

ВОЗДУХОВОДЫ И ФАСОННЫЕ ЭЛЕМЕНТЫ МАРТ 2022

Нам доверяют лидеры

Компания **HEBATOM** подтверждает это каждый день. Именно мы помогаем заводам, жилым комплексам, комбинатам, дворцам спорта, шахтам, школам, больницам, училищам, складам, торговым центрам, лабораториям, вокзалам, аэропортам, офисам и другим зданиям дышать.

Среди наших клиентов Русская медная компания, Газпромнефть, КFC, Магнит, Л'Этуаль, Роскосмос, Уральский завод конвейерных лент, Российские железные дороги, Wildberries и это далеко не все на территории России и стран СНГ.

nevatom.ru

СОДЕРЖАНИЕ

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ВОЗДУХОРАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ	4
2. ОСНОВНЫЕ ЭЛЕМЕНТЫ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ	6
3. ВОЗДУХОВОД С ИНТЕГРИРОВАННЫМ ФЛАНЦЕМ TDC III	7
3.1. Процесс производства воздуховодов с интегрированным фланцем	10
3.2. L-образные воздуховоды	13
4. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СИСТЕМАМ ВОЗДУХОВОДОВ ПО КЛАССУ ГЕРМЕТИЧНОСТИ	15
5. ПРЯМОУГОЛЬНЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ	16
5.1. Прямоугольные воздуховоды	19
5.2. Врезки	20
5.3. Заглушки	21
5.4. Отводы	22
5.5. Отводы равномерного распределения воздуха	23
5.6. Переходы	24
5.7. Тройники	25
5.8. Утки	26
6. ЭКОНОМИЧНАЯ СИСТЕМА ВЕНТИЛЯЦИИ NEVATOM SYSTEM	27
7. КРУГЛЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ	29
7.1. Спирально-навивные воздуховоды	30
7.2. Прямошовные воздуховоды (ПШ)	31
7.3. Врезки	32
7.4. Заглушки	34
7.5. Крестовины	35
7.6. Ниппели	
7.7. Отводы	
7.8. Переходы	
7.9. Тройники	
710 VTVIA	//3

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ВОЗДУХОРАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ

Воздухораспределительная сеть должна обеспечивать пропуск достаточного объема воздуха при следующих условиях:

- Герметичность
- Минимальные потери напора
- Скорость воздуха не превышает допустимую по санитарным нормативам
- Уровень шума не превышает допустимый по санитарным нормативам
- Минимальное занимаемое воздуховодами пространство
- Теплоизоляция и звукоизоляция (при необходимости)

В зависимости от конкретных условий подбирают оптимальную конфлигурацию сети воздуховодов, их материал и сечение.

НОРМАТИВНЫЕ ДОКУМЕНТЫ

Номенклатура и основные размеры унифицированных деталей металлических воздуховодов; деталей систем вентиляции, распределительных устройств; материал изготовления воздуховодов и его толщина в зависимости от сечения воздуховодов установлены в следующих нормативных документах:

- СП 60.13330.2020 (СНИП 41-01-2003) «Отопление, вентиляция и кондиционирование воздуха»
- СП 7.13130.2013 «Отопление, вентиляция и кондиционирование. Требования пожарной безопасности»
- ТУ 4863-002-58769768-2014 «Конструкции вентиляционные классов А, В, С, D»

воздуховоды для общеобменной вентиляции

Воздуховоды систем вентиляции и кондиционирования распределяют воздух и обеспечивают воздухообмен в помещениях.

Круглые и прямоугольные воздуховоды HEBATOM из оцинкованной листовой стали соответствуют требованиям ГОСТ 24751-81 и СП 60.13330.2020 (СНиП 41-01-2003). Прямые части, а также круглые и прямоугольные фасонные элементы изготавливают из оцинкованной или черной стали толщиной от 0,4 до 1,2 мм.

ВОЗДУХОВОДЫ ДЛЯ АГРЕССИВНЫХ СРЕД

Воздуховоды из нержавеющей стали подходят для производственных помещений предприятий пищевой, химической и фармацевтической промышленностей, а также для больниц и заведений общепита. Нержавеющая сталь обладает слабыми магнитными свойствами, устойчива к щелочам, кислотам и повышенной влажности, что подходит для помещений с агрессивным воздействием окружающей среды.

Круглые и прямоугольные воздуховоды из нержавеющей стали производят в соответствии с требованиями ГОСТ 24751-81 и СП 60.13330.2020 (СНиП 41-01-2003).

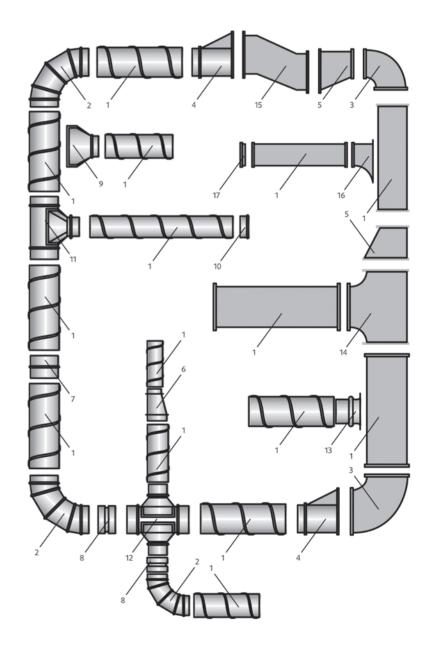
Толщина металла – от 0,4 до 2,0 мм (зависит от размеров и предъявляемых требований). В процессе производства в HEBATOM применяют газовую аргонную сварку с использованием инертных газов и их смесей.

ПРЕИМУЩЕСТВА:

- Такие воздуховоды не ржавеют
- Они рассчитаны на высокие температуры (более 200 °C), что позволяет применять их для отвода горячего воздуха в дымоходах и системах дымоудаления
- Срок службы воздуховодов и фасонных частей из данного материала в разы превышает срок службы изделий из оцинкованной или черной стали

^{*}Толщину металла следует уточнить при согласовании заказа

2. ОСНОВНЫЕ ЭЛЕМЕНТЫ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ


Сеть металлических воздуховодов рекомендуют компоновать из унифицированных стандартных деталей (прямых участков, отводов, переходов, ниппелей, заглушек) и узлов ответвлений (тройников, крестовин, врезок).

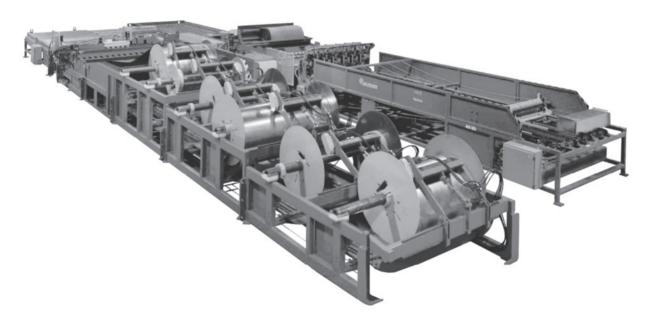
КОНСТРУКЦИЯ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ

- 1 прямые участки;
- 2 отвод круглый 90°;
- 3 отвод прямоугольный 90°;
- 4 переход с прямоугольного на круглый;
- 5 переход с прямоугольного;
 - на прямоугольный;
- 6 переход односторонний;
- 7 ниппель внутренний;
- 8 ниппель наружный;
- 9 врезка воротниковая;
- 10 заглушка круглая;
- 11 тройник круглый;
- 12 крестовина;
- 13 врезка круглая с пластиной;
- 14 тройник прямоугольный;
- 15 утка прямоугольная;
- 16 врезка «Сапог»;
- 17 заглушка прямоугольная.

типы соединений:

- Интегрированный фланец
- Шинорейка
- Ниппель
- Ниппель с резиновым уплотнением
- Фланец из уголка
- Фланец плоский

3. ВОЗДУХОВОД С ИНТЕГРИРОВАННЫМ ФЛАНЦЕМ TDC III


HEBATOM предлагает прямоугольные воздуховоды и фасонные изделия с интегрированным фланцем TDC III. Он позволяет соединять между собой части системы воздуховодов без шинореечного профиля. Эта технология повышает герметичность систем воздуховодов в **8 раз** по сравнению с шинореечным соединением.

ПРЕИМУЩЕСТВА

1. Высокая герметичность

Герметичность систем воздуховодов обеспечивают два элемента:

- Интегрированный фланец TDC III, который является продолжением прямоугольного воздуховода, изготовлен из цельной заготовки того же листового металла, загнутой по краям и сцепленной с помощью специальных уголков
- Фальц (продольный шов) по технологии Pittsburgh или Snap-Lock, который используют для соединения L-образных воздуховодов*

Интегрированный фланец TDC III — это ключевой элемент воздуховода HEBATOM, от которого получила название технология. Он обеспечивает высокую герметичность стыков воздуховодов за счет отсутствия щелей, через которые утекает воздух при шинореечном соединении. Такой фланец формируется на автоматизированной производственной линии

FORMTEK FABRIDUCT из того же листового металла, что и воздуховод. Края загибают в нужную конфигурацию, прокатывая их через **21 пару** специальных роликов. На рисунке 1 показано сечение **интегрированного фланца TDC III**, полученное в результате этого процесса, рядом с сечением типичного шинореечного фланца.

nevatom

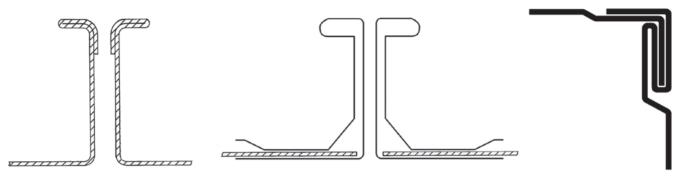
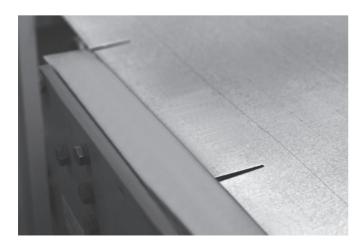
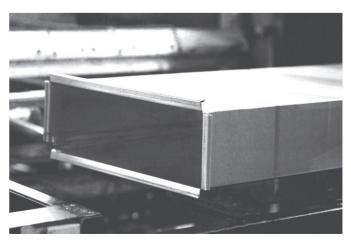


Рисунок 1 – Сечение интегрированного фланца ТDC III (слева) и типичного шинореечного (справа)

Рисунок 2 – Схема шва Pittsburgh.

Фальц соединяет края заготовки воздуховода, формируя единый короб. В замкнутых воздуховодах **HEBATOM** используют шов **Pittsburgh** (см. рисунок 2) – технология угловой фальцовки металла. Процесс фальцовки начинают на линии FORMTEK FABRIDUCT, где продольные края заготовки прокатывают через специальные ролики, формирующие «шип» и «паз» шва. Далее эти края смыкают вручную и «закатывают» на станке WHISPER-LOC, который прочно зажимает один край в другом и обеспечивает герметизацию. В результате получается гладкий, ровный шов, который совместно **с интегрированным фланцем TDC III** повышает герметичность воздуховода до **класса герметичности «С»**.


2. Высокая жесткость соединений


Интегрированный фланец TDC III имеет бо́льшую жесткость по сравнению с фланцем, выполненным на шинореечном соединении. Фланец TDC III является продолжением воздуховода и сделан из того же металла, в отличии от шинореечного соединения, которое присоединяют к воздуховоду внешними креплениями: пуклями, шурупами. Прочная конструкция фланца делает его устойчивым к различным нагрузкам при транспортировке и монтаже. Высокая жесткость интегрированного фланца TDC III существенно экономит время монтажа без потери качества.

