

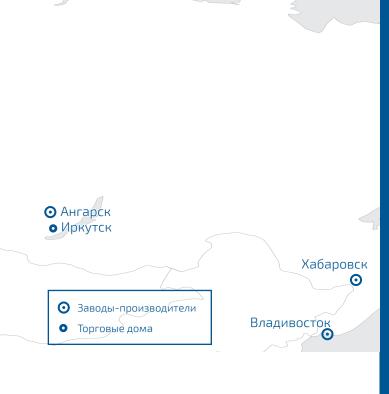
О КОМПАНИИ

Группа ПОЛИПЛАСТИК – лидер рынка и ведущий эксперт в области разработки, производства и применения полимерных трубопроводных систем. Компания является крупнейшим в России и СНГ производителем широкого спектра полимерной трубной продукции для сетей водоснабжения и водоотведения, газораспределения, отопления, кабелезащиты, нефтепроводов, промышленных трубопроводов, ирригации и других сфер применения. А по объемам выпуска полиэтиленовых труб компания занимает первое место в Европе.

История Группы ПОЛИПЛАСТИК началась в 1991 году. В настоящее время компания представлена 30 производственными площадками в разных регионах России, странах СНГ.

В активе компании – собственный Научноисследовательский институт, один из самых оснащенных в области композиционных материалов и полимерных труб.

Располагая мощным производственным и научно-техническим потенциалом, Группа ПОЛИПЛАСТИК ведет непрерывную работу над улучшением существующих и разработкой новых видов трубной продукции и термопластичных композиционных материалов.


ПОЛИМЕРНЫЕ ТРУБОПРОВОДНЫЕ СИСТЕМЫ

Приняв за основу бизнеса производство современных систем полимерных трубопроводов, отличающихся надежностью, долговечностью и экологичностью, Группа ПОЛИПЛАСТИК способствует повышению качества жизни, уровня комфорта и безопасности людей и в крупных мегаполисах, и в небольших населенных пунктах.

Производство полимерных труб – лучший пример эффективного использования невозобновляемых ресурсов нефти и газа, поскольку продукция имеет срок службы более 100 лет с возможностью последующей вторичной переработки. При этом полимерные трубопроводы имеют гораздо меньшие эксплуатационные затраты в сравнении с традиционными материалами на всех этапах своего жизненного цикла, что делает их применение особенно эффективным.

Сегодня полимерные трубы – это реальный инструмент оптимизации коммунальных тарифов и повышения качества коммунальных услуг.

С 2020 г. Группа ПОЛИПЛАСТИК включена в перечень системообразующих предприятий Российской Федерации, оказывающих особое влияние на экономику страны.

СЕРВИСНЫЕ ВОЗМОЖНОСТИ

Партнерские взаимоотношения с ведущими производителями фитингов, сварочного оборудования и запорно-регулирующей арматуры, а также собственное производство позволяют обеспечить рынок всеми необходимыми комплектующими.

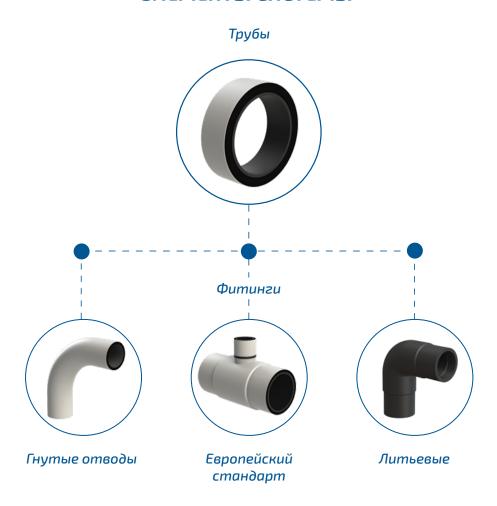
Широкая сеть торговых домов Группы, расположенных во всех регионах России, в Белоруссии и Казахстане, обеспечивает оперативную поставку всех необходимых комплектующих и оборудования для монтажа систем трубопроводов.

Учебный центр Группы ПОЛИПЛАСТИК осуществляет обучение по направлениям, связанным с проектированием, строительством, техническим надзором, эксплуатацией, ремонтом и реконструкцией трубопроводов из полимерных материалов.

На сегодняшний день Группа ПОЛИПЛАСТИК предоставляет комплексное обслуживание, включающее консультации технических специалистов и помощь в проектировании инженерных сетей, логистические услуги, полную комплектацию поставок материалов и оборудования для строительства и реконструкции трубопроводных систем, монтаж и шефмонтаж, аренду и ремонт сварочного оборудования, а также дальнейшее обслуживание построенных объектов.

СОДЕРЖАНИЕ

0 компании	2
Продукция и услуги	2
Стандарты качества	3
Системы технологических полимерных трубопроводов для промышленного применения	4
Система напорных износостойких трубопроводов серии МУЛЬТИПАЙП ИС	6
Примеры труб серии МУЛЬТИПАЙП ИС	6
Фитинги для труб серии МУЛЬТИПАЙП ИС	8
Система напорных трубопроводов повышенной термостойкости серии МУЛЬТИТЕРМ	17
Примеры труб серии МУЛЬТИТЕРМ	17
Фитинги для труб серии МУЛЬТИТЕРМ	18
Система напорных трубопроводов серии МУЛЬТИПАЙП ОС с внешним огнезащитным слоем	24
Примеры труб серии МУЛЬТИПАЙП ОС	24
	25
Система напорных трубопроводов серии МУЛЬТИПАЙП АС с внешним	
токоотводящим слоем	26
Примеры труб серии МУЛЬТИПАЙП АС	26
Фитинги для труб серии МУЛЬТИПАЙП ОС	27
Нормативно-техническая информация	34


СИСТЕМЫ ТЕХНОЛОГИЧЕСКИХ ПОЛИМЕРНЫХ ТРУБОПРОВОДОВ ДЛЯ ПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ

Специальные системы технологических полимерных трубопроводов разработаны для применения на пожароопасных и взрывоопасных производственных объектах в системах водоснабжения, водоотведения и дренажа, а также для транспортирования агрессивных сред при повышенных температурах, перегонки шламов и пульп.

Вся продукция сертифицирована и поставляется с полным пакетом документов, включающим:

- паспорт качества
- сертификат соответствия.

ЭЛЕМЕНТЫ СИСТЕМЫ

ПРЕИМУЩЕСТВА СИСТЕМ ПОЛИМЕРНЫХ ТРУБОПРОВОДОВ ПО СРАВНЕНИЮ СО СТАЛЬНЫМИ ТРУБОПРОВОДАМИ

- Высокая химическая стойкость
- Отсутствие коррозии и значительных отложений на стенках труб
- Не требуется электрохимическая защита трубопровода, в том числе от блуждающих токов
- Устойчивость к динамическим и статическим нагрузкам, сейсмостойкость
- Снижение сроков производства работ в 2-2,5 раза за счет уменьшения количества стыков

СИСТЕМА НАПОРНЫХ ИЗНОСОСТОЙКИХ ТРУБОПРОВОДОВ СЕРИИ МУЛЬТИПАЙП ИС

Внутренний защитный слой труб серии МУЛЬТИПАЙП ИС, выполненный из специальной износостойкой композиции*, обеспечивает длительный срок службы промышленных трубопроводов, транспортирующих высокоабразивные среды в напорном, а также безнапорном режимах. Системы трубопроводов данного типа применяются при строительстве шламопроводов, пульпопроводов, гидротранспорта промышленных отходов (зола, шлак и пр.).

ОБЛАСТИ ПРИМЕНЕНИЯ

- Горнодобывающая промышленность
 - Транспортирование измельченной руды
 - Транспортирование отходов
- Камнедобывающая промышленность
 - Транспортирование песка и натурального камня
 - Транспортирование измельченной породы

- Цементная промышленность
 - Транспортирование извести, камня и шлама
- Химическая промышленность
 - Транспортирование отходов, солей
- Драгирование

КЛЮЧЕВЫЕ ХАРАКТЕРИСТИКИ

Рентабельное решение для горной промышленности. Повышение производительности системы за счет снижения времени простоя на техническое обслуживание и ремонтные работы трубопроводов серии МУЛЬТИПАЙПИС.

Защита всей системы трубопровода. Фитинги (отводы, тройники, крестовины) выполнены из того же материала, что и основной трубопровод. Возможность наружной укладки трубопроводов. Светлый наружный слой труб МУЛЬТИПАЙП ИС УФ защищает от УФ-излучения, отражает солнечный свет, уменьшает нагревание и термическое расширение трубопровода. Для труб МУЛЬТИПАЙП ПРО ИС благодаря их увеличенной жесткости возможно применение меньшего количества опор при надземной прокладке.

Защита от подделки (сложный технологический процесс производства).

