост. т.	Термостат помещения	Термостат минимальной температуры	тчик воздуха далённым	лиравлетичен Переключатель летнего/зимнего режима	Управление клапанами ВКЛ/ВЫКЛ	ревательным ревательным ментом	Вентиляция постоянная/по термостату	2-трубная установка	4-трубная установка	Недельное расписание	Интерфейсуправления 4 фанкойлами	Последовательный интерфейс
	УСТАНОВКА:	BK nep	AH2 BeH	ъф	Tep MM	E 5 E	De de	<u> </u>	F F F	Bet 1100 Tep	2-T	4-T	Hez	ИН 4	을 돌
KC C	→ КС - ❖ С на оборудовании	•													
KTA TATM	→ КТА - ❖ ТАТМ на оборудовании	•		•	•		•								
KCV2	→ KCV2 настенный	•			•		•							•	
KTCV2	 → KTCV2 настенный → KBTCV2 - ❖ TCV2 на оборудовании 	•		•	КОМПЛЕКТУЮЩЕВ	•	•	•	•	•	•	•		•	
KTCVA EP C	 → KTCVA настенный → KBTCVA - ❖ TCVA на оборудовании 	•		•	•	•	RAXJEPINTAMOTBA	•		•	•			•	
KTCVR C	→ KTCVR настенный → KBTCVR - • TCVR на оборудовании	ABTOMATIVECKAR CKOPOCTE Mahamatikar Ckopocte		PETVITMPOBKA ±5°C	•	•	ARYO3EPWTAMOTBA	•	•		•	•		•	
СТАНДАРТНЫЙ	→ KTVD полувстроенный в стену	CHOPOCTS PYHABA ABTOMATIVECKAR		•	ПО ВРЕМЕНИ		RAYJEVITAMOTEGA (B)	•	•	•	•	•	•	•	
ФАНКОЙЛ	→ KTVDM полувстроенный в стену	CROPOCTS PYYHAR, ABTOMATIVECKAR		•	ПО ВРЕМЕНИ		ABTOMATIVI ECKAR (B)	•	•	•	•	•	•	•	•
ФАНКОЙЛ С	→ KTVDI полувстроенный в стену	CKOPOCTЬ PYЧНАЯ, ABTOMATIVECKAЯ	•	•	NO BPEMEHU		RAYJEVITAMOTELA (B)	•	•	•	•	•	•		
ИНВЕРТОРОМ	→ KTVDIM полувстроенный в стену	CKOPOCTS PYYHARI ABTOMATIVYECKAR	•	•	NO BPEMEHA		ABTOMATINHECKAR (B)	•	•	•	•	•	•		•

⁽В) Переключение лето/зима ручным, контактным или автоматическим способом с помощью датчика КSO (доп.принадлежность).

[❖] Заводской установки → Поставляется отдельно

УСТРОЙСТВА УПРАВЛЕНИЯ IDRHOSS

Дополнительные компоненты:

- (1) MVR (или KMVR) только в случае если необходимо управление клап
- (2) MVR (или KMVR) обязательно для управления ТЭН (также упра возможным клапаном ОТКР-ЗАКР).
- (3) MVR (или KMVR) + STI (или KSTI) обязательно для управления 2 клапа ОТКР-ЗАКР и датчиком температуры для дополнительной батареи.
- (4) KRS485 обязательно для связи RS485 Modbus.
- (5) Инфракрасные приемники для пульта дистанционного управления: KRIP - Для настенной установки (только для фанкойлов типа YARDY). KRI - Для установки на кассеты типа DIVA с приточной панелью PLP. KRIM - Для установки на кассеты типа DIVA с приточной панелью PLM

2х трубная установка с ТЭН

(2)

(2)

(6)

(6)

4-трубная установка

(3)

(3)

2-трубная установка

(1)

(1)

(6)

(6)

Поставляется

Смонтировано на заводе

(6) Управление клапанами ОТКР/ЗАКР включено.

ФАНКОЙЛ СТАНДАРТНОЕ

ФАНКОЙЛ ИНВЕРТЕР

ЭЛЕКТРОННАЯ ПЛАТА

	PCM	КРСМ	KICM	KTCM + KRIP/KRI/KRIM	HET
		17.00 17.00			
Монтаж на фанкойл	•				slave
Монтаж на стене		•			Пользовательская панель в случае фанкойла slave отсутствует.
Монтаж встраиваемая			•		ь в случае твует.
Пульт дистанционного управления + приемник				♦ (5)	кая панель в слу отсутствует.
Функции настройки	•	•	•	•	овательс
Функции комфорт	*	*	*	*	Польз
Функция Master/Slave (Ведущий/Ведомый)	(MASTER)	(MASTER)	(MASTER)	(MASTER)	(SLAVE)
УСТРОЙСТВА УПРАВЛЕНИЯ iDRHOSS	1	1	1	1	1
→	CMS/PCM	CMS + KPCM	CMS + KICM	CMS + KTCM + (5)	CMS
→	KCMS/PCM	KCMS + KPCM	KCMS + KICM	KCMS + KTCM + (5)	KCMS
→	CMIPCM2	CMI2 + KPCM	CMI2 + KICM	CMI2 + KTCM + (5)	CMI2
→	KCMIPCM2	KCMI2 + KPCM	KCMI2 + KICM	KCMI2 + KTCM + (5)	KCMI2
→	CMIPCM4	CMI4 + KPCM	CMI4 + KICM	CMI4 + KTCM + (5)	CMI2
→	KCMIPCM4	KCMI4 + KPCM	KCMI4 + KICM	KCMI4 + KTCM + (5)	KCMI4

ПОЛЬЗОВАТЕЛЬСКАЯ ПАНЕЛЬ

ФУНКЦИЯ ГЛАВНОЙ/ПОДЧИНЁННОЙ ПЛАТЫ

ФУНКЦИИ НАСТРОЙКИ

Автоматическое управление - Охлаждение - Осушение - Автоматическая/ручная вентиляция - Отопление

ФУНКЦИИ КОМФОРТ

Включение/выключение - Ночная климатизация - Зимнее разрешение - Летнее разрешение - Внесение в память рабочего режима

РАСШИРЕННЫЕ ФУНКЦИИ

Экономия - дистанционное управление ВКЛ/ВЫКЛ - дистанционное управление ЛЕТО/ЗИМА - КОНТРОЛЬ БЕЗОПАСНОСТИ - ДАТЧИК ВКЛ/ДАТЧИК ВЫКЛ - ПОСТОЯННАЯ ВЕНТИЛЯЦИЯ - КОНТРОЛЬ КОМФОРТА - ЗАНЯТОСТЬ - СИГНАЛ ТРЕВОГИ - ВЕДУЩИЙ/ ВЕДОМЫЙ

ФУНКЦИЯ ГЛАВНОЙ/ПОДЧИНЁННОЙ ПЛАТЫ- 6 элементов

Централизованное управление до 5 ПОДЧИНЁННЫХ элементов через один ГЛАВНЫЙ элемент без использования серийного интерфейса.

Высоконапорные фанкойлы - UTNA Platinum 013÷120

Теплоутилизатор - UTNR-A Platinum 040÷500

Теплоутилизатор - UTNR-A и UTNR-P 033÷530

Теплоутилизатор - UTNR-HE Platinum 040÷500

Теплоутили**з**атор - UTNR-HE 033÷530

Теплоутилизатор - VMC-E 025÷100

Теплоутилизатор - UTNR Micro 20÷50

Теплоутилизатор/Осушитель воздуха - UTNRD Micro 30-50

Высоконапорные фанкойлы

UTNA Platinum 013÷120

Мощность при охлаждении: $6,4 \div 70 \text{ кВт}$ - Мощность при отоплении: $4,9 \div 78 \text{ кВт}$

- Бесколлекторные вентиляторы EC
- Высокоэффективные фильтры типа F7

Канальные фанкойлы для обработки воздуха, со сборными модулями.

Конструктивные характеристики

- Вентиляторный доводчик обработки воздуха: со сборными модулями для горизонтальной или вертикальной установки (013-050) с системой каналов или без неё.
- Конструкция с самонесущей приточной панелью типа сэндвич с двойной стенкой толщиной 30 мм с изоляцией из вспененного полиуретана с закрытыми ячейками, обладающий высокой звуко- и термоизоляцией.
- Плановое техобслуживание машины снизу (для горизонтальной модели с установкой на подвесной потолок или подвешенной к потолку) или спереди (для вертикальной модели) через съемные панели.
- Модуль батареи ВА (горизонтальный) / модуль батареи ВАV (вертикальный до размера 050), состоящий из фильтра G4 стандарт, фильтра до F7 опционально. Все фильтры оснащены дифференциальным реле давления для сигнализации состояния загрязнения фильтров во исполнение европейского регламента N°1253/2014.
- Теплообменник с оребренным с 2-х рядным змеевиком с медными трубами и алюминиевым оребрением только для нагрева или пост-нагрева и с 4-6 рядным для охлаждения и/или нагрева с правыми и левыми креплениями на выбор на этапе заказа. Поддон для сбора конденсата из алюминия для горизонтальной модели ВА4R и ВА6R, а также для вертикальной ВАV4R и BAV6R.
- Модуль вентилятора SV, состоящий из центробежного бесколлекторного канального вентилятора EC с одним всасыванием, соединенным напрямую с электродвигателем. Статическая и динамическая балансировка всего вместе, реализованная в соответствии с нормативом DIN ISO 1940. Степень балансировки G6.3. Стандартный контроль скорости вращения посредством специального аналогового входа 0-10В. Электрощит в серийном оснащении, в комплект которого входит переключатель, защитные предохранители и соединительная клеммная коробка.

Комплектующие модули

- РМА Воздухораспределительная камера всасывания/ подачи с предварительно нарезанными боковыми выходами.
- SIL Воздухораспределительная камера с глушителем с впитывающими картриджами, устанавливаемыми на подаче или всасывании.
- MÜV-PRV Воздухораспределительная камера с увлажнителем на пару и внешним электрогенератором.
- BE Дополнительная электрическая батарея для установки к каналу.

Аксессуары, установленные на заводе

- SG Каплеотделитель с низкими потерями нагрузки из полипропилена, факультативно.
- TAG Противообледенительный термостат, факультативно.

Комплектующие, поставляемые отдельно

- КSG Каплеотделитель с низкими потерями нагрузки из полипропилена (только для ВА).
- КТАG Противообледенительный термостат (только для ВА).
- KSER Комплект в комбинации с PMA, состоящий из: заслонки с лопастями и рамы из алюминия, оснащение герметичным уплотнителем, сертификат класса 2 в соответствии с En 1751 для воздуха обновления (макс 30%) или рециркуляции, а также панель крепления к модулю PMA. Заслонка размерена для обработки до 100% расхода воздуха UTNA и располагается спереди, на верхней или нижней стороне PMA.
- KMS Ручное управление для заслонки KSER.
- KB2R Дополнительный змеевик пост-нагрева, поставляется отдельно.

Устройства управления

- КРТZ Вращающийся потенциометр для настенной установки, предназначенный для ручного контроля скорости вентиляторов. Скорость вентиляторов подачи и возврата калибруется единым потенциометром.
- KTVDIM Электронная панель управления с дисплеем, полувстраиваемая для установки на стену, включающая кнопку ВКЛ/ВЫКЛ, РЕЖИМ, 3

МОДЕЛЬ UTNAP			013	025	035	050	070	090	120
Мощн. терм. бат. Только горячая	BA 2R/BAV 2R	кВт	4,9	8,4	11,7	16,8	25,1	32,8	39,1
Холодильная мощность	BA/BAV 4R	кВт	6,4	11,1	14,6	21,3	31,9	45,2	53,6
Тепловая мощность	BA/BAV 4R	кВт	7,6	13,6	18,4	26,5	39,7	52,3	64,4
Холодильная мощность	BA/BAV 6R	кВт	8,1	14,9	20,2	27,5	41,2	56,8	68,9
Тепловая мощность	BA/BAV 6R	кВт	9,1	16,6	22,8	32,2	48,3	62,1	78,2
м ощность ТЭН	230 Вольт -1фаза -50 Гц	кВт	3	-	-	-	-	-	-
электрика ВЕ	400 Вольт -3 фазы -50 Гц	кВт	-	6	9	13	17	24	24
	НОМ	м³/ч	1300	2500	3500	5000	7500	9000	12000
Ф Расход воздуха	мин.	м ³ /ч	800	1100	1500	2100	3100	5000	5000
	MAKC.	м ³ /ч	2100	3700	4800	6700	10500	14400	15500
Полезный статический напор.	НОМ	Па	300	300	300	300	300	300	300
Звуковая мощность излучения		дБ(А)	47	50	54	54	56	55	59
Звуковая мощность всасывания		дБ(А)	64	65	69	68	71	70	74
Эвуковая мощность всасывания		дБ(А)	70	71	75	75	78	77	80
④ SFP Int (Erp 2018<230)		BT/M³/c	80	121	137	128	143	101	146
Степень фильтрации EN779			G4/F7						
Максимальное производство пара PF	RV	Кг/ч	3	5	5	8	10	15	18
Электропитание	В	-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	400-3-50	400-3-50	400-3-50
РАЗМЕРЫ И ВЕС									
L - Ширина		MM	945	1245	1545	1645	1645	2045	2045
Н - Высота		MM	387	387	387	504	687	837	837
PMA -SIL-MUV-SV- Глубина		MM	480	480	480	596	780	931	931
ВА - Глубина		MM	750	750	750	750	750	750	750
BAV - Высота		MM	812	812	862	962	-	-	-
Bec UTNA		КГ	53	60	67	88	94	132	142

- Т воздуха в 26°C BS; 18,6°C BU.(50% отн.вл.); Т воды в 7°C с ∆t 5°C; номинальный расход воздуха.
- Т воздуха в 20°C BS; 13,7°C BU.(50% отн.вл.); Т воды в 40°C с ∆t 5°C; номинальный расход воздуха.
- **❸** Т воздуха в 20°С ВS; 13,7°С ВU.(50% отн.вл.); номинальный расход воздуха.
- Т воздуха в 20°C BS; 13,7°C BU.(50% отн.вл.); номинальный расход воздуха; четырех-рядная батарея BA/BAV 4R; очищенный фильтр тип F7.
- Единая SV с рабочим пунктом номинального расхода воздуха; общий напор рассчитан в конфигурации: 4х рядная батарея BA/BAV 4R; чистый фильтр типа F7;300 Па полезный статистический. В соответствии с EN ISO 11546-2.
- **❸** Bec SV.

скорости+АВТО, смену уставки; вспомогательные контакты для управления клапаном ОТКР/ЗАКР в 2х и 4х трубных системах; переключение лето/ зима; ручной/автоматический/контактный режимы; постоянная/терморегулируемая вентиляция; конфигурируемые цифровые входы (SCR, ECO, SIC, ALARM), управление по расписанию дня недели; в комплекс входит серийный интерфейс RS485 (протокол Modbus RTU). • KRCA1 - Электронная панель управления с дисплеем, полувстраиваемая для установки на стену, включающая кнопку ВКЛ/ВЫКЛ, РЕЖИМ, 2 скорости, смену уставки, переключение лето/ зима в ручном режиме кнопкой или через удаленный цифровой вход; непрерывная вентиляция, управление по расписанию дня недели, датчик помещения; 3 аналоговых выхода для модулирующего управления вентилятором, 1 или 2 модулирующих клапана в 2-х или 4-х трубных системах, модулирующая заслонка; 1 вспомогательный контакт для управления ТЭН вкл/выкл (1 стадия) в 2-х трубных системах + ТЭН; 2 цифровых и 2 аналоговых конфигурируемых входа. В комплекс входит серийный интерфейс RS485 (протокол Modbus RTU).

Высоконапорные фанкойлы

UTNA Platinum 013÷120

Мощность при охлаждении: 6,4÷70 кВт - Мощность при отоплении: 4,9÷78 кВт

Устройства управления Full Control

 КRFCS - Электрощит, состоящий из: регулятор с программируемым микропроцессором DDC, BMS интерфейс стандартной встройки с протоколом Modbus RTU, общий переключатель, реле для управления различными устройствами, клеммные коробки для быстрого подключения всех компонентов на борту машины, питание вспомогательных цепей через специальный преобразователь 230/12-24B.