3. Геометрически правильная форма воздуховодов

Воздуховоды геометрически правильной формы выстраиваются в идеально прямую линию без закручивания в «винт» и прочих деформаций, позволяя выстроить систему воздуховодов в абсолютно точном соответствии с проектом. Отсутствие деформаций снижает турбулентность воздуха и вибрацию, что повышает эффективность воздухообмена всей системы вентиляции.

4. Стабильность и точность результата

Автоматизированная линия стабильно повышает предсказуемость качества изделий, устраняя из процесса производства человеческий фактор и исключаявероятностьвыпустить продукт с какой-либо погрешностью или браком. Последовательность и согласованность процессов автоматизированного производства интегрированного фланца TDC III упрощает выполнение заказов для проектов любого масштаба и сложности.

5. Высокая скорость производства без потери качества

Раскрой одного воздуховода на автоматизированной линии FORMTEK FABRIDUCT занимает не более 2 минут, но так как на линии одновременно находится до 4-х заготовок на разных стадиях процесса, время, затраченное на раскрой и загиб каждого последующего воздуховода, сокращается до 40 секунд.

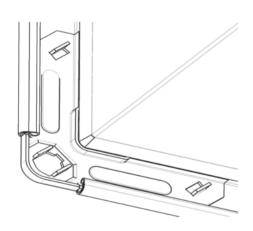


Рисунок 3 – Интегрированный фланец TDC III с установленным уголком.

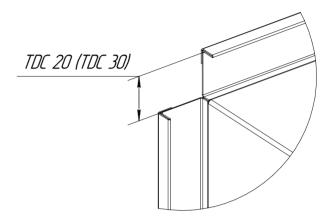
3.1. ПРОЦЕСС ПРОИЗВОДСТВА ВОЗДУХОВОДОВ С ИНТЕГРИРОВАННЫМ ФЛАНЦЕМ

Компания **HEBATOM** производит воздуховоды TDC III на специальной автоматизированной линии FORMTEK FABRIDUCT, аналогов которой нет в нашей стране. Линия работает с высокой скоростью и точностью, гарантируя повторяемость качественного результата для проектов любого масштаба и сложности.

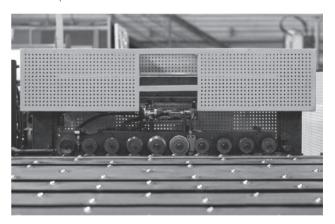
ЭТАПЫ ИЗГОТОВЛЕНИЯ

- Сначала производственно-диспетчерский отдел сортирует все заказы по типу и толщине металла, которые зависят от параметров воздуховода и пожеланий клиента. Если воздуховод цельный, то продольный шов будет изготовлен по технологии **Pittsburg**; если воздуховод состоит из двух L-образных половинок, то по технологии Snap-lock.
- 2 После того, как заказ поступает на участок, оператор вносит необходимые параметры: работу линии FORMTEK FABRIDUCT.

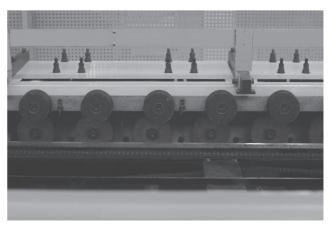

- бобин с рулонным железом нужную длину полотна, отрезают ее и размещают на конвейере. На линии FORMTEK FABRIDUCT установлено 6 бобин, в течение смены линия может выполнять заказы на воздуховоды из разных типов металла. Ее работу программируют таким образом, что сначала производятся все заготовки из одного типа металла, после чего разматыватель переподключается к бобине с другим металлом соответственно заказу.
- ✓ Заготовка проходит через 15 пар роликов, которые формируют «ребра жесткости». Происходит Z-образное профилирование поверхности листа, что увеличивает жесткость каждой из сторон воздуховода. Это защищает готовое изделие от деформаций во время складирования, транспортировки и монтажа.



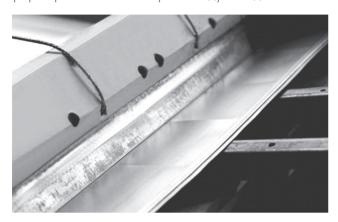
5 Одновременно с формированием **«ребер жесткости»** секционные вырубные ножи делают «высечку» для дальнейшего формирования шва, который будет скреплять короб (Pittsburgh или Snap-Lock), и V-образные высечки по бокам заготовки. В глубину высечек заложена высота будущего фланца — 20 мм или 30 мм. В каталоге эта длина указана под маркировкой TDC III 20 и TDC III 30.



Фланец TDC III 20/30мм.


Заготовка идет по направляющим на прокатку швов, где формируются шип и паз продольного шва. На этом же этапе происходит автоматическое «впрыскивание» герметика в шов Snap-lock. Он повышает герметичность воздуховодов, состоящих из L-образных половинок.

7 Затем происходит прокатка одного или двух фланцев TDC III в зависимости от запрограммированных параметров. Заготовка проходит через **21 пару** роликов, которые последовательно формируют интегрированный фланец.



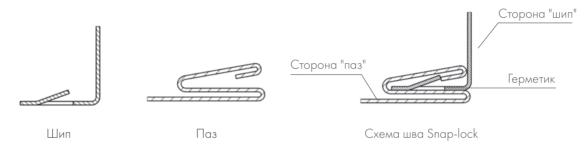
Далее раскроенная заготовка попадает в модуль автоматической гибки, где листогибом формируется короб воздуховода по уже намеченным швам согласно заданному в программе сечению. Затем оператор станка скрепляет заготовку в единый короб, вставляя шип в паз. Это завершающий этап формирования геометрии воздуховода.

- Равыходемы получаем практически готовое изделие, которое отправляется на закрытие шва Pittsburg на станке Whisper-Loc. Герметичность воздуховода класса «С» напрямую зависит от того, насколько правильно прокатан продольный шов. На станке Whisper-Loc прокатывают швы цельных воздуховодов. Это обеспечивает идеальную плотность шва, которая не требует дополнительного герметика. L-образные воздуховоды со швом Snap-lock пропускают этот этап, поскольку их швы закрывают при монтаже на объекте.
- 10 После этого цельный воздуховод с прокатанным швом Pittsburg или L-образная половинка со швом Snap-lock с уже готовым интегрированным фланцем TDC III отправляются на запрессовку уголков на станке Cornermatic. Станок одновременно монтирует 2 уголка на противоположных концах воздуховода, обеспечивая равномерную запрессовку и экономя время. Готовый интегрированный фланец с уголками выдерживает намного больший вес, чем вес самого воздуховода например, можно скрепить 7-8 воздуховодов

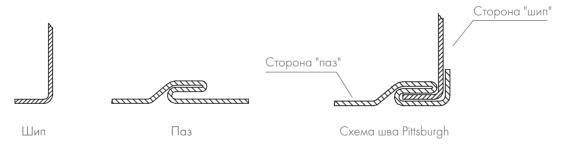
на полу и поднять их для монтажа, используя всего одну опору, не рискуя деформировать фланец.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ФАСОННЫХ ИЗДЕЛИЙ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ С ФЛАНЦАМИ TDC III

- 1 Все элементы фасонных изделий раскраиваются на станках плазменного раскроя
- 2 На торцах фасонных изделий с применением станка ROLL FORMER откатываются фланцы TDC III
- После откатки фланцев ТДС III фасонные изделия собирают по стандартной технологии.
- 4 После сборки фасонных изделий в углы фланцев TDC III устанавливают и запрессовывают уголки на станке CORNEMATIC. Уголки загружены в станок и мгновенно вклепываются в изделие



3.2. L-ОБРАЗНЫЕ ВОЗДУХОВОДЫ


Перевозить прямоугольные воздуховоды на большие расстояния дорого – они занимают много пространства, и фактически приходится везти «воздух».

HEBATOM предлагает оптимальное решение— L-образные половинки прямоугольных воздуховодов. Эта технология позволяет перевозить в 3 раза больше изделий в одной машине или контейнере. L-образные воздуховоды изготавливаются по технологии интегрированного фланца TDC III, в качестве фальца используется технология **Snap-lock** или «защелочный фальц».

Snap-lock — продольный шов, который используют для стыковки L-образных половинок воздуховодов. У каждой половинки есть паз и шип. Для получения прямоугольного воздуховода нужно состыковать половинки, чтобы шип вошел в паз, по щелчку они плотно смыкаются в замок. Для лучшей стыковки и предотвращения потерь воздуха на линии, сразу после формирования паза, в него впрыскивается гермобутиловый материал.

Pittsburgh — подробная информация на стр.8

ПРЕИМУЩЕСТВА:

• Высокая скорость производства

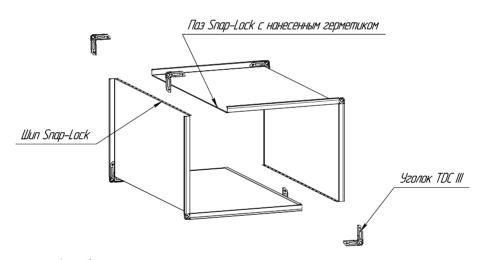
Скорость выпуска L-образных половинок выше, чем у цельных воздуховодов. L-половинки не проходят процедуру прокатки шва, на производстве устанавливают только 4 из 8 уголков, остальные монтируют при сборке на объекте.

• Экономия на транспортировке

Готовые L-образные половинки размещают «стопками» в грузовом автомобиле. Такой метод позволяет отгружать в одну машину в 3 раза больше воздуховодов в сравнении с замкнутыми прямоугольными.

• Адаптация под потребности заказчика

Среднее время застывания герметика внутри шва – 20–25 дней. Это значительное преимущество перед силиконом, поскольку такой срок позволяет перевозить L-образные воздуховоды на большие расстояния или заказывать заранее и хранить на складе до востребования.



• Простота сборки

L-образные воздуховоды собираются легко, как конструктор. Они не требуют специального инструмента (только киянка или молоток) и при этом обеспечивают заявленную герметичность класса «С». Вам не придется сверлить отверстия, искать другие крепежные элементы, потому что уголки входят в комплект поставки L-образных воздуховодов.

ТЕХНОЛОГИЯ СБОРКИ ВОЗДУХОВОДОВ НА ЗАЩЕЛОЧНОМ ФАЛЬЦЕ

- Выровнять торцы половинок так, чтобы они оказались в одной плоскости
- 2 Соединить паз и шип
- После фиксации крепления простучать шов по всей длине таким способом, чтобы они встали плотно до щелчка (по принципу стыковки и названа технология Snap-lock)
- 4 Вставить уголки в интегрированный фланец TDC III сверху и снизу с двух сторон, чтобы воздуховоды можно было крепить друг к другу
- 5 Загнуть интегрированный фланец вдоль каждого уголка

L – образные половинки прямоугольных воздуховодов, изготовленных по технологии TDC \parallel I

4. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СИСТЕМАМ ВОЗДУХОВОДОВ ПО КЛАССУ ГЕРМЕТИЧНОСТИ

Утечка воздуха из-за негерметичности соединений воздуховодов — одна из самых дорогостоящих потерь при эксплуатации систем вентиляции. Утечка означает понижение давления в системе, тепловые потери. Утечки вынуждают проектировщиков завышать характеристики подбираемых вентиляторов и другого оборудования для компенсации потерь, а также вызывают дополнительные трудозатраты на этапе монтажа.