ПРИМЕРЫ ТРУБ СЕРИИ МУЛЬТИПАЙП ИС

МУЛЬТИПАЙП ИС УФ1

Напорная труба. Износостойкий внутренний слой

Светлый защитный наружный слой

1 Исполнение рекомендовано при наружной прокладке

МУЛЬТИПАЙП ИС В ППУ 2

Напорная труба. Износостойкий внутренний слой

ППУ-изоляция

2 Исполнение рекомендовано для районов с холодным климатом

МУЛЬТИПАЙП ПРО ИС³

Напорная труба. Наружный слой из композиционного материала повышенной жесткости

Износостойкий внутренний слой

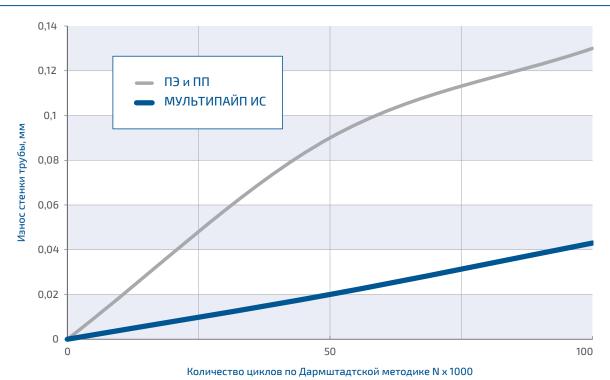
3 Исполнение рекомендовано при наружной прокладке

Внутренний слой трубы изготовлен из термоэластопласта, полученного методом динамической вулканизации (ДТЭП). ДТЭП – класс полимеров нового поколения, которые обладают свойствами эластомерных (резина) и термопластичных материалов.
Метод динамической вулканизации позволяет получать материалы с высокими физико-механическими и эксплуатационными (износостойкость) свойствами, удовлетворяющими требованиям РТИ.

КОНСТРУКЦИЯ НА ПРИМЕРЕ ТРУБ МУЛЬТИПАЙП ИС УФ

- 1. Устойчивый к абразивному износу внутренний слой увеличивает срок службы трубопровода не менее, чем в шесть раз по сравнению с традиционными стальными и полиэтиленовыми трубами*.
- 2. Несущий слой** напорной трубы из ПЭ 100 или ПЭ 100-RC. Толщина зависит от номинального давления (PN).
- 3. Исполнение МУЛЬТИПАЙП ИС УФ рекомендовано при наружной укладке: светлый наружный слой из специальной свето- и термостабилизированной полимерной композиции защищает от механических повреждений и УФ-излучения, отражает солнечный свет, уменьшает нагревание и термическое расширение трубопровода.
- * Группой ПОЛИПЛАСТИК проведены сравнительные испытания труб МУЛЬТИПАЙП ИС и ПЭ 100 по методу DIN EN 295-3:212-03 (Дармштадтский метод), а также по методу ISO 15527.
- ** По согласованию с Заказчиком возможно изготовление несущего слоя напорных труб из PE-RT тип II для применения при повышенной температуре транспортируемой среды.

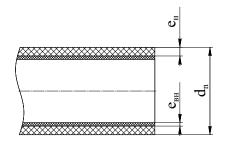
ИСПЫТАНИЯ НА ИЗНОС – ОПРЕДЕЛЕНИЕ ДАРМШТАДТСКОГО РЕСУРСА МУЛЬТИПАЙП ИС И МУЛЬТИПАЙП ИС УФ



Суть метода состоит в измерении величины износа отрезка полимерной трубы смесью воды и крупных абразивных частиц (средний размер 6 мм). Движение смеси обеспечивается изменением наклона образца на ± 22,5° с частотой 20 циклов в минуту.

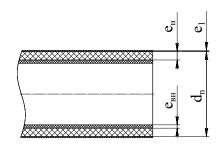
Износ трубы измеряется по потере толщины стенки. Испытания проводятся до достижения 100 тыс. циклов, что соответствует пробегу потока взвеси 100 км.

Метод применяется для испытания труб диаметрами 100 – 600 мм.


РЕЗУЛЬТАТЫ СРАВНИТЕЛЬНОГО ИСПЫТАНИЯ ТРУБ МУЛЬТИПАЙП ИС И ТРУБ ИЗ ПЭ 100 ПО МЕТОДУ DIN EN 295-3:212-03 (ДАРМШТАДТСКИЙ МЕТОД)

На основании исследований сред Заказчика можно произвести расчет ресурса, вызывающего потерю толщины трубы.

ТРУБЫ МУЛЬТИПАЙП ИС, ТУ 22.21.21-049-73011750-2022


Номинальный наружный	Толь	цина стенки	несущего сл	поя трубы, е	, мм
диаметр, d _n , мм	PN 10	PN 12,5	PN 16	PN 20	PN 25
110	6,6	8,1	10	12,3	15,1
125	7,4	9,2	11,4	14	17,1
140	8,3	10,3	12,7	15,7	19,2
160	9,5	11,8	14,6	17,9	21,9
180	10,7	13,3	16,4	20,1	24,6
200	11,9	14,7	18,2	22,4	27,4
225	13,4	16,6	20,5	25,2	30,8
250	14,8	18,4	22,7	27,9	34,2
280	16,6	20,6	25,4	31,3	38,3
315	18,7	23,2	28,6	35,2	43,1
355	21,1	26,1	32,2	39,7	48,5
400	23,7	29,4	36,3	44,7	54,7
450	26,7	33,1	40,9	50,3	61,5
500	29,7	36,8	45,4	55,8	68,3
560	33,2	41,2	50,8	62,5	76,5
630	37,4	46,3	57,2	70,3	86,1
710	42,1	52,2	64,5	79,3	97
800	47,4	58,8	72,6	89,3	109,3
900	53,3	66,1	81,7	100,5	
1000	59,3	73,5	90,8	111,6	
1200	71,1	88,2	108,9		

Толщина внутреннего защитного слоя ${\rm e}_{_{\rm BH}}$ составляет 6 мм. По согласованию с Заказчиком возможно изменение композиции внутреннего слоя, в этом случае его толщина может отличаться от номинальной.

Номинальное давление (PN) соответствует постоянному максимальному рабочему давлению при 20 °C.

ТРУБЫ МУЛЬТИПАЙП ИС УФ, ТУ 22.21.21-049-73011750-2022

наружный диаметр,		Толщина стенки несущего слоя трубы, е _н , мм			Толщина на-	
d _n , mm	PN 10	PN 12,5	PN 16	PN 20	PN 25	ружного слоя, е ₁ , мм
110	6,6	8,1	10	12,3	15,1	0,9-1,5
125	7,4	9,2	11,4	14	17,1	1,0-1,6
140	8,3	10,3	12,7	15,7	19,2	1,1-1,6
160	9,5	11,8	14,6	17,9	21,9	1,1-1,7
180	10,7	13,3	16,4	20,1	24,6	1,1-1,7
200	11,9	14,7	18,2	22,4	27,4	1,2-1,8
225	13,4	16,6	20,5	25,2	30,8	1,3-1,9
250	14,8	18,4	22,7	27,9	34,2	1,4-2,1
280	16,6	20,6	25,4	31,3	38,3	1,5-2,2
315	18,7	23,2	28,6	35,2	43,1	1,5-2,3
355	21,1	26,1	32,2	39,7	48,5	1,6-2,4
400	23,7	29,4	36,3	44,7	54,7	1,8-2,6
450	26,7	33,1	40,9	50,3	61,5	1,9-2,8
500	29,7	36,8	45,4	55,8	68,3	2,0-3,0
560	33,2	41,2	50,8	62,5	76,5	2,2-3,2
630	37,4	46,3	57,2	70,3	86,1	2,5-3,5
710	42,1	52,2	64,5	79,3	97	3,0-5,0
800	47,4	58,8	72,6	89,3	109,3	3,0-5,0
900	53,3	66,1	81,7	100,5		3,0-5,0
1000	59,3	73,5	90,8	111,6		3,0-5,0
1200	71,1	88,2	108,9			3,0-5,0

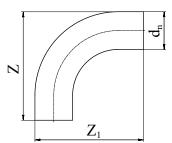
Толщина внутреннего защитного слоя ${\rm e}_{_{\rm BH}}$ составляет 6 мм. По согласованию с Заказчиком возможно изменение композиции внутреннего слоя, в этом случае его толщина может отличаться от номинальной.

Номинальное давление (PN) соответствует постоянному максимальному рабочему давлению при 20 °C.

ФИТИНГИ ДЛЯ ТРУБ СЕРИИ МУЛЬТИПАЙП ИС*

Трубы серии МУЛЬТИПАЙП ИС можно соединять при помощи деталей с закладными нагревателями (муфты с 3H, втулки под фланец с 3H).

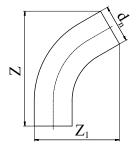
Специальные фитинги изготавливаются из труб того же типа, что и трубопровод. По согласованию с Заказчиком возможно изготовление деталей различных конфигураций и диаметров: отводов, тройников, крестовин и пр.


^{*} Трубы могут соединяться сваркой нагретым инструментом встык и/или фитингами.

