GEFFEN®

РОССИЙСКОЕ ОБОРУДОВАНИЕ ДЛЯ КОТЕЛЬНЫХ

ВЫСОКИЕ ЭКОЛОГИЧЕСКИЕ СТАНДАРТЫ

Технический каталог 2024

MKC 135 DN 25

Модульная коллекторая система до 135 кВт

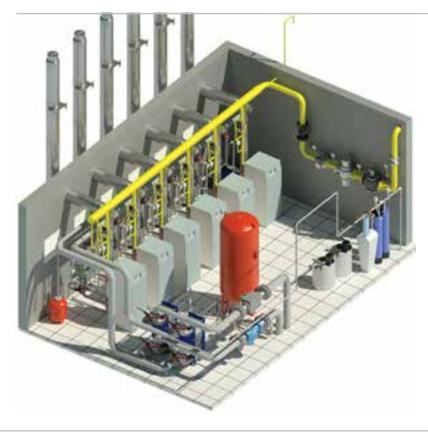
быстрый монтаж

энергосберегающие насосы

компактность

Сделано в России

доступность обслуживания



теплоизоляция в комплекте

- Конденсационные напольные котлы от 40 кВт до 2000 кВт
- Бойлеры косвенного нагрева от 100 л до 300 л
- Коллекторы и гидравлические разделители до 1500 кВт
- Нейтрализаторы конденсата от 40 кВт до 2000 кВт
- Дымоудаление для котлов
- Коллекторная система теплогенераторной от 80 кВт до 396 кВт
- Установки водоочистки для котельных и теплогенераторных

	содержание
O GEFFEN®	1
GEFFEN MB 4.1	2
Конденсационные напольные котлы от 40 до 99 кВт ССЕСТИ ЛАД Э 1	3
GEFFEN MB 3.1 Конденсационные напольные котлы от 127 до 2000 кВт	<u> </u>
Полный комплект автоматизации и электропитания для теплогенераторной	4
ДЛЯ 2-4 КОТЛОВ СЕРИИ МВ 4.1 БОЙЛЕР КОСВЕННОГО НАГРЕВА GLB 100 л, 150 л, 200 л, 300 л	5
Коллекторная система теплогенераторной от 80 до 396 кВт	6
Дымоудаление для котлов	7
Нейтрализация конденсата для котлов от 40 до 2000 кВт	8
MKC 1300	9
Коллекторы, гидравлические разделители до 1500 кВт	10
УСТАНОВКИ ВОДООЧИСТКИ для котельных и теплогенераторных	10

GEFFEN® производит оборудование для отопления, горячего водоснабжения и водоочистки уже более 15 лет. Ассортимент продукции включает напольные конденсационные котлы от 40 кВт до 2 МВт, группы быстрого монтажа до 1,5 МВт, насосные станции, систему автоматизации котельной, установки химводоочистки.

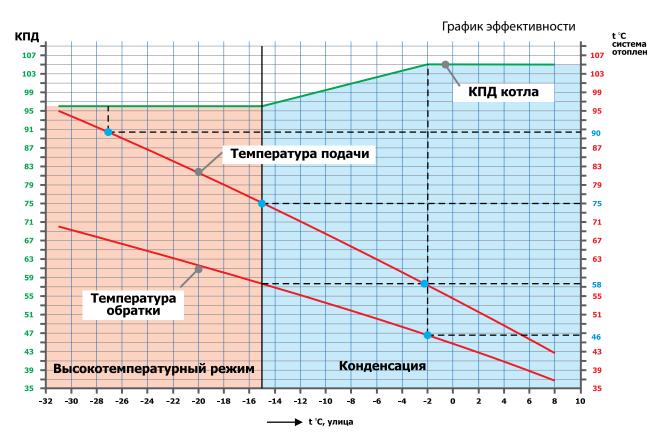
Производство оснащено современным технологическим оборудованием. Детали проходят все этапы от резки до сборки на заводе. Минимизация брака: качественные материалы, контроль входящих комплектующих, контроль готовой продукции. Мы находимся в России и на заводе работают люди, с которыми всегда можно связаться по вопросам оборудования.

Благодаря квалифицированной сервисной и технической поддержке продукция бренда GEFFEN® завоевала заслуженное доверие покупателей по всей России, Беларуси, Армении.

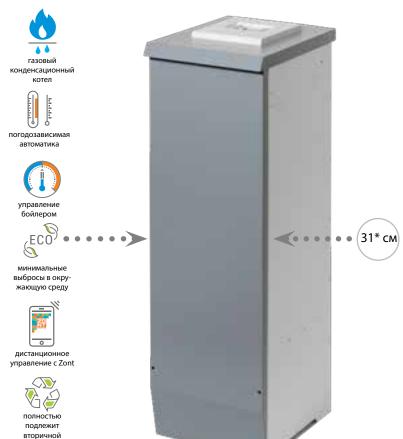
Сервисные центры обслуживают оборудование GEFFEN® и всегда готовы прийти на помощь пользователю.

Наше конструкторское бюро оснащено мощнейшей системой автоматизированного проектирования и системой технологического проектирования. Данный комплекс программных средств, вкупе с профессиональной инженерной командой, дает возможность создания надежных и современных практических решений, востребованных нарынке. Вся техническая документация представлена на сайте geffen.ru и ёлка.рф.

На все изготавливаемое оборудование имеются сертификаты и разрешительные санитарно-гигиенические документы.


Ориентируясь на потребности наших партнеров — от монтажника до промышленного предприятия и проектного института — мы разрабатываем современные, практичные и доступные по стоимости инженерные решения.

За счет продукции собственного производства мы комплектуем котельные до 12 МВт гарантированного качества. Выбирая бренд GEFFEN® и ËЛКА®, Вы можете быть уверены, что делаете выбор в пользу оптимального соотношения цены и качества на основе профессиональных проверенных решений.


КОНДЕНСАЦИОННЫЕ КОТЛЫ GEFFEN®

Используемая технология сгорания в конденсационных котлах GEFFEN® обеспечивает чрезвычайно низкое количество выбросов. Воздух вокруг зданий не загрязняется, возможна установка в санаторно-курортной зоне, отлично подходит для жилых пространств, поскольку работает практически бесшумно.

На графике показана работа котла в зависимости от температуры наружного воздуха и как при этом меняется КПД котла.

Газовый напольный конденсационный котел GEFFEN MB 4.1

- Назначение: отопление, ГВС
- **Тип котла:** конденсационный, с закрытой камерой
- Тип горелки: горелка с полным предварительным смешением
- Вид топлива: Природный газ низкого давления ГОСТ 5542-87. Протестировано при 8-50 мбар без потери мощности. Возможна перенастройка на использования СУГ
- Удаление продуктов сгорания: дымоход
- Сертификат: EAЭC RU C-RU.AД85.B.00167/20
- Контроль и безопасность:
 - датчик давления воды min/max;
 - электрод розжига и ионизации,
 - защита от перегрева,
 - защита от остановки циркуляции: контроль температуры подающего и обратного трубопровода.
- * для моделей котлов MB 4.1-40, MB 4.1-60 31 см; для моделей котлов MB 4.1-80, MB 4.1-99 — 33,5 см

Входит в комплект

переработке

- погодозависимая автоматика
- управление бойлером
- премиксная горелка
- автоматика безопасности
- система защиты от размораживания
- система защиты от легионеллы бойлера ГВС

- датчик бойлера
- датчик наружной температуры

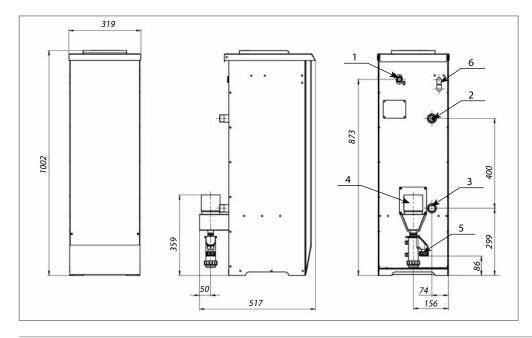
Дополнительное оборудование:

- автоматика каскадирования
- нейтрализатор конденсата
- регуляторы Zont
- дымоходы
- коллекторная система

Технология

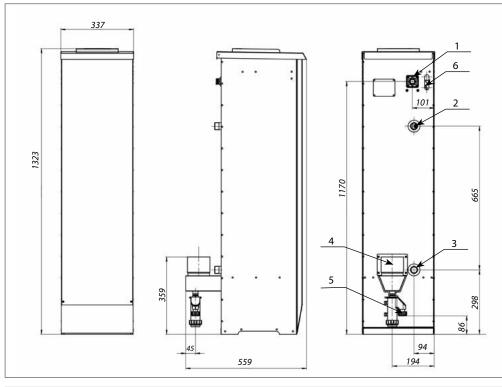
- Теплообменник из нержавеющей стали
- Минимизация отложений в теплообменнике за счет вертикально расположенных трубок
- Легкая промывка теплообменника
- Диапазон модуляции от 20% до 100%
- Электронный розжиг
- Бесшумная работа
- Легкая перенастройка на сжиженный газ

Возможности


- Регулирование температуры системы отопления
- Регулирование температуры системы ГВС
- Регулирование температуры системы отопления встроенной погодозависимой автоматикой
- Подключение комнатного термостата
- Подключение насосов контура отопления и ГВС. Подключение бойлера
- Диапазон регулирования температуры в системе отопления 30-85 °C
- Подключение внешнего контроллера по протоколу данных OPEN-THERM

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПОКАЗАТЕЛИ

Nο	Наимонования	Тип котла				
Ma	Наименование	40 кВт	60 кВт	80 кВт	99 кВт	
1	Номинальная тепловая мощность при 80/60 °C, кВт	40	56	80	99	
2	Номинальная тепловая мощность при конденсационном режиме 50/30* °C, кВт	40	56	80	99	
3	КПД при 50/30° C		10	05		
4	КПД при 80/60° С		ç	95		
5	Температура дымовых газов (при 50/30 - 100% мощность),°С		<	50		
6	Минимальная температура отходящих газов, °C		3	80		
7	Назначение		Водогр	рейный		
8	Вид топлива	1. Природный газ номинального низкого давления 2,0÷5,0 (200÷500) кПа (мм вод. ст.) по ГОСТ 5542 Минимально допустимое давление газа перед котлом (при отклонении давления сети газораспределения от требований ГОСТ) для работы оборудования без потери мощности — 0,8 кПа При давлении природного газа от 1,3-3 кПа, настройка газового клапана при первом пуске не требуется 2. Возможна перенастройка на использование СУГ				
9	Границы модуляции, %	20-100				
10 Минимальное давление воды, МПа (кгс/см²) 0,12 (1,2)			(1,2)			
11	Рабочее давление воды, МПа (кгс/см²)	0,3 (3,0)				
12	Диапазон рабочих температур, °С		30-85			
13	Номинальный расход воды, при Δt=20 °C, м³⁄ч				4,26	
14	Аэродинамическое сопротивление топки, Па	90				
15	Гидравлическое сопротивление котла по теплоно- сителю, при номинальном расходе воды, кПа (мм вод. ст.)	<5 (500)				
16	Водяная ёмкость котла, л	9	,8	1	1,1	
17	Расход природного газа min/max при 50/30 °C, м³⁄ч	0,8 / 4	1,12 / 5,59	1,6 / 8,06	1,98 / 9,89	
18	Расход природного газа min/max при 80/60 °C, м³/ч	0,88 / 4,42	1,24 / 6,18	1,77 / 8,83	2,19 / 10,93	
19	Максимальное образование конденсата, при температурном режиме 50/30°C, л/ч	4	6	8	10	
20	Максимальное избыточное давление в дымоходе за котлом, Па		20	00		
21	Содержание оксида углерода СО в продуктах сгорания, при максимальной мощности, мг/м³, не более	112				
22	Содержание оксида азота в продуктах сгорания (в пересчете на NOx), мг/ M^3 , не более	12				
23	Удельное потребление электроэнергии, при полной мощности теплогенерации, Вт	80 150		50		
24	Частота питающей сети, Гц	50				
25	Напряжение питания, В	230				
26	Массовый расход дымовых газов, Мдым, г/с	19,76	29,65	39,53	48,93	
27	оэффициент избытка воздуха α 1,35					
28	28 Масса котла в сборе, не более, кг 45 67			57		
29	Средний срок службы котла лет, не менее	Средний срок службы котла лет, не менее 10				