В России классы герметичности установлены в СП 60.13330.2020. Этот документ определяет четыре класса, которые соответствуют классификации, установленной европейским стандартом EN 12237 (Eurovent 2.2). При статическом давлении 400 Па по классу герметичности воздуховоды делятся на:

- Класс «А» низкий класс коэффициент утечки 4,77 м³/(ч*м²)
- Класс «В» средний класс коэффициент утечки 1,57 м³/(ч*м²)
- Класс «С» высокий класс коэффициент утечки 0,54 м³/(ч*м²)
- Класс «D» специальный класс коэффициент утечки 0,18 м³/(ч*м²)

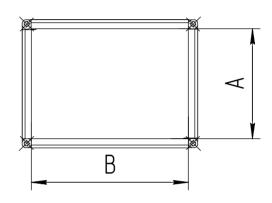
КЛАССЫ ГЕРМЕТИЧНОСТИ ВОЗДУХОВОДОВ

«С» – это максимально достижимый класс герметичности для прямоугольных воздуховодов. Такую высокую герметичность может обеспечить только технология **интегрированного фланца TDC III**.

Конструкция воздуховодов с фланцем TDC прошла мировую сертификацию и признана соответствующей самым высоким требованиям: в США — стандарту SMACNA 2005 (включены в стандарт); в Европе — стандарту TUV (строительные и эксплуатационные требования) и стандарту EN 1507 (требования к прочности и уровню утечек).

Компания **HEBATOM** с 2013 выпускает прямоугольные воздуховоды и фасонные элементы класса герметичности «С» по стандарту Eurovent 2.2. Такое качество изделий достигается благодаря технологии интегрированного фланца TDC III, при которой герметичность изделий превышает в 8 раз параметры стандартных воздуховодов с шинореечным соединением. Типичные потери воздуха при шинореечном соединении составляют примерно 1,13 $\pi/(c^*m^2)$, что соответствует 4,07 $\pi/(u^*m^2)$, когда как интегрированный фланец TDC III сокращает потери до 0,13 $\pi/(c^*m^2)^*$, что соответствует 0,47 $\pi/(u^*m^2)$.

^{*}Данный замер проводился на воздуховодах НЕВАТОМ



5. ПРЯМОУГОЛЬНЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ

Стандартный ряд прямоугольных воздуховодов **HEBATOM** позволяет быстро и экономично смонтировать прочную хорошо герметизированную вентиляционную систему. Воздуховоды изготавливаются с использованием современных технологий без нарушения цинкового покрытия на фальцевом соединении.

ДОПУСТИМЫЕ ОТКЛОНЕНИЯ РАЗМЕРОВ А И В¹

Размер А и В, мм	Возможное отклонение, мм
От 100 вкл. до 500 вкл.	± 3
Свыше 500 до 1200 вкл.	± 5
Свыше 1200 до 2000 вкл.	± 6

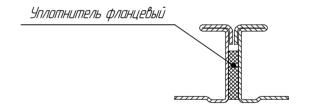
ПРОФИЛИ ДЛЯ СОЕДИНЕНИЯ

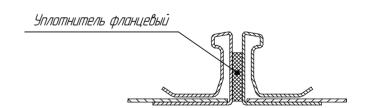
Для соединения прямоугольных воздуховодов и фасонных изделий интегрированный фланец TDC и фланец с шинореечным профилем используются при полупериметре до 4 метров включительно. Максимальная сторона A или B сечения воздуховода равна 2,5 м. B остальных случаях в качестве фланца используется оцинкованный уголок 32 мм.

ИНТЕГРИРОВАННЫЙ ФЛАНЕЦ TDC 20

Для воздуховодов и фасонных изделий с полупериметром сторон менее или равным 1000 мм и стороной A (B) меньше 700 мм используется интегрированный фланец TDC 20.

ИНТЕГРИРОВАННЫЙ ФЛАНЕЦ TDC 30

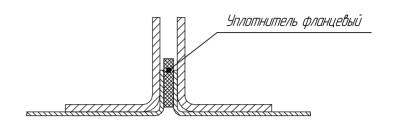

Для воздуховодов и фасонных изделий с полупериметром сторон свыше 1000 мм или стороной A (B) больше или ровно 700 мм используется интегрированный фланец TDC 30.


ШИНОРЕЙКА 20

Геометрия и присоединительные размеры интегрированного фланца ТDC 20 полностью соответствуют стандартному шинореечному профилю высотой 20 мм.

ШИНОРЕЙКА 30

Геометрия и присоединительные размеры интегрированного фланца TDC 30 полностью соответствуют стандартному шинореечному профилю высотой 30 мм.



СВАРНОЙ ФЛАНЕЦ 20

Изготавливается из гнутого уголка с размером профиля 25x25x2. Условия применения типоразмера сварного фланца соответствуют условию выбора фланца TDC 20.

Стандартная длина воздуховода со сварным фланцем составляет L = 1480 мм.

СВАРНОЙ ФЛАНЕЦ 30

Изготавливается из гнутого уголка с размером профиля 32x32x2. Условия применения типоразмера сварного фланца соответствуют условию выбора фланца TDC 30.

Стандартная длина воздуховода со сварным фланцем составляет L = 1470 мм.

РЕКОМЕНДАЦИИ ПО СБОРКЕ1

- По периметру интегрированного фланца проклейте уплотнительную ленту или другой материал, обеспечивающий герметичность между двумя воздуховодами.
- 2 Состыкуйте два воздуховода между собой: один стороной с проклеенным фланцем, второй стороной с непроклеенным фланцем.

В качестве соединения необходимо использовать:

- При соединении воздуховодов или фасонных частей с фланцем **TDC III 20 или Ш 20** стандартный **болт М 8×25 с шайбой и гайкой М 8**. Для механизации сборки удобнее использовать болт М 8×25 с цилиндрической головкой под шестигранник
- При соединении воздуховодов или фасонных частей с фланцем **TDC III 30 или Ш 30** стандартный **болт М 10×25 с шайбой и гайкой М 10**. Для механизации сборки удобнее использовать болт М 10×25 с цилиндрической головкой под шестигранник

ВАЖНО обеспечить полную затяжку резьбового соединения каждого угла по периметру двух сторон воздуховода.

З Для дополнительной плотности установите скобы с шагом 500 мм по каждой стороне стыка воздуховода.

ВЫБОР ТОЛЩИНЫ СТАЛИ 1

Толщина, мм	Длина большей стороны В, мм
0,5	B ≤ 300
0,7	300 < B ≤ 800
1	800 < B ≤1400
1,2	1400 < B

ОСНОВНЫЕ ФОРМУЛЫ

- Площадь прямоугольного сечения S, M^2
 - S=AxB

Площадь круглого сечения $S = \Pi x R^2$

- 2 Периметр прямоугольного сечения
 - P=2x(A+B)
- 3 Окружность сечения L*, M
 - $L = 2 \times \Pi \times R = \Pi D$
- **4** Объем V_{r} M^3

V = AxBxL

 $V = \Pi_x R^2 x L$

Вес погонного метра воздуховода (без учета фланцев)

> $M=L \times P \times t \times 7,85$ $M=L \times L^* \times t \times 7,85$

M – вес, кг;

L – длина воздуховода, м;

 L^* – окружность сечения, м;

Р – периметр, м;

t – толщина, мм;

7,85 – плотность стали, г/см 3 .

Гидравлический диаметр², D

$$D_h = \frac{2 \times A \times B}{(A + B)}$$

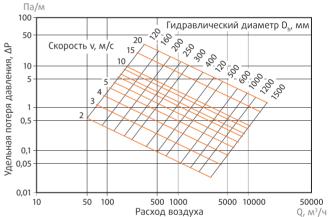
¹ Для прямоугольных воздуховодов и фасонных элементов (согласно техническим условиям компании HEBATOM)
² Это диаметр цилиндрического канала, в котором происходит такая же потеря давления, что и в прямоугольном при одинаковой скорости воздушного потока

5.1. ПРЯМОУГОЛЬНЫЕ ВОЗДУХОВОДЫ

Пределом давления и разряжения для воздуховода стандартной конструкции является 1000 Па. Рекомендованный температурный диапазон эксплуатации воздуховодов от минус 70 °C до плюс 80 °C.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВОЗДУХОВОД-300*500-1410-ОЦ.-0.7-T2.T2-RAL1000

	1 2 3 4 5 6
1	Наименование
2	Размеры А*В
3	Длина L
4	Используемый материал
5	Толщина используемого материала
6	Тип соединений
7	Цвет покраски по каталогу RAL



Прямоугольные воздуховоды изготавливают в любых типоразмерах. Стандартные длины воздуховодов:

- Длина 1410 мм при соединении TDC 20
- Длина 1390 мм при соединении TDC 30
- Длина 1500 мм при соединении шинореечным профилем

Возможно изготовление прямоугольных воздуховодов со стороной «В» меньшей или равной 4000 мм и стороной «А» меньшей или равной 4000 мм из стали толщиной 1,2 мм. Минимальное сечение воздуховодов из стали толщиной больше 0,9 мм равно 100 X 100 мм.

СТАНДАРТНЫЕ РАЗМЕРЫ СЕЧЕНИЙ ВОЗДУХОВОДА 1

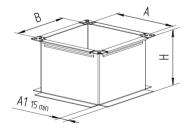
	Меньшая сторона (А), мм											
Большая сторона (В), мм	100	150	200	250	300	400	500	600	800	1000	1200	
					3н	ачение массы	ы, кг					
150	2,55	3,02										
200	3,02	3,49	3,96									
250	3,49	3,96	4,44	4,9								
300	4,95	5,55	6,13	6,73	7,3							
400	6,13	6,73	7,32	7,9	8,5	9,67						
500		7,9	8,5	9,08	9,67	10,9	12,3					
600		9,08	9,76	10,3	10,9	12,3	13,5	14,6				
800			12,3	12,9	13,5	14,6	15,8	17	27,2			
1000				15,2	15,8	17	18,2	27,1	30,4	34,3		
1200					25,4	27,1	28,7	30,4	34,3	37,6	40,9	
1400						30,4	32	34,3	37,6	40,9	44,2	
1600						36	36	37,6	40,9	44,2	47,5	
1800							39	40,9	44,2	47,5	50,8	
2000							42	44,2	47,5	50,8	54,1	

7

¹³ начение массы приведено для часто применяемых размеров

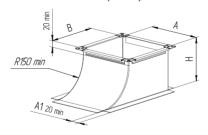
5.2. ВРЕЗКИ

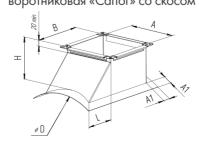
Врезка предназначена для вмонтирования в стенку воздуховода. Их изготавливают для прямоугольных и для круглых воздуховодов (воротниковые. На одной стороне врезки установлены соединительные рейки, а на другой есть отбортовка для крепления к стенке воздуховода. Сторона основного воздуховода должна быть как минимум на 50 мм больше отверстия для врезки. Врезка крепится механически к воздуховоду с помощью вытяжных заклёпок. Перед установкой между врезкой и воздуховодом необходимо нанести слой силиконового уплотнения.


Врезки "Сапог" имеют меньшие потери давления на повороте. Сечение стороны с отбортовкой у таких врезок больше сечения с соединительной рейкой, а переход между ними выполнен с изгибом. Врезки "Сапог" необходимо устанавливать таким образом, чтобы изгиб находился с той стороны, откуда движется воздух.


РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВРЕЗКА-500*500-100-20-ОЦ.-0.7-Г-RAL1000

1	2 3 4 5 6 7 8					
1	Наименование ¹					
2	Размеры А*В					
3	Высота Н					
4	Размер А1					
5	Используемый материал					
6	Толщина используемого материала					
7	Тип соединения					
8	Цвет покраски					


Врезка прямоугольная По умолчанию: А1=20 мм


Врезка прямоугольная «Сапог» со скосом

Врезка прямоугольная «Сапог» с радиусом

Врезка прямоугольная воротниковая «Сапог» со скосом

Врезка прямоугольная воротниковая

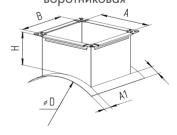
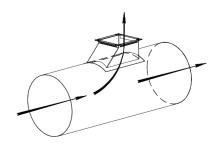
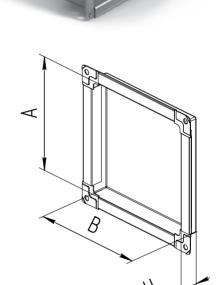



Схема движения воздуха

¹ Менеджер НЕВАТОМ проконсультирует насчет заказа касательной врезки



5.3. ЗАГЛУШКИ

Заглушки используют на замыкающих участках воздуховодов для их герметичного завершения. Они предохраняют систему от попадания внутрь влаги и пыли. Сечение заглушки полностью совпадаюет с сечением воздуховода. При производстве заглушек используют те же стандарты, что и при производстве воздуховодов. Заглушки можно устанавливать в систему вентиляции до соединения воздуховодов между собой. Их легко демонтировать для очистки воздуховода от пыли в процессе эксплуатации.

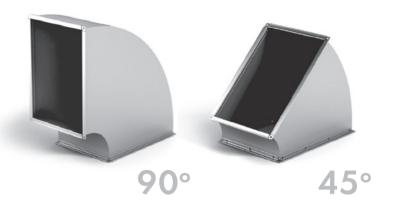
РАСШИФРОВКА ОБОЗНАЧЕНИЯ ЗАГЛУШКА-500*500-20-ОЦ.-0.7-Ш2-RAL1000

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

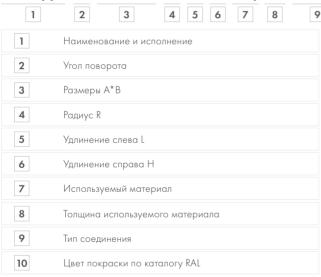
- Если заглушка с шинорейкой 30, то длина заглушки Н равна 30 мм
- Если заглушка с TDC III, то длина заглушки Н равна 75 мм
- Если заглушка без шинорейки или с шинорейкой 20, то длина заглушки Н равна 20 мм

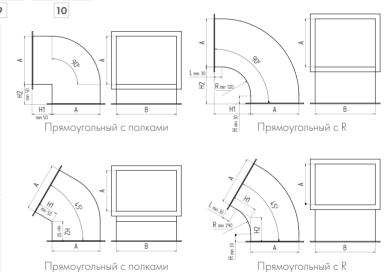
C		Сторона (А), мм									
Сторона (В), мм	100	150	200	250	300	400	500	600	800	1000	
150	0,03 кг	0,04 кг									
200	0,038 кг	0,05 кг	0,063 кг								
250	0,045 кг	0,06 кг	0,075 кг	0,09 кг							
300	0,053 кг	0,07 кг	0,088 кг	0,105 кг	0,123 кг						
400	0,068 кг	0,09 кг	0,113 кг	0,135 кг	0,158 кг	0,203 кг					
500		0,11 кг	0,138 кг	0,165 кг	0,193 кг	0,248 кг	0,303 кг				
600		0,13 кг	0,163 кг	0,195 кг	0,228 кг	0,293 кг	0,358 кг	0,423 кг			
800			0,213 кг	0,255 кг	0,289 кг	0,383 кг	0,468 кг	0,553 кг	1,553 кг	2,553 кг	
1000				0,315 кг	0,368 кг	0,479 кг	0,578 кг	0,683 кг	0,893 кг	1,103 кг	

5.4. ОТВОДЫ


Используются в случае, если прямой участок магистрали воздуховодов поворачивает под углом вверх/вниз либо в сторону. Изготавливается в двух исполнениях: с радиусом и с полками.

Отвод 90°


Возможно изготовление на шинореечном профиле или на интегрированном фланце (см. прямоугольные воздуховоды)



Возможно изготовление отводов по специальному заказу любого исполнения

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ОТВОД-1-90-200*300-20-30-0Ц.-0.5-Ш2.Ш2-RAL1000

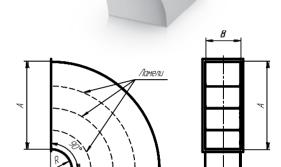
		Меньшая сторона (В), мм									
Фасонная сторона (A), мм	100	150	200	250	300	400	500	600	800	1000	1250
(A), mm	Значени	іе массы, кг	ассы, кг отвод 90°/отвод 45°								
150	-/ 0,71	1,08/0,85	1,28/-								
200	1,42 / 1,13	1,6/1,32	1,84/1,5								
250	1,75 / 1,32	2,03/1,5	2,26/1,7	2,5/1,9							
300	2,6/ 2,11	3/2,52	3,36/2,9	3,72/3,3	4,07/3,5						
400	3,6/ 2,8	4,1 / 3,2	4,6/3,5	4,96/3,8	5,37/4,1	6,13 / 4,7					
500		5,6/5,4	6,02/5,8	6,43/6,2	6,9/6,6	7,73 / 7,4	8,6/ 8,3				
600		7,3 / 6,2	7,8/6,6	8,08/7	8,55/7,4	9,5/8,3	10,5/ 9,1	11,4 / 9,9			
800			11 / 10	11,9/11	12,5/12	13,6/ 12,7	14,8/ 13,8	15,9/ 14,9	25,4/24		
1000				17/ 12,7	20,7/13,8	22,4/ 14,9	24/ 15,9	25,8/17	28,8/19	32,3/21,2	
1200					24/11	28,6/20,8	42,4/30,9	45/32,7	49,9/36,3	54,9/40	59,9/43,6
1400						48/38	52,8/41,4	55,6/43,6	61,1 / 47,9	66,6/52	72 / 56,5
1600						60/48	63,6/51,9	66,2/54,4	72,3/59,4	78,3/64,4	84,3/69,3
1800							73 / 56	79/60,4	85,4/64,7	92,2/68,6	99/ 72,7
2000							86/63	91,8/66,5	98,6/70	106/72,8	113 / 76

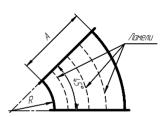
^{1 3} начение массы приведено для часто применяемых размеров

5.5. ОТВОДЫ РАВНОМЕРНОГО РАСПРЕДЕЛЕНИЯ ПОТОКА

Отводы равномерного распределения потока используют в воздуховодах, установленных в стесненных условиях. По умолчанию изготавливают из оцинкованной стали и устанавливают перед теплообменным оборудованием.

Отвод РРП 90°


Возможно изготовление на шинореечном профиле или на интегрированном фланце (см. прямоугольные воздуховоды).


Отвод РРП 45°

Возможно изготовление отводов любого исполнения по специальному заказу.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ОТВОД РРП-90-500X200-150-ОЦ-0,7-Ш2.Ш2.-RAL9016

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ 1

D		Глубина отвода (В), мм									
Высота фасонной стороны (А), мм	100	150	200	250	300	400	500	600	800	1000	1250
стороны (А), мм	Значение	массы, кг	от	вод 90°/отвод	45°						
200	1,55/0,78	1,9/0,9	2,2/1,1								
250	1,95/0,98	2,3/1,1	2,6/1,3	3,0/1,5							
300	2,7/1,4	3,2/1,6	3,7/1,9	4,2/2,1	4,6/2,3						
400	4,19/2,1	4,9/2,5	5,6/2,8	6,3/3,2	7,0/3,5	8,4/4,2					
500		6,3/3,2	7,1/3,6	8,0/4,0	8,7/4,4	10,4/5,2	12,0/6,0				
600		8,0/4,0	9,1/4,6	10,1/5,0	11,0/5,6	13,0/6,5	14,9/7,5	16,9/8,4			
800			14,2/7,1	15,7/7,8	17,1 / 8,6	20,0/10,0	22,8/11,4	25,6/12,8	31,3/15,6		
1000				20,8/10,4	22,4/11,2	25,8/12,9	29,2/14,6	32,5/16,3	39,2/19,6	46,0/23,0	
1200					28,5/14,3	32,4/16,2	36,3/18,1	40,1/20,1	47,9/24,0	55,7/27,8	65,3/32
1400						43,0/21,5	48,1/24,1	53,3/26,6	63,6/31,8	73,8/36,9	86,7/43
1600						51,3/25,7	57,1/28,6	62,8/31,4	74,3/37,1	85,8/42,9	100,1/5
1800							66,7/33,4	73,0/36,5	85,7/42,9	98,4/49,2	114,2/5
2000							82,6/41,3	90,5/45,3	106,4/53,2	122,3/61,1	142,1/7

ТИП СОЕДИНЕНИЯ

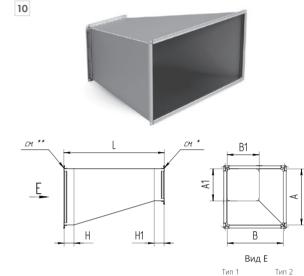
 $P/2 \le 1000$ и A(B) < 700 — TDC 20 или ш.20 P/2 > 1000 и (А или B) ≥ 700 — TDC 30 или ш.30

13начение массы приведено для часто применяемых размеров

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество ламелей	Радиус			
A<=250 — 1 ламель				
250 <a<=300 2="" td="" ламели<="" —=""><td colspan="4">150</td></a<=300>	150			
300 <a<=600 3="" td="" ламели<="" —=""><td></td></a<=600>				
600 <a<= 1200="" 4="" td="" ламели<="" —=""><td></td></a<=>				
1200 <a<=1800 5="" td="" ламелей<="" —=""><td>300</td></a<=1800>	300			
1800 <a<=2000 6="" td="" ламелей<="" —=""><td></td></a<=2000>				





5.6. ПЕРЕХОДЫ

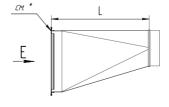
Переходы применяют, когда происходит сужение или расширение магистрали воздуховодов. Также их используют, когда изменяется геометрия сечения участка воздуховода. Например, прямоугольный участок переходит в круглый.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ¹ ПЕРЕХОД-3-500*300/400*200-300-100-00-100-0Ц-0.7-Ш2.Т2-RAL1000 переход с прямоугольного сечения на прямоугольное

Тип 3

1	2 3 4 5 6 7 8 9
1	Наименование и тип перехода
2	Размеры прямоугольного сечения АхВ
3	Диаметр круглого сечения D
4	Длина перехода L
5	Длина прямого участка прямоугольного сечения Н
6	Длина прямого участка круглого сечения Н1
7	Материал
8	Толщина используемого материала
9	Тип соединения
10	Цвет покраски по каталогу RAL

ПЕРЕХОД-4-100*200/250-300-20-50-ОЦ.-0.7-Г.ФП-RAL1000


РАСШИФРОВКА ОБОЗНАЧЕНИЯ1


РАБОЧИЕ ХАРАКТЕРИСТИКИ

- L= 300 мм, если периметр перехода составляет до 2500 мм
- L= 500 мм, если периметр перехода составляет более 2500 мм
- По периметру стыков установлены соединительные рейки
- Со стороны круглого сечения соединение под ниппель

Тип 3

¹ При заказе обязательно проконсультируйтесь с менеджером

^{*}Шина-рейка, сварной фланец

^{* *}TDC III, шина-рейка, сварной фланец

5.7. ТРОЙНИКИ

Фасонный элемент вентиляционной системы, функция которого — соединять сразу несколько воздуховодов.