СПЕЦИАЛЬНЫЕ ФИТИНГИ

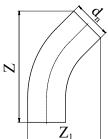
Специальные фитинги изготавливаются из труб серии МУЛЬТИПАЙП ИС. По согласованию с Заказчиком возможно изготовление деталей различных конфигураций и диаметров: отводов, тройников и пр. Основные типоразмеры показаны далее.

ОТВОД 90° (ГНУТЫЙ ЦЕЛЬНОТЯНУТЫЙ)



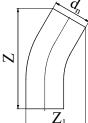
d _n	Z, MM	Z ₁ , MM
250	955	955
280	1030	1030
315	1159	1159
355	1242	1242
400	1329	1329
450	1620	1620
500	1661	1661
560	1960	1960
630	2018	2018
710	2660	2660
800	3143	3143
900	3536	3536

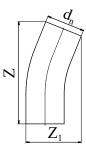
ОТВОД 60° (ГНУТЫЙ ЦЕЛЬНОТЯНУТЫЙ)



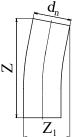
d _n	Z, MM	Z ₁ , MM
250	1114	768
280	1115	784
315	1412	973
355	1397	984
400	1497	1064
450	1694	1158
500	1852	1319
560	2185	1542
630	1924	1426
710	2897	2028
800	2950	2103
900	3385	2404

ОТВОД 45° (ГНУТЫЙ ЦЕЛЬНОТЯНУТЫЙ)


d _n	Z, MM	Z ₁ , MM
250	1126	643
280	1139	670
315	1281	753
355	1425	841
400	1529	916
450	1747	1042
500	1997	1181
560	2107	1269
630	1964	1259
710	2779	1653
800	3158	1874
900	3628	2139

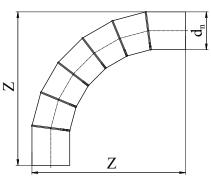

ОТВОД 30° (ГНУТЫЙ ЦЕЛЬНОТЯНУТЫЙ)

d _n	Z, MM	Z ₁ , MM
250	1000	484
280	1101	538
315	1206	588
355	1214	633
400	1320	700
450	1613	822
500	1626	869
560	1829	975
630	1941	1066
710	2340	1242
800	3297	1576
900	3231	1645



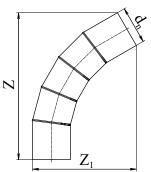
d _n	Z, MM	Z, MM
250	1013	426
280	1018	457
315	1217	529
355	1224	562
400	1330	629
450	1533	715
500	1543	763
560	1651	840
630	1857	945
710	2258	1097
800	3335	1390
900	3162	1449

ОТВОД 11° (ГНУТЫЙ ЦЕЛЬНОТЯНУТЫЙ)



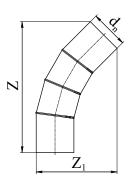
d _n	Z, MM	Z ₁ , MM
250	1015	343
280	1018	373
315	1219	427
355	1223	466
400	1327	520
450	1430	579
500	1534	639
560	1639	708
630	1844	796
710	2248	913
800	3347	1108
900	3158	1188

ОТВОД 90° ПЯТИСЕКЦИОННЫЙ (ЕВРОПЕЙСКИЙ СТАНДАРТ)



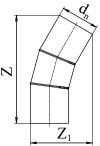
SDR	PN	Z, MM
21-9	8-20	552
21-9	8-20	609
21-9	8-20	698
21-9	8-20	772
21-9	8-20	827
21-9	8-20	900
21-9	8-20	1025
21-9	8-20	1217
21-9	8-20	1237
21-9	8-20	1391
21-9	8-20	1495
21-9	8-20	1624
21-9	8-20	1853
21-9	8-20	2016
21-9	8-20	2199
21-9	8-20	2396
	21-9 21-9 21-9 21-9 21-9 21-9 21-9 21-9	21-9 8-20 21-9 8-20

ОТВОД 60° ТРЁХСЕКЦИОННЫЙ (ЕВРОПЕЙСКИЙ СТАНДАРТ)



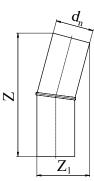
d _n , mm	SDR	PN	Z, mm	Z ₁ , MM
110	21-9	8-20	564	380
125	21-9	8-20	612	415
140	21-9	8-20	685	461
160	21-9	8-20	748	511
180	21-9	8-20	795	548
200	21-9	8-20	856	594
225	21-9	8-20	959	665
250	21-9	8-20	1187	809
280	21-9	8-20	1207	835
315	21-9	8-20	1365	943
355	21-9	8-20	1447	1012
400	21-9	8-20	1559	1097
450	21-9	8-20	1780	1250
500	21-9	8-20	1917	1354
560	21-9	8-20	2071	1472
630	21-9	8-20	2234	1601

ОТВОД 45° ДВУХСЕКЦИОННЫЙ (ЕВРОПЕЙСКИЙ СТАНДАРТ)



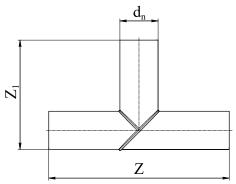
d _n , мм	SDR	PN	Z, MM	Z ₁ , MM
110	21-9	8-20	522	294
125	21-9	8-20	564	322
140	21-9	8-20	614	353
160	21-9	8-20	672	391
180	21-9	8-20	709	421
200	21-9	8-20	759	456
225	21-9	8-20	837	506
250	21-9	8-20	1070	576
280	21-9	8-20	1087	625
315	21-9	8-20	1236	700
355	21-9	8-20	1298	783
400	21-9	8-20	1386	877
450	21-9	8-20	1587	990
500	21-9	8-20	1693	1099
560	21-9	8-20	1816	1227
630	21-9	8-20	1945	1374

ОТВОД 30° ОДНОСЕКЦИОННЫЙ (ЕВРОПЕЙСКИЙ СТАНДАРТ)



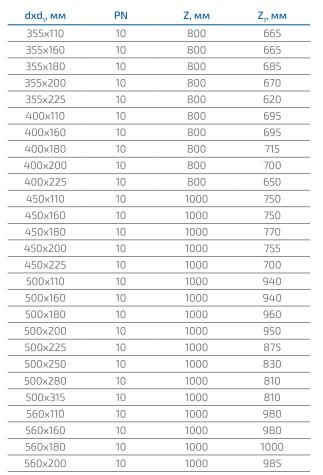
d _n , mm	SDR	PN	Z, MM	Z ₁ , MM
110	21-9	8-20	459	185
125	21-9	8-20	487	210
140	21-9	8-20	525	238
160	21-9	8-20	558	272
180	21-9	8-20	583	304
200	21-9	8-20	617	338
225	21-9	8-20	667	382
250	21-9	8-20	1070	425
280	21-9	8-20	1087	469
315	21-9	8-20	1039	526
355	21-9	8-20	1298	591
400	21-9	8-20	1386	664
450	21-9	8-20	1587	748
500	21-9	8-20	1693	831
560	21-9	8-20	1816	929
630	21-9	8-20	1945	1043

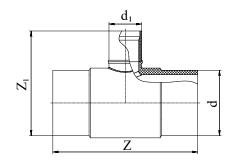
ОТВОД 15° (ЕВРОПЕЙСКИЙ СТАНДАРТ)



d _n , MM	SDR	PN	Z, мм	Z ₁ , MM
110	21-9	8-20	372	155
125	21-9	8-20	386	172
140	21-9	8-20	400	188
160	21-9	8-20	415	209
180	21-9	8-20	426	230
200	21-9	8-20	441	251
225	21-9	8-20	457	278
250	21-9	8-20	674	330
280	21-9	8-20	682	360
315	21-9	8-20	789	408
355	21-9	8-20	800	448
400	21-9	8-20	827	495
450	21-9	8-20	952	560
500	21-9	8-20	981	612
560	21-9	8-20	1015	675
630	21-9	8-20	1048	746

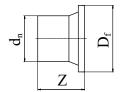
тройник





d _n , MM	SDR	PN	Z, MM	Z ₁ , MM
110	21-9	8-20	520	315
125	21-9	8-20	550	338
140	21-9	8-20	580	360
160	21-9	8-20	620	390
180	21-9	8-20	660	420
200	21-9	8-20	700	450
225	21-9	8-20	750	488
250	21-9	8-20	1000	625
280	21-9	8-20	1060	670
315	21-9	8-20	1230	773
355	21-9	8-20	1310	833
400	21-9	8-20	1400	900
450	21-9	8-20	1500	975
500	21-9	8-20	1700	1100
560	21-9	8-20	1820	1700
630	21-9	8-20	8-20 2870	