ПАНЕЛИ ПОЛЬЗОВАТЕЛЯ (для KRFCS)

- КНМІG Терминал интерфейса с графическим монохромным дисплеем со светодиодной подсветкой.
- КНМІК Терминал интерфейса, оснащенный датчиком температуры помещения с графическим монохромным дисплеем со светодиодной подсветкой.
- KTOUCH Панель управления с сенсорным чернобелым экраном.
- KCOLOR Панель управления с сенсорным цветным экраном
- КСW Декоративная белая пластина для панели управления.
- КСВ Декоративнаячёрная пластина для панели управления.
- KBTMS Опора для настенной установки панели управления.

Клапаны и приводы

- KV3V Трехходовой шаровой регулирующий клапан смесителя/отвода PN40, гидравлические крепления с внутренней резьбой.
- KV2V Двухходовой шаровой регулирующий клапан PN40, гидравлические крепления с внутренней резьбой.
- КУММ Приводы для шаровых регулирующих клапанов с модулирующим управлением 0/10 В пост.т, питание 24 В пер.т.
- KVOM Привод для клапанов вкл/выкл 230В.
- KDMA-S Привод для модулирующей заслонки 0-10В от 24В с возвратной пружиной.
- KDMA Привод для модулирующей заслонки 0-10B от 24B без возвратной пружины.
- KDOA Привод для заслонки ВКЛ/ВЫКЛ с возвратной пружиной.

Доступны также все датчики, приводы и клапаны из раздела Full Control.

Управление Full Control

Комплект Full Control позволяет выполнять встроенное управление всех функций на UTNAP и гарантирует полный контроль комфорта среды просто и полноценно:

• Простата установки: все компоненты разработаны для обеспечения максимальной простоты и гибкости установки на рабочем месте и поставляются отдельно, чтобы не мешать перемещению и установке агрегата в фальш-потолок и места с ограниченным пространством.

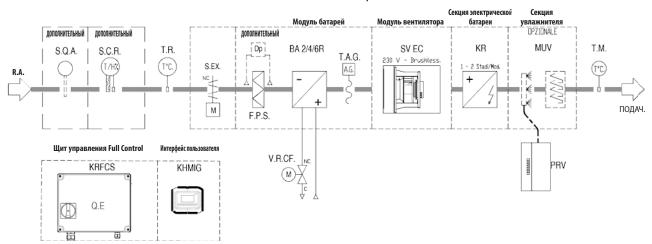
Электрощит можно установить также на расстоянии.

Предварительный монтаж и проводка кабеля выполняются на заводеизготовителе по запросу.

- Лёгкость эксплуатации: интуитивные и удобные для пользователя функции меню.
- Программа еженедельного расписания.
- Лёгкость запуска: предварительно тарированные, настроенные и испытанные на заводе-изготовителе регуляторы, специально разработанные для управления всеми функциями выбранной конфигурации, избегая каких-либо усложнений.
- Простая и быстрая взаимосвязь: регулятор в стандартной комплектации оснащён портом USB, RS 485 для диалога через Modbus RTU и портом Canbus для развития локальных сетей.

- В зависимости от состава выбранной машины присутствуют следующие функции:
- S.Q.R. Датчик качества воздуха в помещении или канале для управления скоростью вентиляции или автоматической модуляции задвижек.

 S.C.P. Комбицирования и датник томпоратиры и
- S.C.R. Комбинированный датчик температуры и влажности возвратного воздуха или помещения для управления агрегатом всего воздуха с функциями увлажнения и/или осушения.
- Т.Й. Датчик температуры возвратного воздуха.
- S.EX. Перекрывающая заслонка.
- F.P.S. Стандартный гофрированный фильтр.
- Dp Дифференциальное реле давления, определяющее засорение фильтров.
- ВА Батарея с горячей/холодной водой.
- V.R.CF. Регулирующий клапан батареи с горячей/ холодной водой.
- Т.А.G. Противообледенительный термостат.
- SV EC Секция Бесколлекторного вентилятора EC.
- SV Секция вентилятора 3 скорости.
- В.Е. Электрическая батарея
- PV Парогенератор.
- •Т.М. Датчик температуры подачи.
- KRFCS Электрощит питания и управления Full
- KHMIG Панель управления с графическим дисплеем.



UTNAP

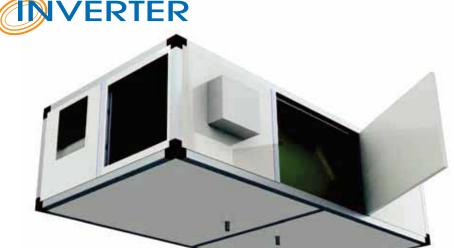
Блок вентиляции UTNAP

198

Web code: UTNR3

Теплоутилизатор UTNR-A Platinum 040÷500

Расход воздуха: $400 \div 4.050 \text{ м}^3/\text{ч}$



- Высокоэффективные теплоутилизаторы с сертификацией Eurovent
- Многоскоростные вентиляторы или бесколлекторные вентиляторы ЕС
- Высокоэффективные фильтры F7 и M5
- Сэндвич-панель с высокой изоляционной способностью

Воздухораспределители обновления воздуха со статической рекуперацией тепла с противотоком.

Конструктивные характеристики

- Теплоутилизатор: очень высокой производительности статического типа, с пластинами из алюминия с перекрестными потоками и сопоставимым ходом. Боковое извлечение пакета обмена (за исключением размера 40 с нижним извлечением).
- Вентиляторы: отбора, обновления и вывода воздуха центробежного типа с двойным всасыванием с соединенным напрямую электродвигателем; опционально электродвигатели высокой эффективности по Бесколлекторной технологии ЕС. Корпус вентилятора, установленный на виброгасящих опорах, чтобы не передавать вибрации конструкции.
- Конструкция: рама из экструдированного алюминиевого профиля с соединениями из нейлона. Сборные панели типа сэндвич: 20 мм, из листового металла с внутренней оцинковкой, предварительно окрашенного снаружи, с высокоэффективной термоакустической изоляцией из введенного методом впрыска полиуретана плотностью 45 кг/м³.
- Фильтрующая секция: фильтрующие секции состоят из компактных фильтров с ячейками из полипропилена с низкими потерями нагрузки, с боковым выводом, класса эффективности F7 в свежем потоке и M5 при выбросе.
- Поддон для сбора конденсата из оцинкованной стали с креплением для слива конденсата снизу.
- Система байпаса свободного охлаждения или встроенного размораживания. Благодаря наличию моторизованной заслонки на теплоутилизаторе реализована байпасная система для управления свободным охлаждением или размораживанием в соответствии с термогигрометрическими потребностями.

Варианты исполнения

- UTNR-A/O PLATINUM Теплоутилизатор с теплообменником с перекрёстными потоками, горизонтальной установкой и стандартными многоскоростными вентиляторами.
- UTNRE-A/O PLATINUM Теплоутилизатор с теплообменником с перекрёсными потоками,

горизонтальной установкой и бесколлекторными вентиляторами ЕС в состоянии ограничить потребляемые мощности для вентиляции при равенстве эксплуатационных характеристик.

• EXT- Наружная установка, включающая противодождевое покрытие, основание высотой 80мм, электрическую коробку снаружи

Аксессуары, установленные на заводе

- BER Нагревательный элемент для постнагрева, установленный внутри, в комплекте с предохранительными термостатами и реле управления, филаментного типа для сдерживания потерь нагрузки.
- Однофазное электропитание 230/1/50 для модели 040. Трёхфазное 400/3/50 для моделей 075÷500.
- ВА Внутренняя батарея дополнительного нагрева на горячей воде.
- BAATG Противообледенительный термостат, установленный на входе батареи пост-нагрева воды.
- ÉRF7M5PF Дифференциальное реле давления для сигнализации загрязнения фильтров, установленное на стандартных фильтрах (наружный воздух F7 и на возврате M5).
- ERF7-Фильтр на возврате эффективность F7
- ERF7PF-Дифференциальное реле давления для сигнализации загрязнения фильтров, установленное на фильтрах наружного воздуха F7 и на возврате F7.

Комплектующие, поставляемые отдельно

- KSBFR Секция, содержащая батарею с горячей/ холодной водой для пост-нагрева или постохлаждения, расположенной снаружи машины перед впускным отверстием. Включает ёмкость для сбора конденсата из нержавеющей стали с разъемом для слива конденсата снизу.
- KSRE Регулирующая заслонка, приспособленная для сервоуправления, состоящая из рамы из оцинкованного стального листа с регулируемыми рёбрами.
- KSSC Глушитель канальный с прямоугольными вставками из минеральной ваты, покрытыми стекловолокном и стальной микропроволокой.
- КRMS Секция из трёх заслонок для смеси и рециркуляции воздуха (только для горизонтальной установки).
- КSPC Панель с круговыми креплениями.

МОДЕЛЬ UTNR-A PLATINUM		40	75	100	150	200	320	400	500
Тип агрегата					Нежилой- Двун	аправленный			
Фильтры наружного воздуха					F7				
Фильтры воздуха на возврате					M5	1			
Байпас				Боковая	і моторизованн	ая раслонка Ба	йпаса		
ТЕХНИЧЕСКИЕ ДАННЫЕ									
Номинальный расход воздуха	м ³ /ч	400	750	1000	1.600	2.050	3.150	3.700	4.700
СТАНДАРТНЫЕ ВЕНТИЛЯТОРЫ									
• Полезное номинальное статическое давление	Па	100	100	100	100	100	100	100	n.d
Удельная мощность вентиляторов (SFP)	$BT/(M^3/c)$	1286	921	1107	926	854	1143	1175	n.d
Уровень акустического давления	дБ(А)	59	60	63	63	63	69	69	n.d
N° Скорость/Тип настройки		1	3	3	3	3	3	2	n.d
Электропитание	В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	n.d
БЕСКОЛЛЕКТОРНЫЕ ВЕНТИЛЯТОРЫ ЕС									
• Полезное номинальное статическое давление	Па	100	100	100	100	100	100	100	100
• Макс. полезное статическое давление	Па	250	375	570	535	535	270	660	335
Удельная мощность вентиляторов (SFP)	$BT/(M^3/c)$	538	863	839	794	652	880	839	1226
Уровень акустического давления	дБ(А)	60	61	62	64	62	68	68	69
N° Скорость/Тип настройки		0-10 V							
Электропитание	В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
РЕКУПЕРАЦИЯ ТЕПЛА В ПРОТИВОТОКЕ									
Эффективность зимняя	%	81,8	86,8	85,3	81,8	82,3	80,8	81	81,1
Эффективность летняя	%	76,5	80	77,9	75,4	76,5	75,5	76,3	76,2
Эффективность Регламент ЕС 1253/2014	%	77,2	83,4	81,5	77,4	77,8	73	73	73
РАЗМЕРЫ И ВЕС									
Длина/Высота/Глубина UTNR-A PLATINUM	MM	1480/380/800	1940/480/990	1940/480/990	2200/550/1000	2200/550/1400	2500/680/1400	2500/680/1400	2500/680/170
Bec UTNR-A/P O	КГ	90	140	150	170	200	210	240	270
Данные при следующих условиях:									

- Значения относятся к номинальному расходу воздуха при потерях нагрузки туплоутилизатора и фильтра F7
- **②** Значения относятся к номинальному расходу воздуха, номинальное полезное статическое давление
- 😵 Уровень звукового давления на расстоянии 1 м от агрегата в свободной зоне
- ◆ Т внеш.возд.: -5°С, 80% отн.вл. ; Т воздуха помещения: 20°С; 50% отн.вл.
- **Т** внешнего воздуха: 32°С, 50% UR ; Т воздуха помещения: 26°С; 50% отн.вл.
- Ф Номинальные сухие условия, измеренные в соответствии с En 308 при сбалансированных потоках. Наружный воздух 5°C BS; Воздух помещения 25°C BS

Теплоутилизатор UTNR-A Platinum 040÷500

Устройства управления

- KVVM 3 (только для моделей 040) Электронный регулятор скорости, подходит для настенного монтажа, что позволяет регулировать вентилятор с однофазным двигателем: переключатель ВКЛ/ ВЫКЛ, ручка для плавной регулировки скорости (только для стандартной модели вентилятора).
- КСV3-S Переключатель скорости для настенной установки позволяет переключаться между 3 скоростями (за исключением модели 40): переключатель Выкл/нагрев/охлаждение; переключатель 3х скоростей; питание 230В
- KPCU-KPCUE Панель управления для настенной установки позволяет управлять температурой помещения зимой/летом, а также отдает команду на активацию или отключение водной батареи или ТЭН. Позволяет выбирать скорость работы вентилятора между минимальной, средней и максимальной (за исключением модели 40, у которых одна скорость) или посредством настройки 0/10 В (КРСИЕ для вентиляторов ЕС) и контролирует функцию свободного охлаждения.
- KPTZ Вращающийся потенциометр для настенной установки, предназначенный для ручного контроля скорости вентиляторов. Скорость вентиляторов подачи и возврата калибруется единым потенциометром (только для моделей бесколлекторных вентиляторов ЕС)

Устройства управления Full Control

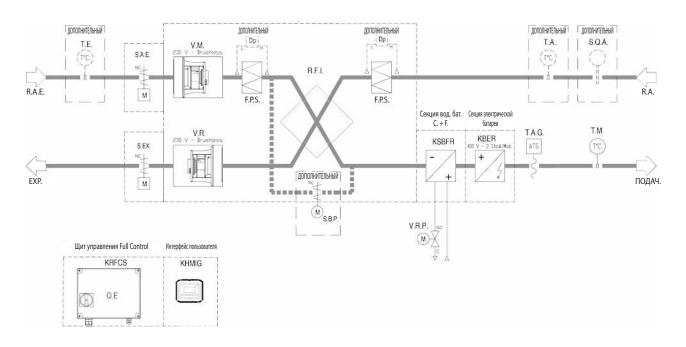
• KRFCS - Электрощит, состоящий из: регулятор с программируемым микропроцессором DDC, BMS интерфейс стандартной встройки с протоколом Modbus RTU, общий переключатель, реле для управления различными устройствами, клеммные коробки для быстрого подключения всех компонентов на борту машины, питание вспомогательных цепей через специальный преобразователь 230/12-24В.

ПАНЕЛИ ПОЛЬЗОВАТЕЛЯ (для KRFCS)

- KHMIG Терминал интерфейса с графическим монохромным дисплеем со светодиодной подсветкой.
- KHMIR Терминал интерфейса, оснащенный датчиком температуры помещения с графическим монохромным дисплеем со светодиодной подсветкой.
- КТОИСН Панель управления с сенсорным чернобелым экраном.
- KCOLOR Панель управления с сенсорным цветным экраном.
- КСW Декоративная белая пластина для панели управления.
- КСВ Декоративнаячёрная пластина для панели управления.
- . КВтМS Опора для настенной установки панели управления.

Клапаны и приводы

- KV3V Трехходовой шаровой регулирующий клапан смесителя/отвода PN40, гидравлические крепления с внутренней резьбой.
- KV2V Двухходовой шаровой регулирующий клапан PN40, гидравлические крепления с внутренней резьбой.
- KVMM Приводы для шаровых регулирующих клапанов с модулирующим управлением 0/10 В пост.т, питание 24 В пер.т.
- KVOM Привод для клапанов вкл/выкл 230В.
- КDMA-S Привод для модулирующей заслонки 0-10В от 24В с возвратной пружиной.
- KDMA Привод для модулирующей заслонки 0-10B от 24В без возвратной пружины.
- KDOA Привод для заслонки ВКЛ/ВЫКЛ с возвратной пружиной. Доступны также все датчики, приводы и клапаны из раздела Full Control.