^{*} Не менее чем. Точная цифра зависит от калорийности и типа топлива

ГАБАРИТНЫЕ РАЗМЕРЫ КОТЛА МВ 4.1-40 И МВ 4.1-60

- 1 подключение газа: 3/4″ наружная резьба
- 2 выход теплоносителя из котла: 1″ наружная резьба
- 3 —вход теплоносителя в котел: 1″ наружная резьба
- 4 отвод дымовых газов: раструб Ду 80 мм с манжетой
- 5 удаление конденсата: Ду 18 мм / 1/2″
- 6 место ввода кабеля электроэнергии и датчиков

ГАБАРИТНЫЕ РАЗМЕРЫ КОТЛА МВ 4.1-80 И МВ 4.1-99

- 1 подключение газа: 3/4″ внутренняя резьба
- 2 выход теплоносителя из котла: 1″ наружная резьба
- 3 вход теплоносителя в котел: 1″ наружная резьба
- 4 отвод дымовых газов: раструб Ду 100 мм с манжетой
- 5 удаление конденсата: Ду 18 мм / 1/2″
- 6 место ввода кабеля электроэнергии и датчиков

Наименование		
	05020050	Котел конденсационный газовый водогрейный типа GEFFEN MB 4.1-40
	05020051	Котел конденсационный газовый водогрейный типа GEFFEN MB 4.1-60
	05020052	Котел конденсационный газовый водогрейный типа GEFFEN MB 4.1-80
	05020053	Котел конденсационный газовый водогрейный типа GEFFEN MB 4.1-99

Г	Принадлежности	
	05030109	Датчик бойлера для котлов МВ 4.1
	05030108	Датчик наружной температуры для котлов MB 4.1

Газовый напольный конденсационный котел GEFFEN MB 3.1

FAI

КАТЕГОРИЯ ГАЗА: по ГОСТ 5542-87

Дополнительное оборудование:

- автоматика внешних контуров
- нейтрализатор конденсата
- предохранительный клапан
- датчик бойлера
- датчик наружной температуры
- датчик каскада

■ Назначение: отопление

- Тип котла: конденсационный
- Тип горелки: модулирующая с предварительным смешением воздуха и газа
- Используемая энергия: природный газ, СУГ
- Удаление продуктов горения: дымоход
- Подтверждение «сертификат ТР»: RU C-RU. AБ 53.B.00306/21
- Минимальная температура теплоносителя в обратной трубе: нет ограничений
- Минимальная температура в подающей трубе: нет ограничений
- Закрытая камера сгорания

Входит в комплект

- погодозависимая автоматика
- каскадная автоматика
- премиксная горелка
- автоматика безопасности

Условия эксплуатации:

■ Топливо

- природный газ низкого давления от 20 до 50 мбар;
- работа без существенной потери мощности при давлении газа в динамике до 13 мбар;
- возможность переналадки на сжиженный газ.

■ Теплоноситель

- максимальное рабочее давление 0,6 МПа;
- минимальное давление 0,1 МПа при минимальной мощности;
- максимальная рабочая температура 95°C;
- срабатывание защитного термостата котла 110 °C

MB 3.1-...

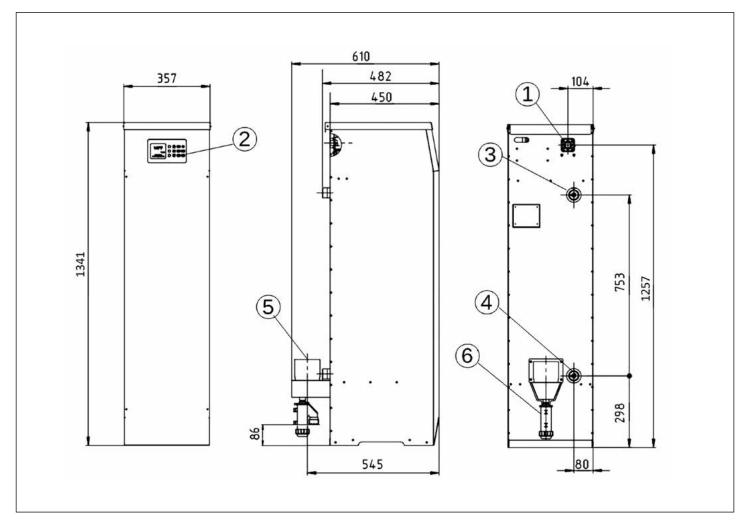
Линия газовых конденсационных котолов мощностью от 127 до 301 кВт

Технология:

- теплообменник из жаростойкой нержавеющей стали;
- премиксная горелка полного предварительного смешения;
- диапазон модуляции мощности котла от 18 до 100 % с постоянным соотношением газ/воздух;
- электронный розжиг;
- ионизационный датчик наличия пламени;
- датчики температуры подающей и обратной линий;
- панель управления GoHPI.
- Возможность объединения в каскад до 6 котлов
- Автоматика ведущего и ведомого котлов идентичны
- Высокий коэффициент полезного действия: не менее 103% по низшей телоте сгорания

- Низкий уровень шума
- Низкое потребление электроэнергии: до 200...373 Вт/ч в зависимости от мощности
- Низкие показатели эмиссии загрязняющих веществ: Nox<46 мг/кВт•ч, CO<161 мг/кВт•ч</p>
- Забор воздуха на горение осуществляется из помещения котельной
- Удаление дымовых газов: дымоход класса П
- Малый вес: менее 1 кг/1 кВт мощности
- Простое техническое обслуживание
 - быстрый доступ к элементам котла за счет легкоснимающейся передней облицовочной панели и раскладной фронтальной дверцы котла;
 - интерфейс на русском языке.

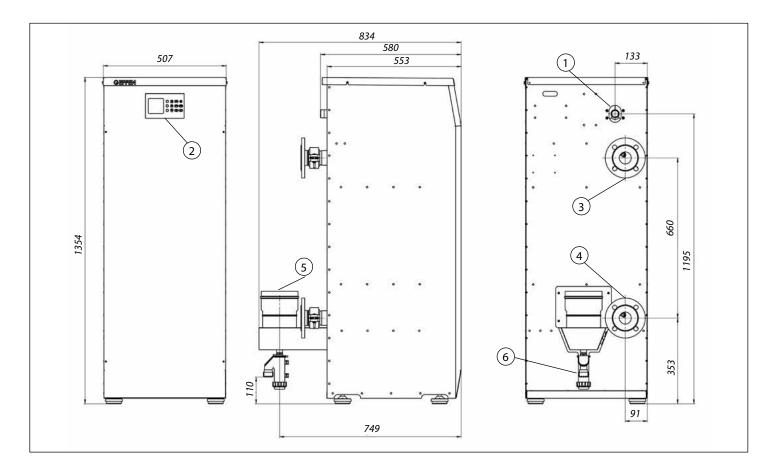
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПОКАЗАТЕЛИ


	Тип котла				
Наименование	3.1-127	3.1-145	3.1-200	3.1-251	3.1-301
Номинальная теплопроизводительность при 95/75 °C , кВт	127 145		200	251	301
2 Номинальная теплопроизводительность при 50/30** °C, кВт		145	200	251	301
КПД, при 95/75 °C, %			не менее 95	,	
КПД, при 50/30 °C, %			не менее 103		
Температура дымовых газов при 95/75, °C	не бол	пее 95	не более 105		
Вид топлива	П	Природный газ низкого давления ГОСТ 5542-87 номинальное давление, кПа (мм вод. ст.) 2,0÷5,0 (200÷500)			37
Границы модуляции, %	18 –	100	30 – 100	24 – 100	21 – 100
Рабочее давление воды в котле, МПа (кгс/см²)			0,55(5,5)		
Избыточное давление за котлом принимаемое для расчёта дымохода, max при min мощности/max мощности, Па			100/190		
Минимальное давление воды в котле при минимальной мощности, МПа (кгс/см²)			0,13(1,3)		
Максимальная температура воды на выходе, ^о С			95		
Номинальный расход воды, при Δt =20 °C, м³/ч	5,46 6,24		8,58	10,77	12,91
Гидравлическое сопротивление котла по теплоносителю, при номинальном расходе воды, кПа	<5 (500)				
Аэродинамическое сопротивление топки, кПа	0,09 0,12				
Водяная емкость котла, л	14	1,4	20,57		
Расход природного газа min/max (при 95/75 °C)*, м³/ч	2,8/14,02	3,2/16,01	6,6/22,08	6,6/27,71	6,6/33,23
Расход природного газа min/max (при 50/30 °C)*, м³/ч	2,59/12,93	2,95/14,76	6,3/20,36	6,3/25,55	6,3/30,64
Максимальное образование конденсата, при 50/30* °C, л/ч	12,7	14,5	не более 30		
Средний срок службы котла, не менее, лет			10		
Содержание оксида углерода СО в продуктах сгорания*, при максимальной мощности не более, Мг/кВт*ч			161		
Содержание оксида азота в продуктах сгорания (в пересчете на NOx), не более, Мг/кВт*ч	46				
Эквивалентный корректировочный уровень звуковой мощности ***, Lwa(eg), дБ (A)	63,2 65,4 66,2 67,7		67,7	69,4	
Удельное потребление электроэнергии, при полной мощности теплогенерации, Вт	213		373		
Напряжение питания/частота, В/Гц			230 В / 50 Гц		
Массовый расход дымовых газов, Мдым, г/с	62,76 71,65		98,82	124,03	148,72
Коэффициент избытка воздуха α	1,35				
Масса котла в сборе, не более, кг	74 112				
	Номинальная теплопроизводительность при 50/30** °С, кВт КПД, при 95/75 °С, % КПД, при 50/30 °С, % Температура дымовых газов при 95/75, °С Вид топлива Границы модуляции, % Рабочее давление воды в котле, МПа (кгс/см²) Избыточное давление за котлом принимаемое для расчёта дымохода, тах при тіп мощности/тах мощности, Па Минимальное давление воды в котле при минимальной мощности, МПа (кгс/см²) Максимальная температура воды на выходе, °С Номинальный расход воды, при ∆t=20 °С, м³/ч Гидравлическое сопротивление котла по теплоносителю, при номинальном расходе воды, кПа Аэродинамическое сопротивление топки, кПа Водяная емкость котла, л Расход природного газа тіп/тах (при 95/75 °С)*, м³/ч Максимальное образование конденсата, при 50/30 °С, л/ч Средний срок службы котла, не менее, лет Содержание оксида углерода СО в продуктах сгорания*, при максимальной мощности не более, Мг/кВт∗ч Содержание оксида заота в продуктах сгорания (в пересчете на NОх), не более, Мг/кВт∗ч Зквивалентный корректировочный уровень звуковой мощности ****, Lwa(ед), дБ (А) Удельное потребление электроэнергии, при полной мощности теплогенерации, Вт Напряжение питания/частота, В/Гц Массовый расход дымовых газов, Мдым, г/с Коэффициент избытка воздуха α	Номинальная теплопроизводительность при 95/75 °C, кВт 127 Номинальная теплопроизводительность при 50/30** °C, кВт 127 КПД, при 95/75 °C, % 127 КПД, при 50/30 °C, % 127 Температура дымовых газов при 95/75, °C не бо. Вид топлива П Границы модуляции, % 18 - Рабочее давление воды в котле, МПа (кгс/см²) 18 - Избыточное давление воды в котле при минимальной мощности, Па 18 - Минимальное давление воды в котле при минимальной мощности, МПа (кгс/см²) 18 - Максимальная температура воды на выходе, °C 19 - Номинальный расход воды, при Δt=20 °C, м³/ч 5,46 Гидравлическое сопротивление котла по теплоносителю, при номинальном расходе воды, кПа 0, Аэродинамическое сопротивление топки, кПа 0, Водяная емкость котла, л 14 Расход природного газа min/max (при 95/75 °C)*, м³/ч 2,8/14,02 Расход природного газа min/max (при 50/30 °C)*, м³/ч 2,59/12,93 Максимальное образование конденсата, при 50/30 °C)*, м³/ч 12,7 Средний срок службы котла, не менее, лет Содержание оксида азота в продуктах сгорания (в пересчете на NOx), не более, Мг/кВт*ч 3,2<	Номинальная теплопроизводительность при 95/75 °C, кВт 127 145 Номинальная теплопроизводительность при 50/30°° °C, кВт 127 145 КПД, при 95/75 °C, % КПД, при 95/75 °C, % КПД, при 50/30 °C, % Температура дымовых газов при 95/75, °C Не ботвер 95 Вид топлива 18 − 100 Вид топлива 18 − 100 Рабочее давление воды в котле, МПа (кгс/см²) Избыточное давление воды в котле, МПа (кгс/см²) Избыточное давление воды в котле, МПа (кгс/см²) Избыточное давление воды в котле при минимальной мощности, Па Минимальное давление воды в котле при минимальной мощности, МПа (кгс/см²) Максимальная температура воды на выходе, °C Номинальный расход воды, при Δt=20 °C, м³/ч 5,46 6,24 Гидравлическое сопротивление котла по теплоносителю, при номинальном расходе воды, кПа Аэродинамическое сопротивление топки, кПа 0,09 Водяная емкость котла, л 1↓↓ Расход природного газа min/max (при 95/75 °C)*, м³/ч 2,8/14,02 3,2/16,01 Расход природного газа min/max (при 50/30 °C)*, м³/ч 2,59/12,93 2,95/14,76 Максимальное образование конденсата, при 50/30° °C, л/ч 12,7 14,5 Средний срок службы котла, не менее, лет Содержание оксида углерода СО в продуктах сгорания*, при максимальной мощности не более, Мг/кВт*ч Содержание оксида зота в продуктах сгорания (в пересчете на NOX), не более, Мг/кВт*ч 3квивалентный корректировочный уровень звуковой мощности ***, Lwa(ед), ДБ (A) Удельное потребление электроэнергии, при полной мощности ***, Lwa(ед), ДБ (A) Удельное потребление электроэнергии, при полной мощности ***, Lwa(ед), ДБ (A) Удельное потребление электроэнергии, при полной мощности ***, Lwa(ед), ДБ (A) Удельное потребление электроэнергии, при полной мощности ***, Lwa(ед), ДБ (A) Удельное потребление электроэнергии, при полной мощности ***, Lwa(ед), ДБ (A) Удельное потребление электроэнергии, при полной мощности ***, Lwa(ед), ДБ (A) Удельное потребление электроэнергии, при полной мощности теплогенерации, Вт Напряжение питания/частота, В/Гц Массовый расход дымовых газов, Мдым, г/с 62,76 71,65	Номинальная теплопроизводительность при 95/75 °C , кВт 127 145 200 Номинальная теплопроизводительность при 50/30°°C, кВт 127 145 200 КПД, при 95/75 °C, % КПД, при 50/30 °C, % Температура дымовых газов при 95/75, °C При родный газым не менее 103 Вид топлива Вид топлива При родный газым не менее 103 Рабочее давление воды в котле, МПа (кгс/см²) 30 – 100 Рабочее давление в воды в котле, МПа (кгс/см²) 30 – 100 Рабочее давление в воды в котле мПа (кгс/см²) 30 – 100 Избыточное давление в воды в котле при минимальной минимальное давление воды в котле при минимальной минимальное давление воды в котле при минимальной минимальной мощности, МПа (кгс/см²) 30,13(1,3) Максимальная температура воды, при Δt=20 °C, м²/ч 5,46 6,24 8,58 Гидравлическое сопротивление котла по теплоносителю, при номинальном расходе воды, кПа 0,9 5 5 (500) Водяная емкость котла, л 2,8/14,02 3,2/16,01 6,6/22,08 6,6/22,08 6,6/22,08 6,6/22,08 6,6/22,08 6,6/22,08 6,6/22,08 6,6/22,08 6,6/22,08 6,6/22,08 6,	Номинальная теплопроизводительность при 95/75 °С, кВт 127 145 200 251 Номинальная теплопроизводительность при 95/75 °С, кВт 127 145 200 251 Номинальная теплопроизводительность при 95/75 °С, кВт 127 145 200 251 КПД, при 95/75 °С, %

^{*} При калорийности газа 8200 ккал/м³

^{**} Не менее чем, точная цифра зависит от калорийности и типа топлива

^{***} Значения определены в соответствии с ГОСТ 30691-2001


ГАБАРИТНЫЕ РАЗМЕРЫ. GEFFEN MB 3.1-127 и MB 3.1-145

- 1 Подключение газа
- 2 Блок управления
- 3 Выход теплоносителя из котла
- 4 Вход теплоносителя в котел
- 5 Дымоход
- 6 Конденсатоотводчик

Размеры GEFFEN MB	Модель котла
	MB 3.1-127, MB 3.1-145
Подключение подающей линии	HP 1 1/4"
Подключение обратной линии	HP 1 1/4"
Диаметр дымохода	раструб 100 мм
Подключение газа	BP 3/4"
Удаление конденсата	Ду 18 мм/ 1/2"

ГАБАРИТНЫЕ РАЗМЕРЫ. GEFFEN MB 3.1-200, MB 3.1-251 и MB 3.1-301

- 1 Подключение газа
- 2 Блок управления
- 3 Выход теплоносителя из котла
- 4 Вход теплоносителя в котел
- 5 Дымоход
- 6 Конденсатоотводчик

Размеры GEFFEN MB	Модель котла
	MB 3.1-200, MB 3.1-251, MB 3.1-301
Подключение подающей линии	фланец Ду 50
Подключение обратной линии	фланец Ду 50
Диаметр дымохода	раструб 150 мм
Подключение газа	1"
Удаление конденсата	Ду 18 мм/ 1/2"

Н	Наименование		
	05020187	Котел отопительный водогрейный типа GEFFEN MB 3.1-127 кВт	
	05020143	Котел отопительный водогрейный типа GEFFEN MB 3.1-145 кВт	
	05022188	Котел отопительный водогрейный типа GEFFEN MB 3.1-200 кВт	
	05022189	Котел отопительный водогрейный типа GEFFEN MB 3.1-251 кВт	
	05022185	Котел отопительный водогрейный типа GEFFEN MB 3.1-301 кВт	
	05022194	Котел отопительный водогрейный типа GEFFEN MB 3.1-251 кВт с контролем герметичности	
	05022186	Котел отопительный водогрейный типа GEFFEN MB 3.1-301 кВт с контролем герметичности	

А	Автоматизация		
	05030092	Датчик наружной температуры для котлов MB 3.1	
	05030091	Датчик NTC12K с проводом 5 м	
	01092015	Гильза погружного датчика L=65 мм	
	05030102	Гильза погружного датчика L=150 мм	
	05030096	Контроллер SDC12-31N для Котельной или ИТП, 230 Вт преднастроен для смесительного контура отопления, смесительного контура ГВС с теплообменником и прямого контура	
	05030094	Клеммная коробка модуля контроллера SDC12-31N монт. стена/DIN-рейка (клеммы в компл)	
	05030095	Комплект клеммников для контроллера SDC12-31N X1-X4	
	05030093	Датчик температуры наружного воздуха АF 20	
	05030098	Погружной датчик температуры 65 мм	
	05030097	Погружной датчик температуры 150 мм	

Газовый напольный конденсационный котел GEFFEN MB 3.1

ГАРАНТИЯ НА ТЕПЛООБМЕННИК 5 ЛЕТ

Дополнительное оборудование:

- автоматика внешних контуров
- нейтрализатор конденсата
- предохранительный клапан
- датчик бойлера
- датчик наружной температуры
- датчик каскада

Назначение: отопление

- Тип котла: конденсационный
- Тип горелки: модулирующая с предварительным смешением воздуха и газа
- Используемая энергия: природный газ, СУГ
- Удаление продуктов горения: дымоход
- Подтверждение «сертификат ТР»: RU C-RU. AБ 53.B.00306/21
- Минимальная температура теплоносителя в обратной трубе: нет ограничений
- Минимальная температура в подающей трубе: нет ограничений
- Закрытая камера сгорания

Входит в комплект

- погодозависимая автоматика
- каскадная автоматика
- премиксная горелка
- автоматика безопасности
- фильтр воздуха для запыленных помещений.
- прегулируемые по высоте виброопоры
- специальные колесные опоры

Условия эксплуатации:

■ Топливо

- природный газ низкого давления от 20 до 50 мбар;
- работа без существенной потери мощности при давлении газа в динамике до 13 мбар;
- возможность переналадки на сжиженный газ.

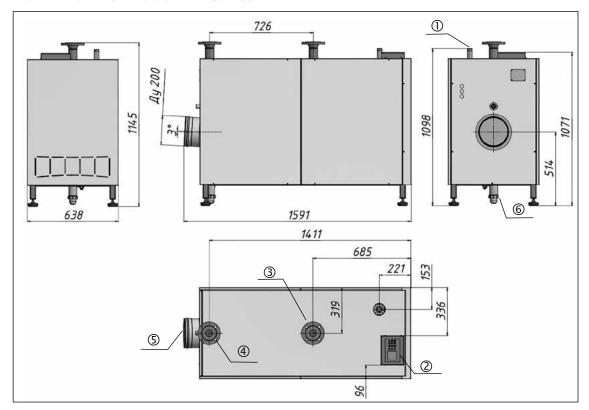
Теплоноситель

- максимальное рабочее давление 1 МПа;
- минимальное давление 0,1 МПа при минимальной мощности;
- максимальная рабочая температура 95 °C;
- срабатывание защитного термостата котла 110 °C

MB 3.1-...