ТРОЙНИК НЕРАВНОПРОХОДНЫЙ (ЕВРОПЕЙСКИЙ СТАНДАРТ), SDR 17*



dxd ₁ , мм	PN	Z, MM	Z ₁ , MM
560×225	10	1000	915
560×250	10	1000	870
560×280	10	1000	850
560x315	10	1000	850
630x110	10	1200	1050
630×160	10	1200	1050
630×180	10	1200	1070
630×200	10	1200	1055
630×225	10	1200	985
630×250	10	1200	940
630×280	10	1200	920
710×110	10	1500	1140
710×160	10	1500	1140
710×180	10	1500	1160
710×200	10	1500	1145
710x225	10	1500	1075
710×250	10	1500	1030
710×280	10	1500	1010
710×315	10	1500	1010
800x110	10	1500	1235
800×160	10	1500	1235
800x180	10	1500	1255
800×200	10	1500	1240
800×225	10	1500	1170
800×250	10	1500	1125
800×280	10	1500	1100
800x315	10	1500	1100

^{*} Возможно изготовление фитингов других типоразмеров и SDR.

d _n , mm*	SDR*	PN	$D_{f'}MM$	Z, MM
63	17; 11	10; 16	102	110
75	11	16	122	120
90	17; 11	10; 16	139	123
110	11	16	159	150
110	17	10	157	130
125	11	16	158	170
140	11	16	188	191
160	11	16	210	190
160	17	10	210	158
180	11	16	212	190
200	11	16	268	199
775	11	16	265	200
225	17	10	268	184
250	11	16	320	210
280	11	16	320	231
315	11	16	370	239
213	17	10	370	227
355	11	16	430	255
	17	10	430	260
4.00	11	16	482	115
400	17	10	482	120

 $^{^{*}}$ Возможно изготовление фитингов других типоразмеров и SDR.

СИСТЕМА НАПОРНЫХ ТРУБОПРОВОДОВ ПОВЫШЕННОЙ ТЕРМОСТОЙКОСТИ СЕРИИ МУЛЬТИТЕРМ

Материал: полиэтилен повышенной термостойкости PE-RT тип II

Рабочее давление*: до 1 МПа (до PN 10)

ОБЛАСТИ ПРИМЕНЕНИЯ

- Подземные и надземные промышленные сети водоснабжения и водоотведения с температурой транспортируемой среды 40 °С и выше
- Системы нефтесбора

• Транспортирование химически агрессивных жидкостей, к которым материал системы трубопроводов химически стоек при температуре рабочей среды 40 °C и выше

ПРИМЕРЫ ТРУБ СЕРИИ МУЛЬТИТЕРМ

МУЛЬТИТЕРМ ИС1

Напорная труба. Температура рабочей среды до 80°C

Износостойкий внутренний слой

1 По согласованию с Заказчиком

МУЛЬТИТЕРМ в ППУ²


Напорная труба. Температура рабочей среды до 80°C

ППУ-изоляция

2 Исполнение рекомендовано для районов с холодным климатом

ТРУБЫ МУЛЬТИТЕРМ, ТУ 2248-053-73011750-2016

Тол	іщина сте	нки несу	цего слоя т	рубы, е _н ,	мм
SDR 7,4	SDR 9	SDR 11	SDR 13,6	SDR 17	SDR 21
15,1	12,3	10	18,1	6,6	5,3
21,9	17,9	14,6	11,8	9,5	7,7
24,6	20	16,4	13,3	10,7	8,6
27,4	22,4	18,2	14,7	11,9	9,6
30,8	25,2	20,5	16,6	13,4	10,8
34,2	27,9	22,8	18,4	14,8	11,9
38,3	31,3	25,4	20,6	16,6	13,4
43,1	35,2	28,6	23,2	18,7	15
48,5	39,7	32,2	26,1	21,1	16,9
54,7	44,7	36,3	29,4	23,7	19,1
61,5	50,3	40,9	33,1	26,7	21,5
76,5	62,5	50,8	41,2	33,2	26,7
86,1	70,3	57,2	46,3	37,4	30
97	79,3	64,5	52,2	42,1	33,9
109,3	89,3	72,6	58,8	47,4	38,1
	SDR 7,4 15,1 21,9 24,6 27,4 30,8 34,2 38,3 43,1 48,5 54,7 61,5 76,5 86,1 97	SDR 7,4 SDR 9 15,1 12,3 21,9 17,9 24,6 20 27,4 22,4 30,8 25,2 34,2 27,9 38,3 31,3 43,1 35,2 48,5 39,7 54,7 44,7 61,5 50,3 76,5 62,5 86,1 70,3 97 79,3	SDR 7,4 SDR 9 SDR 11 15,1 12,3 10 21,9 17,9 14,6 24,6 20 16,4 27,4 22,4 18,2 30,8 25,2 20,5 34,2 27,9 22,8 38,3 31,3 25,4 43,1 35,2 28,6 48,5 39,7 32,2 54,7 44,7 36,3 61,5 50,3 40,9 76,5 62,5 50,8 86,1 70,3 57,2 97 79,3 64,5	SDR 7,4 SDR 9 SDR 11 SDR 13,6 15,1 12,3 10 18,1 21,9 17,9 14,6 11,8 24,6 20 16,4 13,3 27,4 22,4 18,2 14,7 30,8 25,2 20,5 16,6 34,2 27,9 22,8 18,4 38,3 31,3 25,4 20,6 43,1 35,2 28,6 23,2 48,5 39,7 32,2 26,1 54,7 44,7 36,3 29,4 61,5 50,3 40,9 33,1 76,5 62,5 50,8 41,2 86,1 70,3 57,2 46,3 97 79,3 64,5 52,2	15,1 12,3 10 18,1 6,6 21,9 17,9 14,6 11,8 9,5 24,6 20 16,4 13,3 10,7 27,4 22,4 18,2 14,7 11,9 30,8 25,2 20,5 16,6 13,4 34,2 27,9 22,8 18,4 14,8 38,3 31,3 25,4 20,6 16,6 43,1 35,2 28,6 23,2 18,7 48,5 39,7 32,2 26,1 21,1 54,7 44,7 36,3 29,4 23,7 61,5 50,3 40,9 33,1 26,7 76,5 62,5 50,8 41,2 33,2 86,1 70,3 57,2 46,3 37,4 97 79,3 64,5 52,2 42,1

По согласованию с потребителем допускается изготовление труб других типоразмеров от $\mathbf{d}_{_{\mathrm{I}}}$ 16 до 1600 мм.

^{*} Рабочее давление зависит от температуры транспортируемой среды.

РАСЧЕТНЫЙ СРОК ЭКСПЛУАТАЦИИ СИСТЕМЫ ТРУБОПРОВОДОВ СЕРИИ МУЛЬТИТЕРМ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ ТРАНСПОРТИРУЕМОЙ СРЕДЫ

T, °C	Минимальный расчетный	Р _{макс} , МПа (коэффициент запаса прочности C = 1,25)					
	срок эксплуатации, лет —	SDR 11	SDR 13,6	SDR 17	SDR 21		
20	100	14,81	11,75	9,26	7,41		
40	100	1,21	0,96	0,75	0,6		
50	100	1,07	0,85	0,67	0,53		
60	100	0,93	0,74	0,58	0,47		
70	50	0,81	0,64	0,51	0,41		
75	30	0,75	0,6	0,47	0,38		
80	30	0,69	0,55	0,43	0,34		
90	30	0,56	0,45	0,35	0,28		
95	4	0,53	0,42	0,33	0,26		
100	2,5	0,47	0,38	0,3	0,24		
110	1	0,37	0,3	0,23	0,19		

Минимальный срок эксплуатации рассчитан с учетом требований ГОСТ 54866 (ИСО 9080) и ГОСТ 32415 о минимальной термической стабильности труб из PE-RT тип II равной 8760 ч (1 год) при 110°C. При изменении коэффициента запаса прочности необходимо произвести расчет соответствующего максимального рабочего давления.

Допускается кратковременное увеличение температуры ΔT в течение не более 100 ч за весь период эксплуатации:

- $\Delta T = 25 \,^{\circ}\text{C}$ для рабочих температур в диапазоне от 40°C до 70 °C;
- $\Delta T = 20 \, ^{\circ}\text{C}$ для рабочих температур в диапазоне от 75 $^{\circ}\text{C}$ до 80 $^{\circ}\text{C}$;
- $\Delta T = 15 \, ^{\circ}\text{C} для рабочих температур в диапазоне от 90 <math>^{\circ}\text{C}$ до 100 $^{\circ}\text{C}$.