ИСПОЛНЕНИЕ

- 01 Тройник прямоугольный с полками. Минимальный размер Н и Н1 50 мм
- 02 Тройник прямоугольный с радиусом. По умолчанию изготавливается с минимальным радиусом закругления R = 120 мм

6

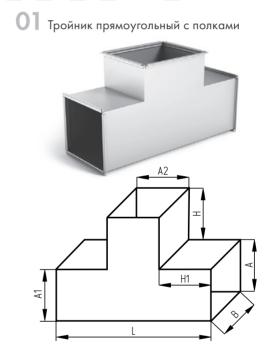
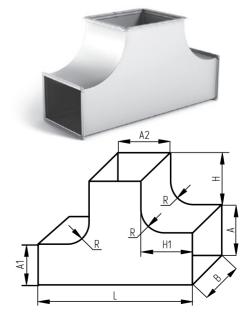

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ¹ ТРОЙНИК-1-220*300/200*300/250*300-450-100-100-ОЦ.-0.5-Г.Г.Г-RAL1000

ТАБЛИЦА ОСНОВНЫХ ОГРАНИЧЕНИЙ


Параметр	Минимальный	Максимальный
А	100	3000
В	100	3000
A1	100	3000
A2	100	3000
Н	50	500
H1	50	500

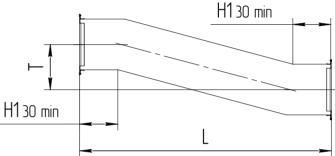
Для соединения ТДС минимальное значение A, B, A1, A2 : 150 мм., при этом полупериметр сечений (P/2) не должно превышать 4000 мм. H и H1 по умолчанию 100 мм, минимальное значение 100.

11

02 Тройник прямоугольный с радиусом

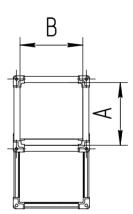
¹ При заказе обязательно проконсультируйтесь с менеджером

5.8. УТКИ


ПРИМЕНЕНИЕ

Специальные фасонные изделия, используемые для соединения разноуровневых (с разным расположением сечений по высоте) или одноуровневых воздуховодов, взаимное расположение сечений которых смещено вправо или влево.

Сечение вентиляционных уток может быть прямоугольным или круглым в зависимости от сечения воздуховода, в состав которого она входит.


У вентиляционных уток отсутствует заужение сечения. Если необходимо заужение, следует заказывать прямоугольные переходы.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ¹ УТКА-150*400-300-150-100-30-ОЦ.-0,5-Ш2.Ш2

1	2 3 4 5 6 7 8
1	Наименование
2	АхВ, где А — размер фасонной стороны, мм
3	Длина утки, мм
4	Смещение, мм
5	Размер Н, мм
6	Размер Н1, мм
7	Материал
8	Толщина используемого материала, мм
9	Тип соединения

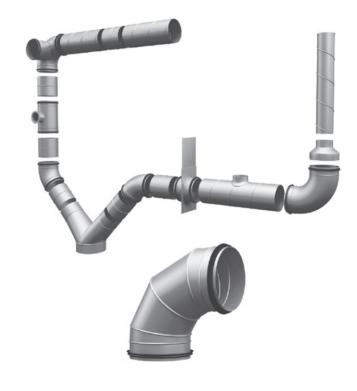
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ ²

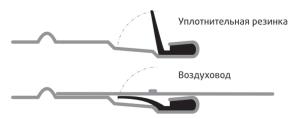
T, mm	до 200	250-300	350-400	500-600	700-800
А, мм			L, mm		
100-400	400	500	600	800	900
500-600	500	600	700	900	1000
700-800	600	700	800	1000	1100
1000-1200	800	900	1000	1000	1200
1400-2000	1000	1100	1100	1200	1500

¹ Менеджер НЕВАТОМ проконсультирует вас по специальному заказу утки-перехода и утки с радиусами закругления

 $^{^{2}}$ Рекомендуемые размеры Т и L в зависимости от размеров сторон воздуховодов А и В

6. ЭКОНОМИЧНАЯ СИСТЕМА ВЕНТИЛЯЦИИ NEVATOM SYSTEM


Учитывая высокие затраты при переработке воздуха, а также динамично развивающиеся рынки, к системам вентиляции с каждым годом предъявляют все более высокие требования. Поэтому необходимо, чтобы вентиляционные системы были достаточно герметичны и могли удержать эксплуатационные затраты на приемлемом уровне.


Для решения этой проблемы компания **HEBATOM** разработала новую комплексную систему NEVATOM SYSTEM.

Система доступна в ассортименте стандартных диаметров от Ø 100 до Ø 1250 мм.

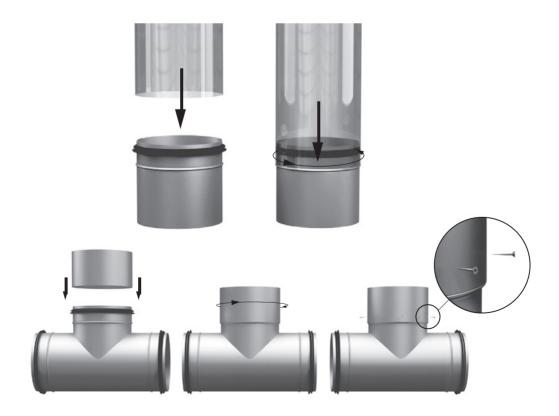
ПРЕИМУЩЕСТВА:

- Быстрый и простой монтаж
- Уплотнение заводского изготовления не теряет своих свойств. Резиновый профиль закреплен на конце фасонного элемента и тщательно зафиксирован по окружности завернутым краем. Такое исполнение гарантирует, что прокладка всегда остается на своем месте вне зависимости от условий монтажа
- Не требует использования монтажной ленты и силиконового герметика, которые содержат токсичные растворители, проникающие в вентиляционный канал
- Может использоваться в любом климате и при любых погодных условиях.
- Уплотнения сертифицированы и соответствуют самому высокому классу герметичности D
- Эстетичный внешний вид, что особенно важно при открытых инсталляциях
- Внутренний и внешний производственный контроль при изготовлении всех деталей системы

ПРЕИМУЩЕСТВА ЕРОМ УПЛОТНЕНИЯ

В качестве материала уплотнительного резинового профиля используют гомогенную EPDM-резину. Этот материал устойчив к действию озона, ультрафиолетового излучения, а вместе с тем к колебаниям температуры от минус 30° до плюс 100°С, обеспечивая таким образом более длительный срок службы.

Уплотнение сохраняет герметичность:


- При отрицательном давлении до 5000 Па
- При положительном давлении до 3000 Па в системе

МОНТАЖ ЭЛЕМЕНТОВ NEVATOM SYSTEM

- 1. Перед монтажом чистите от загрязнений воздуховоды и фасонные изделия. С краев следует удалить заусенцы и неровности. Особое внимание обратите на резиновый уплотнитель: перед монтажом рекомендуем смазать его силиконовой смазкой.
- 2. Вставьте фасонный элемент в воздуховод плотно, до упора. Осторожное поворачивание элемента облегчит его вставку.
- 3. Фасонные изделия с резиновыми уплотнителями закрепляйте при помощи саморезов или заклепок, распределяя их равномерно по окружности. При этом отступ от края должен составлять около 10 мм это необходимо для того, чтобы не повредить уплотнитель.

Резиновый уплотнитель можно установить на все круглые фасонные элементы, выпускаемые компанией **НЕВАТОМ**, с сечением от \varnothing 100 мм до \varnothing 1250 мм.

Габаритные размеры элементов и характеристики смотрите в соответствующих разделах каталога.

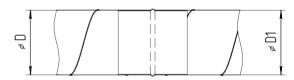
7. КРУГЛЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ

Стандартный ряд круглых воздуховодов позволяет быстро и экономично смонтировать прочную хорошо герметизированную вентиляционную систему для промышленного и гражданского строительства.

КОМПЛЕКТАЦИЯ

В состав системы воздуховодов входят:

- Каналы круглого сечения
- Фасонные части
- Вставные соединительные элементы каналов (ниппели)


Принцип соединения каналов между собой основан на том, что внутренний диаметр канала D равен наружному диаметру ниппеля D1.

Величины отклонения диаметров D в зависимости от размеров указаны в таблице «Технические данные».

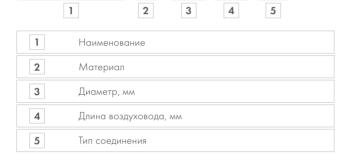
Для присоединения фасонной части к воздуховоду соединительный элемент не нужен, так как конструкция всех фасонных частей предусматривает сопрягаемые размеры в соответствии с прилагаемой таблицей.

Допустимое отклонение по длине воздуховода — $5 \, \text{мм}$.

ТЕХНИЧЕСКИЕ ДАННЫЕ

Большая сторона, мм	D min - D max	D1 min - D1 max
вольшая сторона, мм	канала, мм	ниппеля, мм
100	100,0-100,5	98,8-99,3
125	125,0-125,5	123,8-124,3
160	160,0-160,6	158,7-159,3
200	200,0-200,6	198,7-199,3
225	225,0-225,6	223,7-224,3
250	250,0-250,7	248,6-249,3
280	280,0-280,8	278,5-279,3
315	315,0-315,9	313,4-314,3
355	355,0-355,9	353,4-354,3
400	400,0-401,0	398,3-399,3

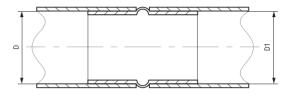
Большая сторона, мм	D min – D max	D1 min - D1 max
вольшая сторона, мм	канала, мм	ниппеля, мм
450	450,0-451,0	448,3-449,3
500	500,0-501,1	498,2-499,3
560	560,0-561,1	558,2-559,3
630	630,0-631,1	628,1-629,3
710	710,0-711,3	708,1-709,3
800	800,0-801,6	798,0-799,3
900	900,0-901,8	898,0-899,3
1000	1000,0-1002,0	997,9-999,3
1120	1120,0-1122,0	1117,9-1119,3
1250	1250,0-1250,5	1247,8 – 1249,3



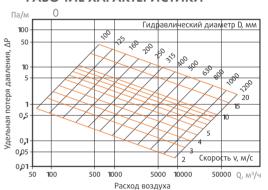
7.1. СПИРАЛЬНО-НАВИВНЫЕ ВОЗДУХОВОДЫ

Длина стандартного воздуховода со спиральным швом — 3 м (по согласованию с клиентом возможно изготовление воздуховодов большей длины). Минимальная длина спирально-навивного воздуховода должа быть не менее 100 мм. Данные по воздуховодам со спиральным швом представлены в таблице «Технические данные» на стр. 29.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВОЗДУХОВОД ОЦ. D200 L300 Ф-Ф



ИЗГОТОВЛЕНИЕ И ВЫПУСК

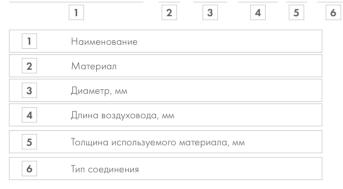

Воздуховод прямой круглой формы изготавливают на специальных станках путем скручивания оцинкованной ленты (штрипсы) с последующим соединением ленты в замок. Благодаря шву воздуховоды обладают повышенной жесткостью и имеют небольшой вес, что является очень важным фактором при монтаже системы и ее последующей работе.