Линия газовых конденсационных котолов мощностью 400 кВт

- Технология:
 - теплообменник из жаростойкой нержавеющей стали;
 - премиксная горелка полного предварительного смешения;
 - диапазон модуля мощности котла от 18 до 100 % с постоянным соотношением газ/воздух;
 - электронный розжиг;
 - ионизационный датчик наличия пламени;
 - датчики температуры подающей и обратной линий;
 - панель управления GoHPI.
- Возможность объединения в каскад до 6 котлов
- Автоматика ведущего и ведомого котлов идентичны
- Высокий коэффициент полезного действия: не менее 103 % по низшей телоте сгорания
- Низкий уровень шума


- Низкое потребление электроэнергии: до 200...1200 Вт/ч
- Низкие показатели эмиссии загрязняющих веществ: Nox<46 мг/кВт•ч, CO<161 мг/кВт•ч</p>
- Забор воздуха на горение осуществляется из помещения котельной
- Удаление дымовых газов: дымоход класса П
- Малый вес: менее 1 кг/1 кВт мощности
- Простое техническое обслуживание
 - быстрый доступ к элементам котла за счет
 легкоснимающихся боковых облицовочных панелей
 и раскладной фронтальной дверцы котла;
 - регулируемые по высоте виброопоры;
 - интерфейс на русском языке;
 - специальные колесные опоры для перемещения по котельной.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПОКАЗАТЕЛИ

Nō	Наименование	Котел GEFFEN MB 3.1-400
1	Номинальная теплопроизводительность при 95/75 ℃, кВт	400
2	Номинальная теплопроизводительность при 50/30* ^о С, кВт	400
3	КПД, при 95/75 ℃, %	не менее 95
4	КПД, при 50/30 ℃, %	не менее 103
5	Температура дымовых газов при 95/75 °C	не более 95
6	Вид топлива	Природный газ низкого давления ГОСТ 5542-87 номинальное давление, кПа (мм вод. ст.) 2,0÷5,0 (200÷500)
7	Границы модуляции, %	18 — 100
8	Рабочее давление воды в котле, МПа (кгс/см²)	0,55(5,5)
9	Избыточное давление за котлом принимаемое для расчёта дымохода max при min мощности/ max мощности, Па	250/600
10	Минимальное давление воды в котле при минимальной мощ- ности, МПа (кгс/см²)	0,1 (1,0)
11	Максимальная температура воды на выходе, ⁰С	95
12	Номинальный расход воды, при Δt=20 °С, м³/ч	17,2
13	Минимально допустимый расход воды , м³/ч	3,4
14	Гидравлическое сопротивление котла по теплоносителю, при номинальном расходе воды, кПа	31,2
15	Аэродинамическое сопротивление топки, кПа	0,57
16	Водяная емкость котла, л	40
17	Расход природного газа min/max (при 95/75 °C), м³/ч	8,61 / 43,03
18	Расход природного газа min/max (при 50/30 °C), м³/ч	7,85 / 39,21
19	Максимальное образование конденсата, при 50/30 ℃, л/ч	40
20	Содержание оксида углерода СО в продуктах сгорания, при максимальной мощности не более, Mr/кВт•ч	161
21	Содержание оксида азота в продуктах сгорания (в пересчете на NOx), не более, ппм	22
22	Уровень звука при работе котла, не более, дБа	59
23	Удельное потребление электроэнергии, при полной мощности теплогенерации, Вт	1200
24	Напряжение питания/частота, В/Гц	220 В/50 Гц
25	Массовый расход дымовых газов, Мдым, г/с	197,66
26	Коэффициент избытка воздуха α	1,35
27	Масса котла в сборе, не более, кг	240
28	Средний срок службы котла, не менее, лет	10

^{*} Не менее чем. Точная цифра зависит от калорийности и типа топлива

ГАБАРИТНЫЕ РАЗМЕРЫ. GEFFEN 3.1-400

Размеры GEFFEN MB	Модель котла
	MB 3.1-400
Подключение подающей линии	Фланец Ду 50
Подключение обратной линии	Фланец Ду 50
Диаметр дымохода	раструб 200 мм
Подключение газа	1"
Подключение слива конденсата	25 мм

- 1 подключение газа
- 2 блок управления
- 3 выход теплоносителя из котла
- 4 вход теплоносителя в котел
- 5 дымоход
- 6 конденсатоотводчик

Наименование		аименование	
		05020188	Котел отопительный водогрейный типа GEFFEN MB 3.1-400 кВт
		05020128	Котел отопительный водогрейный типа GEFFEN MB 3.1-400 кВт с контролем герметичности

Α	втоматизация	
	05030092	Датчик наружной температуры для котлов МВ 3.1
	05030091	Датчик NTC12K с проводом 5 м
	05030102	Гильза погружного датчика L=150 мм
	01092015	Гильза погружного датчика L=65 мм
-	05030096	Контроллер SDC12-31N для Котельной или ИТП, 230 Вт пред настроен для смесительного контура отопления, смеситель ного контура ГВС с теплообменником и прямого контура
	05030094	Клеммная коробка модуля контроллера SDC12-31N монт. стена/DIN-рейка(клеммы в компл)
	05030095	Комплект клеммников для контроллера SDC12-31N X1-X4
	05030093	Датчик температуры наружного воздуха AF 20
	05030098	Погружной датчик температуры 65 мм
	05030097	Погружной датчик температуры 150 мм

Газовый напольный конденсационный котел GEFFEN MB 3.1

ГАРАНТИЯ НА ТЕПЛООБМЕННИК 5 ЛЕТ

КАТЕГОРИЯ ГАЗА: по ГОСТ 5542-87

Дополнительное оборудование:

- автоматика внешних контуров
- нейтрализатор конденсата
- предохранительный клапан
- датчик бойлера
- датчик наружной температуры
- датчик каскада

Назначение: отопление

- Тип котла: конденсационный
- Тип горелки: модулирующая с предварительным смешением воздуха и газа
- Используемая энергия: природный газ, СУГ
- Удаление продуктов горения: дымоход
- Подтверждение «сертификат ТР»: RU C-RU. AБ 53.B.00306/21
- Минимальная температура теплоносителя в обратной трубе: нет ограничений
- Минимальная температура в подающей трубе: нет ограничений
- Закрытая камера сгорания

Входит в комплект

- Погодозависимая автоматика
- Каскадная автоматика
- Премиксная горелка
- Автоматика безопасности
- Фильтр воздуха для запыленных помещений
- Регулируемые по высоте виброопоры
- Специальные колесные опоры

Условия эксплуатации:

■ Топливо

- природный газ низкого давления от 20 до 50 мбар;
- работа без существенной потери мощности при давлении газа в динамике до 13 мбар;
- возможность переналадки на сжиженный газ.

Теплоноситель

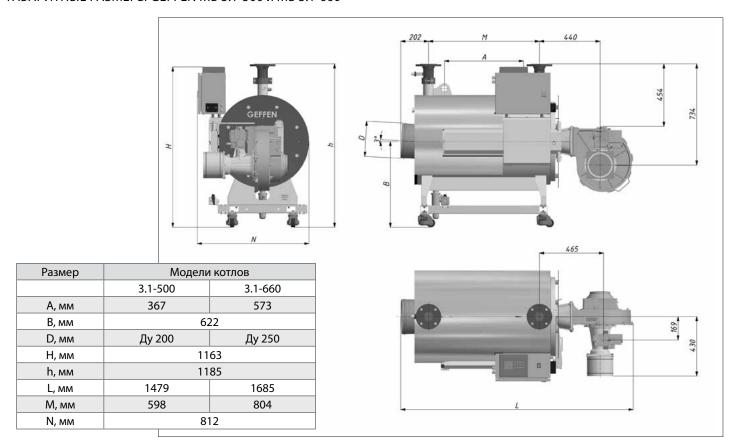
- максимальное рабочее давление 1 МПа;
- минимальное давление 0,1 МПа при минимальной мощности;
- максимальная рабочая температура 95 °C;
- срабатывание защитного термостата котла 110 °C

MB 3.1-...

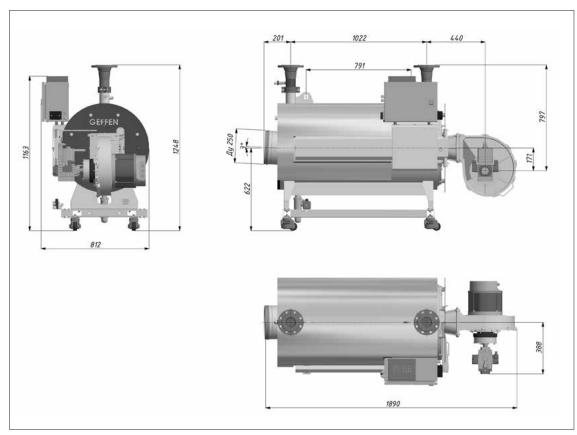
Линия газовых конденсационных котолов мощностью от 500 до 2000 кВт

Технология:

- теплообменник из жаростойкой нержавеющей стали;
- премиксная горелка полного предварительного смешения;
- диапазон модуля мощности котла от 18 до 100 % с постоянным соотношением газ/воздух;
- электронный розжиг;
- ионизационный датчик наличия пламени;
- датчики температуры подающей и обратной линий;
- панель управления GoHPI.
- Возможность объединения в каскад до 6 котлов
- Автоматика ведущего и ведомого котлов идентичны
- Высокий коэффициент полезного действия: не менее 106 % по низшей телоте сгорания
- Низкий уровень шума

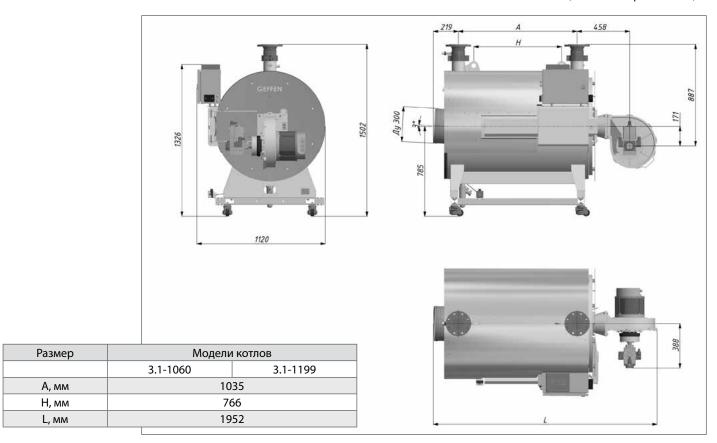

- Высокая энергоэффективность: до 200...7160 Вт/ч в зависимости от мощности
- Низкие показатели эмиссии загрязняющих веществ: Nox<46 мг/кВт•ч, CO<161 мг/кВт•ч</p>
- Забор воздуха на горение осуществляется из помещения котельной
- Удаление дымовых газов: дымоход класса П
- Малый вес: менее 1 кг/1 кВт мощности
- Простое техническое обслуживание
 - быстрый доступ к элементам котла ;
 - регулируемые по высоте виброопоры;
 - интерфейс на русском языке;
 - специальные колесные опоры для перемещения по котельной.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПОКАЗАТЕЛИ

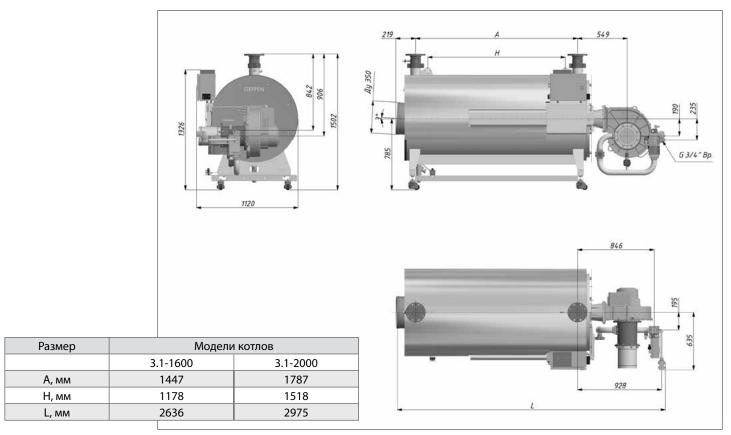

			Тип котла						
Nº	Наименование	3.1-500	3.1-660	3.1-800	3.1- 1060	3.1- 1199	3.1- 1600	3.1- 2000	
1	Номинальная теплопроизводительность при 95/75 °C, кВт	500	660	800	1060	1199	1600	2000	
2	Номинальная теплопроизводительность при 50/30* °C, не менее, кВт	500	660	800	1060	1199	1600	2000	
3	КПД, при 95/75 °C, %			Н	е менее 9	7			
4	КПД, при 50/30 °C, %			н	е менее 10	06			
5	Температура дымовых газов при 95/75 ℃, ℃			Н	е более 10	00			
6	Вид топлива, кПа (мм вод. ст.)	Природ		изкого дав наладка на 2,0÷		ование СУ		на пере-	
7	Границы модуляции, %	18 -	100	,-	-,- (20-100			
8	Рабочее давление воды в котле, МПа (кгс/см²)			симальног	о давлені		лено на 0	,55 (5,5)	
9	Минимальное давление воды в котле при мак- симальной температуре 95 °C, МПа (кгс/см²)		•		0,1 (1,0)				
10	Избыточное давление за котлом принимаемое для расчёта дымохода max при min мощности/ max мощности, Па				250/600				
11	Максимальная температура воды на выходе, ℃				95				
12	Номинальный расход воды, при ∆t=20 °C, м³/ч	22,8	28,4	34,4	45,6	51,6	68,8	86	
13	Гидравлическое сопротивление котла по теплоносителю, при номинальном расходе воды, кПа	27,5	27,5	25,5	33	41	45	47	
14	Водяная емкость котла, л	48,9	61,5	76,8	130,9	130,9	171	204,7	
15	Расход природного газа min/max при режиме 95/75, м³/ч	11,4/ 57,01	14,2/ 70,99	17,2 /86,05	22,8/ 114,0	25,79/ 128,97	34,42/ 172,11	43,25/ 216,24	
16	Расход природного газа min/max при режиме 50/30, м³/ч	10,39/ 51,95	12,94/ 64,69	15,68/ 78,41	20,78/ 103,9	23,5/ 117,52	31,37/ 156,83	39,21/ 196,04	
17	Максимальное образование конденсата, при 50/30 °C, л/ч	53	66	80	106	120	160	200	
18	Содержание оксида углерода СО в продуктах сгорания, при максимальной мощности не более, Мг/кВт*ч				161				
19	Содержание оксида азота в продуктах сгорания (в пересчете на NOx), не более, ппм	23	22			26			
20	Уровень звука при работе котла, не более, дБа		75,9	80,2		85	5,2		
21	Удельное потребление электроэнергии, при полной мощности теплогенерации, Вт	1200	1200	2600	2600	2600	7160	7160	
22	Частота питающей сети, Гц				50				
23	Напряжение питания, В	22	20			380			
24	Массовый расход дымовых газов, Мдым, г/с	247,08	326,15	395,33	523,81	592,5	790,66	988,33	
25	Коэффициент избытка воздуха α				1,35				
26	Масса котла в сборе, не более, кг	275	328	455,5	624	624	776	859	
27	Срок службы котла, не менее, лет				10				

^{*} Не менее чем. Точная цифра зависит от калорийности и типа топлива

ГАБАРИТНЫЕ РАЗМЕРЫ GEFFEN MB 3.1-500 и MB 3.1-660

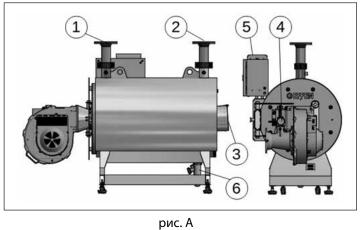


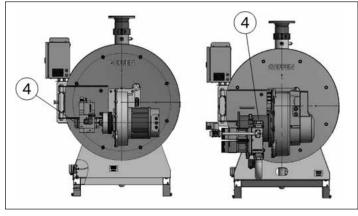
ГАБАРИТНЫЕ РАЗМЕРЫ GEFFEN MB 3.1-800 (газовая сборка DUNGS)*



^{*} для другого типа газовой сборки размеры отражены в руководстве по монтажу и эксплуатации на сайте geffen.ru

ГАБАРИТНЫЕ РАЗМЕРЫ GEFFEN MB 3.1-1060 и MB 3.1-1199 (газовая сборка DUNGS)*



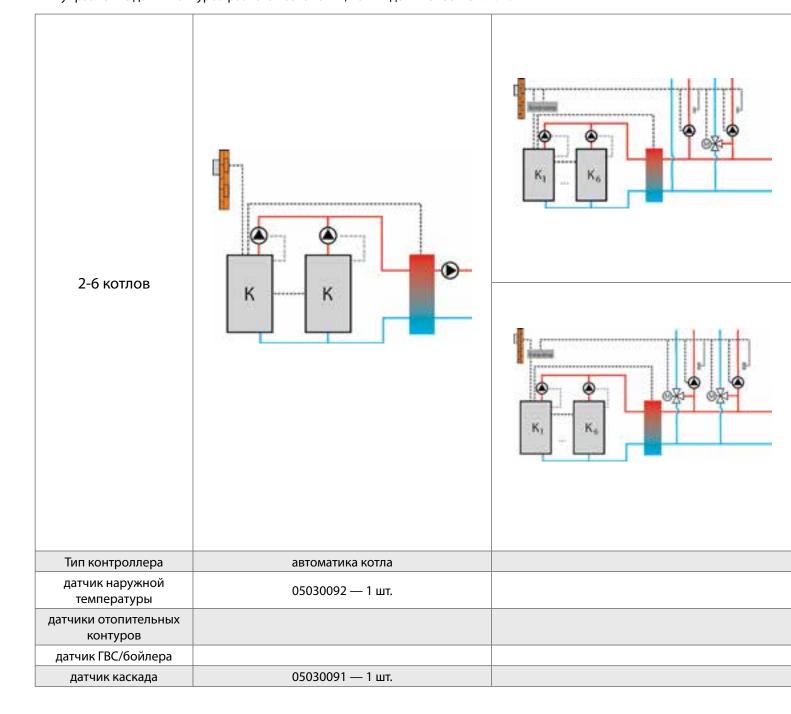

ГАБАРИТНЫЕ РАЗМЕРЫ GEFFEN MB 3.1-1600 и MB 3.1-2000 (газовая сборка DUNGS)*

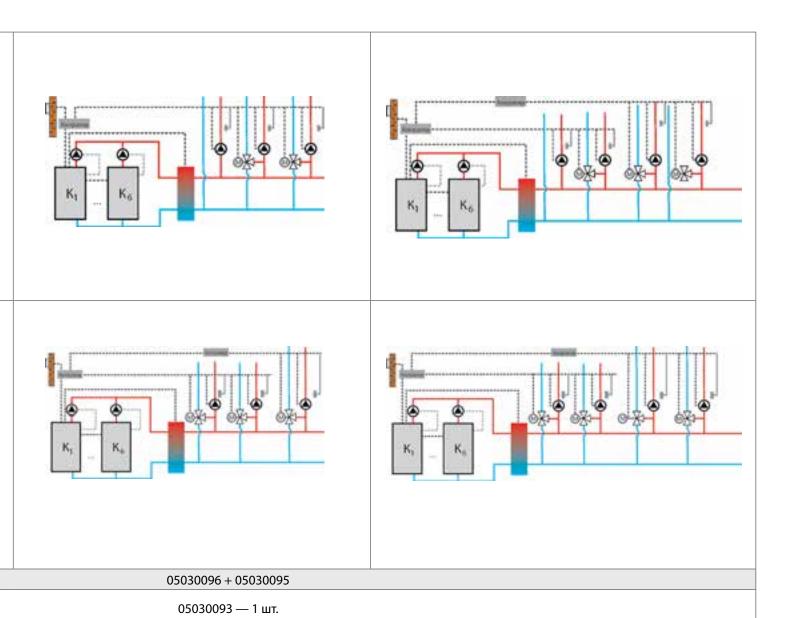
^{*} для другого типа газовой сборки размеры отражены в руководстве по монтажу и эксплуатации на сайте geffen.ru

ТЕХНИЧЕСКИЕ ОБОЗНАЧЕНИЯ GEFFEN MB 3.1-500 ... MB 3.1-2000

- рис. В рис. С

- 1 выход теплоносителя из котла
- 2 вход теплоносителя в котел
- 3 подключение дымохода
- 4 подключение газа (Рис. А 3.1 500...660 кВт; Рис. В 3.1 800...1060 кВт; Рис. С 3.1 1600...2000 кВт)
- 5 блок управления
- 6 конденсатоотводчик


		Модель котла					
	3.1-500	3.1-660	3.1-800	3.1-1060	3.1-1199	3.1-1600	3.1-2000
Подключение подающей линии	Ду 65	Ду 65	Ду 80	Ду 100	Ду 100	Ду 100	Ду 100
Подключение обратной линии	Ду 65	Ду 65	Ду 80	Ду 100	Ду 100	Ду 100	Ду 100
Подключение дымохода	200 мм	250 мм	250 мм	300 мм	300 мм	350 мм	350 мм
Подключение газа	1 1/4"	1 1/4"	2"	2"	2″	2″	2"
Подключение слива конденсата	25 мм	25 мм	25 мм	25 мм	25 мм	25 мм	25 мм


Н	Таименование	
	05020149	Котел отопительный водогрейный типа GEFFEN MB 3.1-500 кВт
	05020150	Котел отопительный водогрейный типа GEFFEN MB 3.1-660 кВт
	05020151	Котел отопительный водогрейный типа GEFFEN MB 3.1-800 кВт
	05020152	Котел отопительный водогрейный типа GEFFEN MB 3.1-1060 кВт
	05020153	Котел отопительный водогрейный типа GEFFEN MB 3.1-1199 кВт
	05020129	Котел отопительный водогрейный типа GEFFEN MB 3.1-500 кВт с контролем герметичности
	05020130	Котел отопительный водогрейный типа GEFFEN MB 3.1-660 кВт с контролем герметичности
	05020131	Котел отопительный водогрейный типа GEFFEN MB 3.1-800 кВт с контролем герметичности
	05020132	Котел отопительный водогрейный типа GEFFEN MB 3.1-1060 кВт с контролем герметичности
	05020133	Котел отопительный водогрейный типа GEFFEN MB 3.1-1199 кВт с контролем герметичности
	05020134	Котел отопительный водогрейный типа GEFFEN MB 3.1-1600 кВт с контролем герметичности
	05020135	Котел отопительный водогрейный типа GEFFEN MB 3.1-2000 кВт с контролем герметичности

А	втоматизация	
	05030092	Датчик наружной температуры для котлов MB 3.1
	05030091	Датчик NTC12K с проводом 5 м
	05030102	Гильза погружного датчика L=150 мм
	01092015	Гильза погружного датчика L=65 мм
	05030100-1	Диагностический кабель котлов МВ
-	05030096	Контроллер SDC12-31N для Котельной или ИТП, 230 Вт преднастроен для смесительного контура отопления, смесительного контура ГВС с теплообменником и прямого контура
	05030094	Клеммная коробка модуля контроллера SDC12-31N монт. стена/DIN-рейка(клеммы в компл)
	05030095	Комплект клеммников для контроллера SDC12-31N X1-X4
	05030093	Датчик температуры наружного воздуха АF 20
	05030098	Погружной датчик температуры 65 мм
	05030097	Погружной датчик температуры 150 мм

АВТОМАТИЗАЦИЯ КОТЛОВ GEFFEN MB 3.1

- Панель управления оснащена встроенной погодозависимой автоматикой регулирования и обеспечивает работу отопления и работу с бойлером.
- Работа по погодному графику возможна при наличии датчика наружной температуры.
- Управление контуром ГВС или бойлером возможно при подключении датчика ГВС/бойлера.
- Возможно объединение в каскад до 6-ти котлов.
- Использование недельной программы отопления.
- При использовании арт. 05030096 Контролер SDC12-31N для Котельной или ИТП, 230 Вт возможно обеспечить управление до 4-х контуров разного назначения, из них до 2-х смесительных.

05030098 — один для каждого контура

05030098 05030091 — 1шт.

Полный комплект автоматизации и электропитания для теплогенераторной

Полный комплект автоматизации и электропитания предназначен для подключения и управления исполнительными механизмами теплогенераторной.