СРАВНЕНИЕ МАТЕРИАЛОВ РЕ-RT И РР-R

PE-RT тип	II		Срок	службі	ы, лет		PP-R			Срок	служб	ы, лет	
				SDR							SDR		
Температура,	К3П*	6	7,4	11	13,6	17	Температура,	КЗП*	6	7,4	11	13,6	17
°C	ווכח		Дав	ление,	МПа		°C	אווכא		Дав	ление,	МПа	
		1,0	0,8	0,6	0,4	0,4			1,0	0,8	0,6	0,4	0,4
40	1,5	>50	>50	>50	>50	>50	40	1,5	>50	>50	>50	>50	>50
50	1,5	>50	>50	>50	>50	>50	50	1,5	>50	>50	>50	>50	>50
60	1,5	>50	>50	>50	>50	>50	60	1,5	>50	>50	>50	>50	>50
70	1,5	50,0	50,0	50,0	50,0	50,0	70	1,5	27,3	24,7	6,2	26,4	1,6
75	1,5	30,0	30,0	30,0	30,0	11,4	75	1,5	10,9	9,9	1,0	10,5	0,3
80	1,5	18,0	18,0	3,4	18,0	0,1	80	1,5	4,5	4,1	0,2	4,3	0,0
85	1,5	12,0	12,0	0,0	12,0	0,0	85	1,5	1,1	0,7	0,0	0,9	0,0
90	1,5	2,0	0,7	0,0	1,4	0,0	90	1,5	0,2	0,1	0,0	0,2	0,0
95	1,5	0,0	0,0	0,0	0,0	0,0	95	1,5	0,0	0,0	0,0	0,0	0,0
100	1,5	0,0	0,0	0,0	0,0	0,0	100	1,5	0,0	0,0	0,0	0,0	0,0
105	1,5	0,0	0,0	0,0	0,0	0,0	105	1,5	0,0	0,0	0,0	0,0	0,0
110	1,5	0,0	0,0	0,0	0,0	0,0	110	1,5	0,0	0,0	0,0	0,0	0,0

ФИТИНГИ ДЛЯ ТРУБ СЕРИИ МУЛЬТИТЕРМ**

Литьевые фитинги для труб серии МУЛЬТИТЕРМ изготавливаются из полиэтилена повышенной термостойкости PE-RT тип II методом литья под давлением с возможной последующей механической обработкой.

Специальные фитинги изготавливаются из труб того же типа, что и трубопровод. По согласованию с Заказчиком возможно изготовление деталей различных конфигураций и диаметров: отводов, тройников и пр.

^{*} Коэффициент запаса прочности.

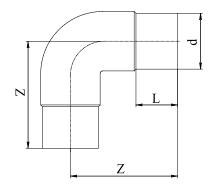
^{**} Трубы могут соединяться сваркой нагретым инструментом встык и/или фитингами.

СЕГМЕНТНЫЕ ФИТИНГИ

Основные геометрические параметры соответствуют таковым у фитингов для труб серии МУЛЬТИПАЙП AC.

ФИТИНГИ ЕВРОПЕЙСКИЙ СТАНДАРТ

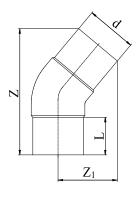
Основные геометрические параметры соответствуют таковым у фитингов для труб серии МУЛЬТИПАЙП ИС.


ФИТИНГИ С ТРУБНЫМИ КОНЦАМИ

Основные геометрические параметры для фитингов гнутых цельнотянутых соответствуют таковым у фитингов для труб серии МУЛЬТИПАЙП ИС.

Основные геометрические параметры литьевых фитингов и фитингов с трубными концами, изготовленных иными методами (прессования трубных заготовок, намотки с последующей механической обработкой, механической обработкой трубных заготовок) показаны далее.

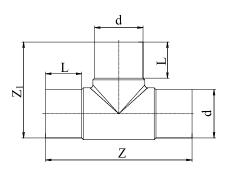
ОТВОД 90°


d, мм	SDR*	L, MM	Z, mm	Вес, кг**
20	11	52	75	0,027
25	11	25	80	0,040
32	11	50	82	0,061
40	11	74	105	0,084
50	11	80	108	0,150
63	11	67	110	0,271
63 —	17	- 63	118	0,253
75	11	90	132	0,415
90	11	75	134	0,656
110	11	- 82	162	1,08
110	17	- 82	162	0,808
125	11	103	169	1,50
140	11	120	200	2,28
160	11	- 98	225	3,03
160	17	- 98	225	2,34
180	11	142	247	4,44
200	11	153	262	6,08
225	11	120	207	7,64
225	17	- 120	307	6,56
250	11	134	293	11,0
280	11	144	330	15,0
315	11	145	360	20,7

^{*} Возможно изготовление фитингов других SDR.

^{**} Вес указан для справки.

ОТВОД 45°

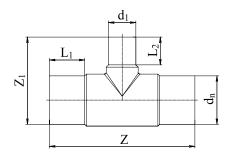


d, мм	SDR*	L, MM	Z, mm	Z ₁ , MM	Вес, кг**
20	11	52	127	57	0,027
25	11	52	137	62	0,037
32	11	70	173	78	0,070
40	11	74	176	81	0,090
50	11	62	176	83	0,110
63	11	63	180	88	0,212
75	11	71	180	90	0,285
90	11	75	233	115	0,545
110	11	82	256	129	0,888
125	11	99	278	141	1,20
140	11	121	336	168	1,76
160	11	98	330	170	2,23
180	11	143	398	202	3,45
200	11	153	424	217	4,76
225	11	120	430	225	6,11
250	11	133	464	244	8,33
280	11	144	486	260	10,6
315	11	145	557	297	16,1

 $^{^{*}}$ Возможно изготовление фитингов других SDR.

ТРОЙНИК РАВНОПРОХОДНЫЙ

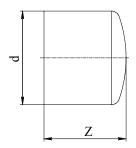
d, mm	SDR*	L, mm	Z, mm	Z ₁ , mm	Вес, кг**
20	11	41	108	64	0,035
25	11	41	122	73	0,035
32	11	46	139	83	0,060
40	11	52	165	102	0,110
50	11	57	184	117	0,190
63	11	63	230	150	0,364
75	11	72	248	160	0,550
90	11	75	280	184	0,886
110	11	82	330	222	1,60
125	11	98	350	239	2,24
140	11	104	390	270	3,18
160	11	98	440	304	4,50
180	11	143	528	350	6,89
200	11	124	505	353	8,33
225	11	128	543	393	10,6
250	11	130	582	416	14,0
280	11	133	622	452	18,9
315	11	145	712	524	27,6
355	11	167	829	592	38,1
400	11	198	913	657	52,0


^{*} Возможно изготовление фитингов других SDR.

^{**} Вес указан для справки.

^{**} Вес указан для справки.

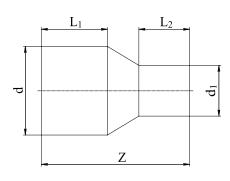
ТРОЙНИК НЕРАВНОПРОХОДНЫЙ



d _n xd ₁ , мм	SDR*	L ₁ , MM	L ₂ , MM	Z, MM	Z ₁ , MM	Вес, кг**
63×50	11	63	56	215	135	0,030
75×63	11	70	63	255	155	0,560
90x63	11	81	65	282	172	0,840
110x63	11	82	63	330	202	1,21
110×90	11	88	82	322	216	1,50
125×110	11	90	83	341	233	1,86
160×63	11	98	63	440	260	3,38
160×90	11	104	83	415	270	3,69
160×110	11	98	82	440	260	3,66
180×160	11	105	94	411	295	4,74
200x63	11	97	65	394	297	6,85
200×110	11	124	86	505	319	7,06
200x160	11	120	101	500	337	7,45
225×63	11	120	63	524	330	8,48
225×90	11	129	82	555	341	9,85
225x110	11	120	82	540	350	8,54
225×160	11	120	98	540	390	8,96
250x110	11	133	85	584	373	11,7
250x160	11	134	102	586	417	12,2
315×110	11	145	82	712	446	23,5
315×160	11	145	98	712	471	24,0
315x225	11	145	120	712	500	25,2
315×250	11	154	135	695	489	24,4

^{*} Возможно изготовление фитингов других SDR.

ЗАГЛУШКА


d, mm	SDR*	Z, MM	Вес, кг**
20	11	52	0,010
25	11	52	0,015
32	11	56	0,015
40	11	61	0,029
50	11	71	0,050
63	11	78	0,086
75	11	94	0,140
90	11	104	0,232
110	11	100	0,374
125	11	128	0,530
140	11	140	0,720
160	11	150	0,986
180	11	185	1,50
200	11	180	1,93
225	11	160	2,42
250	11	217	3,65
280	11	239	4,98
315	11	255	6,96
355	11	280	9,78
400	11	310	13,4

^{*} Возможно изготовление фитингов других SDR.

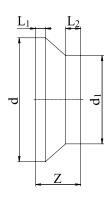
^{**} Вес указан для справки.