Выпускают воздуховоды стандартной длины 3 м, но благодаря технологии скручивания **длина может быть любой.** Это позволяет уменьшить количество стыковочных швов, что приводит к лучшей герметичности всей системы в целом.

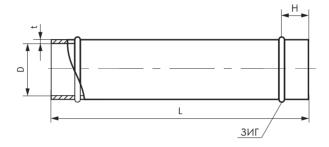
РАБОЧИЕ ХАРАКТЕРИСТИКИ

D, mm	Толщина, t	Площадь, м²	Масса 1 м, кг
100		0,314	1,38
125		0,393	1,73
140		0,440	1,82
160		0,502	2,21
180		0,565	2,33
200	0,5	0,628	2,75
225		0,706	2,92
250		0,785	3,80
280		0,879	3,63
315		0,989	4,76
355		1,115	6,36
400		1,256	7,03
450		1,413	8,05
500		1,570	8,80
560	0,7	1,774	10,11
630		1,978	11,27
<i>7</i> 10		2,256	12,86
800		2,512	16,20
900		2,825	22,74
1000	1.0	3,140	25,20
1120	1,0	3,530	28,40
1250		3,925	31,40

7.2. ПРЯМОШОВНЫЕ ВОЗДУХОВОДЫ (ПШ)


У прямошовных воздуховодов, выполненных из листовой стали толщиной 1,2 мм, соединительный шов крепят на контактную точечную сварку. При этом такие воздуховоды имеют класс герметичности А.

Ограничения по требованиям при заказе прямошовных воздуховодов:


Lmin = 50 мм, при d от 100 мм до 1250 мм.

При изготовлении воздуховодов длиной менее 200 мм «зиг» не откатывается.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВОЗДУХОВОД ПШ ОЦ. D250 L1250 0,7 Ф-Ф

Лежачий фальц

Лидметр	Диаметр Нержавеющая сталь		Оцинкованная сталь			Н, мм		
воздуховода D, мм	Длина L, мм зеркальная	Длина L, мм матовая	Толщина t, мм	Соединительный шов	Длина L, мм оцинкованная	Толщина t, мм	Соединительный шов	(размер до «зига»)
100								
125								
140								
160								
180			0.5			0.5		0.5
200			0,5			0,5		35
225								
250				Шовная			Шовная	
280				сварка			сварка	
315								
355	1000	1500			1500			
400	1230	1500			1500			
450								
500						0.7		<i></i>
560						0,7		55
630			0.0					
710			0,8					
800								
900				Лежачий			Лежачий	
1000				фальц		1.0	фальц	100
1120						1,0		100
1250								

7.3. **ВРЕЗКИ**

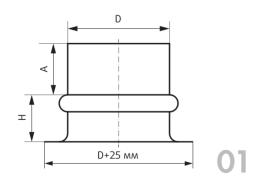
Круглая врезка предназначена для вмонтирования в стенку воздуховода и для присоединения круглых воздухораспределителей к системе воздуховодов. Прямая предназначена для вмонтирования в прямоугольный воздуховод, а воротниковая - в круглый.

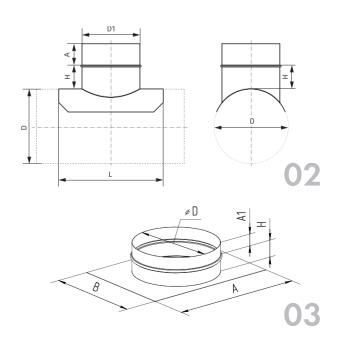

УСТАНОВКА

Для установки врезки в воздуховод в нем необходимо сделать отверстие. Сторона основного воздуховода должна быть, как минимум, на 50 мм больше отверстия для врезки. Врезку крепят к воздуховоду с помощью вытяжных заклепок. Перед установкой между врезкой и воздуховодом необходимо нанести слой силиконового уплотнения.

Врезки могут быть стандартных размеров, а также могут иметь нестандартную форму и сечение. Стандартные размеры для прямых врезок приведены в таблице 01, а для воротниковых - в таблице 02. Стандартный размер воротника воротниковой врезки L=D1+80.

01 Врезка прямая


Q Врезка воротниковая¹


РАСШИФРОВКА ОБОЗНАЧЕНИЯ 2 ВРЕЗКА ОЦ. D250 Р

1	2 3 4
1	Наименование врезки: прямая, воротниковая
2	Материал
3	Диаметр, мм: 01 – D 02 – D/D1
4	Тип соединения

ОЗ Врезка прямая круглая с пластиной

¹ Допустимое отклонение по длине 5 мм

²Обязательно проконсультируйтесь с менеджером

Толщина материала,

0,5

0,7

D, мм

100

125

140

160

180

200

225

250

280

315 355

СТАНДАРТНЫЕ ХАРАКТЕРИСТИКИ1

А, мм

55

Н, мм

40

0.

Macca,

0,11

0,14

0,16

0,18

0,20

0,22

0,28

0,31

0,35

0,73

Площадь, м²

0,027

0,034

0,038

0,043

0,049

0,054

0,061

0,067

0,075

0,085

0,129

СТАНДАРТНЫЕ ХАРАКТЕРИСТИКИ¹

D, mm	Толщина материала, мм, мм	А, мм	Н, мм	Площадь, м²	Масса, кг
400				0,145	0,83
450				0,163	0,93
500		55	55 40	0,181	1,03
560	0,7			0,203	1,16
630				0,228	1,30
710				0,258	1,47
800				0,392	2,21
900				0,440	3,54
1000	1.0	100		0,488	3,93
1120	1,0	100		0,547	4,40
1250				0,610	4,91

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

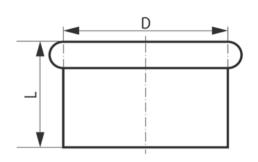
02

D1, мм	Толщина материала, мм	А, мм
100		
125		
160	0.5	25
200	0,5	35
250		
315		
355		
400		
500	0,7	55
630		
800		
900		
1000	1,0	100
1250		

ТИПОВЫЕ ДИАМЕТРЫ ВОРОТНИКОВЫХ ВРЕЗОК

D/D1, мм	D/D1, мм	D/D1, мм
100/100	355/200	630/315
125/100	355/250	630/400
125/125	355/315	630/500
160/100	355/355	630/630
160/125	400/100	800/355
160/160	400/125	800/400
200/100	400/160	800/500
200/125	400/200	800/630
200/160	400/250	800/800
200/200	400/315	900/355
250/100	400/400	900/400
250/125	500/100	900/500
250/160	500/125	900/630
250/200	500/160	900/800
250/250	500/200	900/900
315/100	500/250	1000/500
315/125	500/315	1000/630
315/160	500/400	1000/800
315/200	500/500	1000/900
315/250	630/100	1000/1000
315/315	630/125	1250/630
355/100	630/160	1250/800
355/125	630/200	1250/1000
355/160	630/250	1250/1250

7.4. ЗАГЛУШКИ


Заглушки используют на замыкающих участках воздуховодов для их герметичного завершения. Они предохраняют систему от попадания внутрь влаги и пыли. Сечение заглушки полностью совпадает с сечением воздуховода. При производстве заглушек используют те же стандарты, что и при производстве воздуховодов. Заглушки можно устанавливать в систему вентиляции до соединения воздуховодов между собой. Их легко демонтировать для очистки воздуховода от пыли в процессе эксплуатации.

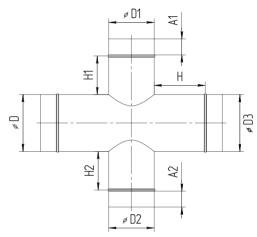
РАСШИФРОВКА ОБОЗНАЧЕНИЯ ЗАГЛУШКА ОЦ D125 P

1 2 3 4

1	Наименование
2	Материал
3	Диаметр, мм
4	Тип соединения

D, мм	Толщина материала, мм	L, mm	Площадь, м²	Масса, кг
100		50	0,030	0,13
125			0,040	0,17
140			0,047	0,19
160			0,056	0,23
180	0.5		0,065	0,27
200	0,5		0,076	0,31
225			0,090	0,37
250			0,104	0,43
280			0,124	0,51
315			0,148	0,61
355		65	0,178	1,02
400			0,230	1,31
450			0,276	1,57
500	0,7		0,326	1,86
560	0,7		0,392	2,23
630			0,475	2,71
710			0,580	3,31
800			0,729	4,16
900		100	1,004	8,08
1000	1.0		1,194	9,61
1120	1,0		1,443	11,62
1250			1,738	13,99

7.5. КРЕСТОВИНЫ


Крестовины предназначены для одновременного соединения четырех воздуховодов, используемых для перемещения воздуха между изолированными (разделенными перегородкой, стенами) помещениями.

ИСПОЛНЕНИЕ

Соединение четырех воздуховодов в единую сеть сопряжено с риском разгерметизации при дальнейшей эксплуатации: воздушные утечки приводят к потере давления в сети и увеличению шума, снижая тем самым ее эффективность. Крестовины HEBATOM проектируют с учетом требуемого уровня герметизации, обеспечиваемого технологическим процессом изготовления.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ КРЕСТОВИНА ОЦ. D325/300/300/300 H50 0,7 P

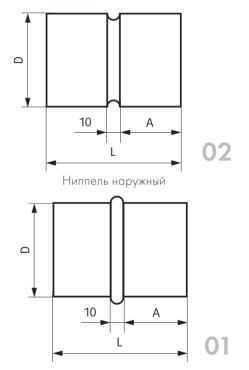
1	Наименование
2	Материал
3	Диаметр (D, D1, D2, D3 врезки), мм
4	Высота врезки, мм (при стандартном исполнении не указывают)
5	Толщина материала, мм (при стандартном исполнении не указывают)
6	Тип соединения

D, mm	D1, D2, мм	L, mm	А,	A1, A2,	Масса, кг	Толщина материала, мм	H1, H2, MM
100	100	180			1,353		
10.5	100	180			1,315		
125	125	205			1,788		
	100	180			1,441		
160	125	205			2,009		
	160	240		2,345			
	100	180			1,714	0,5	40
200	125	205	35 35	35	2,318		
200	160	240			2,59		
	200	280		3,127			
	160	240			2,505		
250	200	280			3,554		
	250 330		4,201				
315	160	240			2,967		
313	200	280			4,127		

D,	D1, D2, мм	L, mm	A, mm	А1, А2, мм	Масса, кг	Толщина материала, мм	H1, H2,			
315	250	330	0.5	25	0.5			4,653	0.5	
313	315	395	35		4,52	0,5				
	200	280	35	35	2,94					
355	250	330			3,99					
333	315	395			4,845					
	355	435		55	5,529	0,7	40			
	200	280			4,408					
400	250	330		35 55	6,366					
400	315	395	55		7,941					
	400	480			6,396					
	315	395		35	6,565					
	355	435		55	9,761					
500	400	480			11,096					
	450	530			12,5					
	500	580			12,114					

¹ Обязательно проконсультируйтесь с менеджером

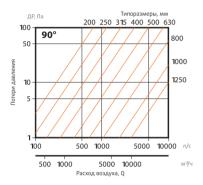
7.6. НИППЕЛИ

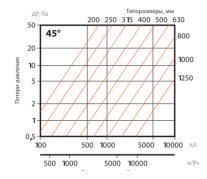

Для герметичного соединения круглых воздуховодов одного диаметра используют ниппели. Герметичное ниппельное соединение, сокращает утечки воздуха, потери давления в сети, а также улучшает шумовые характеристики. Ниппель используют для соединения только прямых участков воздуховодов. Круглые воздуховоды с ниппельным соединением не имеют выступающих частей и требуют меньше пространства для монтажа. Допустимое отклонение по длине ниппеля — 5 мм.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ НИППЕЛЬ ОЦ D100 P-P

1 2 3 4

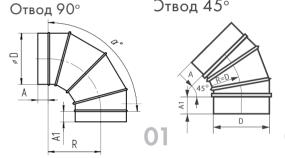
1	Наименование ниппеля: внутренный, наружный
2	Материал
3	Диаметр, мм
4	Тип соединения

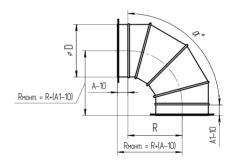

Ниппель внутренний


D, mm	Толщина материала, мм	L, mm	А, мм	Площадь, м²	Масса, кг
100		80	35	0,026	O,11
125				0,03	0,12
160	0.5			0,04	0,17
200	0,5			0,05	0,21
250				0,06	0,25
315				0,08	0,33
355		120	55	0,13	0,56
400				0,158	0,90
500	0,7			0,2	1,14
630				0,248	1,41
800				0,315	1,80
900			100	0,59	4,79
1000	1,0	210		0,677	5,45
1250				0,846	6,81

7.7. ОТВОДЫ

Отвод — это соединительная деталь воздуховода, предназначенная для изменения направления потока воздуха под углом 45 или 90 градусов. Его изготавливаются из оцинкованной или нержавеющей стали.