Используется для котлов серии MB 4.1 40 кВт, 60 кВт, 80 кВт, 99 кВт

Входит в комплект

- Сборный шкаф включающий активные и пассивные элементы в соответствии со схемой — 1 шт;
- Антенна GSM 1шт;
- Датчик уличной температуры воздуха 1 шт;
- Цифровые датчики температуры 4 шт;
- Датчик бойлера 1 шт.

Исполнительные устройства, подключаемые к шкафу

- Котел № 1
- Котел № 2
- Котел № 3
- Котел № 4
- Трехходовой смесительный клапан с электроприводом №1
- Hacoc № 1

- Трехходовой смесительный клапан с электроприводом № 2
- Hacoc № 2
- Розетка установки ХВП
- Насос рециркуляции ГВС
- Клеммы для подключения резервного электрооборудования/ремонтной розетки
- Датчик температуры улицы
- Датчик загазованности СО,
- Датчик загазованности СН
- Пожарная сигнализация
- Каскад цифровых датчиков

Полный комплект автоматизации и электропитания для теплогенераторной для котлов МВ 4.1

		Количество котлов							
2 3 4 5						6	7		
Количество	1-2	Арт. 02010062	Арт. 02010063	Арт. 02010064	Арт. 02010065	Арт. 02010066	Арт. 02010067		
прямых/	3	Арт. 02010068	Арт. 02010069	Арт. 02010070	Арт. 02010071	Арт. 02010072	Арт. 02010073		
смесительных	4	Арт. 02010074	Арт. 02010075	Арт. 02010076	Арт. 02010077	Арт. 02010078	Арт. 02010079		
контуров	5	Арт. 02010080	Арт. 02010081	Арт. 02010082	Арт. 02010083	Арт. 02010084	Арт. 02010085		

стандартное исполнение

нестандартное исполнение

№ клеммы	Назначение	Электропотребитель	Допустимая нагрузка (для силовых потребителей)	
1	Фаза			
2	Нейтраль	Ввод электропитания шкафа	230 В, 50 Гц, 16 А	
3	Заземление			
		Котел 1		
4	Фаза			
5	Нейтраль	Питание котла	230 В, 50 Гц, до10 А	
6	Заземление			
7	Цепи 12 B		110	
8	Цепи 12 B	Протокол данных Open Therm	Нет полярности	
		Котел 2		
9	Фаза			
10	Нейтраль	Питание котла	230 В, 50 Гц, до10 А	
11	Заземление			
12	Цепи 12 B	П		
13	Цепи 12 B	Протокол данных Open Therm	Нет полярности	
	Коте	ел 3 (применимо к комплекту для 3	-х котлов и 4-х котлов)	
14	Фаза			
15	Нейтраль	Питание котла	230 В, 50 Гц, до10 А	
16	Заземление			
17	Цепи 12 B		U	
18	Цепи 12 B	Протокол данных Open Therm	Нет полярности	
		Котел 4 (применимо к комплекту	для 4-х котлов)	
19	Фаза			
20	Нейтраль	Питание котла	230 В, 50 Гц, до 10 А	
21	Заземление			
22	Цепи 12 B	Thorough saluu by On on Thorm	Цот поляруюсти.	
23	Цепи 12 B	Протокол данных Open Therm	Нет полярности	
		Контур отопительнь	ıй 1	
24	Фаза (более)			
25	Фаза (менее)	Трехходовой смесительный кла- пан с электроприводом №1	230 В, 50 Гц, до 2 А	
26	Нейтраль	пап с электроприводом и-т		
27	Фаза			
28	Нейтраль	Hacoc № 1	230 В, 50 Гц, до 10 А	
29	Заземление			
30	Нейтраль	Клеммы контактов аварии WSK	В нормальном состоянии внешняя цепь замкнута	
31	Фаза	насоса	30-31, 230 В, 50 Гц, до 10 А	

Таблица клемм подключения оборудования к шкафу стандартного исполнения

№ клеммы	Назначение	Электропотребитель	Допустимая нагрузка (для силовых потребителей)		
		Контур отопительны	й 2		
32	Фаза (более)				
33	Фаза (менее)	Трехходовой смесительный клапан с — электроприводом №2	230 В, 50 Гц, до 2 А		
34	Нейтраль	элетроприводом и 2			
35	Фаза				
36	Нейтраль	Hacoc №2	230 В, 50 Гц, до 10 А		
37	Заземление				
38	Нейтраль	Клеммы контактов аварии WSK на-	В нормальном состоянии внешняя цепь замкнута 30-31,		
39	Фаза	coca	230 В, 50 Гц, до 10 А		
40	Фаза				
41	Нейтраль	Розетка установки ХВО	230 В, 50 Гц, до 10 А		
42	Заземление				
43	Фаза				
44	Нейтраль	Насос рециркуляции ГВС	230 В, 50 Гц, до 10 А		
45	Заземление				
46	Фаза	Клеммы для подключения резервно-			
47	Нейтраль	го электрооборудования/ремонтной	230 В, 50 Гц, до 10 А		
48	Заземление	розетки			
49	Цепи 12 B		10 vOv = 25 oC NTC		
50	Цепи 12 B	— Датчик температуры улицы	10 кОм при 25 °С, NTС		
51	Цепи 12 B	n			
52	Цепи 12 B	— Датчик загазованности CO			
53	Цепи 12 B	Патини загозоранно сти СН	По умолчанию — нормально замкнутый (датчик «сухой		
54	Цепи 12 B	Датчик загазованности СН	контакт»). Возможна перенастройка на нормально разомкнутый		
55	Цепи 12 B	Dawarus distriction			
56	Цепи 12 B	Пожарная сигнализация			
57	Цепи 12 B	Vacyas undpopuly	Пополнять изданифрород ног		
58	Цепи 12 B	— Каскад цифровых датчиков	Параллельная цифровая цепь		

Сигн	Сигналы , которые можно вывести под диспетчеризацию					
	Авария котла					
	• Авария котла № 1					
	• Авария котла № 2					
	• Авария котла № 3					
	• Авария котла № 4					
	Если котлов более 4, то сработала авария каждого следующего котла					
	Авария насоса					
	• Авария насоса № 1					
	• Авария насоса № 2					
	Если контуров более 2, то сработала авария каждого следующего насоса					
	Высокий уровень СО					
	Высокий уровень СН					
	Сработала Пожарная сигнализация					
	Сработала Охранная сигнализация					
	Электропитание отключено					

ПОДКЛЮЧЕНИЕ ЭЛЕКТРОПРИЕМНИКОВ И ДАТЧИКОВ ТЕПЛОГЕНЕРАТОРНОЙ

Подключение электроприемников и датчиков теплогенераторной, а также подключение к силовой электрической сети предусмотрено к силовым клеммам *шкафа автоматизации* и электропитания, расположенным в нижней части рядом с гермовводами. Все аппараты внутри комплекта скоммутированы между собой.

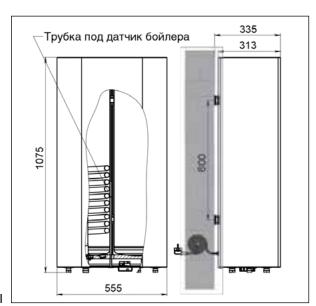
Подключение шкафа к электросети помещения теплогенераторной требуется выполнять кабелем с медными жилами сечением 2,5 мм².

Подключение электропитания потребителей (котлов, смесителей, насосов, резервного оборудования) необходимо выполнять трехжильным кабелем с медными жилами сечением 1,0–1,5 мм² к соответствующим клеммам *шкафа автоматизации* согласно прилагаемой Таблице и данных о полярности на плате устройства. Электрическое соединение должно производиться сертифицированным специалистом, либо аккредитованным сервисным центром в соответствии с применяемыми стандартами и положениями.

АВТОМАТИЗАЦИЯ И ДИСПЕТЧЕРИЗАЦИЯ ТЕПЛОГЕНЕРАТОРНОЙ

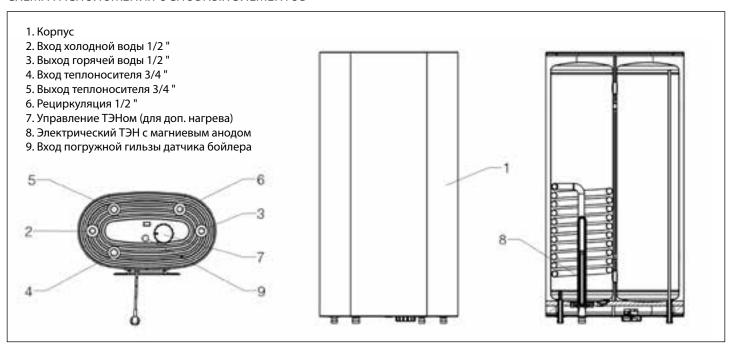
Комплект разработан на базе универсального контроллера для сложных систем отопления ZONT H2000+, позволяющего реализовать следующие функции:

- автоматизация работы и дистанционная настройка и управление систем отопления;
- управление каскадом котлов, прямыми и смесительными контурами, их циркуляционными насосами, поддержание выбранных температурных диапазонов контуров;
- дистанционный контроль и настройка параметров системы отопления через веб-интерфейс, мобильное приложение;
- оповещение о нештатных ситуациях на телефон при помощи смс-информирования и звонков


ПОДКЛЮЧЕНИЕ К ЭЛЕКТРОПИТАНИЮ

Подключение электроприемников и датчиков теплогенераторной, а также подключение к силовой электрической сети предусмотрено к силовым клеммам Шкафа автоматизации и электропитания. Электробезопасность электроустановки гарантируется только при правильном подключении электропитания оборудования к клеммам и заземлении оборудования, расположенным рядом с гермовводами в нижней части сборки. Все аппараты внутри комплекта скоммутированы между собой.

Бойлеры косвенного нагрева из нержавеющей стали


БОЙЛЕР НАСТЕННЫЙ «АКВАЛАНГ GLB 100»

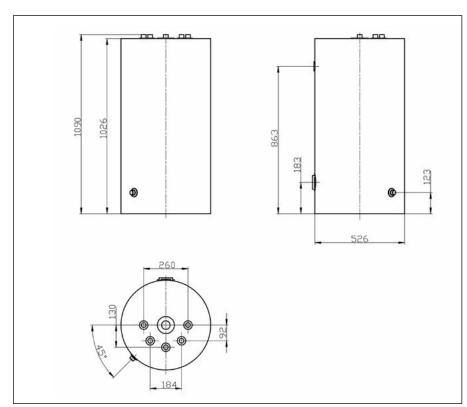
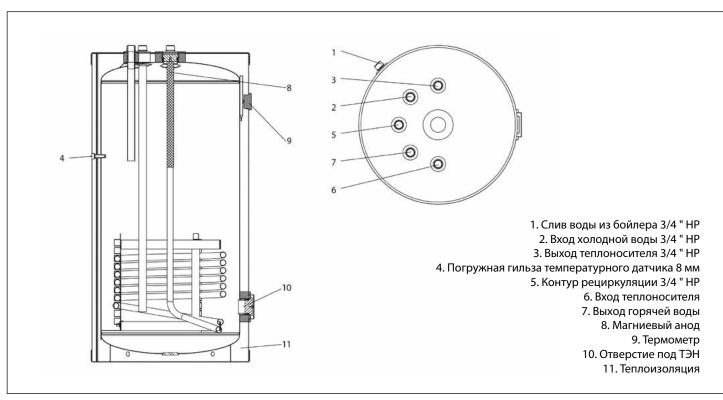