^{**} Вес указан для справки.

dxd ₁ ,	SDR*	L ₁	L ₂ ,	Z, MM	Вес, кг**
125x63	11	91	69	200	0,640
125x90	11	91	80	202	0,655
125×110	11	90	90	200	0,760
140x75	11	110	70	230	0,910
140x90	11	112	86	237	0,940
140×110	11	116	90	230	1,04
140x125	11	117	96	235	1,12
160x90	11	109	84	254	1,28
160×110	11	98	82	208	1,13
160×125	11	110	95	254	1,42
160x140	11	110	106	254	1,60
180x90	11	106	79	245	1,50
180×110	11	124	93	245	1,80
180×125	11	105	87	245	1,73
180x140	11	120	110	270	1,83
180×160	11	126	125	279	2,10
200x140	11	123	114	279	2,33
200×160	11	122	122	277	2,42
200×180	11	126	120	279	2,72

 $^{^{*}}$ Возможно изготовление фитингов других SDR.

dхd ₁ , мм	SDR*	L ₁ , MM	L ₂ ,	Z, mm	Вес, кг**
25×20	11	52	52	115	0,022
32x20	11	54	52	120	0,027
32x25	11	54	52	120	0,033
40x20	11	57	52	129	0,045
40x25	11	57	52	127	0,047
40x32	11	49	44	105	0,040
50x25	11	56	42	132	0,058
50x32	11	57	47	132	0,065
50x40	11	55	51	134	0,080
63x32	11	63	44	127	0,096
63x40	11	63	49	147	0,120
63x50	11	64	58	152	0,140
75×50	11	70	55	155	0,190
75×63	11	70	65	171	0,220
90×50	11	80	57	174	0,280
90x63	11	75	63	153	0,260
90x75	11	79	70	180	0,350
110×63	11	82	63	184	0,414
110×75	11	84	74	185	0,480
110×90	11	82	75	207	0,545


dxd ₁ ,	SDR*	L ₁	L ₂ ,	Z, MM	Вес, кг**
225×110	11	120	98	265	2,55
225x140	11	130	110	295	2,90
225×160	11	120	98	265	2,91
225x180	11	130	118	285	3,22
225x200	11	126	120	272	3,38
250×160	11	149	100	308	4,07
250x180	11	151	105	316	4,27
250x200	11	151	116	324	4,68
250x225	11	155	122	330	5,28
280x200	11	140	116	345	5,85
280x225	11	142	122	335	6,09
280x250	11	139	135	340	6,70
315x225	11	145	120	348	7,10
315x250	11	150	134	365	8,13
315×280	11	150	145	365	8,92
355x250	11	165	130	390	9,10
355x280	11	165	139	390	9,50
355x315	11	165	150	390	9,90
400x280	11	180	139	415	10,4
400x315	11	180	150	415	11,1
400x355	11	180	165	420	11,6

^{**} Вес указан для справки.

ПЕРЕХОД КОРОТКИЙ РЕДУКЦИОННЫЙ

 Изготавливается методами: прессования трубных заготовок; намотки с последующей мех. обработкой; мех. обработкой трубных заготовок

dxd ₁ , mm	SDR*	L ₁ ,	L ₂ , MM	Z, mm	Вес, кг**
250×225 -	11	- 22	28	65	1,00
Z3UXZZ3 =	17	Ζ.Ζ.	Z0	05	0,77
280x225 -	11	25	30 -	84	1,50
	17			90	1,22
315x225 -	11	. 34	30	114	2,77
	17				2,16
315x250 -	11	24	16	70	1,67
	17				1,28
315×280 -	11	24	16	52	1,28
-	17				0,99
355×315 -	11	27	30	80	2,58
	17				1,84
400x315 -	11	30	30	115	4,40
	17				3,16
400x355 -	11	30	17	67	2,83
	17				2,07
450x355	17	40	25	120	4,58
450x400 -	11	35	28	95	4,90
430X400 -	17	- 35	28	90	4,66
500x355	11	40	25	120	6,55
	11	=0		44.0	8,91
500x400 -	17	50	35	140	6,66
	11				5,11
500x450 -	17	32	17	83	3,80
	11				11,7
560x450 -	17	45	45	185	7,86
	11				8,16
560x500 -	17	40	30	105	6,14
	11				17,7
630×450 -	17	45	45	246	11,9
	11				14,7
630x500 -		43	30	150	
	17				10,7
630x560 -	11	38	20	90	9,18
	17				7,01
710×560 -	11	100	100	330	32,1
	17			21,4	
710×630 -	11	45	45	117	12,4
	17			117	9,10
800x630	17			347	28,6
000.710	11	100	100	270	38,9
800×710 -	17	•		278	26,0

^{*} Возможно изготовление фитингов других SDR.

^{**} Вес указан для справки.

СИСТЕМА НАПОРНЫХ ТРУБОПРОВОДОВ СЕРИИ МУЛЬТИПАЙП ОС С ВНЕШНИМ ОГНЕЗАЩИТНЫМ СЛОЕМ

Наружный огнезащитный слой труб **МУЛЬТИПАЙП ОС**, выполненный из специальной огнестойкой композиции, позволяет применять данную систему трубопроводов на промышленных предприятиях, предъявляющих повышенные требования к нормам промышленной безопасности на опасных производственных объектах.

ОБЛАСТИ ПРИМЕНЕНИЯ

Системы водоотведения и дренажа, водоводы, комплексы водопроводных сооружений на промплощадках на пожароопасных и взрывоопасных производственных объектах, в том числе в агрессивной окружающей среде.

• Химическая и нефтехимическая промышленность

- Угольная промышленность
- Горнорудная промышленность

ПРИМЕРЫ ТРУБ СЕРИИ МУЛЬТИПАЙП ОС

мультипайп ос

Напорная труба. Наружный огнезащитный слой

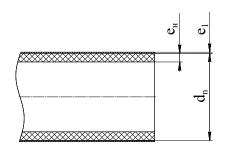
мультипайп ос ис

Напорная труба. Наружный огнезащитный слой

Износостойкий внутренний слой

КЛЮЧЕВЫЕ ХАРАКТЕРИСТИКИ

Горючесть: Г1 (слабогорючие) согласно ГОСТ 30244 Воспламеняемость: B2 (умеренновоспламеняемые) согласно ГОСТ 30402


КОНСТРУКЦИЯ НА ПРИМЕРЕ ТРУБ МУЛЬТИПАЙП ОС

- 1. Несущий слой напорной трубы из ПЭ 100 или ПЭ 100-RC. Толщина зависит от номинального давления (PN). По согласованию с Заказчиком возможно изготовление данного слоя из PE-RT тип II для применения при повышенной температуре транспортируемой среды.
- 2. Светлый наружный слой, выполненный из специальной огнезащитной композиции

ТРУБЫ МУЛЬТИПАЙП ОС, ТУ 22.21.21-044-73011750-2018

Номинальный	Толщина					, е _н , мм
наружный _диаметр, d _" , мм*	наружного слоя, е ₁ , мм**	PN 8	PN 10	PN 12,5	PN 16	PN 20
63	2-5	3	3,8	4,7	5,8	7,1
75	2-5	3,6	4,5	5,6	6,8	8,4
90	2-5	4,3	5,4	6,7	8,2	10,1
110	2-5	5,3	6,6	8,1	10	12,3
125	2-5	6	7,4	9,2	11,4	14
140	2-5	6,7	8,3	10,3	12,7	15,7
160	2-5	7,7	9,5	11,8	14,6	17,9
180	2-5	8,6	10,7	13,3	16,4	20,1
200	2-5	9,6	11,9	14,7	18,2	22,4
225	2-5	10,8	13,4	16,6	20,5	25,2
250	2-5	11,9	14,8	18,4	22,7	27,9
280	2-5	13,4	16,6	20,6	25,4	31,3
315	2-5	15	18,7	23,2	28,6	35,2
355	2-5	16,9	21,1	26,1	32,2	39,7
400	2-5	19,1	23,7	29,4	36,3	44,7

^{*} По согласованию с Заказчиком возможно изготовление труб других типоразмеров.

Номинальное давление (PN) соответствует постоянному максимальному рабочему давлению при $20\,^{\circ}\text{C}.$

ФИТИНГИ ДЛЯ ТРУБ СЕРИИ МУЛЬТИПАЙП ОС***

Специальные фитинги изготавливаются из труб того же типа, что и трубопровод. По согласованию с Заказчиком возможно изготовление деталей различных конфигураций и диаметров: отводов, тройников, крестовин и пр.

Фитингам необходимо обеспечить огнезащиту.

ФИТИНГИ С ТРУБНЫМИ КОНЦАМИ

Основные геометрические параметры для фитингов гнутых цельнотянутых соответствуют таковым у фитингов для труб серии МУЛЬТИПАЙП ИС.

СЕГМЕНТНЫЕ ФИТИНГИ

Основные геометрические параметры соответствуют таковым у фитингов для труб серии МУЛЬТИПАЙП AC.

ФИТИНГИ ЕВРОПЕЙСКИЙ СТАНДАРТ

Основные геометрические параметры соответствуют таковым у фитингов для труб серии МУЛЬТИПАЙП ИС.

^{**} Размеры для справки.

^{***} Трубы могут соединяться сваркой нагретым инструментом встык и/или фитингами.