РАСШИФРОВКА ОБОЗНАЧЕНИЯ ОТВОД ОЦ. 90 D120 P-P

1 2 3 4 5

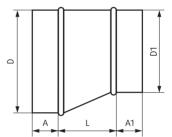
	Толщина	А, Отвод 90°		Отвод 45°		
D, мм	D, мм материала, мм	А1мм	Площадь, м ²	Масса, кг	Площадь, м²	Масса, кг
100			0,11	0,47	0,07	0,29
125			0,16	0,66	0,09	0,37
140			0,18	0,74	0,13	0,54
160		2.5	0,25	1,03	0,14	0,58
180	0.5		0,28	1,16	0,19	0,78
200	0,5	35	0,37	1,53	0,21	0,87
225			0,41	1,69	0,26	1,07
250			0,56	2,31	0,31	1,28
280			0,58	2,40	0,37	1,53
315			0,74	3,06	0,48	1,98
355	0,7	55	0,93	5,30	0,56	3,19

	Толщина			Отвод 45°		
D, mm	материала, мм	A, A1mm	Площадь, м²	Масса, кг	Площадь, м²	Масса, кг
355			0,93	5,30	0,56	3,19
400		55 -	1,05	5,96	0,62	3,51
450			1,42	8,09	0,83	3,96
500	0.7		1,56	8,89	0,90	5,10
560	0,7		2,10	11,97	1,20	6,84
630			2,38	13,57	1,33	7,58
710			3,26	18,58	1,81	10,32
800			3, <i>7</i> 1	21,15	2,04	11,63
900			5,40	43,47	3,00	24,15
1000	1,0	, ,	5,97	48,06	3,38	27,21
1120		100	7,97	64,16	4,40	35,42
1250			9,07	<i>7</i> 3,01	4,77	38,40

¹ Радиус отвода, выполненного на фланцевом соединении, равен сумме среднего радиуса отвода ниппельного исполнения и величины удлинения : R = R1 + A, где: R1 средний радиус отвода с ниппельным соединением, A —удлинение отвода. По умолчанию R = D; a° = 10° — 90°

² По заказу возможно изготовление отводов любого промежуточного типоразмера с различными углами

7.8. ПЕРЕХОДЫ

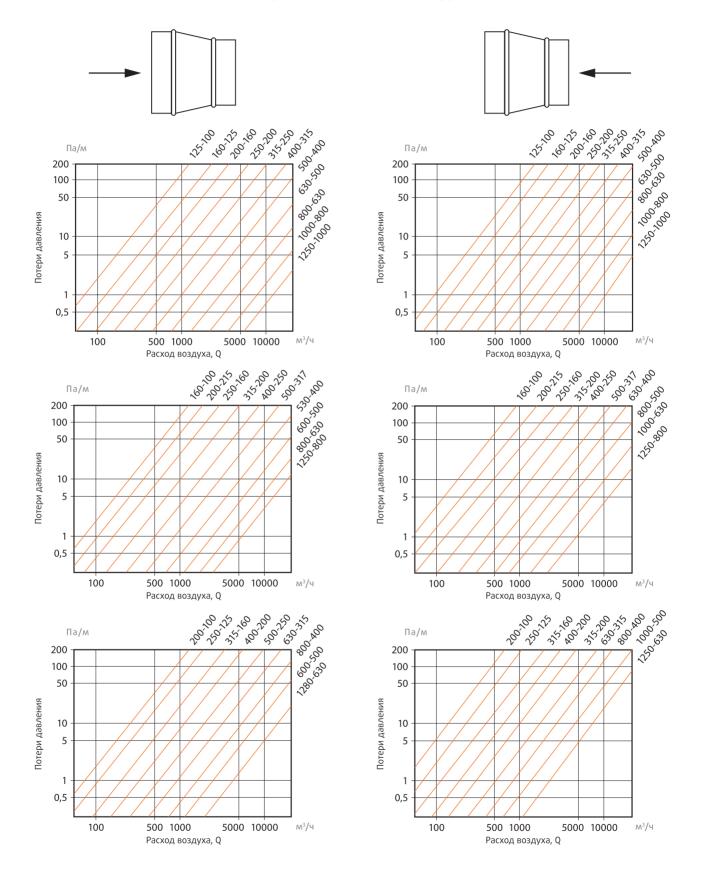

Для плавного перехода одного сечения круглого воздуховода в другое и сохранения оптимальной скорости потока в системах вентиляции используют круглые переходы.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ПЕРЕХОД-315/250-119-50-50-ОЦ.-1.0-Н.Ф-RAL1005

1	2 3 4 5 6 7 8
1	Наименование
2	Диаметр D/D1
3	Длина перехода
4	Удлинение А
5	Удлинение А1
6	Материал
7	Толщина используемого материала
8	Тип соединения
8	Цвет покраски по каталогу RAL

Переход односторонний

D, D1 mm	Толщина материала, мм	L (01 исполнение) мм	L (02 исполнение) мм	А, А1 мм	Площадь, м ²	Масса, кг
125/100		64	80		0,08	0,33
160/100		112	103		0,094	0,39
160/125		78	80		0,1	0,41
200/100		167	172		0,12	0,50
200/125		133	129		0,122	0,50
200/160		85	80		0,12	0,50
250/100	0,5	236	259	50	0,155	0,64
250/125		202	216		0,156	0,64
250/160		154	155		0,16	0,66
250/200		99	86		0,16	0,66
315/160		243	267		0,2	0,83
315/200		188	198		0,207	0,85
315/250		119	112		0,208	0,86
355/160		300	336		0,27	1,54
355/200		238	267		0,23	1,31
355/250	0,7	162	181	65	0,17	0,97
400/200		310	345		0,42	2,39
400/250		241	259		0,39	2,22

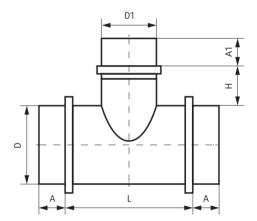

D, D1 mm	Толщина материала, мм	L (01 исполнение) мм	L (02 исполнение) мм	А, А1 мм	Площадь, м²	Масса, кг
400/315		152	152		0,34	1,94
500/250		378	380		0,59	3,36
500/315		289	300		0,55	3,14
500/400		177	177		0,46	2,62
630/315		468	543		0,86	4,90
630/400	0,7	365	397	65	0,77	4,39
630/500		219	224		0,63	3,59
800/400		594	690		0,98	5,59
800/500		457	517		1,15	6,56
800/630		279	293		0,91	5,19
900/500		615	690		1,47	11,83
900/630		415	466		1,1	8,86
900/800		154	172		0,49	3,94
1000/500		732	862		2,12	17,07
1000/630	1,0	553	638	100	1,9	15,30
1000/800		325	345		1,53	12,32
1250/630		897	1069		3,08	24,79
1250/800		619	776		2,05	16,50
1250/1000		393	431		2,13	17,15

¹ Возможно изготовление переходов по специальному заказу любого исполнения, если выполняются условия, описанные ниже.

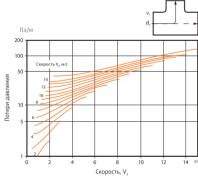
Длина центрального перехода L должна удовлетворять условию: L~(D-D 1)/ 0,73
 Длина одностороннего перехода L должна удовлетворять условию: L~(D-D1)/ 0,36

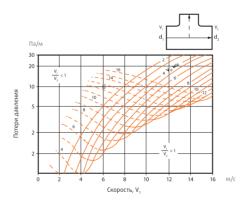
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦЕНТРАЛЬНЫХ ПЕРЕХОДОВ

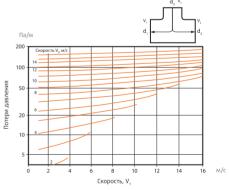
7.9. ТРОЙНИКИ

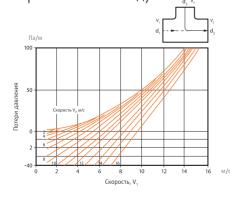

При монтаже разветвленной системы вентиляции применяют тройники.

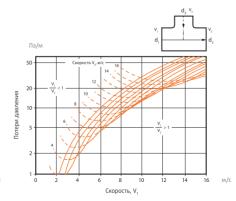
РАСШИФРОВКА ОБОЗНАЧЕНИЯ ТРОЙНИК ОЦ. D125/125 P-P-P

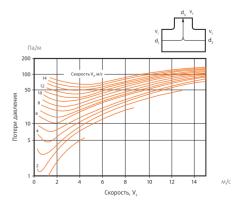

1	2	3	4


1	Наименование
2	Материал
3	Диаметр (D, D1), мм
4	Тип соединения









Отработанный воздух

nevatom.ru

D/D1, mm	Толщина материала, мм	L, mm	A, A1	Н, мм	
100/100		180			
125/100		180			
125/125		205			
160/100		180			
160/125		205			
160/160		240			
200/100		180			
200/125		205			
200/160		240			
200/200		280			
250/100	0,5	180	35		
250/125		205			
250/160		240			
250/200		280			
250/250	-	330		50	
315/100		180			
315/125		205			
315/160		240			
315/200		280			
315/250		330			
315/315		395			
355/100		180			
355/125		205			
355/160		240	A=55		
355/200		280	A1=35		
355/250		330			
355/315		395			
355/355	0,7	435	55		
400/100		180			
400/125	205 240 280 A=55 A1=35	205			
400/160					
400/200		280	A1=35		
400/250		330			
400/315		395			

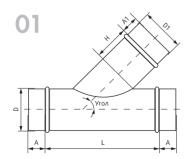
D/D1, mm	Толщина материала, мм	L, mm	A, A1	Н, мм
400/400		435	55	
500/100		180		
500/125		205		
500/160		240	A=55	
500/200		280	A1=35	
500/250		330		
500/315		395		
500/400		480	5.5	
500/500		580	- 55	
630/100		180		
630/125		205		
630/160		240	A=55	
630/200		280	A1=35	
630/250		330		50
630/315	0,7	395		
630/400		480	55	
630/500		580		
630/630		710		
800/400		480		
800/500		580		
800/630	-	710		
800/800		880		
900/500		580		
900/630		710	A = 100 A1 = 55	
900/800		880		
900/900		980	100	
1000/500		580		
1000/630	1	710	A = 100 A1 = 55	
1000/800	1,0	880		
1000/1000		1080	100	
1250/630		710	A = 100	
1250/800		880	A1 = 55	
1250/1000		1080		
1250/1250		1330	100	

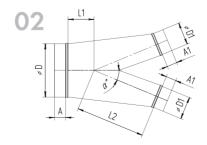
ИСПОЛНЕНИЕ

С учетом особенностей проекта мы можем изготовить тройники с различными габаритами, длиной шейки и т. д. При монтаже сначала все воздуховоды последовательно присоединяют к тройнику. Затем воздуховоды монтируют к системе вентиляции. После сборки и монтажа систему вентиляции проверяют на прочность соединений. Таким образом, тройники для вентиляции являются фасонной частью, которая создана для разветвления линии воздуховодов.