ГАБАРИТНЫЕ РАЗМЕРЫ

СХЕМА РАСПОЛОЖЕНИЯ ОСНОВНЫХ ЭЛЕМЕНТОВ

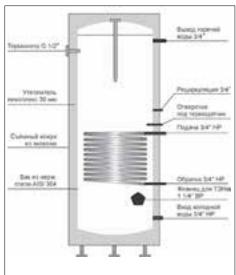

БОЙЛЕР GLB - V 150 ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ с верхним подключением

ГАБАРИТНЫЕ РАЗМЕРЫ

СХЕМА РАСПОЛОЖЕНИЯ ОСНОВНЫХ ЭЛЕМЕНТОВ

БОЙЛЕР НЕРЖАВЕЮЩИЙ GLB 200

Баритные размеры


9 520

9 522

9 525

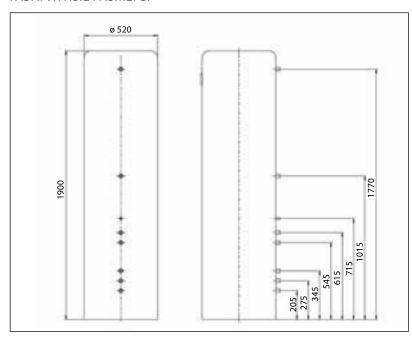
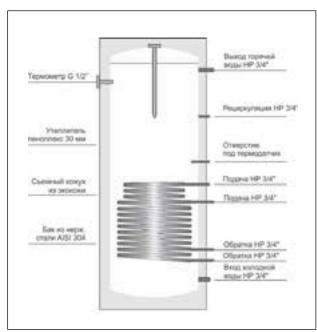

1330

СХЕМА РАСПОЛОЖЕНИЯ ОСНОВНЫХ ЭЛЕМЕНТОВ



БОЙЛЕР НЕРЖАВЕЮЩИЙ С ДВУМЯ ТЕПЛООБМЕННИКАМИ GLB 300

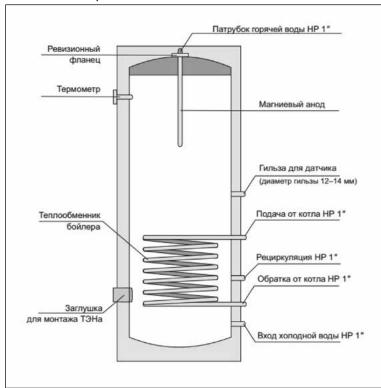
ГАБАРИТНЫЕ РАЗМЕРЫ

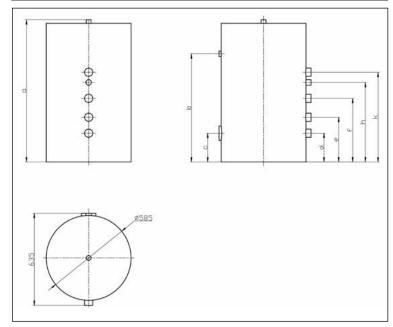
СХЕМА РАСПОЛОЖЕНИЯ ОСНОВНЫХ ЭЛЕМЕНТОВ

Технические характеристики бойлеров нержавеющих

Наименование характеристики	Ед. изм.	Акваланг GLB 100	Нержавеющий с верхним подключением GLB 150	GLB 200 нерж	GLB 300 нерж
Артикул		05041100	05040150	05040200	05020300
Объем бака с теплообменником	Л	100	150	200	300
Магниевый анод			Д	a	
Количество теплообменников	ШТ		1		2
Мощность теплообменника Т подачи = 90 °C / Т обратки = 70 °C	кВт	24	30	33	30+30
Потеря давления в змеевике	кПа	2,4	6	28	26+26
Постоянная производительность горячей воды ТО при ∆Т 35 °C	л/час	590	737	810	1470
Максимальная температура воды в бойлере	۰C	9	0	9	5
Максимальная температура воды в теплообменнике	۰C	100		110	
Толщина стенок	ММ	0,8	1,2	1,5	1,5
Материал стенок		Пищевая нержавеющая сталь			
ТЭН (опция приобретается отдельно)		ТЭН установлен		медный 3 кВт я бойлера GEFFEN	нет
Bec	КГ	29,6	31,3	35,5	55

Наименование	
05041100	Бойлер настенный «Акваланг GLB 100»
05040150	Бойлер GLB - V 150 из нержавеющей стали с верхним подключением
05040200	Бойлер нержавеющий GLB 200
05020300	Бойлер нержавеющий с двумя теплообменниками GLB 300


Дополнительное оборудование


Наименование	
05030113	ТЭН медный 3 кВт с термостатом для бойлера GEFFEN

Бойлеры GLB, эмаль

Схема расположения основных элементов бойлера косвенного нагрева

Габаритные и присоединительные размеры

бойлер	a	b	С	d	е	f	h	k
150 эмаль	980	745	198	198	308	438	548	618
200 эмаль	1250	1020	208	208	328	508	688	758
300 эмаль	1600	1360	198	198	318	538	658	728

Технические характеристики бойлеров эмаль

Наименование характеристики	Ед. изм.	GLB 150, эмаль	GLB 200, эмаль	GLB 300, эмаль
Артикул		05040151	05040201	05040301
Магниевый анод			да	
Объем бака с теплообменником		157	211	280
Количество теплообменников	ШТ		1	
Мощность теплообменника Т подачи = 90 °C / Т обратки = 70 °C		28	35	52,5
Номинальный расход теплоносителя через змеевик, M^3 /ч при Δ t = 30°C		0,8	1	1,5
Потеря давления в змеевике	кПа		5	
Постоянная производительность горячей воды ТО при ∆Т 35 °C		688	860	1290
Максимальная температура воды в бойлере	۰C		80	
Максимальная температура воды в теплообменнике		95		
Материал стенок		Высокотемперату	рная титановая сте	клоэмаль, sky star
ТЭН (опция приобретается отдельно)		05030113 ТЭН медный 3 кВт с термостатом для бойлера GEFFEN необходим переходник 1 1/2″ х 1 1/4″ нарвн.		
Вес		55	65	84

■ 05040151 Бойлер GLB 150, эмаль	
■ 05040201 Бойлер GLB 200, эмаль	
■ 05040301 Бойлер GLB 300, эмаль	

Дополнительное оборудование

	Наименование	
050301	05020112	ТЭН медный 3 кВт с термостатом для бойлера GEFFEN
	03030113	(необходим переходник 1 1/2" x 1 1/4" нарвн.)

Коллекторная система теплогенераторной

- Коллекторная система теплогенераторной предназначена для объединения от 2-х до 4-х котлов серии МВ 4.1 в общую систему отопления и обеспечения циркуляции теплоносителя через котлы, а также обеспечение подключения бойлера, предохранительных устройств и контрольно-измерительных приборов.
- В коллекторной системе в качестве теплоносителя используется вода.
- Движение теплоносителя принудительное.
- Максимальное давление 3 бар, максимальная температура теплоносителя на выходе из котла должна быть менее 115°C.

В состав комплекта для теплогенераторной входит:

- 1. Предохранительное устройство: Клапан предохранительный; Датчики реле давления.
- 2. Циркуляционные насосы котлового контура: 25-80 1x230V 50Hz P макс = 200 Bт.
- 3. Запорная арматура, контрольно-измерительные приборы.

Наименование					
	02010050	Коллекторная система теплогенераторной 1Т (80-112 кВт)			
	02010055	Коллекторная система теплогенераторной 1С (80-112 кВт)			
	02010051	Коллекторная система теплогенераторной 2Т (160-198 кВт)			
	02010056	Коллекторная система теплогенераторной 2С (160-198 кВт)			
	02010052	Коллекторная система теплогенераторной 3Т (240-297 кВт)			
	02010057	Коллекторная система теплогенераторной 3С (240-297 кВт)			
	02010053	Коллекторная система теплогенераторной 4Т (339-396 кВт)			
	02010058	Коллекторная система теплогенераторной 4С (339-396 кВт)			
	02010060	Адаптер коллектора (160-198 кВт)			
	02010061	Адаптер коллектора (240-396 кВт)			

подбор теплогенераторных

02010055

Коллекторная система теплогенераторной 1C (80-112 кВт)

для 2-х котлов GEFFEN MB 4.1 40, 60 кВт

02010056

Коллекторная система теплогенераторной

2C (160-200 кВт) для 2-х котлов GEFFEN MB 4.1 80, 99 кВт

02010057

Коллекторная система теплогенераторной

3C (240–300 кВт) для 3-х котлов GEFFEN MB 4.1 80, 99 кВт

02010058

Коллекторная система теплогенераторной

4T (339-396 кВт) для 4-х котлов GEFFEN MB 4.1 80, 99 кВт

02010050

Коллекторная система теплогенераторной

1T (80-112 кВт) для 2-х котлов GEFFEN MB 4.1 40, 60 кВт

02010051

Коллекторная система теплогенераторной

2T (160-200 кВт) для 2-х котлов GEFFEN MB 4.1 80, 99 кВт

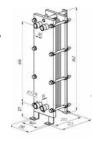
02010052

Коллекторная система теплогенераторной 3Т (240-300 кВт)

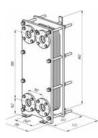
для 3-х котлов GEFFEN MB 4.1 80, 99 кВт

02010053

(Коллекторная система теплогенераторной 4Т (339-396 кВт)

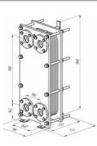

для 4-х котлов GEFFEN MB 4.1 80, 99 кВт

05030110


Теплообменник разделительный 156 кВт, разборный,

нержавеющий AISI 316

05030111


Теплообменник разделительный 280 кВт, разборный, нержавеющий AISI 316

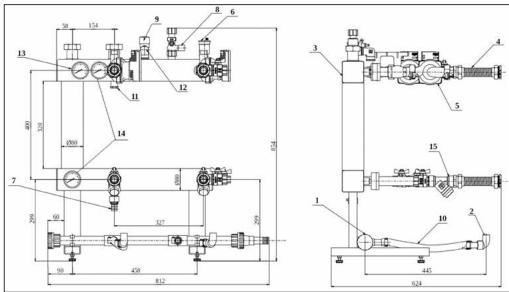
05030112

Теплообменник разделительный 360 кВт, разборный,

нержавеющий AISI 316

02010060

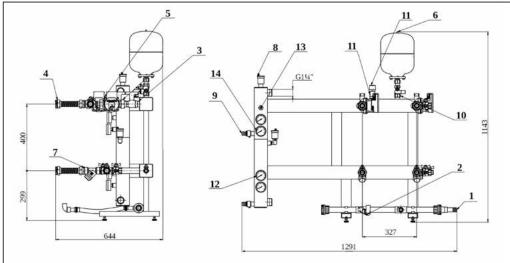
Адаптер коллектора (160-198 кВт)


02010061

Адаптер коллектора (240-396 кВт)

СОСТАВ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Арт. 02010055 Коллекторная система теплогенераторной 1С (80 - 112 кВт)



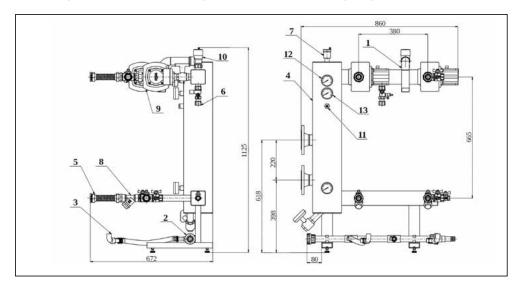
Характеристики	1C
Длина, мм	812
Высота, мм	854
Количество котлов	2 шт., MB 4.1 - 40, MB 4.1 - 60
Подключение к котлу	BP 1"
Подключения к сетевому контуру	BP 1 ½"
Масса не более, кг	18.1