СИСТЕМА НАПОРНЫХ ТРУБОПРОВОДОВ СЕРИИ МУЛЬТИПАЙП АС С ВНЕШНИМ ТОКООТВОДЯЩИМ СЛОЕМ

Трубопроводные системы с токоотводящим слоем предназначены для применения в зонах, где есть риск возникновения взрыва в результате искрообразования электростатического заряда. Трубы с токоотводящим слоем позволяют решить проблему риска возникновения электростатического разряда.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Дегазация шахт
- Устройство водоотводов
- Пылеудаление
- Воздуховоды/Вентиляция

 Наполнение, смешивание, перемешивание, опорожнение и распыление легко воспламенимых взрывоопасных сред

ПРИМЕРЫ ТРУБ СЕРИИ МУЛЬТИПАЙП АС

МУЛЬТИПАЙП АС*

Напорная труба. Наружный токоотводящий слой

МУЛЬТИПАЙП АС ИС

Напорная труба. Наружный токоотводящий слой

Износостойкий внутренний слой

КЛЮЧЕВЫЕ ХАРАКТЕРИСТИКИ

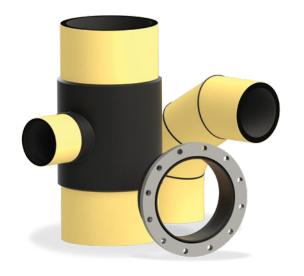
- Безопасная транспортировка рабочей среды
- Стойкость к механическим повреждениям
- Быстрый и удобный монтаж трубопровода по сравнению с конкурентами

КОНСТРУКЦИЯ НА ПРИМЕРЕ ТРУБ МУЛЬТИПАЙП АС ИС

- 1. Устойчивый к абразивному износу внутренний слой увеличивает срок службы трубопровода не менее, чем в шесть раз по сравнению с традиционными стальными и полиэтиленовыми трубами**.
- 2. Несущий слой напорной трубы из ПЭ 100 или ПЭ 100-RC. Толщина зависит от номинального давления (PN).
- 3. Наружный слой, отводящий статическое электричество.

^{*} Базовая конструкция трубы может быть адаптирована под требования заказчика.

^{**} Группой ПОЛИПЛАСТИК проведены сравнительные испытания труб МУЛЬТИПАЙП ИС и ПЭ 100 по методу DIN EN 295-3:212-03 (Дармштадтский метод), а также по методу ISO 15527.



Номинальный	Толщина	Толщина стенки несущего слоя трубы, е _н , мм				, е _н , мм
наружный диаметр, d _n , мм*	наружного слоя, е ₁ , мм**	PN 8	PN 10	PN 12,5	PN 16	PN 20
63	2-5	3	3,8	4,7	5,8	7,1
75	2-5	3,6	4,5	5,6	6,8	8,4
90	2-5	4,3	5,4	6,7	8,2	10,1
110	2-5	5,3	6,6	8,1	10	12,3
125	2-5	6	7,4	9,2	11,4	14
140	2-5	6,7	8,3	10,3	12,7	15,7
160	2-5	7,7	9,5	11,8	14,6	17,9
180	2-5	8,6	10,7	13,3	16,4	20,1
200	2-5	9,6	11,9	14,7	18,2	22,4
225	2-5	10,8	13,4	16,6	20,5	25,2
250	2-5	11,9	14,8	18,4	22,7	27,9
280	2-5	13,4	16,6	20,6	25,4	31,3
315	2-5	15	18,7	23,2	28,6	35,2
355	2-5	16,9	21,1	26,1	32,2	39,7
400	2-5	19,1	23,7	29,4	36,3	44,7

^{*} По согласованию с Заказчиком возможно изготовление труб других типоразмеров до d_n 710 мм.

Номинальное давление (PN) соответствует постоянному максимальному рабочему давлению при 20 °C.

ФИТИНГИ ДЛЯ ТРУБ СЕРИИ МУЛЬТИПАЙП АС***

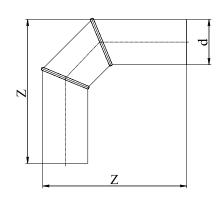
Трубы серии МУЛЬТИПАЙП АС можно соединять при помощи деталей с закладными нагревателями (муфты с ЗН, втулки под фланец с ЗН). Данным соединительным деталям необходимо обеспечить отвод статического электричества.

Специальные фитинги изготавливаются из труб того же типа, что и трубопровод. По согласованию с Заказчиком возможно изготовление деталей различных конфигураций и диаметров: отводов, тройников, крестовин и пр.

^{**} Размеры для справки.

^{***} Трубы могут соединяться сваркой нагретым инструментом встык и/или фитингами.

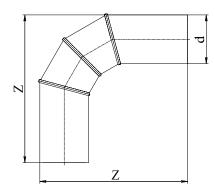
ФИТИНГИ С ТРУБНЫМИ КОНЦАМИ


Основные геометрические параметры для фитингов гнутых цельнотянутых соответствуют таковым у фитингов для труб серии МУЛЬТИПАЙП ИС.

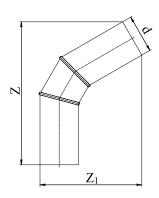
Основные геометрические параметры литьевых фитингов и фитингов с трубными концами, изготовленных иными методами (прессования трубных заготовок, намотки с последующей механической обработкой, механической обработкой трубных заготовок) соответствуют таковым у фитингов для труб серии МУЛЬТИТЕРМ. Данным соединительным деталям необходимо обеспечить отвод статического электричества.

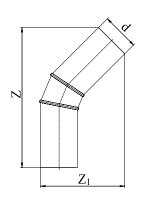
СЕГМЕНТНЫЕ ФИТИНГИ

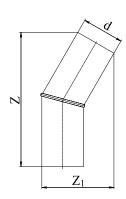
ОТВОД 90° ОДНОСЕКЦИОННЫЙ



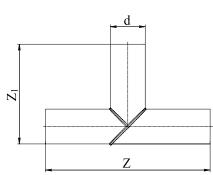
d, мм	SDR	PN	Z, mm
	11	16	
500	13,6	12,5	- 1091
300	17	10	- 1091
	21	8	_
560	17	10	1175
	11	16	
630	13,6	12,5	- - 1264
030	17	10	- 1204
	21	8	-
710	17	10	2292


d, мм	SDR	PN	Z, мм
	11	16	
110	13,6	12,5	350
	17	10	
125	17	10	362
140	17	10	404
	11 13,6	16 12,5	-
160	15,0	10	- 439
	21	8	_
180	17	10	464
200	17	10	495
	11	16	_
225	13,6	12,5	- 522
225	17	10	532
	21	8	
	11	16	
250	13,6	12,5	- - 657
230	17	10	- 037
	21	8	
280	17	10	693
	11	16	
315	13,6	12,5	- 769
נונ	17	10	709
	21	8	
355	17	10	838
	11	16	_
400	13,6	12,5	- 896
400	17	10	_ 090
	21	8	
	11	16	_
450	13,6	12,5	- - 973
430	17	10	9/J -
•	21	8	

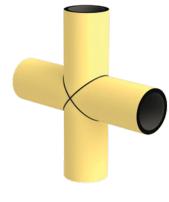

d, mm	SDR	PN	Z, MM
	11	16	_
110	13,6	12,5	367
	17	10	
125	17	10	401
140	17	10	441
	11	16	_
160	13,6	12,5	- 486
	17	10	_
100	21	8	
180	17	10	521
200	17 11	10 16	559
	13,6	12,5	-
225			- 619
	17 21	10	_
	11	16	-
250	13,6	12,5	- 758
	17	10	_
	21	8	
280	17	10	796
	11	16	_
315	13,6	12,5	- 882
3.3	17	10	-
	21	8	
355	17	10	954
	11	16	_
400	13,6	12,5	1020
400	17	10	- 1028
	21	8	_
	11	16	
. = 0	13,6	12,5	-
450	17	10	- 1124
	21	8	-
	11	16	
	13,6	12,5	-
500	17	10	- 1264
	21	8	_
560	17	10	1365
	11	16	
	13,6	12,5	_
630	17	10	- 1473
	21	8	-
710	17	10	2625
/ 10	1 /	10	