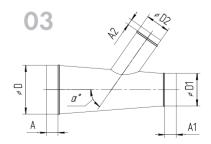
РАСШИФРОВКА ОБОЗНАЧЕНИЯ ТРОЙНИК ОЦ. 45 D100/100 Ф-Ф-Ф

1 2 3 4


1	Наименование: 01 - «Косой» 02 - «Штаны»
2	Материал
3	Угол поворота
4	Диаметр, мм: 01 – D/D1; 02 – D/D1/D2
5	Тип соединения


ИСПОЛНЕНИЯ 1

По специальному заказу возможно изготовление:


01 тройников «Косых»;02 тройников «Штаны»;03 тройников-переходов.

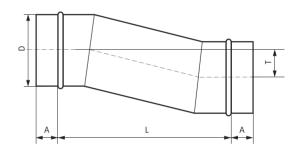
D, D1 мм	Толщина материала, мм	А, А1 мм	Площадь, м²	Масса, кг
125/100			0,08	0,33
160/100			0,094	0,39
160/125			0,1	0,41
200/100			0,12	0,50
200/125			0,122	0,50
200/160			0,12	0,50
250/100	0,5	50	0,155	0,64
250/125			0,156	0,64
250/160			0,16	0,66
250/200			0,16	0,66
315/160			0,2	0,83
315/200			0,207	0,85
315/250			0,208	0,86
355/160			0,27	1,54
355/200			0,23	1,31
355/250			0,17	0,97
400/200			0,42	2,39
400/250			0,39	2,22
400/315			0,34	1,94
500/250			0,59	3,36
500/315	0,7	60	0,55	3,14
500/400			0,46	2,62
630/315			0,86	4,90
630/400			0,77	4,39
630/500			0,63	3,59
800/400			0,98	5,59
800/500			1,15	6,56
800/630			0,91	5,19
900/500			1,47	11,83
900/630			1,1	8,86
900/800			0,49	3,94
1000/500			2,12	17,07
1000/630	1,0	100	1,9	15,30
1000/800			1,53	12,32
1250/630			3,08	24,79
1250/800			2,05	16,50
1250/1000			2,13	17,15

 $Lmin 45^{\circ} = 1,5 D1 + 100_{MM}$ $Lmin 30^{\circ} = 2 D1 + 100_{MM}$

¹ Обязательно проконсультируйтесь с менеджером

7.10. УТКИ

«Утки» — это специальные фасонные изделия, которые созданы для соединения разноуровневых воздуховодов. Они подходят и для тех воздуховодов, которые находятся правее или левее по отношению друг к другу.


Соотношение размеров D, L, A, T- любое, с учетом технологических ограничений.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ УТКА ОЦ. D125 T163 L320 P-P

1 2 3 4 5	1	2	3	4	5	6
-----------	---	---	---	---	---	---

1	Наименование
2	Материал
3	Диаметр, мм
4	Смещение, мм
5	Длина утки, мм
6	Тип соединения

D, мм	Толщина материала, мм	A, mm
100		
125		
140		
160		
180	0,5	35
200	0,3	33
225		
250		
280		
315		
355		
400		
450		
500	0,7	55
560		33
630		
710		
800		
900		
1000	1,0	100
1120	1,0	100
1250		

ДЛЯ ЗАМЕТОК						

ДЛЯ ЗАМЕТОК						

для заметок						

ЯНВАРЬ

TIH	ВТ	Ср	ЧТ	ПТ	Co	RC	
		29			01	02	
03	04	05	06	07	08	09	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31		02	03	04	05	06	

- 1: Новый год
- 7: Рождество Христово
- 21: ДР НЕВАТОМ Кемерово

АПРЕЛЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
	29	30	31	01	02	03
04	05	06	07	80	09	10
11	12	13	14	15	16	17
					23	
25	26	27	28	29	30	01
02		04	05	06	07	08

1: ДР НЕВАТОМ Казань 28: ДР НЕВАТОМ Новокузнецк

июль

Пн	Вт	Ср	Чт	Пт	Сб	Вс
	29	30	31	01	02	03
04	05	06	07	80	09	10
11	12	13	14	15	16	1 <i>7</i>
18	19	20	21	22	23	24
25	26	27	28	29	30	31
01	02					

- 1: ДР НЕВАТОМ Самара
- 2: ДР НЕВАТОМ Пермь
- 2: ДР НЕВАТОМ Владивосток

ОКТЯБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
		29	30		01	02
03	04	05	06	07	80	09
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31			03	04	05	06

10: ДР НЕВАТОМ Санкт-Петербург

13: ДР НЕВАТОМ Сургут

16: ДР НЕВАТОМ Улан-Удэ

20: ДР НЕВАТОМ Хабаровск

ФЕВРАЛЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
	01	02	03	04	05	06
07	08	09	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28		02	03	04	05	06
	08	09	10	11	12	13

7: ДР НЕВАТОМ Омск 23: День защитника Отечества

МАЙ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
	26	27	28	29	30	01
02	03	04	05	06	07	08
09	10	11	12	13	14	15
16	1 <i>7</i>	18	19	20	21	22
23	24	25	26	27	28	29
30	31	01	02	03	04	05

1: Праздник Весны и Труда

2: ДР НЕВАТОМ Нур-Султан

9: День Победы

13: ДР НЕВАТОМ Новосибирск

18: ДР НЕВАТОМ Барнаул

АВГУСТ

		Ср				
01	02	03	04	05	06	07
80	09	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	01	02	03	04
05	06	07	08	09	10	11

8: День строителя

6: ДР НЕВАТОМ Магнитогорск

11: ДР НЕВАТОМ Москва

НОЯБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
	01	02	03	04	05	06
07	08	09	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	01	02	03	04
05	06	07	08	09	10	11

4: День народного единства 16: День проектировщика 17: ДР HEBATOM Челябинск

MAPT

Пн	Вт	Ср	Чт	Пт	Сб	Вс
28	01	02	03	04	05	06
07	08	09	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	01	02	03
04	05	06	07	08	09	10

1: ДР НЕВАТОМ Иркутск

8: Международный женский день 11: ДР HEBATOM Тюмень

26: ДР НЕВАТОМ Томск

ИЮНЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
30	31	01	02	03	04	05
06	07	80	09	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	01	02	03
04	05	06	07	08	09	10

12: День России

СЕНТЯБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
29	30	31	01	02	03	04
05	06	07	80	09	10	11
					1 7	
19	20	21	22	23	24	25
26	27	28	29	30	01	02
03	04	05	06	07	08	09

21: ДР НЕВАТОМ Уфа

ДЕКАБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
29	30	31	01	02	03	04
05	06	07	80	09	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	01
02	03	04	05	06	07	08

4: ДР НЕВАТОМ Екатеринбург 7: ДР НЕВАТОМ Алматы 26: ДР НЕВАТОМ Красноярск

КОМПАНИЯ НЕВАТОМ

Новосибирск

+7 383 210 55 83 nsk@nevatom.ru 630009, ул. Никитина, 20/2 производство: 630126, ул. Выборная, 141

Екатеринбург

+7 343 221 70 02 ekb@nevatom.ru 620141, ул. Завокзальная, 28

Омск

+7 381 229 84 81 zakaz@nevatom.ru 644047, ул. Чернышевского, 23, оф. 25

Барнаул

+7 385 223 01 22 barnaul@nevatom.ru 656064, ул. Сельскохозяйственная, 5, корп. 3, этаж 2

Кемерово

+7 384 249 07 84 kem@nevatom.ru 650021, ул. Красноармейская, 113

Казань

+7 843 210 03 16 zakaz@nevatom.ru 420087, ул. Родины, 7, оф. 310

Москва

+7 495 221 63 95 msk@nevatom.ru 111123, ул. Плеханова, 4а, этаж 5, оф. 2 склад: 111024, ул. Энтузиастов 2-я, 5,

корп. 24

+7 351 210 17 51

chel@nevatom.ru 454007, ул. Российская, 110, корп. 2, оф. 303 склад: 454008, ул. Свердловский тракт, 5, стр. 1, скл. 9

Тюмень

+7 345 252 03 46 tmn@nevatom.ru 625007, ул. Мельникайте, 112, стр. 3, оф. 507 склад: 625007, ул. 30 лет Победы, 7, стр. 9

Улан-Удэ

склад: +7 395 248 78 10 irk@nevatom.ru 660062, ул. Домостроительная, 25, скл.15

Уфс

+7 347 226 11 47 zakaz@nevatom.ru 450106, ул. Менделеева, 130, оф. 49 склад: 450080, ул. Менделеева, 136, корп. 14

Санкт-Петербург

+7 812 313 40 12 spb@nevatom.ru 195067, ул. Маршала Тухачевского, 22, оф. 501 склад: 197375, ул. Репищева, 14, скл. 25 (АБ)

Пермь

+7 342 218 21 41 zakaz@nevatom.ru 614007, ул. Н. Островского, 59, этаж 3, оф. 308 склад: ул. Сергея Данщина, 5, стр. 3

Иркутск

+7 395 225 81 41 irk@nevatom.ru 664025, ул. Степана Разина, 6, оф. 408A склад: 664005, ул Иркута Набережная, 1/6Б

Красноярск

+7 391 273 90 24 kras@nevatom.ru 660075, ул. Маерчака, 16, оф. 804 склад: 660062, ул. Телевизорная, 1, стр. 62

Хабаровск

склад: +7 423 205 55 02 zakaz@nevatom.ru 680014, ул. Иркутская, д. 6 склад 5A-1

Томск

+7 382 228 09 44 zakaz@nevatom.ru 634028, ул. Тимакова, 21, стр. 1

Магнитогорск

склад: +7 351 200 50 05 zakaz@nevatom.ru 455047, ул. Труда, 42a стр. 2

Новокузнецк

+7 384 391 05 84 nkz@nevatom.ru 654005, ул. Кольцевая, 15, корп. 8, оф. 5

Владивосток

+7 423 230 01 25 vld@nevatom.ru 690078, ул. Красного Знамени, 3, оф. 6/1 склад: 690062, ул. Днепровская, 25A,

Самара

+7 846 267 34 46 samara@nevatom.ru 443030, ул. Урицкого, 19, этаж 6, оф. 9 склад: 443082, ул. Новоурицкая, 12, корп. 4

Сургут

склад:

+7 345 251 88 51 tmn@nevatom.ru 6628401, г. Сургут, Восточный район, пос. Черный Мыс, ул. Глухова, 12

Нур - Султан

+7 717 272 77 88 nursultan@nevatom.ru Қоргалжинское шоссе, 3, оф. 312 склад: ул. Жанажол, 19/3A

Алматы

+7 727 349 69 59 almaty@nevatom.ru ул. Мынбаева, 151, оф. 83 склад: ул. Бродского, 37/1