UTNRE-A Platinum

Управление Full Control

Комплект Full Control позволяет выполнять встроенное управление всех функций на UTNRA-P и гарантирует полный контроль комфорта среды просто и полноценно:

- Простата установки: все компоненты разработаны для обеспечения максимальной простоты и гибкости установки на рабочем месте и поставляются отдельно, чтобы не мешать перемещению и установке агрегата в фальш-потолок и места с ограниченным пространством. Электрощит можно установить также на
- Предварительный монтаж и проводка кабеля выполняются на заводеизготовителе по запросу.
- Лёгкость эксплуатации: интуитивные и удобные для пользователя функции меню.

- Программа еженедельного расписания.
- Лёгкость запуска: предварительно тарированные, настроенные и испытанные на заводе-изготовителе регуляторы, специально разработанные для управления всеми функциями выбранной конфигурации, избегая каких-либо усложнений.
- Простая и быстрая взаимосвязь: регулятор в стандартной комплектации оснащён портом USB, RS 485 для диалога через Modbus RTU и портом Canbus для развития локальных сетей.

- В зависимости от состава машины и выбранных комплектующих, присутствуют:
- Т.Е. Датчик температуры внешнего воздуха.
- S.A.E. Заслонка внешнего воздуха.
- V.М. Вентилятор подачи.
- F.P.S. Стандартный гофрированный фильтр.
- Dp Дифференциальное реле давления, определяющее засорение фильтров.
- KSBFR Модуль дополнительной батареи холодной-горячей воды.
- V.R.P Регулирующий клапан батареи со смешанной водой.
- BAR Встроенная батарея с горячей водой.
- V.R.С Регулирующий клапан батареи с горячей водой.
- BER Встроенная электрическая батарея.
- •Т.А.G. Противообледенительный термостат.
- Т.М. Датчик температуры подачи.
- S.Q.A. Датчик качества воздуха помещения.
- Т.А. Датчик температуры воздуха помещения.
- V.R. Воздухозаборный вентилятор.
- S.EX. Перекрывающая заслонка.
- KRFCS Электрощит питания и управления Full Control.
- KHMIG Панель управления с графическим дисплеем.

202

Web code: UTNR1

Теплоутилизатор

UTNR-A и UTNR-P 033÷530

Расход воздуха: 300÷5.320 м³/ч

- Только для продаж на рынках стран, не являющихся членами ЕС
- Теплоутилизатор стандартной эффективности
- Высокоэффективные фильтры F7
- Сдержанные размеры
- Горизонтальная или вертикальная конфигурация
- Комплект Full Control

Приточно-вытяжные установки с пластинчатым рекуператором.

Конструктивные характеристики

- Теплоутилизатор: с высоким КПД статического типа с алюминиевыми пластинами (UTNR-A) или из специальной бумаги (UTNR-P) с разделёнными потоками воздуха посредством специальной герметизации. В горизонтальной конфигурации теплоутилизатор выдвигается снизу.
- Вентиляторы: отбора воздуха обновления и вывода центробежного типа с двойным всасыванием (для модели 033 с простым всасыванием) с непосредственно подключённым электродвигателем. Корпус вентилятора установленный на виброгасящих опорах, чтобы не передавать вибрации.
- Корпус: несущая структура и боковые панели (полностью снимаются в горизонтальной конфигурации) из листового металла Aluzink.
- Фильтрующая секция: состоит из двух фильтров (один на воздухозаборнике обновления и один на возврате с помещения) оба регенерируемого типа, акриловые, класса G4 с очень незначительной потерей нагрузки.
 Фильтры с боковым выводом в горизонтальной конфигурации.
- Изоляция: звуковая и тепловая изоляция панелей полиэтиленом/полиэстером со средней толщиной 20 мм.
- Клеммная коробка: уже установлена на агрегате для выполнения электрических соединений.
- Поддон для слива конденсата: из АБС с креплением для слива конденсата снизу.
- Байпас свободного охлаждения или размораживания: в горизонтальной конфигурации для моделей 110÷530, благодаря наличию специально выполненного выреза, может быть выполнена система байпаса для управления "свободным охлаждением" или размораживанием.

Варианты исполнения

- UTNR-A/O Теплоутилизатор с перекрёсными потоками с теплообменником из алюминия в горизонтальной конфигурации (номинальная эффективность до 57%).
- UTNR-P/O Теплоутилизатор с перекрёсными потоками с теплообменником, выполненным из листов специальной бумаги в горизонтальной конфигурации (номинальная эффективность до 76%).

- UTNR-A/V Теплоутилизатор с перекрёсными потоками с теплообменником из алюминия в ВЕРТИКАЛЬНОЙ конфигурации.
- UTNR-P/V Теплоутилизатор с перекрёсными потоками с теплообменником из бумаги в ВЕРТИКАЛЬНОЙ конфигурации.
- UTNŘE-Á/O Теплоутилизатор с перекрёсными потоками с теплообменником из алюминия в ГОРИЗОНТАЛЬНОЙ конфигурации и бесколлекторными вентиляторами ЕС в состоянии ограничить потребляемые мощности для вентиляции при равенстве эксплуатационных характеристик.
- UTNRE-P/O Теплоутилизатор с перекрёсными потоками с теплообменником из бумаги в ГОРИЗОНТАЛЬНОЙ конфигурации и бесколлекторными вентиляторами ЕС в состоянии ограничить потребляемые мощности для вентиляции при равенстве эксплуатационных характеристик.
- UTNRE-A/V Теплоутилизатор с перекрёсными потоками с теплообменником из алюминия в ВЕРТИКАЛЬНОЙ конфигурации и бесколлекторными вентиляторами ЕС в состоянии ограничить потребляемые мощности для вентиляции при равенстве эксплуатационных характеристик.
- UTNRE-P/V Теплоутилизатор с перекрёсными потоками с теплообменником из бумаги в ВЕРТИКАЛЬНОЙ конфигурации и бесколлекторными вентиляторами ЕС в состоянии ограничить потребляемые мощности для вентиляции при равенстве эксплуатационных характеристик.

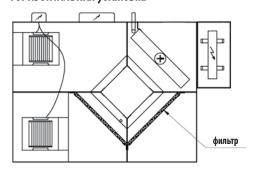
Аксессуары, установленные на заводе

- ВЕК (только для UTNR-A) Нагревательный элемент для пост-нагрева, установленный внутри, в комплекте с предохранительными термостатами и реле управления, филаментного типа для сдерживания потерь нагрузки.
- Однофазный 230/1/50 для моделей 033÷055. Трёхфазный 400/3/50 для моделей 110÷530.
- ВА (только для моделей 110÷530) Внутренняя батарея для пост-нагрева воды.
- РF Дифференциальное реле давления для сигнализации загрязнения фильтра, установленное на впускном фильтре.
- ATG Противообледенительный термостат, установленный на входе батареи пост-нагрева воды.
- EG4PF Фильтр наружного воздуха G4 с

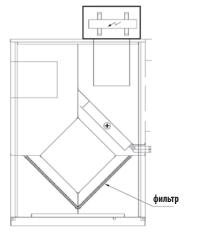
	MOДЕЛЬ UTNR(E)-A/UTNR(E)-P O/V		33	55	110	175	220	255	320	410	530
	ТЕХНИЧЕСКИЕ ДАННЫЕ										
	Номинальный расход воздуха	$M^3/4$	300	620	920	1.580	1.850	2.250	2.950	3.920	5130
	Полезный напор	Па	45	55	65	70	77	80	100	100	130
0	Уровень акустического давления	дБ(А)	43	51	50	53	52	51	54	56	57,5
	Мощность установленного двигателя	Вт	2 x 90	2 x 90	2 x 147	2 x 350	2 x 350	2 x 350	2 x 550	2 x 750	2x800
	Электропитание	В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	400-3-50	400-3-50
	Номинальный расход воздуха - Версия E Brushless (Бесколлекторный)	$M^3/4$	300	620	920	1.580	1.850	2.250	2.950	3.920	5130
0	Макс. полезный статический напор - Версия E Brushless (Бесколлекторный)	Па	280	225	120	250	270	270	320	460	460
0 (Уровень акустического давления - Версия E Brushless (Бесколлекторный)	дБ(А)	49	52	53	56	56	56	55	62	62
0	Макс. потребление электроэнергии -Версия E Brushless (Бесколлекторный)	Вт	0,26	0,33	0,49	1,27	1,27	1,76	2,00	3,38	3,38
	Электропитание -Версия E Brushless (Бесколлекторный)	В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
	РЕКУПЕРАЦИЯ ТЕПЛА - БУМАГА UTNR-P										
2	Эффективность (темп./энтальпия)	%	76/62	74/60	72/56	68/55	73/65	75767	70/62	66/56	67/57
0	Восстановленная тепловая мощность	кВт	2,6	5,2	7,2	12,2	16,9	21,1	25,6	30,8	36,6
	РЕКУПЕРАЦИЯ ТЕПЛА - АЛЛЮМИНИЙ UTNR-A										
2	Эффективность (темп./энтальпия)	%	53	54	55	54	54	54	51	57	50
2	Восстановленная тепловая мощность	кВт	1,5	3,1	4,7	7,9	9,2	11,2	13,9	20,6	21,3
	ДОПОЛНИТЕЛЬНЫЕ ПРИСПОСОБЛЕНИЯ										
0	Тепловая мощность BER	кВт	1,5	3	3	6	6	12	12	12	18
4	Тепловая мощность BCR	кВт	-	-	8,2	12,2	14,4	20,3	24,2	29,9	40,6
4	Тепловая мощность KSBFR	кВт	4,7	8,2	12	19,7	23,7	30,5	37	46,2	59,3
6	Общая холодильная мощность KSBFR	кВт	2	3,5	5	8,8	11,1	14,7	17,4	20,9	26,2
	РАЗМЕРЫ И ВЕС		33	55	110	175	220	255	320	410	530
	L/H/P - Длина/Высота/Глубина UTNR-A/P ГОРИЗОНТАЛЬНАЯ	MM	990/290/750	990/290/750	1.140/410/860	1.300/500/860	1.380/500/960	1.650/600/1.230	1.650/600/1.230	1.750/600/1.330	1.970/700/1.400
	Bec UTNR-A/P 0	КГ	45	49	85	130	143	166	180	197	209
	L/H/P - Длина/Высота/Глубина UTNR-A/P ВЕРТИКАЛЬНАЯ	MM	750/1080/290	750/1080/290	860/1.220/410	860/1380/500	960/1.460/500	1.230/1.730/600	1.230/1.730/600	1.330/1.830/600/	1.400/2.050/700
	Bec UTNR-A/P V	КГ	41	45	77	118	130	150	163	178	188
	L/H/P - Длина/Высота/Глубина KSBFR	MM	430/290/395	430/290/395	500/410/450	600/500/450	700/500/480	700/600/660	700/600/660	700/600/710	700/700/710
	Bec KSBFR	КГ	14	14	17	21	24	29	29	34	42

- Значения относятся к 1,5 метрам всасывания в свободном диапазоне.
- ❷ Номинальные зимние условия: внешний воздух: -5°С; 80% UT. Воздух помещения: 20°С; 50% UR (отн.вл.).
- Т воздуха вх.= 8°С.
- **4** Т воздуха на вх. = 8° С; Т воды на вых. = $70/60^{\circ}$ С.
- **Т** воздуха вн.: 30°С; 50% ОВ ; Т воды на вых. =7/12°С.
- 🔞 значения относятся к номинальному расходу воздуха при максимальном значении сигнала регулировки

дифференциальным реле давления.


- ERG4PF Фильтр наружного воздуха G4 и воздуха на возврате G4 с дифференциальным реле давления.
- EF7 Фильтр воздушный наружный F7.
- ERF7 Фильтр наружного воздуха и на возврате
- EF7PF Фильтр наружного воздуха F7 с дифференциальным реле давления.
- ERF7PF Фильтр наружного воздуха и на возврате F7 с дифференциальным реле давления.
- EF9 Фильтр воздушный наружный F9.
- ERF9 Фильтр наружного воздуха и на возврате F9.
- EF9PF Фильтр наружного воздуха F9 с дифференциальным реле давления.
- ERF9PF Фильтр наружного воздуха и на возврате F9 с дифференциальным реле давления.

Комплектующие, поставляемые отдельно


 KSBFR - Секция, содержащая батарею с горячей/ холодной водой для пост-нагрева или постохлаждения, расположенная снаружи машины перед впускным отверстием. Включает ёмкость для сбора конденсата из нержавеющей стали с разъемом для слива конденсата снизу (только для горизонтальной установки).

- КВЕК (только для UTNR-P) Нагревательный элемент пост-нагрева филаментного типа для установки снаружи, в комплекте со сдерживающей воздухораспределительной камерой, предохранительными термостатами и реле управления. Однофазный 230/1/50 для моделей 033÷055. Трёхфазный 400/3/50 для моделей 110÷530.
- KSRE Регулирующая заслонка, приспособленная для сервоуправления, состоящая из рамы из оцинкованного стального листа с регулируемыми рёбрами.
- KSSC Глушитель канальный с прямоугольными вставками из минеральной ваты, покрытыми защитной пленкой из стекловолокна и листом из стальной микропроволоки.
- КRMS Секция из трёх заслонок для смеси и рециркуляции воздуха (только для горизонтальной установки).
- КЅРС Панель с круговыми креплениями.

ГОРИЗОНТАЛЬНАЯ установка

ВЕРТИКАЛЬНАЯ установка

Теплоутилизатор

UTNR-A и UTNR-P 033÷530

Расход воздуха: 300÷5.320 м³/ч

Устройства управления, поставляемые отдельно

- KVVM 15 и 30 (только для моделей 033÷055) -Электронный регулятор скорости, подходит для настенного монтажа, что позволяет регулировать вентилятор с однофазным двигателем: переключатель ВКЛ/ВЫКЛ, ручка для плавной регулировки скорости.
- KCV2 (не доступно для моделей 033, 055) Панель с 3-скоростным переключателем в комплекте с переключателем лето/ВЫКЛ/зима с возможностью внешнего подключения термостата минимальной температуры.
- KTCV2 Панель управления и регулировки, включающая в себя: выключатель ВЫКЛ/ непрерывная вентиляция/вентиляция с контролем термостата, термостат помещения, переключатель лето/зима, переключатель скорости (за исключением моделей 033, 055), вспомогательные контакты для управления клапанами ВКЛ/ВЫКЛ для систем 2 труб, с 2 трубами с электрическим нагревательным элементом или с 4 трубами с возможностью внешнего подсоединения термостата минимальной температуры.
- KSO Датчик воздуха, устанавливаемый на расстоянии (2 м) для KTCV2.
- КРТZ Потенциометр для управления Бесколлекторным вентилятором ЕС (комбинировать 1 деталь с каждым вентилятором).

Устройства управления Full Control

• KRFCS - Электрощит, состоящий из: регулятор с программируемым микропроцессором DDC, BMS интерфейс стандартной встройки с протоколом Modbus RTU, общий переключатель, реле для управления различными устройствами, клеммные коробки для быстрого подключения всех компонентов на борту машины, питание вспомогательных цепей через специальный преобразователь 230/12-24В.

ПАНЕЛИ ПОЛЬЗОВАТЕЛЯ (для KRFCS)

- KHMIG Терминал интерфейса с графическим монохромным дисплеем со светодиодной подсветкой.
- KHMIR Терминал интерфейса, оснащенный датчиком температуры помещения с графическим монохромным дисплеем со светодиодной подсветкой.
- KTOUCH Панель управления с сенсорным чернобелым экраном.
- KCOLOR Панель управления с сенсорным цветным экраном.
- КСW Декоративная белая пластина для панели управления.
- КСВ Декоративнаячёрная пластина для панели **управления**.
- КВтМS Опора для настенной установки панели управления.

Клапаны и приводы

- KV3V Трехходовой шаровой регулирующий клапан смесителя/отвода PN40, гидравлические крепления с внутренней резьбой.
- KV2V Двухходовой шаровой регулирующий клапан PN40, гидравлические крепления с внутренней резьбой.
- KVMM Приводы для шаровых регулирующих клапанов с модулирующим управлением 0/10 В пост.т, питание 24 В пер.т.
- KVOM Привод для клапанов вкл/выкл 230В.
- КDMA-S Привод для модулирующей заслонки 0-10В от 24В с возвратной пружиной.
- КDMA Привод для модулирующей заслонки 0-10В от 24В без возвратной пружины.
- КООА Привод для заслонки ВКЛ/ВЫКЛ с возвратной пружиной.