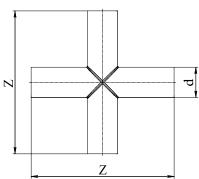

d, мм	SDR	PN	Z, mm	Z ₁ , MM
	11	16	_	
110	13,6	12,5	410	292
	17	10		
125	17	10	439	316
140	17	10	473	343
	11	16	_	
160	13,6	12,5	- 509	374
	17	10	-	
100	21	8	F30	/.01
180	17 17	10	539	401
200	11	10 16	573	430
	13,6	12,5	-	
225			620	471
	17	10	-	
	21	8		
	11	16	_	
250	13,6	12,5	- 812	594
	17	10		
	21	8		
280	17	10	833	621
	11	16	-	702
315	13,6	12,5	943	
313	17	10		
	21	8		
355	17	10	999	754
	11	16	_	
400	13,6	12,5	1067	01/
400	17	10	- 1063	814
	21	8	-	
	11	16		
	13,6	12,5	-	
450	17	10	- 1142	883
	21	8	-	
	11	16		
	13,6	12,5	-	
500	17	10	- 1293	996
	21	8	_	
560	17	10	1378	1076
	11	16	1010	1070
	13,6	12,5	-	
630			- 1470	1163
-	17	10	-	
710	21	8	25.55	1076
710	17	10	2565	1836

d, мм	SDR	PN	Z, mm	Z ₁ , MM
	11	16		'
110	13,6	12,5	438	259
	17	10		
125	17	10	465	281
140	17	10	501	307
	11	16	_	
160	13,6	12,5	- 536	335
	17	10	_	
100	21	8		260
180 200	17 17	10	562 596	360 388
	11	16	290	300
	13,6	12,5	-	
225	17		645	426
		10 8	_	
	21			
	11	16	-	
250	13,6	12,5	- 859	533
	17	10	-	
	21	8		
280	17	10	874	560
	11	16	_	
315	13,6	12,5	- 998	636
313	17	10	-	
	21	8		
355	17	10	1040	682
	11	16		
4.00	13,6	12,5	1101	720
400	17	10	- 1101	739
	21	8	-	
	11	16		
/ = 0	13,6	12,5	-	0.00
450	17	10	- 1176	809
	21	8	-	
	11	16		
	13,6	12,5	-	
500	17	10	- 1334	906
	21	8	-	
560	17	10	1418	983
	11	16		
	13,6	12,5	-	
630	17	10	- 1504	1069
-			_	
710	21	8	2521	1550
710	17	10	2531	1550



d, мм	SDR	PN	Z, mm	Z ₁ , MM
110	11	16	381	
	13,6	12,5		198
	17	10		
125	17	10	398	215
140	17	10	415	233
160	11	16	_	
	13,6	12,5	- 435 -	255
	17	10		
	21	8		
180	17	10	450	277
200	17	10	469	299
	11	16	-	
225	13,6	12,5	- 491	327
	17	10		
	21	8		
	11	16	-	
250	13,6	12,5	- 704	405
	17	10	-	
	21	8		
280	17	10	718	435
	11	16	_	
315	13,6	12,5	- 830	495
213	17	10		700
	21	8		
355	17	10	850	535
	11	16	- - 887 -	
4.00	13,6	12,5		F0/:
400	17	10		584
	21	8		
	11	16	- 1019	
	13,6	12,5		663
450	17	10		
	21	8	-	
	11	16		
	13,6	12,5	- - 1058 -	
500	17	10		717
	21	8		
560	17	10	1107	782
	11	16	1154 855	
	13,6	12,5		
630	17	10		855
710	21	8	1726	1070
710	17	10	1726	1078


тройник



d, мм	SDR	PN	Z, MM	Z ₁ , MM
110	17	10	520	315
125	17	10	550	338
140	17	10	580	360
160	17	10	620	390
180	17	10	660	420
200	17	10	700	450
225	17	10	750	488
250	17	10	1000	625
280	17	10	1060	670
315	17	10	1230	773
355	17	10	1310	833
400	17	10	1400	900
450	17	10	1500	975
500	17	10	1700	1100
560	17	10	2600	1700
630	17	10	2870	1750
710	17	10	2990	1850

КРЕСТОВИНА

d, mm	SDR	PN	Z, MM
110	17	10	520
125	17	10	535
140	17	10	580
160	17	10	630
180	17	10	660
200	17	10	690
225	17	10	780
250	17	10	970
280	17	10	1090
315	17	10	1215
355	17	10	1310
400	17	10	1400
450	17	10	1500
500	17	10	1700
560	17	10	1820
630	17	10	2870
710	17	10	2990

І НОРМАТИВНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Документы, регламентирующие характеристики продукции

Технические условия и ГОСТ

ТРУБЫ

- Износостойкие трубы серии МУЛЬТИПАЙП ИС по ТУ 22.21.21-049-73011750-2022, ТУ 22.21.21-067-73011750-2019
- Трубы повышенной термостойкости серии МУЛЬТИТЕРМ по ТУ 2248-053-73011750-2016
- Трубы с внешним огнезащитным слоем серии МУЛЬТИПАЙП ОС по ТУ 22.21.21-044-73011750-2018, ТУ 22.21.21-065-73011750-2018

ФИТИНГИ

- Детали соединительные литьевые из полиэтилена повышенной термостойкости для напорных трубопроводов по ТУ 22.21.29-058-73011750-2017
- Детали соединительные для труб серии МУЛЬТИПАЙП ИС в ППУ по ТУ 22.21.21-067-73011750-2019
- Отводы гнутые по ТУ 22.21.29-086-73011750-2022

Инструкции по монтажу

• Трубы серии МУЛЬТИПАЙП ИС – ИМ.ГПП.19-19-2

ОПРОСНЫЙ ЛИСТ ДЛЯ ВЫБОРА СИСТЕМЫ ТЕХНОЛОГИЧЕСКИХ ПОЛИМЕРНЫХ ТРУБОПРОВОДОВ gokāpolyplastic.ru Организация: Контактное лицо: Телефон / факс / e-mail: Дата заполнения: Адрес объекта: _ 20 ___ Назначение трубопровода: Подпись Заказчика: Наличие проектной документации: 1. ОБЩИЕ СВЕДЕНИЯ 1.1 Тип транспортируемого материала: 1.2 Химический состав: 1.3 Концентрация: 1.4 Удельный вес: 1.5 Описание твердого вещества (величина фракции): _ 1.6 Описание жидкого вещества (значение рН жидкости): ____ 2. ТЕМПЕРАТУРА 2.1 Рабочая температура транспортируемого материала, °C _ Максимальная температура транспортируемого материала, °С ___ 2.2 2.3 Температура окружающей среды, °С _ 3. ДАВЛЕНИЕ 3.1 Рабочее давление, МПа Максимальное давление, МПа 4. НАЛИЧИЕ ПРОБЛЕМ 4.1 Наличие проблем с абразивным износом: нет 4.2 Наличие проблем с зарастанием на внутренней стенке трубы: да нет 5. СКОРОСТЬ И РАСХОД Минимальная критическая скорость пульпы, м/с _

5.2 Требуемый расход транспортируемого материала, м³/ч 5.3 Скорость потока, м/с 6. ДЛИНА ЛИНИИ 6.1 Длина линии, м 7. МАТЕРИАЛ И ДИАМЕТРЫ ТРУБ 7.1 Материал используемой трубы:

7.2

7.3

7.4

Средний срок эксплуатации используемой трубы, лет ____

Наружный диаметр используемой трубы, мм _____

Внутренний диаметр используемой трубы, мм _

Перепад высоты линии, м

8. УСЛ	ОВИЯ УКЛАДКИ		
8.1	Требуется ли теплоизоляция трубы:	нет 📗 да 🔲 способ теплоизоляции:	
8.2	Способ укладки трубы:	в земле 📗 на поверхности земли 📗 на эстакаде 📗	другое:

угол наклона линии, градус: 🔃

РЕГИОНАЛЬНЫЕ ПРЕДСТАВИТЕЛЬСТВА

Центральный ФО

Москва и Московская обл. +7 (495) 737-04-28 ЦФО +7 (495) 745-68-57 Тульская обл., Новомосковск +7 (48762) 2-14-02 Воронеж +7 (905) 339-52-25 Белгород +7 (961) 077-55-53

Северо-Западный ФО

Санкт-Петербург +7 (812) 336-54-70

Приволжский ФО

Казань +7 (843) 200-05-71 Новочебоксарск +7 (8352) 74-29-29 Оренбург +7 (3532) 54-01-80 Пермь +7 (342) 207-97-61 Самара +7 (846) 277-92-35 Уфа +7 (347) 216-04-32 Саратовская обл., Энгельс +7 (937) 020-56-60

Южный ФО

Волгоградская обл., Волжский +7 (8443) 51-15-15 Краснодар +7 (928) 400-40-82 Ставрополь +7 (928) 005-34-73 Ростов-на-Дону +7 (937) 567-73-52

Уральский ФО

Екатеринбург +7 (343) 222-25-01 Курган +7 (3522) 66-30-07 Тюмень +7 (3452) 63-88-00 Челябинск +7 (351) 734-99-11

Сибирский ФО

Иркутск +7 (3952) 56-22-26 Красноярск +7 (391) 202-65-07 Кемерово +7 (3842) 90-04-74 Новокузнецк +7 (3843) 53-90-14 Новосибирск +7 (383) 252-33-73 Омск +7 (3812) 29-03-40

Дальневосточный ФО

Владивосток +7 (423) 246-85-35 Хабаровск +7 (4212) 47-09-11

Казахстан

Астана +7 (7172) 47-25-89

Беларусь

Минск +375 (17) 215-52-52

Ссылка на электронную версию каталога

Информация, представленная в каталоге, носит справочный характер. Актуальную информацию уточняйте у производителя.

© Копирование или воспроизведение каталога частями или целиком без письменного разрешения 000 «Группа ПОЛИПЛАСТИК» запрещено.

000 «Группа ПОЛИПЛАСТИК» Тел.: +7 (495) 745-68-57 www.polyplastic.ru Россия, 119530, Москва, Очаковское шоссе, д. 18, стр. 3, gok@polyplastic.ru