Доступны также все датчики, приводы и клапаны из раздела Full Control.

Управление Full Control

Комплект Full Control позволяет выполнять встроенное управление всех функций на UTNRA-P и гарантирует полный контроль комфорта среды просто и полноценно:

• Простата установки: все компоненты разработаны для обеспечения максимальной простоты и гибкости установки на рабочем месте и поставляются отдельно, чтобы не мешать перемещению и установке агрегата в фальш-потолок и места с ограниченным пространством. Электрощит можно установить также на расстоянии.

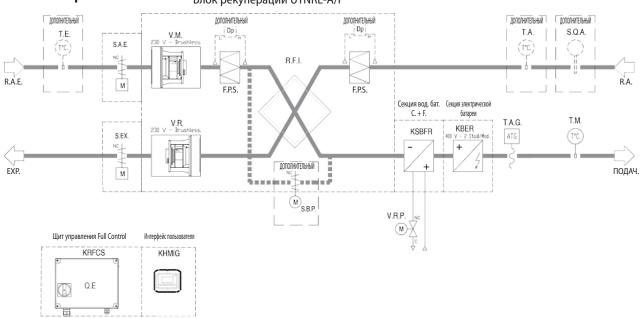
Предварительный монтаж и проводка кабеля выполняются на заводеизготовителе по запросу.

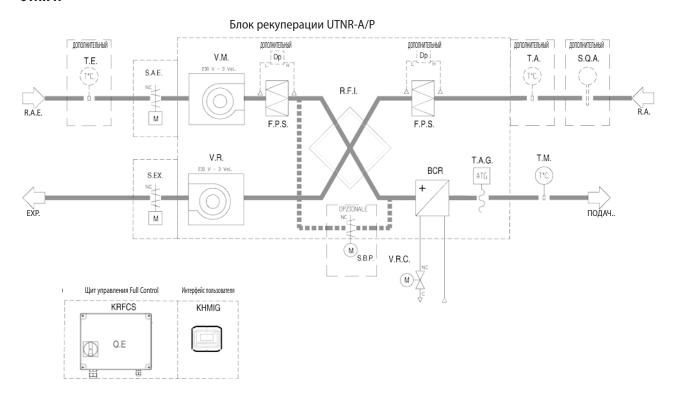
- Лёгкость эксплуатации: интуитивные и удобные для пользователя функции меню.
- Программа еженедельного расписания.
- Лёгкость запуска: предварительно тарированные, настроенные и испытанные на заводе-изготовителе регуляторы, специально разработанные для управления всеми функциями выбранной конфигурации, избегая каких-либо усложнений.
- Простая и быстрая взаимосвязь:

регулятор в стандартной комплектации оснащён портом USB, RS 485 для диалога через Modbus RTU и портом Canbus для развития локальных сетей.

В зависимости от состава машины и выбранных комплектующих, присутствуют:

- Т.Е. Датчик температуры внешнего воздуха.
- S.A.E. Заслонка внешнего воздуха.
- V.М. Вентилятор подачи.
- F.P.S. Стандартный гофрированный фильтр.
- Dp Дифференциальное реле давления. определяющее засорение фильтров.
- KSBFR Модуль дополнительной батареи холоднойгорячей воды.
- V.R.Р Регулирующий клапан батареи со смешанной водой.
- BAR Встроенная батарея с горячей водой.
- V.R.С Регулирующий клапан батареи с горячей водой.
- BER Встроенная электрическая батарея.
- T.A.G. Противообледенительный термостат.
- Т.М. Датчик температуры подачи.
- S.Q.A. Датчик качества воздуха помещения.
- Т.А. Датчик температуры воздуха помещения.
- V.R. Воздухозаборный вентилятор.
- S.EX. Перекрывающая заслонка.
- KRFCS Электрощит питания и управления Full Control.
- KHMIG Панель управления с графическим дисплеем.





UTNR-А Версия Е бесколлекторная

Блок рекуперации UTNRE-A/P

UTNR-A

Web code: UTHE3

Теплоутилизатор UTNR-HE Platinum 040÷500

Расход воздуха: $310 \div 4.250 \text{ м}^3/\text{ч}$

- В соответствии с ErP 2018 NRVU
- Высокоэффективные теплоутилизаторы с сертификацией Eurovent
- Многоскоростные вентиляторы или бесколлекторные вентиляторы EC
- Высокоэффективные фильтры F7 и M5
- Двойная сэндвичпанель с высокой изоляционной способностью
- Комплект Full Control

Приточно-вытяжные установки сэнтальпийным роторным рекуператором.

Конструктивные характеристики

- Теплоутилизатор: со сверхвысоким КПД ротационного типа, алюминиевый с гигроскопической поверхностью.
 Потоки воздуха поддерживаются разделёнными специальными уплотнителями.
- Вентиляторы: отбора, обновления и вывода воздуха центробежного типа с двойным всасыванием с соединенным напрямую электродвигателем; опционально электродвигатели высокой эффективности по Бесколлекторной технологии ЕС. Корпус вентилятора, установленный на виброгасящих опорах, чтобы не передавать вибрации конструкции.
- Конструкция: рама из экструдированного алюминиевого профиля с соединениями из нейлона.
 Сборные панели типа сэндвич: 20 мм, из листового металла с внутренней оцинковкой, предварительно окрашенного снаружи, с высокоэффективной термоакустической изоляцией из введенного методом впрыска полиуретана плотностью 45 кг/м³.
- Фильтрующая секция: фильтрующие секции состоят из компактных фильтров с ячейками из полипропилена с низкими потерями нагрузки, с боковым выводом, класса эффективности F7 в свежем потоке и M5 при выбросе.
- Поддон для сбора конденсата из оцинкованной стали с креплением для слива конденсата снизу.

Варианты исполнения

- UTNR-HE/O PLATINUM Теплоутилизатор с ротационным теплообменником, горизонтальной установкой и стандартными многоскоростными вентиляторами.
- UTNRE-HE/O PLATINUM Теплоутилизатор с поворотным теплообменником, горизонтальной установкой и бесколлекторными вентиляторами ЕС в состоянии ограничить потребляемые мощности для вентиляции при равенстве эксплуатационных характеристик.
- ЕХТ Наружная установка

Аксессуары, установленные на заводе

 BER - Нагревательный элемент для постнагрева, установленный внутри, в комплекте с предохранительными термостатами и реле управления, филаментного типа для сдерживания потерь нагрузки.

Однофазное электропитание 230/1/50 для модели 040. Трёхфазное 400/3/50 для моделей 075 \div 500.

- ВА Внутренняя батарея дополнительного нагрева на горячей воде.
- BAATG Противообледенительный термостат, установленный на входе батареи пост-нагрева воды.
- ÉRF7M5PF Дифференциальное реле давления для сигнализации загрязнения фильтров, установленное на стандартных фильтрах (наружный воздух F7 и на возврате M5).
- ERF7-Фильтр на возврате, эффективность F7
- ЕRF7PF-Дифференциальное реле давления для сигнализации загрязнения фильтров, установленное на фильтрах наружного воздуха F7 и на возврате F7.

Комплектующие, поставляемые отдельно

- КSBFR Секция из батареи с горячей/холодной водой для пост-нагрева или пост-охлаждения, располагается снаружи машины перед впускным отверстием.
 Включает ёмкость для сбора конденсата из нержавеющей стали с разъемом для слива конденсата снизу.
- KSRÉ Регулирующая заслонка, приспособленная для сервоуправления, состоящая из рамы из оцинкованного стального листа с регулируемыми рёбрами.
- KSSC Глушитель с каналом с прямоугольными вставками из минеральной ваты, покрытыми защитной пленкой из стекловолокна и листом из стального микропроволокна.
- КRMS Секция из трёх заслонок для смеси и рециркуляции воздуха (только для горизонтальной установки).
- KSPC Панель с круговыми креплениями.

Устройства управления

- КVVM 3 (только для моделей 040) Электронный регулятор скорости, подходит для настенного монтажа, что позволяет регулировать вентилятор с однофазным двигателем: переключатель ВКЛ/ВЫКЛ, ручка для плавной регулировки скорости (только для стандартной модели вентилятора).
- КСV3-S-Переключатель скорости для настенной установки позволяет переключаться между 3

МОДЕЛЬ UTNR-HE PLATINUM		40	75	100	150	200	320	400
Тип агрегата				Нежило	й- Двунаправле	нный		
Фильтры наружного воздуха					F7			
Фильтры воздуха на возврате					M5			
Байпас				Боковая мотор	изованная расло	нка Байпаса		
ТЕХНИЧЕСКИЕ ДАННЫЕ								
Номинальный расход воздуха	м ³ /ч	310	650	1150	1.900	2.320	3.600	4.250
СТАНДАРТНЫЕ ВЕНТИЛЯТОРЫ								
• Полезное номинальное статическое давление	Па	100	100	100	100	100	100	n.d.
Удельная мощность вентиляторов (SFP)	BT/(M ³ /c)	1409	1443	1580	1036	806	1226	n.d.
Уровень акустического давления	дБ(А)	59	60	63	63	63	69	n.d.
№ Скорость/Тип настройки		1	3	3	3	3	3	n.d.
Электропитание	В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	
БЕСКОЛЛЕКТОРНЫЕ ВЕНТИЛЯТОРЫ ЕС								
• Полезное номинальное статическое давление	Па	100	100	100	100	100	100	100
• Макс. полезное статическое давление	Па	230	180	280	600	550	260	680
Удельная мощность вентиляторов (SFP)	BT/(M ³ /c)	1045	1263	1102	842	617	869	1029
Уровень акустического давления	дБ(А)	60	61	62	64	62	68	68
№ Скорость/Тип настройки		0-10 V						
Электропитание	В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
РЕКУПЕРАЦИЯ ТЕПЛА В ПРОТИВОТОКЕ								
Эффективность (темп./энтальпия) зимняя	%	84/81	74/71	73/71	73/70	76/73	73/71	73/71
Эффективность (темп./энтальпия) летняя	%	84/78	74/69	74/69	73/69	76/72	74/69	74/69
Эффективность Регламент ЕС 1253/2014	%	84	74	73	73	76	73	73
РАЗМЕРЫ И ВЕС								
Длина/Высота/Глубина UTNR-A PLATINUM	MM	1480/380/800	1940/480/990	1940/480/990	2200/550/1000	2200/550/1400	2500/680/1400	2500/680/1400
Bec UTNR-A/P 0	КГ	90	140	150	170	200	210	240
Ланные при спецующих усповиду:								

- Значения относятся к номинальному расходу воздуха при потерях нагрузки туплоутилизатора и фильтра F7
- Значения относятся к номинальному расходу воздуха, номинальное полезное статическое давление
- Уровень звукового давления на расстоянии 1 м от агрегата в свободной зоне
- ◆ Т внеш.возд.: -5°С, 80% отн.вл. ; Т воздуха помещения: 20°С; 50% отн.вл.
- **Т** внешнего воздуха: 32°С, 50% UR ; Т воздуха помещения: 26°С; 50% отн.вл.
- ⊕ Номинальные сухие условия, измеренные в соответствии с En 308 при сбалансированных потоках. Наружный воздух 5°C ВS; Воздух помещения 25°C ВS

скоростями (за исключением модели 40): переключатель Выкл/нагрев/охлаждение; переключатель 3х скоростей; питание 230В

- KPCU-KPCUE, Панель управления для настенной установки позволяет управлять температурой помещения зимой/летом, а также отдает команду на активацию или отключение водной батареи или ТЭН. Позволяет выбирать скорость работы вентилятора между минимальной, средней и максимальной (за исключением модели 40. е которых одна скорость) или посредством настройки 0/10 В (КРСИЕ для вентиляторов ЕС) и контролирует функцию свободного охлаждения.
- КРТZ Вращающийся потенциометр для настенной установки, предназначенный для ручного контроля скорости вентиляторов. Скорость вентиляторов подачи и возврата калибруется единым потенциометром (только для моделей бесколлекторных вентиляторов ЕС)

Устройства управления Full Control

• KRFCS - Электрощит в комплектации со следующими элементами: регулятор с программируемым микропроцессором DDC, BMS интерфейс стандартной встройки с протоколом Modbus RTU, общий переключатель, реле для управления различными устройствами, клеммные коробки для быстрого подключения всех компонентов на борту машины, питание

вспомогательных цепей через специальный преобразователь 230/12-24В.

ПАНЕЛИ ПОЛЬЗОВАТЕЛЯ (ДЛЯ KRFCS)

- KHMIG Терминал интерфейса с графическим монохромным дисплеем со светодиодной подсветкой.
- KHMIR Терминал интерфейса, оснащенный датчиком температуры помещения с графическим монохромным дисплеем со светодиодной подсветкой.
- KTOUCH Панель управления с сенсорным чернобелым экраном.
- KCOLOR Панель управления с сенсорным
- цветным экраном. • КСW - Декоративная белая пластина для панели управления.
- КСВ Декоративная чёрная пластина для панели управления.
- КВтМЅ Опора для настенной установки панели управления.

Клапаны и приводы

- KV3V Трехходовой шаровой регулирующий клапан смесителя/отвода РN40, гидравлические крепления с внутренней резьбой.
- KV2V Двухходовой шаровой регулирующий клапан PN40, гидравлические крепления с внутренней резьбой.

- KVMM Приводы для шаровых регулирующих клапанов с модулирующим управлением 0/10 В пост.т, питание 24 В пер.т.
- KVOM Привод для клапанов вкл/выкл 230В.
- КDMA-S Привод для модулирующей заслонки 0-10В от 24В с возвратной пружиной.
- КDMA Привод для модулирующей заслонки 0-10В от 24В без возвратной пружины.
- КDOA Привод для заслонки ВКЛ/ВЫКЛ с возвратной пружиной. Доступны также все датчики, приводы и клапаны из раздела Full Control.

Теплоутилизатор

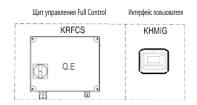
UTNR-HE Platinum 040÷500

Управление Full Control

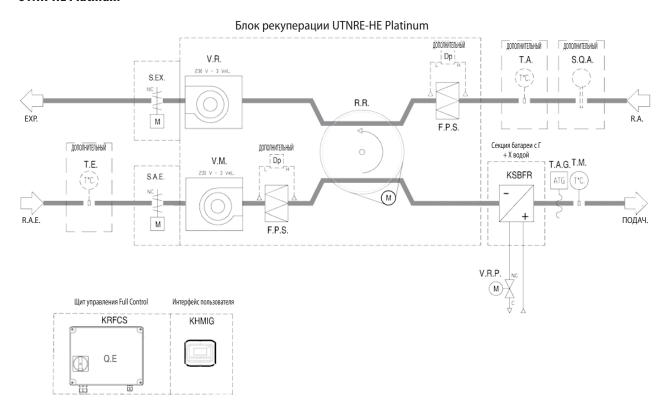
Комплект Full Control позволяет выполнять встроенное управление всех функций на UTNRHE и гарантирует полный контроль комфорта среды просто и полноценно:

- Простата установки: все компоненты разработаны для обеспечения максимальной простоты и гибкости установки на рабочем месте и поставляются отдельно, чтобы не мешать перемещению и установке агрегата в фальш-потолок и места с ограниченным пространством. Электрощит можно установить также на
- Предварительный монтаж и проводка кабеля выполняются на заводеизготовителе по запросу.
- Лёгкость эксплуатации: интуитивные и удобные для пользователя функции
- Программа еженедельного расписания.

- Лёгкость запуска: предварительно тарированные, настроенные и испытанные на заводе-изготовителе регуляторы, специально разработанные для управления всеми функциями выбранной конфигурации, избегая каких-либо усложнений.
- Простая и быстрая взаимосвязь: регулятор в стандартной комплектации оснащён портом USB, RS 485 для диалога через Modbus RTU и портом Canbus для развития локальных сетей.


В зависимости от состава машины и выбранных комплектующих, присутствуют:

- Т.Е. Датчик температуры внешнего воздуха.
- S.A.E. Заслонка внешнего воздуха.
- V.М. Вентилятор подачи.
- F.P.S. Стандартный гофрированный фильтр.
- Dp Дифференциальное реле давления, определяющее засорение фильтров.
- KSBFR Модуль дополнительной батареи холоднойгорячей воды.
- V.R.Р Регулирующий клапан батареи со смешанной водой.
- BAR Встроенная батарея с горячей водой.
- V.R.С Регулирующий клапан батареи с горячей
- BER Встроенная электрическая батарея.
- T.A.G. Противообледенительный термостат.
- Т.М. Термостат нагнетаемого воздуха.
- S.Q.A. Датчик качества воздуха помещения.
- Т.А. Датчик температуры воздуха помещения или возвратного воздуха.
- V.R. Воздухозаборный вентилятор.
- S.EX. Перекрывающая заслонка.
- KRFCS Электрощит питания и управления Full Control.
- KHMIG Панель управления с графическим дисплеем.


ВОЗДУХОРАСПРЕДЕЛИТЕЛИ

Модель UTNR-HE Platinum бесколлекторная версия E

Блок рекуперации UTNRE-HE Platinum дополнительный дополнительный дополнительный [Dp] T.A. S.Q.A. V.R. 230 V - Brus S.EX. R.R. EXP. R.A. М F.P.S. ДОПОЛНИТЕЛЬНЫЙ Секция электрической ДОПОЛНИТЕЛЬНЫЙ 0 батареи [Dp] T.M. T.E. V.M. 230 V - Brushless BER (1°C.) S.A.E. + M подач. R.A.E. М F.P.S.

UTNR-HE Platinum

Web code: UTHE2

Теплоутилизатор

UTNR-HE 033 ÷ 530

Расход воздуха: 310÷5.300 м³/ч

- Только для продаж на рынках стран, не являющихся членами EC
- Гигроскопический ротационный теплоутилизатор
- Высокоэффективные фильтры F7
- Комплект Full Control

Приточно-вытяжные установки с роторным рекуператором.

Конструктивные характеристики

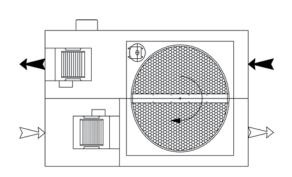
- Теплоутилизатор: с высоким КПД ротационного типа, алюминиевый с гигроскопической поверхностью.
 Индуктивный электродвигатель с ремнём и шкивом. Легко снимаемый блок теплоутилизаторадвигателя с боковым выводом для периодического техобслуживания.
- Вентиля́торы: отбора воздуха обновления и вывода центробежного типа с двойным всасыванием (для модели 033 с простым всасыванием) с непосредственно подключённым электродвигателем. Корпус вентилятора установленный на виброгасящих опорах, чтобы не передавать вибрации.
- Конструкция: полностью съёмные боковые панели из листового металла Aluzink.
- Фильтрующая секция: выполнена из двух фильтров класса G4 (один на воздухозаборнике обновление и один на возврате с помещения) оба выводятся сбоку.
- Изоляция: звуковая и тепловая изоляция панелей полиэтиленом/полиэстером со средней толщиной 20 мм.
- Клеммная коробка: уже установлена на агрегате для упрощения электрических подключений, управления вентиляторами и ротационным теплоутилизатором.

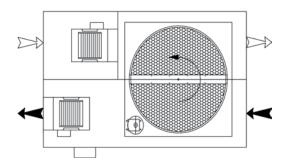
Варианты исполнения

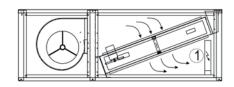
- UTNR-HE Теплоутилизатор с ротационным теплообменником из алюминия с направлением 01 и 02 (номинальная эффективность до 90%).
- UTNRE-HE Теплоутилизатор с поворотным теплообменником из алюминия и бесколлекторными вентиляторами ЕС в состоянии ограничить потребляемые мощности для вентиляции при равенстве эксплуатационных характеристик.

Комплектующие, поставляемые отдельно

- KSBFR Секция, содержащая батарею с горячей/ холодной водой для пост-нагрева или постохлаждения, расположенная снаружи машины перед впускным отверстием. Включает ёмкость для сбора конденсата из нержавеющей стали с креплением для слива конденсата снизу.
- KF7 EST Секция, содержащая фильтр тонкой очистки класса F7, устанавливаемый снаружи машины.
- KSRE Регулирующая заслонка, приспособленная для сервоуправления, состоящая из рамы из оцинкованного стального листа с регулируемыми рёбрами.
- KRMS Секция из трёх заслонок для смеси и рециркуляции воздуха.
- KSPC Панель с 4 круглыми креплениями для соединения в каналы подачи или вытяжки.


Устройства управления, поставляемые отдельно


- KÜVM 15 и 30 (только для моделей 033÷055) -Электронный регулятор скорости, подходит для настенного монтажа, что позволяет регулировать вентилятор с однофазным двигателем: переключатель ВКЛ/ВЫКЛ, ручка для плавной регулировки скорости.
- КСV2 Панель с переключателем на 3х скоростях, включающая в себя: переключатель лето/ВЫКЛ/ зима с возможностью внешнего подсоединения термостата минимальной температуры. КТRHE - Панель управления и регулировки, включающая в себя: термостат помещения, переключатель лето/ зима, переключатель скорости (за исключением моделей 033, 055), вспомогательные контакты для управления клапанами ОТКР/ЗАКР для систем с 2 трубами, с 2 трубами с электрическим нагревательным элементом или с 4 трубами с возможностью внешнего подсоединения термостата минимальной температуры.
- КSO Датчик воздуха, устанавливаемый на расстоянии (2 м) для КТСV2.
- КРТZ Потенциометр для управления
 Бесколлекторным вентилятором ЕС (комбинировать 1 деталь с каждым вентилятором).



МОДЕЛЬ UTNR-HE		33	55	110	175	220	255	320	410	530
ТЕХНИЧЕСКИЕ ДАННЫЕ										
Номинальный расход воздуха	$M^3/4$	310	650	1.050	1.800	2.220	2.600	3.250	4.290	5300
Полезный напор	Па	50	65	80	130	100	110	125	130	145
• Уровень акустического давления	дБ(А)	40	48	47	46	50	48	50	54	58
Мощность установленного двигателя	Вт	2 x 92	2 x 90	2 x 147	2 x 350	2 x 350	2 x 350	2 x 550	2 x 750	2 x 800
Электропитание В	-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	400-3-50	400-3-50
Номинальный расход воздуха - Версия E Brushless (Бесколлекторный)	$M^3/4$	310	650	1.050	1.800	2.220	2.600	3.250	4.290	5300
 Макс. полезный статический напор - Версия E Brushless (Бесколлекторный) 	Па	300	220	125	295	325	370	420	430	145
● Уровень акустического давления - Версия E Brushless (Бесколлекторный)	дБ(А)	49	52	53	56	56	56	55	62	61
 Макс. потребление электроэнергии -Версия E Brushless (Бесколлекторный) 	Вт	0,26	0,33	0,49	1,27	1,27	1,76	2	3,38	3,38
Электропитание -Версия E Brushless (Бесколлекторный) В	-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
Эффективность (темп./энтальпия) зимняя	%	85/82	72/69	71/68	72/69	72/69	72/69	69/67	63/63	64/62
Восстановленная зимняя тепловая мощность	кВт	3,5	6,3	10	17,4	21,3	25,2	30,5	38	42
Эффективность (темп./энтальпия) летняя	%	92/73	80/69	79/69	80/69	79/69	80/69	77/68	70/66	70/66
 Восстановленная летняя тепловая мощность 	кВт	1,3	2,5	4	6,9	8,5	10	12,3	15,7	19,4
дополнительные приспособления										
• Тепловая мощность BER	кВт	1,5	3	3	6	6	12	12	12	18
• Тепловая мощность KSBFR	кВт	4,5	7,9	12,3	19,7	24,8	31,5	36,4	45,4	57
Золодильная мощность KSBFR	кВт	2,1	3,6	5,4	9,5	12,4	16,1	18,5	22,1	27,1
РАЗМЕРЫ И ВЕС		33	55	110	175	220	255	320	410	530
L/H/P - Длина/Высота/Глубина UTNR-HE	MM	1075/425/750	1075/425/750	1205/460/860	1400/530/860	1540/560/960	1720/600/1230	1720/600/1230	1720/600/1230	1900/00/1230
Bec UTNR-HE	КГ	67	71	102	139	152	178	194	207	225
L/H/P - Длина/Высота/Глубина KSBFR	MM	430X290X395	430X290X395	500X410X450	600X500X450	700X500X480	700X600X660	700X600X660	700X600X710	700X700X710
Bec KSBFR	ΚΓ	14	14	17	21	24	29	29	34	42

- Значения относятся к 1,5 метрам всасывания в свободном диапазоне.
- ❷ Номинальные зимние условия: внешний воздух: −5°С; 80% UT (об.в.). Воздух помещения: 20°С; 50% UR (отн.вл.).
- ❸ Номинальные летние условия: внешний воздух: 32°С; 50%UT. Воздух помещения: 26°С; 50% UR.
- ◆ Т воздуха вх.= 8°С.
- **Т** воздуха на вх. = 8° С; Т воды на вых. = $70/60^{\circ}$ С.
- **③** Т воздуха вн.: 30°C; 50% ОВ ; Т воды на вых. =7/12°C.
- 🕡 значения относятся к номинальному расходу воздуха при максимальном значении сигнала регулировки

Теплоутилизатор

UTNR-HE 033÷530

Расход воздуха: 310÷5.300 м³/ч

Устройства управления Full Control

• KRFCS - Электрощит, состоящий из: регулятор с программируемым микропроцессором DDC, BMS интерфейс стандартной встройки с протоколом Modbus RTU, общий переключатель, реле для управления различными устройствами, клеммные коробки для быстрого подключения всех компонентов на борту машины, питание вспомогательных цепей через специальный преобразователь 230/12-24В.

ПАНЕЛИ ПОЛЬЗОВАТЕЛЯ (для KRFCS)

- КНМІС Терминал интерфейса с графическим монохромным дисплеем со светодиодной подсветкой.
- КНМІК Терминал интерфейса, оснащенный датчиком температуры помещения с графическим монохромным дисплеем со светодиодной подсветкой.
- KTOUCH Панель управления с сенсорным чернобелым экраном.
- KCOLOR Панель управления с сенсорным цветным экраном
- КСW Декоративная белая пластина для панели управления.
- КСВ Декоративнаячёрная пластина для панели управления.
- КВтМS Опора для настенной установки панели управления.

Клапаны и приводы

- KV3V Трехходовой шаровой регулирующий клапан смесителя/отвода PN40, гидравлические крепления с внутренней резьбой.
- KV2V Двухходовой шаровой регулирующий клапан РN40, гидравлические крепления с внутренней резьбой.
- КVMM Приводы для шаровых регулирующих клапанов с модулирующим управлением 0/10 В пост.т, питание 24 В пер. т.
- KVOM Привод для клапанов вкл/выкл 230В.
- KDMA-S Привод для модулирующей заслонки 0-10В от 24В с возвратной пружиной.
- KDMA Привод для модулирующей заслонки 0-10B от 24B без возвратной пружины.
- KDOA Привод для заслонки ВКЛ/ВЫКЛ с возвратной пружиной.

Доступны также все датчики, приводы и клапаны из раздела Full Control.

Управление Full Control

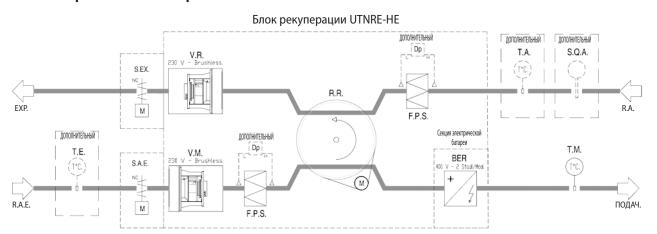
Комплект Full Control позволяет выполнять встроенное управление всех функций на UTNRHE и гарантирует полный контроль комфорта среды просто и полноценно:

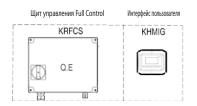
• Простата установки: все компоненты разработаны для обеспечения максимальной простоты и гибкости установки на рабочем месте и поставляются отдельно, чтобы не мешать перемещению и установке агрегата в фальш-потолок и места с ограниченным пространством.

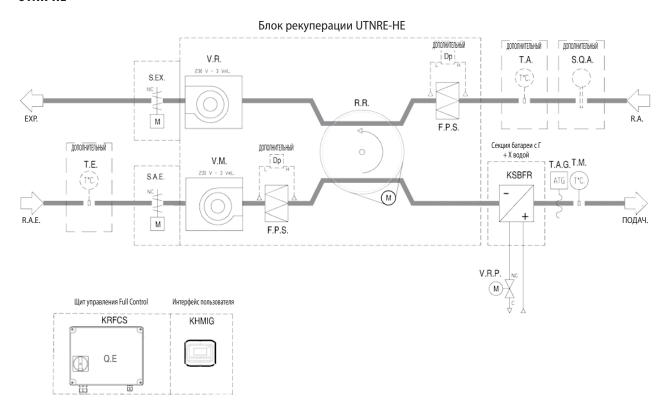
Электрощит можно установить также на расстоянии.

Предварительный монтаж и проводка кабеля выполняются на заводеизготовителе по запросу.

- Лёгкость эксплуатации: интуитивные и удобные для пользователя функции меню.
- Программа еженедельного расписания.
- Лёгкость запуска: предварительно тарированные, настроенные и испытанные на заводе-изготовителе регуляторы, специально разработанные для управления всеми функциями выбранной конфигурации, избегая каких-либо усложнений.
- Простая и быстрая взаимосвязь: регулятор в стандартной комплектации оснащён портом USB, RS 485 для диалога через Modbus RTU и портом Canbus для развития локальных сетей.


В зависимости от состава машины и выбранных комплектующих, присутствуют:


- •Т.Е. Датчик температуры внешнего воздуха.
- S.A.E. Заслонка внешнего воздуха.
- V.М. Вентилятор подачи.
- F.P.S. Стандартный гофрированный фильтр.
- Dp Дифференциальное реле давления, определяющее засорение фильтров.
- KSBFR Модуль дополнительной батареи холоднойгорячей воды.
- V.R.P Регулирующий клапан батареи со смешанной водой.
- BAR Встроенная батарея с горячей водой.
- V.R.C Регулирующий клапан батареи с горячей водой.
- BER Встроенная электрическая батарея.
- Т.А.G. Противообледенительный термостат.
- Т.М. Термостат нагнетаемого воздуха.
- S.Q.A. Датчик качества воздуха помещения.
- Т.А. Датчик температуры воздуха помещения или возвратного воздуха.
- V.R. Воздухозаборный вентилятор.
- S.EX. Перекрывающая заслонка.
- KRFCS Электрощит питания и управления Full
- КНМІG Панель управления с графическим дисплеем.



UTNR-НЕ Версия Е бесколлекторная

UTNR-HE

Система регулировки «Полный контроль» (Full Control) даёт ответ на любые требования, связанные с управлением нашими агрегатами серии комфорт UTNA - UTNV - UTNR A/P и HE, начиная с самых простых до блоков, полностью оборудованных комплектующими средствами.

ОСНОВНЫЕ УСТАНОВЛЕННЫЕ ЛОГИКИ УПРАВЛЕНИЯ

Регулировка температуры в фиксированной точке на подаче (первичный воздух)

Датчик в фиксированной точке Тm контролирует температуру подачи, действуя на модулирующий привод регулирующего клапана.

"Скользящая" регулировка температуры подачи в зависимости от уставки окружающей среды (весь воздух).

В зависимости от разницы между температурой помещения и заданной уставкой, с устанавливаемыми полномочиями, выполнено повторное тарирование уставки. Данная функция позволяет улучшать эксплуатационные характеристики регулирующего контура с высокой степенью сложности, сокращая задержку, с которой датчик помещения/возврата уведомляет о нарушениях, обнаруженных в машине, и используется в зависимости от того, когда предусмотрена регулировка температуры помещения.

Результат

Температура воздуха подачи варьируется в зависимости от сдвига между фактической температурой помещения и предусмотренной.

Преимущества для конечного пользователя

Регулировка температуры помещения более точная и быстрая, а отклонение от уставки помещения меньше, чем то, которое было бы при отдельной регулировкой температуры помещения/возврата.

Функция защиты от обледенения

Термостат противообледенения ТАG защищает от обледенения, предусматривая (в случае вмешательства) закрытие заслонки внешнего воздуха и остановку агрегата.

Мониторинг засорения фильтров

Состояние чистоты и полезности фильтров постоянно контролируется реле дифференциального давления, как это требуется по европейскому регламенту.

2-трубная установка

В случае смешанной батареи требуется выбор **сезона** на панели управления или с дистанционного переключателя.

Переключатель E/I (лето/зима) также позволяет исключить защиту от обледенения с батареей, питаемой холодной водой.

4-трубная установка

Управление клапаном горячей и холодной воды в автоматической последовательности, с центральной мертвой полосой во избежании нестабильности.

Летняя компенсация температуры подачи в зависимости от температуры на улице

Регулировка влажности помещения/возврата

Датчик влажности на возврате контролирует влажность. Во время зимнего периода модулирует работу парового увлажнителя воздуха. В летний период действует на исполнительный механизм регулирующего клапана батареи с холодной водой, модулируя её выработку.

Естественное охлаждение температуры

Этот тип работы возможен, ТОЛЬКО если выбран агрегат с теплоутилизатором и введен в действие для достижения максимальной экономии.

В системах с внутренней выработкой инородного тепла происходит экономия энергии при охлаждении, так как в поле внешних температур, типичных для зимнего или межсезонного периода (примерно от 10 до 20°С), регулятор температуры помещения дает команду заслонкам внешнего воздуха и вывода при открытии и рециркуляции при закрытии, аннулируя добавленное тепло в процентной доле, соответствующей внешнему воздуху.

Функция должна быть подключена во время ввода в эксплуатацию.

БЛОК	UTNA	/UTNV	UTNR A-P-HE		
ФУНКЦИЯ		AP	TA	AP	TA
	Отдельная батарея 2 трубы (Горячая, Холодная, Смешанная)	•	•	•	•
	Вторая батарея 4 трубы (Горячая, Смешанная)	•		•	•
	Управление вент. 1, 2 или 3V	•	•	•	•
	Управление вент. Бесколлекторный (управляется вручную с панели управления или со внешнего ввода/потенциометра или как функция датчиков давления/IAQ /влажности)	•	•	•	•
	Управление засл. Вкл/Выкл (управляется электромеханически при включении машины и с помощью дополнительного противообледенительного термостата в случае аварийного сигнала)	•	•	•	•
	Управление модул. засл. смесительной камеры (потенциом./от регуулят.)	н.д.	•	н.д.	н.д.
КОНФИГУРАЦИИ / ФУНКЦИИ	Отдельное управление для двойного вент.	н.д.	н.д.	•	•
	Управление байпасом теплоутилизатора (для естественного охлаждения)	н.д.	н.д.	•	•
	Управление противообледенительным устройством теплоутилизатора	н.д.	н.д.	•	•
	Управление осушителем вкл/выкл	•	•	•	•
	Модулирующее управление осушителем	•	•	•	•
	Управление вкл/выкл аккумулятора (ТОЛЬКО версии с 2 трубами вместо 2 труб с горячей водой для UTNA и UTNR)	•	•	•	•
	Модулирующее управл. аккумулятором (ТОЛЬКО версии с 2 трубами вместо 2 труб с горячей водой для UTNA и UTNR)	OPZ	OPZ	OPZ	OPZ
	Противообледенительный Термостат	•	•	•	•
	Датчик температуры Подачи.	•	•	•	•
датчики	Датчик температуры Помещения/Возврата и комбинированный датчик температуры + влажности возврата/помещения	•	•	•	•
	Датчик влажности Помещения/Возврата	•	•	•	•
	Ввод Датчика IAQ*(Контроль модулирующих заслонок или скорости вращения вентилятора)	•	•	•	•
	Ввод Датчика пост. Давления канала (Модуляция скорости вентиляторов в системах VAV с независимыми заслонками зоны или для управления поддавливанием)**	•	•	•	•
	Ввод Датчика температуры Внешнего Воздуха (для управления компенсацией уставки подачи, байпасом рекуперации/свободного охлаждения)	•	•	•	•
	Ввод реле давления Dp фильтров	н.д.	•	н.д.	•
	Ввод потенциометра повторного тарирования температуры с удаленного устройства и дистанционного позиционирования заслонки	•	•	•	•
	Ввод дистанционного выбора Е/I (ТОЛЬКО 2 трубы)	•	•	•	•
	Ввод дистанционного Вкл/Выкл	•	•	•	•
ввод/вывод орг.	Ввод Эконом (с часов внешнего устройства программирования, микро окно, устройство считывания беджей,т.д.)	•	•	•	•
	Ввод внеш. аварийного сигнала (общий аварийный сигнал, противопожарн. и пр.) для аварийной остановки	•	•	•	•
	Вывод повтора аварийного сигнала (реле)	н.д.	н.д.	н.д.	н.д.
	Ввод размораживания от теплового насоса	•	•	н.д.	н.д.
	Вывод переключения Е/І для теплового насоса	•	•	•	•
	Управление насосом 1 (вспомогательный, нет питания, для насоса или генератора обслуживающих батарею/контур 1)	•	•	•	•
	Управление насосом 2 (вспомогательный, нет питания, для насоса или генератора обслуживающих батарею/контур 2)	•	•	•	•
	Серийная связь Modbus	•	•	•	•
ФУНКЦИИ ДОПОЛНИТЕЛЬНЫЕ	Программа еженедельного расписания.	•	•	•	•
	Программа выходных и праздничных дней.	•	•	•	•

Устройства управления

ПОЛНЫЙ КОНТРОЛЬ

Комплектующие, поставляемые отдельно

- KSEZM Главный однофазный выключатель, расположенный на передней панели электрощита, отключает электропитание, прежде чем разрешить открытие двери. Он блокируется с помощью замка.
- КSEZT Главный трехфазный выключатель, расположенный на передней панели электрощита, отключает электропитание, прежде чем разрешить открытие двери. Он блокируется с помощью замка.
- КРО Реле дифференциального давления воздуха (20-300 Па) для сигнализации достижения точки срабатывания, заданной для обнаружения загрязнения фильтра или воздушного потока.
- KTAG Противообледенительный термостат (с крепёжными скобами).
- КРОТЅ Удаленный потенциометр для калибровки заслонок.
- KLS Рычаг ручного управления заслонкой.

Датчики

- KATS Датчик температуры NTC воздуха помещения (на схемах: ТА).
- KDTS Датчик температуры NTC канального типа (на схемах: ТМ/ТР/ТХ).
- КОТЅ -Датчик температуры NTC внешнего воздуха (на схемах: TE).
- KDHS Активный датчик влажности канального типа с сигналом 0/10 В пост. тока (на схемах: TUR/TUM).
- КАТНЅ Датчик температуры/влажности помещения (на схемах: TUA).
- KDTHS Датчик температуры/влажности помещения канального типа (на схемах: UR/UM).
- KAVOCS Датчик IAQ VOC помещения (на схемах: IAQ).
- KDVOCS Датчик IAQ VOC канального типа (на схемах: IAQ).
- KAIAQS Датчик IAQ VOC+CO2 помещения.
- KDIAOS Датчик IAO VOC/CO2 канальный.
- KDAPS Датчик давления воздуха.

КЛАПАН смесительный/распределительный, 3-ходовой, шаровой PN40.

С корпусом и валом из латуни и сферой из хромированной латуни.

Уплотнение с кольцом из СКЭП, гидросоединения с внутренней РЕЗЬБОЙ

- KV3V15-x x КЛАПАН 3 ХОДОВОЙ с резьбой. DN15 kv от 1,6 до 6,3 в зависимости от размеров.
- KV3V2O-6_3 КЛАПАН 3-ХОДОВОЙ с резьбой DN2O kv 6,3. KV3V25-10 КЛАПАН 3-ХОДОВОЙ с резьбой DN25 kv 10.
- KV3V32-16 КЛАПАН 3-ХОДОВОЙ с резьбой DN32 kv 16.
- KV3V40-25 КЛАПАН 3-ХОДОВОЙ с резьбой DN40 kv 25.
- KV3V50-xx КЛАПАН 3-ХОДОВОЙ с резьбой DN50 kv 40 или 63 в зависимости от размеров.

Регулирующие КЛАПАНЫ 2-ходовые, шаровые PN40. Корпус и вал из латуни и сфера из хромированной латуни. Уплотнение с кольцом из СКЭП, гидравлические соединения с внутренней РЕЗЬБОЙ.

- KV2V15-x x КЛАПАН 2 ХОДОВОЙ с резьбой. DN15 kv от 1,6 до 6,3 в зависимости от размеров.
- KV2V2O-6_3 КЛАПАН 2-ХОДОВОЙ с резьбой DN2O kv 6,3. KV2V2S-10 КЛАПАН 2-ХОДОВОЙ с резьбой DN25 kv 10.
- KV2V32-16 КЛАПАН 2-ХОДОВОЙ с резьбой DN32 kv 16.
- KV2V40-25 КЛАПАН 2-ХОДОВОЙ с резьбой DN40 kv 25.
- KV2V50-40 КЛАПАН 2-ХОДОВОЙ с резьбой DN50 kv 40.

Приводы для ШАРОВЫХ регулирующих клапанов с модулирующим управлением 0/10 В пост.т, питание 24 В пер.т.

- KVMM25 ПРИВОД КЛ.DN MAX25 24B 0-10B пост.т.
- КУММ50 ПРИВОД КЛ.DN MAX50 24В 0-10В пост.т.

Приводы для клапанов Вкл/Выкл, 230В ДЛЯ УПРАВЛЕНИЯ ТЕРМОСТАТАМИ ФАНКОЙЛ, 2-позиционное устройство управления

- KVOM25 ПРИВОД КЛ. DN MAKC 25 230В Вкл/Выкл (однополюсный переключатель постоянного действия).
- KVOMO25 ПРИВОД КЛ. DN MAKC 25 230B Вкл/Выкл RIT. ПРУЖИНА SPST (однопол.)
- KVOMO50 ПРИВОД КЛ. DN MAKC 50 230B Вкл/Выкл RIT. ПРУЖИНА SPST (однопол.)

МОДУЛИРУЮЩИЕ ПРИВОДЫ ДЛЯ ЗАСЛОНОК 0-10В 24В

- KDMAxS ПРИВОД ЗАСЛ. ROT 2/7/18Нм модулирующий с пружинным возвратом 24В
- КDMAx b ПРИВОД ЗАСЛ. ROT 5/10/15Нм модулирующий без пружинного возврата 24В

ПРИВОДЫ ДЛЯ ЗАСЛОНОК ВКЛ-ВЫКЛ 24 В

• KDOAxS - ПРИВОД ЗАСЛ. ROT 2/7/18 Нм вкл/выкл с пружинным возвратом 24В

БАЗОВЫЕ УСТРОЙСТВА УПРАВЛЕНИЯ

Панели пользователя

С помощью этих комплектующих можно легко управлять всеми активными регулирующими функциями посредством чётких и интуитивных символов и иконок, в том числе:

изменять уставки, управлять переключением сезонов лето/зима, управлять включением ВКЛ/ВЫКЛ, управлять режимом вентиляции, отображать температуру, влажность и все значения, измеренные подключенными датчиками, устанавливать еженедельное расписание или таймер на случай длительного отсутствия (в режиме отпуска), отображать аварийные сигналы, сбрасывать аварийные сигналы, вручную позиционировать любые моторизованные заслонки с модулирующим управлением. Функции, описанные выше, являются общими для всех панелей управления Все панели управления приспособлены к встроенной установке (типа BTicino 506). Можно персонализировать терминал для его эстетического встраивания в помещении с помощью пластин КСW или КСВ по прайс-листу или многочисленных пластин Bticino серии "Living" и "Light".

- КНМІG Панель управления Vgraph. Терминал интерфейса с графическим монохромным дисплеем со светодиодной подсветкой.
- КНМІR Панель управления в комплекте с датчиком температуры помещения
- В дополнение к функциям предыдущей панели управления приводит в действие датчик температуры.
- КТОИСН Панель управления с сенсорным черно-белым экраном 320х240 пикселей
- KCOLOR Панель управления с сенсорным цветным экраном 320x240 пикселей.
- КСW Декоративная белая пластина для панели управления.
- КСВ Декоративнаячёрная пластина для панели управления.
- КВтМЅ Опора для настенной установки панели управления.

KHMIG и KHMIR

KCOLOR

KCW

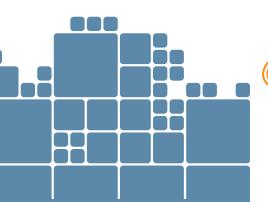
ВОЗДУХОРАСПРЕДЕЛИТЕЛИ

Электрический щит в резиновой коробке, со степенью защиты IP55, согласно директиве CEI-EN 60204-1, в комплекте с:

- регулятором с программируемым микропроцессором DDC, способным управлять до 40 I/O, с программным обеспечением и конфигурацией Rhoss, специально разработанным, чтобы обеспечить оптимальный автоматический контроль всех управляемых функций машины, с помощью непрерыного сравнения заданных значений с термо-гигрометрическими условиями, обнаруженными датчиками. Регулировка, оптимизированная с помощью алгоритмов пропорционального типа с интегральным (PI), обеспечивает точное и надежное функционирование блока обработки воздуха. Регулятор оснащен Часами Текущего Времени (Real Time Clock) для установки даты, времени и почасовой программы, с буферной батареей для поддержания в памяти данных даже в случае длительного отсутствия электропитания (до 2 дней). Стандартный интерфейс со встроенной BMS с протоколом Modbus RTU.
- Главный выключатель.
- Держатель плавких предохранителей для защиты однофазных двигателей вентиляторов с мощностью до 1,6 кВт, с функцией отключения для фазы и нейтрали при открытии (*).
- Предохранители для двигателя ротационного регенератора, трансформатора 230 /12B, вспомогательного контура 24B.
- Реле для управления различными подсоединенными системами.
- Клеммные колодки на пружинах со съёмными коннекторами для быстрого подсоединения всех компонентов машины.
- Электропитание 1F+N 230B 50Гц.
- Питание вспомогательных контуров на соответствующем трансформаторе 230/12-24B.
- (*) При большей мощности и трехфазных нагрузках необходимо добавить внешний щит с защитами и специальными приводными устройствами.
- KRFCS Электрощит мощности и управления Full Control для UTNB-UTNA-UTNR-UTNV Однофазный Макс. Мощность 2х1,6 кВт.

- KDTR Можно использовать со всеми UTNA-V-R с 1 батареей. Простой и надёжный регулятор в канале подачи, в том же корпусе уже содержит датчик температуры и разработан для управления простыми устройствами обработки воздуха, работающими в фиксированной точке на подаче. Рабочее поле 0...50°C:
- КРОТК -Удаленный потенциометр для повторной калибровки заслонок (совместно с KDTR).

- Регуляторы ПОМЕЩЕНИЯ для настенной установки с прикладным ПО, дисплеем, датчиком помещения, серийной платой RS485 и часами с управлением до 9 вводов/выводов.
- КRCA1 Регулятор помещения с встроенным датчиком температуры для управления следующими функциями:
- 2 модулирующие батарей, противооблединительное устройство, 1 модулирующая заслонка, 1 ТЭН вкл/выкл
- модулирующие батареи, противооблединительное устройство, 1 модулирующий вентилятор, 1 ТЭН вкл/выкл
- 2 модулирующие батареи, противооблединительное устройство, 1 модулирующий ТЭН, 1 вентилятор вкл/выкл
- 2 модулирующие батареи, противооблединительное устройство, 1 модулирующий вентилятор, байпас рекуперации
- ККСА2 Регулятор помещения с встроенным датчиком температуры для управления следующими функциями:
- 2 модулирующие батареи, противооблединительное устройство, 1 вентилятор вкл/выкл, 1 вспом. устройство управление вкл/выкл.
- 2 модулирующие батареи, противооблединительное устройство, 1 вентилятор вкл/выкл, байпас рекуперации, 1 вспом. устройство управление вкл/выкл.
- 2 модулирующие батареи, противооблединительное устройство, 1ТЭН вкл/выкл, байпас рекуперации, 1 вспом. устройство управление вкл/выкл.



Web code: UTHP1

Теплоутилизатор

UTNR-HP 035÷450

Расход воздуха: $350 \div 4.500 \text{ м}^3/\text{ч}$

• Комбинированный теплоутилизатор с перекрёсными потоками и активной термодинамикой

- Стандартный воздушный фильтр с эффективностью G4
- Встроенная электронная система

Приточно-вытяжные установки с двухступенчатым рекуператором.

Конструктивные характеристики

- Теплоутилизатор:
- Первая стадия восстановления тепла статического типа воздухвоздух с перекрёсными потоками с обменными пластинами из алюминия; нижняя ёмкость для сбора конденсата, распространяется по всему участку тепловой обработки.
- Вторая стадия активного термодинамического восстановления тепла с холодильным контуром с тепловым насосом (с газом R410A), состоящим из герметичного компрессора (ротационный или спирального типа в зависимости от величины машины), испарительных и конденсационных батарей с медными трубами и непрерывным алюминиевым оребрением, электронного расширительного клапана, каплеотделителя и приёмника жидкости, с 4-ходовым клапаном для инверсии цикла, реле высокого и низкого давления, фильтром фреона, индикатором жидкости.
- Вентиляторы: отбора воздуха обновления и вывода центробежного типа с двойным всасыванием с непосредственно подключённым электродвигателем. Корпус вентилятора установленный на виброгасящих опорах, чтобы не передавать вибрации.
- Панельная структура: рама из экструдированного алюминиевого профиля, сплава Anticorodal 63, с угловыми соединениями из нейлона. Сборные панели типа сэндвич: 23 мм, из листового металла с внутренней оцинковкой и с внешней оцинковкой и окраской (RAL 9002) с термоакустической изоляцией из введенного методом впрыска полиуретана плотностью 45 кг/м³.
- Фильтрующая секция: выполнена из двух фильтров класса G4 (один на воздухозаборнике обновление и один на возврате с помещения) оба выводятся как снизу, так и сбоку.
- Электрощит: контроля и мощности, встроенный; датчики температуры типа NTC в обоих контурах воздуха подачи и возврата; электронный микропроцессорный контроль для автоматического управления температурой помещения, переключением режимов лето/зима и циклов размораживания; панель управления, переносимая на дистанцию до 20 м от агрегата, уже оснащенная протоколом Modbus RTU для связи с системой контроля.

Варианты исполнения

- UTNR-HP 01, 03 Теплоутилизатор с двойным теплообменником с перекрёсными потоками и активной термодинамикой с направлением 01 или 03.
- EXT Защитное покрытие для наружной установки.

Аксессуары, установленные на заводе

 BER - Нагревательный элемент пост-нагрева филаментного типа, установленный внутри, в комплекте с предохранительными

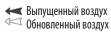
- термостатами и реле управления. Однофазный 230/1/50 для моделей 033÷055. Трёхфазный 400/3/50 для моделей 110÷530.
- BEP Нагревательный элемент предварительного нагрева филаментного типа, установленный внутри, в комплекте с предохранительными термостатами и реле управления. Однофазный для моделей 110-530.
- РF Дифференциальное реле давления для сигнализации загрязнения фильтра, установленное на впускном фильтре.
- ATG Противообледенительный термостат, установленный на входе водной батареи.
- EG4PF Фильтр наружного воздуха G4 с дифференциальным реле давления.
- ERG4PF Фильтр наружного воздуха G4 и воздуха на возврате G4 с дифференциальным реле давления.
- EF7 Фильтр воздушный наружный F7.
- ERF7 Фильтр наружного воздуха и на возврате F7.
- EF7PF Фильтр наружного воздуха F7 с дифференциальным реле лавления.
- ERF7PF Фильтр наружного воздуха и на возврате F7 с дифференциальным реле давления.
- EF9 Фильтр воздушный наружный F9.
- ERF9 Фильтр наружного воздуха и на возврате F9.
- EF9PF Фильтр наружного воздуха F9 с дифференциальным реле давления.
- ERF9PF Фильтр наружного воздуха и на возврате F9 с дифференциальным реле давления.

Комплектующие, поставляемые отдельно

- KSBFR Сеќция, содержащая батарею с горячей/холодной водой для пост-нагрева или пост-охлаждения, расположенная снаружи машины перед впускным отверстием. Включает ёмкость для сбора конденсата из нержавеющей стали с креплением для слива конденсата снизу.
- KV2V ОТКР/ЗАКР Комплект двухходового клапана с сервоуправлением Откр/Закр.
- KV3V ОТКР/ЗАКР Комплект трехходового клапана с сервоуправлением Откр/Закр.
- КSRE Регулирующая заслонка, приспособленная для сервоуправления, состоящая из рамы из оцинкованного стального листа с регулируемыми рёбрами.
- KSMR 230 Привод заслонки.
- KSSC Глушитель канальный с прямоугольными вставками из минеральной ваты, покрытыми стекловолокном и стальной микропроволокой.

Устройства управления, поставляемые отдельно

• КРТZ - Потенциометр для управления Бесколлекторным вентилятором EC.



	Модель UTNR-HP		35	60	100	150	230	320	450
	Номинальный расход воздуха	м³/ч	350	600	1000	1500	2300	3200	4500
	Полезное статическое давление подачи	Па	230	250	155	155	155	185	175
	Полезное статическое давление подачи	Па	200	180	100	95	95	115	110
•	Уровень акустического давления	дБ (А)	59/47/52	64/50/55	62/49/54	67/54/57	65/51/59	68/54/59	70/56/59
•	Макс. полезное статическое давление подачи - Версия E Brushless (Бесколлекторный)	до (А)	285	250	255	405	455	385	365
	макс. полезное статическое давление подачи - оерсии E brushless (beckonnektopный) Макс. полезное статическое давление подачи забора - Версия E Brushless (Бесколлекторный)	Па	255	180	200	345	395	315	300
	макс. полезное статическое давление подачи заоора - версия с втихтлезь (вескоплекторный) ФУНКЦИОНАЛЬНЫЕ ПРЕДЕЛЫ	IId	35	60	100	150	230	320	450
	ФУПКЦИОПАЛЬНЫЕ ПРЕДЕЛЫ		33	00		ых & мин 19°C 5		320	430
0	Условия предельных показателей работы				ых & мин 19 Сэ)% ВЫХ & МАКС 2				
	Поле диапазона расхода	%				-7 ÷ +7			
	ЭЛЕКТРИЧЕСКИЕ ДАННЫЕ		35	60	100	150	230	320	450
	Электропитание	В/ф/Гц	230/1/50	230/1/50	230/1/50	230/1/50	400/3/50	400/3/50	400/3/50
	Макс. потребляемая мощность	Вт	970	1600	2430	3710	5440	8440	9200
	ВЕНТИЛЯТОРЫ		35	60	100	150	230	320	450
	Макс. потребляемая мощность	Вт	380	560	780	1110	1450	2940	3700
	Макс. потребляемая мощность - Версия E Brushless (Бесколлекторный)	Вт	342	540	450	840	1210	2370	3520
	Макс. потребление	Α	1,7	2,4	3,4	4,8	6,0	5,2	6,5
	. Степень защиты	IP	44	32	55	55	55	20	20
	Класс изоляции		В	F	F	F	F	F	F
	Электропитание	В/ф/Гц	230/1/50	230/1/50	230/1/50	230/1/50	400/3/50	400/3/50	400/3/50
	КОМПРЕССОР		35	60	100	150	230	320	450
	Макс. потребляемая мощность	Вт	590	1040	1650	2600	3990	5500	5500
	Макс. потребление	Α	2,8	4,7	7,7	12,0	7,0	10,0	10,0
	Электропитание	В/ф/Гц	230/1/50	230/1/50	230/1/50	230/1/50	400/3/50	400/3/50	400/3/50
6	ЭКСПЛУАТАЦИОННЫЕ КАЧЕСТВА ПРИ ОБОГРЕВЕ		35	60	100	150	230	320	450
	Статическая рекуперация	Вт	1840	2830	4400	6700	10100	13960	18710
	Эффективность статической рекуперации	%	62	51	50	50	50	50	50
	Активная рекуперация	Вт	1740	2960	5010	7690	11090	16300	17300
	Общая мощность	Вт	3580	5790	9410	14390	21190	30260	36010
	Температура обрабатываемого воздуха	°C	24,4	22,6	22,1	22,4	22,0	22,4	18,5
4	Общий СОР	Вт/Вт	10,90	9,60	9,22	8,64	8,90	9,88	12,60
6	ЭКСПЛУАТАЦИОННЫЕ КАЧЕСТВА ПРИ ОХЛАЖДЕНИИ	35	60	100	150	230	320	450	
	Статическая рекуперация	Вт	400	590	950	1450	2250	3080	4450
	Эффективность статической рекуперации	%	56	50	50	50	50	50	49
	Активная рекуперация	Вт	1810	2860	4890	7270	10580	15310	16990
	Общая мощность	Вт	2210	3450	5840	8720	12830	18390	21440
	оощая мощноств								
	Температура обрабатываемого воздуха	°C	19,3	20,0	19,9	20,1	20,2	20,0	21,4

- Уровень акустического давления, оцененный на расстоянии 1 м: нагнетательный заборник/ всасывающий заборник/ компрессорный отсек Рабочий уровень шума обычно отличается от указанных значений в зависимости от условий эксплуатации, отраженного шума и окружающего шума.
- Относятся к номинальному расходу.
- Внешний воздух –5°C 80% UR; воздух помещения 20°C 50% UR.
- Без учета энергопотребления для вентиляции.
- **В**нешний воздух32°С 50% UR; воздух помещения 26°С 50% UR

направление 01 $\sqrt{}$

направление 03 \bowtie

Web code: VMC01

Теплоутилизатор

VMC-E 025÷100

Расход воздуха: 250÷1.000 м³/ч

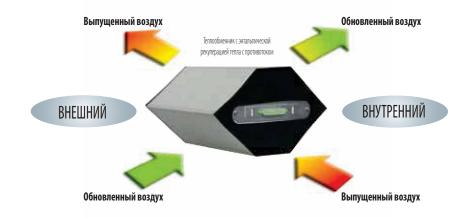
- Сверхкомпактный
- Высокоэффективное восстановление
- Очень низкий уровень шума
- Бесколлекторные вентиляторы DC

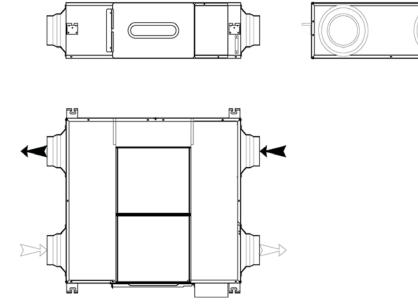
Компактные приточно-вытяжные установки с пластинчатым рекуператором.

Конструктивные характеристики

- Теплоутилизатор: благодаря теплообменнику статического типа с высоким КПД, с перекрёстными потоками, состоит из плоских листов специальной бумаги, позволяющим теплообмен общего типа, рекуперируя как ощутимое, так и скрытое тепло. Потоки воздуха поддерживаются разделёнными специальной решёткой.
 Упрощенное техобслуживание теплообменника и фильтров благодаря боковому выводу.
- Вентиляторы: с воздухозабором для обновления и вывода центробежного типа с использованием БЕСКОЛЛЕКТОРНЫХ двигателей прямого тока, которые позволяют достичь более высокой эффективности и энергосбережения около 60% по сравнению с традиционными двигателями. Байпас свободного охлаждения: возможность выполнения свободного охлаждения в межсезонье, благодаря автоматическому функционированию байпаса.

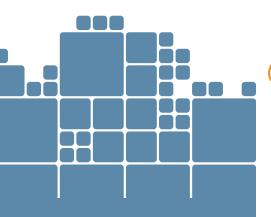
Устройства управления


- КСVE: панель удалённого управления с функцией ВКЛ/ ВЫКЛ, выбор скорости, недельное программирование на время. Подходит для настенной установки на электрических коробках "502".
- KTLCM: пульт дистанционного управления с инфракрасным излучением.



	МОДЕЛЬ VMC			25	35	50	80	100
	De man page muse	MAKC. (B)	м ³ /ч	250	350	500	800	1.000
	Расход воздуха Скорость	СРЕД. (В)	м ³ /ч	250	350	500	800	780
		МИН. (В)	м ³ /ч	160	270	360	625	650
	Полезный напор Скорость	MAKC. (B)	Па	85	90	100	150	150
		СРЕД. (В)	Па	65	60	60	100	100
		МИН. (В)	Па	30	30	30	40	40
	Энергопотребление Скорость	MAKC. (B)	Вт	90	120	135	300	310
		СРЕД. (В)	Вт	60	80	110	190	200
		МИН. (В)	Вт	35	45	60	110	125
	Звуковое давление вывод. Скорость	MAKC. (B)	дБ(А)	27	31	33	38	39
0		СРЕД. (В)	дБ(А)	26	29	31	36	37
		МИН. (В)	дБ(А)	22	25	27	32	33
	Электропитание		В-фаз-Гц	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
2	Эффективность (темп./энтальпия) зимняя		%	76/62	77/63	77/63	73/59	74/60
2	Восстановленная зимняя тепловая мощность		кВт	2,2	3,1	4,3	6,5	8,2
6	Эффективность (темп./энтальпия) летняя		%	62/60	63/61	62,5/60	59/57	59,5/57,5
6	Восстановленная летняя тепловая мощность)	кВт	0,8	1,2	1,7	2,5	3,2

- Значения относятся к 1,5 метрам всасывания в свободном диапазоне.
- ❷ Номинальные зимние условия: внешний воздух: -5°C; 80% UT (об.в.). Воздух помещения: 20°C; 50% UR (отн.вл.).
- Номинальные летние условия: внешний воздух: 32°C; 50% UT. Воздух помещения: 26°C; 50% UR.


222

Web code: UTMS1

Теплоутилизатор

UTNR Micro 20÷50

Расход воздуха: $150 \div 500 \text{ м}^3/\text{ч}$

- В соответствии с ErP 2018 RVU
- Высокоэффективные теплоутилизаторы
- Бесколлекторные вентиляторы EC
- Высокоэффективные фильтры F7
- Горизонтальная и вертикальная версии
- Встроенная электронная система

Компактные приточно-вытяжные установки с высокоэффективным пластинчатым рекуператором. Агрегат особенно подходит для односемейных домов, квартир, и для всех случаев, где номинальный расход для воздухообмена не превышает 400 м³/ч.

Конструктивные характеристики

- Теплоутилизатор: статический теплообменник из полипропилена с перекрестными потоками в противотоке с очень высоким КПД(>90 %). Благодаря материалу пакета теплообменника начальная температура охлаждения очень низкая и работа гарантирована до —25°С. В зимние и летние сезоны в этом режиме присутствует значительная энергетическая рекуперация свежего воздуха в окружающей среде.
- Свободное охлаждение: Свободное охлаждение реализовано внутри агрегата с широким проходом воздуха и заслонкой с автоматическим приводом.
- Вентиляторы: всасывание свежего воздуха и выброса по типу прямоточного бесколлекторного вентилятора с электронным двигателем и модулирующим управлением. Очень высокая эффективность и низкий уровень шума.
- Структура: самонесущая структура из оцинкованной листовой стали. Сэндвич-панели реализованы из двойных панелей, оцинкованы внутри и окрашены снаружи. Теплоизоляция панелей реализована с помощью высокоэффективного изолирующего материала толщиной 20 мм.
- Фильтрующая секция: состоит из высокоэффективных фильтров класса F7 с очень сдержанными потерями нагрузки. Все фильтры легко вынимаются как в случае горизонтальной, так и вертикальной установки.
- Электрощит с управлением мощности (стандартный).

Варианты исполнения

- 0 Версия для горизонтальной установки конфигурации Н1 и Н2.
- V -Версия для вертикальной установки конфигурации V1 и V2.
- 3V Электрощит, оснащенный платой для управления 3 скоростями вентиляторов, противооблединительным устройством и ручным управлением свободного охлаждения. Управление посредством цифровых контактов.
- E Электрощит на борту агрегата с микропроцессором и соответствующей системой управления. Управление модулирующими вентиляторами, отображение датчиков температуры внутри машины, мониторинг загрязнения фильтров, автоматическое управление свободного охлаждения с помощью датчиков температуры.

Обширный графический интерфейс с меню конфигурации и меню пользователя на нескольких языках. Возможность подключения удаленной кнопочной панели.

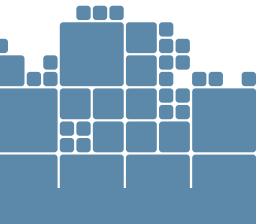
Комплектующие

- КВЕК Модуль предварительного/пост -нагрева с ТЭНами для канальной установки, оборудованный круглыми фланцами, упрощающими установку в канал.
- КВСR Модуль предварительного/пост -охлаждения водой для канальной установки, состоящий из рамы из листа оцинкованной стали и теплообменной батареи из медных труб с алюминиевыми рёбрами. Оснащен круглыми фланцами, которые облегчают установку в канал.
- КМР1 Опорные ножки для напольного монтажа.
- КСЗV Переключатель для управления 3 скор. на расстоянии и форсирования байпаса вручную (для версии 3V).
- KTR упрощенное дистанционное управление (для версии E).
- KTR Graph-дистанционное графическое управление (для версии E).
- KSQA Регулятор с контролем VOS помещения с помощью встроенного датчика.

	МОДЕЛЬ UTNR Micro		20	30	40	50
	Тип агрегата РЕГЛАМЕНТ (EC) N. 1253/2014		UVR-двунаправленный	UVR-двунаправленный	UVR-двунаправленный	UVR-двунаправленный
	Воздушные фильтры		F7	F7	F7	F7
	тип привода вентиляторов		Регулятор скорости	Регулятор скорости	Регулятор скорости	Регулятор скорости
	SEC КЛАСС					
	Версия 3V (0)		В	В	В	E
	Версия Е (0)		A	В	A	E
	Версия E+KSQA (0)		A	A	A	E
	Версия 3V (V)		В	В	A	E
	Версия E (V)		A	В	A	E
	Версия E+KSQA (V)		A	A	A	A
	ТЕХНИЧЕСКИЕ ДАННЫЕ					
	Номинальный расход воздуха верс. 0	м ³ /ч	155	302	354	450
	Номинальный расход воздуха верс. V	м ³ /ч	158	306	375	475
	Полезное статическое давление, верс. О E v	Па	100	100	100	100
0	Ном. эффективность Зимняя рекуперация (верс 0)	%	86,3	85	87,6	85,6
0	Ном. эффективность Зимняя рекуперация (верс V)	%	86,3	85	87	84
0	Уровень звукового давления (верс 0)	дБ(А)	40,8	41,7	42,6	47,6
0	Уровень звукового давления (верс V)	дБ(А)	38,6	41	38,4	44,4
	Электропитание	В/ф/Гц	230/1/50	230/1/50	230/1/50	230/1/50
	Потребляемая мощность	Вт	96	170	170	340
	Потребляемый ток	A	0,74	1,6	1,6	3,5
	дополнительные приспособления					
0	Тепловая мощность KBER	кВт	0,5	1	1	1
0	Тепловая мощность KBCR	кВт	0,88	1,86	2,27	2,66
4	Явная хладопроизводительность KBCR	кВт	0,52	1,01	1,1	2,4
4	Скрытая хладопроизводительность KBCR	кВт	0,40	0,62	0,85	1,46
	РАЗМЕРЫ И ВЕС					
	L/H/P - Длина/Высота/Глубина UTNR-Micro O	MM	800/250/480	940/360/620	1350/280/650	1350/280/650
	Bec UTNR-Micro O	КГ	33	50	56	56
	L/H/P - Длина/Высота/Глубина UTNR-Micro V	MM	625/510/430	785/590/575	785/590/735	785/590/735
	Bec UTNR-Micro V	КГ	36	54	65	65
	L/H/P - Длина/Высота/Глубина КВСR.	MM	300/150/250	300/250/250	300/250/250	300/250/250

- lacktriangled Hopматив UNI EN 13141-7: наружный воздух 7°С 72% отн.вл.; воздух помещения 20°С 20% отн.вл.
- Значения звукового давления на расстоянии 3 м от агрегата в соответствии с нормативом UNI EN 3741 и 3744
- **❸** Воздух на входе 20°C;50% отн.вл. Вода вход/выход 50/40°C. Номинальный расход воздуха.
- Воздух на входе 25°С;60% отн.вл. Вода вход/выход 7/12°С. Номинальный расход воздуха.

Web code: UTRD1


Теплоутилизатор/Осушитель воздуха

UTNRD Micro 30-50

Расход воздуха: 300/150÷500/250 м³/ч

- Высокоэффективные теплоутилизаторы
- Управление осушением
- Высокоэффективные фильтры F7
- Встроенная электронная система

Приточно-вытяжные установки для осушения воздуха.

Конструктивные характеристики

- Рекуператор: очень высокой производительности (>90%), статического типа из полипропилена с противоположно направленными потоками воздуха для обработки наружного воздуха обновления.
- Вентиляторы: всасывание свежего воздуха и выброса по типу прямоточного бесколлекторного вентилятора с электронным двигателем и модулирующим управлением. Высокая эффективность и низкий уровень шума согласно стандарту Erp 2015.
- Конструкция: самонесущая из оцинкованной листовой стали.
 Сэндвич-панели реализованы из двойных стенок, оцинкованы внутри и окрашены снаружи. Теплоизоляция панелей реализована с помощью высокоэффективного изолирующего материала толщиной 20 мм.
- Фильтрующая секция: состоит из двух фильтров (один на воздухозаборнике обновления и один на возврате), оба фильтра являются высокоэффективными класса F7, а один на рециркуляционном воздухозаборнике класса G2 с очень незначительной потерей нагрузки. Все фильтры легко снимаются снизу.
- Секция обработки воздуха: агрегат может быть оснащен охладительным контуром для осушения или дополнения охлаждения и отопления. В различных конфигурациях можно выбрать тип обработки воздуха между только осушением или осушением с охлаждением и нагревом первичного воздуха.
- Охладительный контур: выполнен из меди методом пайки-сварки, в комплект входит высокоэффективный компрессор, осушительный фильтр, теплообменник медь/ алюминий, пластинчатый водяной теплообменник (версия DC), соленоидные клапаны, расширительный клапан, приемник жидкости, реле высокого и низкого давления, теплоизоляция трубопровода. Хладагент R134a.
- Электрический щит и управление: на борту машины с микропроцессором и соответствующим управлением.
 Управление вентилятором, отображение датчиков температуры внутри машины, управление загрязнением фильтров по времени, управление рециркуляцией и обновлением воздуха. Обширный графический интерфейс с меню конфигурации и меню пользователя на нескольких языках.

Приспособление для связи MODBUS RTU RS 485 с самыми различными системами контроля.

Варианты исполнения

• D - Версия для нейтрального осушения воздуха (изотермическая).

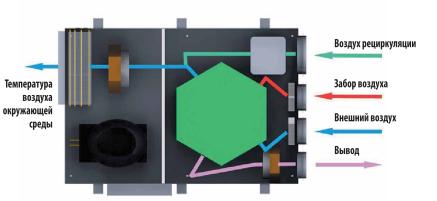
Агрегат для обновления воздуха в помещении через высокоэффективный теплоутилизатор, расход воздуха увеличивается, частично рециркулируя воздух в помещении, обеспечивая, таким образом, работу холодильного контура, получая в летний период (активный компрессор) осушенный воздух.

Оснащен водопроводной батареей пост-охлаждения /нагрева, которая, если подключена к сети, позволяет обеспечить интеграцию мощности охлаждения/тепла в систему лучистого обогрева/охлаждения (подключение к системе нагрева/ охлаждения является дополнительным и не будет влиять на осушение воздуха).

- DC Версия для осушения и дополнения охлаждения/отопления Агрегат для обновления воздуха в помещении посредством высокоэффективного рекуператора, поток воздуха увеличивается благодаря частичной рециркуляции воздуха в помещении, что позволяет осушить воздух и дополнять охладительную/нагревательную мощность системы лучистого обогрева/охлаждения. В летний период (активный компрессор) агрегат может работать в 2 режимах:
- Обновление Осушение: а регат при помощи пластинчатого конденсатора подает конденсат частично в воздух и частично в воду, получая осушенный воздух;
- Обновление+ Осушение+ Дополнение охлаждения: агрегат конденсирует только в воду, получая, таким образом осушенный и охлажденный воздух. В зимний период (компрессор выключен) водопроводная батарея питается горячей водой от системы отопления и

выступает в качестве тепловентилятора с теплоутилизатором.

• W - Гидравлическая версия для осушения и интеграции в холодный и в жаркий период. посредством высокоэффективного теплоутилизатора, расход воздуха увеличивается за счет частичной рециркуляции воздуха помещения, позволяя, таким образом, осушать воздух и поставлять интеграцию хладопроизводительности/ тепловой мощности в систему охлаждения/отопления (работа в зимний период, подаваемая вода 50 °C на возврате 40 °C, в летнем режиме работе подаваемая вода 7 °C, на возврате +12 °C). Устройство не оснащено холодильным контуром, но оборудовано водопроводной батареей, подключенной к системе отопления / охлаждения здания, которая позволяет осушать воздух (летний режим) и обеспечить интеграцию системы охлаждения летом и системы отопления в зимний период.



	Модель UTNRD		30	50
	Тип агрегата РЕГЛАМЕНТ (EC) N. 1253/2014		UVR-двунаправленный	UVR-двунаправленный
	Воздушные фильтры		G2+G4+F7	G2+G4+F7
	тип привода вентиляторов		Регулятор скорости	Регулятор скорости
	SEC КЛАСС			
	Версия 3V (O)		В	A
	ТЕХНИЧЕСКИЕ ДАННЫЕ			
	Номинальный расход наружного воздуха	м ³ /ч	154	265
	Общий расход воздуха	м ³ /ч	297	520
	Полезное номинальное статическое давление	Па	100	100
0	Ном. эффективность Зимняя рекуперация	%	85,7	86
0	Ном. эффективность летней рекуперации	%	83	84
6	Макс. потребление электроэнергии - вентилятор наружного воздуха	кВт	0,39	0,55
6	Макс. потребление электроэнергии - вентилятор вывода	кВт	0,25	0,37
	Электропитание -Версия E Brushless (Бесколлекторный)	В/ф/Гц	230/1/50	230/1/50
	РАЗМЕРЫ			
	L - Ширина	MM	1220	1220
	Н - Высота	MM	275	350
	Р - Глубина	MM	820	960
	ВЕРСИЯ D			
4	Полезная способность осушения (без энтальпии наружного воздуха)	л/24ч	22	31
6	Холод. мощность бат. Водяная	кВт	0,4	0,54
0	Мощн. Термическая бат. Водяная	кВт	0,46	0,86
	Хладагент		R134a	R134a
0	Номинальная потребляемая мощность компрессоров	кВт	0,35	0,47
0	Уровень акустического давления	дБ(А)	41	45
	ВЕРСИЯ DC			
4	Полезная способность осушения (без энтальпии наружного воздуха)	л/24ч	22	31
6	Холод. мощность компрессора	кВт	1,3	1,7
6	Холод. мощность бат. Водяная	кВт	0,4	0,54
6	Мощн. Термическая бат. Водяная	кВт	0,46	0,86
	Хладагент		R134a	R134a
6	Номинальная потребляемая мощность компрессоров	кВт	0,35	0,47
0	Уровень акустического давления	дБ(А)	41	45
	ВЕРСИЯ W			
0	Полезная способность осушения (без энтальпии наружного воздуха)	л/24ч	31	51
0	Мощн. Общая хладопроизводительность бат. Водяная	кВт	2,03	3,32
0	Мощн. Явная хладопроизводительность бат. Водяная	кВт	1,19	1,87
0	Мощн. Термическая бат. Водяная	кВт	2,25	3,88
0	Уровень акустического давления	дБ(А)	41	45

- Номинальные зимние условия: внешний воздух: -5° ζ ; 80% отн.вл. Воздух помещения: 20° ζ ; 50% UR (отн.вл.).
- 🔞 При полезном номинальном расходе и напоре в режиме вентиляции
- Внешний воздух 30°C 60% относ. влажн; воздух помещения 25°C 50% относ. влажн. Номинальный расход воздуха
- **в** Воздух в помещении 25°С; 60% отн. влажн. Темп. воды на вых. 16°С−18°С. Номинальный расход воздуха.
- **®** Воздух в помещении 20°С; 60% отн. влажн. Темп. воды на вых. 35°С-30°С. Номинальный расход воздуха.
- Значения звукового давления на расстоянии 3 м от агрегата в свободной зоне при максимальных рабочих условиях
- $oldsymbol{\Theta}$ Воздух в помещении 25°C; 60% отн. влажн. Темп. воды на вых. 7°C-12°C. Номинальный расход воздуха.
- ⊕ Воздух в помещении 20°С; 60% отн. влажн. Темп. воды на вых. 50°С-40°С. Номинальный расход воздуха.

Комплектующие

- КТР Дистанционная панель управления.
- КРМС Воздухораспределительная камера подачи с круглыми изолированными отверстиями и крепежными фланцами.
- КSRT Заслонка тарирования и балансировки сети распределения воздуха с ручным управлением из оцинкованной стали для круглого канала.
- KRPA Регулятор расхода воздуха рециркуляции и автоматического обновления.
- KV2V 2-х ходовой клапан ВКЛ/ВЫКЛ, приводимый в действие непосредственно агрегатом для подачи питания на водяной теплообменник.
- КУЗУ 3-х ходовой клапан ВКЛ/ВЫКЛ, приводимый в действие непосредственно агрегатом для подачи питания на водяной теплообменник.

RHOSS S.P.A.

Via Oltre Ferrovia, 32 - 33033 Codroipo (UD) - Italy (Италия) тел. +39 0432 911611 - факс +39 0432 911600 rhoss@rhoss.it - www.rhoss.it - www.rhoss.com

IR GROUP SARL

19, chemin de la Plaine - 69390 Vourles - France (Франция) тел. +33 (0)4 72 31 86 31 - факс +33 (0)4 72 31 86 30 exportsales@rhoss.it

RHOSS Deutschland GmbH Hölzlestraße 23, D-72336 Balingen, OT Engstlatt - Germany (Германия) тел. +49 (0)7433 260270 - факс +49 (0)7433 2602720 info@rhoss.de - www.rhoss.de

RHOSS GULF JLT

Suite No: 3004, Platinum Tower Jumeirah Lakes Towers, Dubai - UAE (OA3) тел. +971 4 44 12 154 - факс +971 4 44 10 581

e-mail: info@rhossgulf.com

Торговые офисы в Италии: Кодройпо (Удине) - Codroipo (UD) 33033 Via Oltre Ferrovia, 32 тел. +39 0432 911611 - факс +39 0432 911600

Нова-Миланезе (Монца) - Nova Milanese (МВ) 20834 Via Venezia, 2 - p. 2 тел. +39 039 6898394 - факс +39 039 6898395