Состав

- 1 канализация типа 1С
- 2 подключение конденсатоотводчика
- 3 коллектор тип 1С
- 4 гибкая подводка
- 5 циркуляционный насос котлового контура
- 6 воздухоотводчик
- 7 кран дренажный со сливной пробкой
- 8 отсечной вентиль KAV 20
- 9 клапан предохранительный
- 10 шланг прозрачный
- 11 гильза датчика каскада 1/2"
- 12 угольник 3/4"
- 13 манометр
- 14 термометр
- 15 фильтр 1"

Арт. 02010050 Коллекторная система теплогенераторной 1Т (80 - 112 кВт)

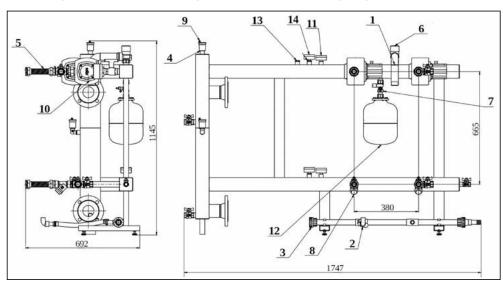
Характеристики	1T
Длина, мм	1291
Высота, мм	1143
Количество котлов	2 шт., MB 4.1 - 40, MB 4.1 - 60
Подключение к котлу	BP 1"
Подключения к сетевому контуру	HP 1 1/4"
Масса не более, кг	29,1


^{*} Теплообменник не входит в комплект коллекторной системы и заказывается отдельно

- 1 канализация типа 1С
- 2 подключение конденсатоотводчика
- 3 коллектор тип 1Т
- 4 гибкая подводка
- 5 циркуляционный насос котлового контура
- 6 расширительный бак 8 л
- 7 фильтр 1"
- 8 воздухоотводчик
- 9 кран дренажный со сливной пробкой
- 10 отсечной вентиль KAV 20
- 11 клапан предохранительный
- 12 термометр
- 13 пробка ½"
- 14 манометр

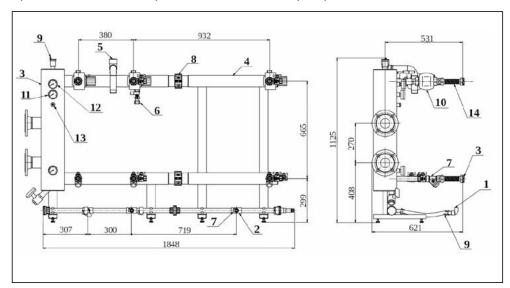
Арт. 02010056 Коллекторная система теплогенераторной 2С (160 – 200 кВт)

Состав


- 1 угольник
- 2 канализация типа 1С
- подключение конденсатоотводчика
- 4 коллектор типа 2С
- 5 гибкая подводка
- 6 отсечной вентиль KAV 20
- 7 воздухоотводчик
- 8 фильтр 1"
- 9 циркуляционный насос котлового контура
- 10 клапан предохранительный
- 11 гильза датчика каскада 1/2"
- 12 манометр
- 13 термометр

Характеристики	2C
Длина, мм	860
Высота, мм	1125
Количество котлов	2 шт., MB 4.1 - 80, MB 4.1 - 99
Подключение к котлу	BP 1"
Подключения к сетевому контуру	Ду 50, PN 16
Масса не более, кг	34,9

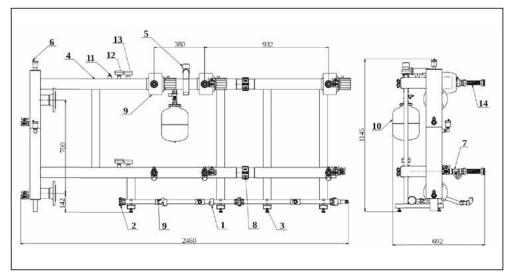
Арт. 02010051 Коллекторная система теплогенераторной 2Т (160 – 200 кВт)


- 1 угольник
- 2 подключение конденсатоотводчика
- 3 канализация типа 2Т
- 4 коллектор типа 2Т
- 5 гибкая подводка
- 6 клапан предохранительный
- 7 отсечной вентиль KAV 20
- 8 фильтр 1"
- 9 воздухоотводчик
- 10 циркуляционный насос котлового контура
- 11 термометр
- 12 расширительный бак 8 л
- 13 гильза датчика каскада ½"
- 14 манометр

Характеристики	2T
Длина, мм	1747
Высота, мм	1145
Количество котлов	2 шт., MB 4.1 - 80, MB 4.1 - 99
Подключение к котлу	BP 1"
Подключения к сетевому контуру	Ду 50, PN 16
Масса не более, кг	53,6

^{*} Теплообменник не входит в комплект коллекторной системы и заказывается отдельно

Арт. 02010057 Коллекторная система теплогенераторной 3С (240 – 300 кВт)



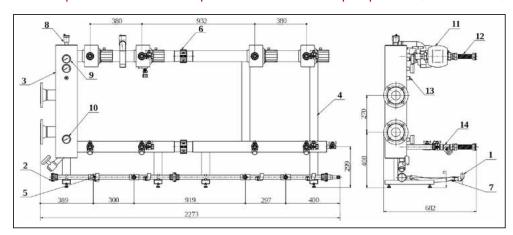
Характеристики	3C
Длина, мм	1848
Высота, мм	1125
Количество котлов	3 шт., MB 4.1 - 80, MB 4.1 - 99
Подключение к котлу	BP 1"
Подключения к сетевому контуру	Ду 65, PN 16
Масса не более, кг	18,8

Состав

- подключение конденсатоотводчика
- 2 канализация тип 3С
- 3 коллектор тип 3С
- 4 коллектор тип 3СР
- 5 клапан предохранительный
- 6 осечной вентиль KAV 20
- 7 фильтр 1"
- 8 муфта жесткая 2 ½"
- 9 воздухоотводчик
- 10 циркуляционный насос котлового контура
- 11 термометр
- 12 манометр
- 13 гильза датчика каскада 1/2"
- 14 гибкая подводка

Арт. 02010052 Коллекторная система теплогенераторной 3Т (240 – 300 кВт)

Характеристики	3T
Длина, мм	2460
Высота, мм	1145
Количество котлов	3 шт., MB 4.1 - 80, MB 4.1 - 99
Подключение к котлу	BP 1"
Подключения к сетевому контуру	Ду 65, PN 16
Масса не более, кг	54,3


* Теплообменник не входит в комплект коллекторной системы и заказывается отдельно

- 1 подключение коллектора
- 2 канализация тип 3С
- 3 коллектор тип 3СР
- 4 коллектор тип 3Т
- 5 клапан предохранительный
- 6 воздухоотводчик
- 7 фильтр 1"
- 8 муфта 2 1/2"
- 9 циркуляционный насос котлового контура
- 10 расширительный бак 8л
- 11 гильза датчика каскада 1/2"
- 12 манометр
- 13 термометр
- 14 гибкая подводка

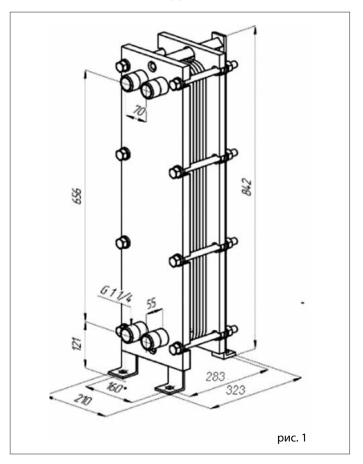
Состав

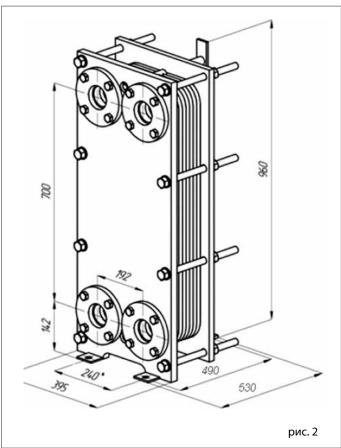
- подключение конденсатоотводчика
- 2 канализация типа 4С
- 3 коллектор тип 3С
- 4 коллектор тип 4СР
- 5 хомут;
- 6 муфта жесткая 2 ½"
- 7 шланг прозрачный
- 8 воздухоотводчик
- 9 манометр
- 10 термометр
- 11 циркуляционный насос котлового контура
- 12 гибкая подводка
- 13 гильза датчика каскада ½"
- 14 фильтр 1"

Арт. 02010058 Коллекторная система теплогенераторной 4С (339 – 400 кВт)

Характеристики	4C		
Длина, мм	2273		
Высота, мм	1150		
Количество котлов	4 шт., MB 4.1 - 80, MB 4.1 - 99		
Подключение к котлу	BP 1"		
Подключения к сетевому контуру	Ду 65, PN 16		
Масса не более, кг	45,6		

Арт. 02010053 Коллекторная система теплогенераторной 4Т (339 – 400 кВт)


- подключение конденсатоотводчика
- 2 канализация типа 4С
- 3 коллектор тип 3Т
- 4 коллектор тип 4СР
- 5 хомут
- 6 муфта жесткая 2 ½"
- 7 шланг прозрачный
- 8 гибкая подводка
- 9 циркуляционный насос котлового контура
- 10 воздухоотводчик
- 11 клапан предохранитель-
- 12 расширительный бак 8 л
- 13 гильза датчика каскада ½"
- 14 манометр
- 15 термометр
- 16 фильтр 1"


14 15	932	380	12	9 8
			\$ 65 A	
765 300	919 919 16 2940	/ []	400	7 444 692

Характеристики	4T
Длина, мм	2940
Высота, мм	1150
Количество котлов	4 шт., MB 4.1 - 80, MB 4.1 - 99
Подключение к котлу	BP 1"
Подключения к сетевому контуру	Ду 65, PN 16
Масса не более, кг	81,1

^{*} Теплообменник не входит в комплект коллекторной системы и заказывается отдельно

ТЕПЛООБМЕННИК РАЗДЕЛИТЕЛЬНЫЙ

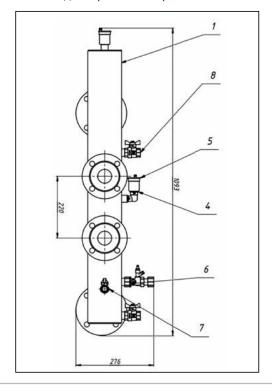
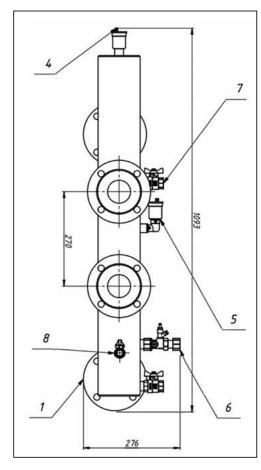


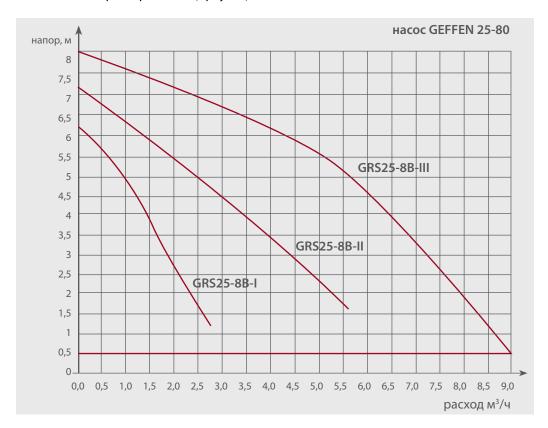
	рис. 1	рис. 2	рис. 2
Мощность, кВт	156	280	360
Применяется для теплогенераторных, кВт	80–112	160–198	240–396
95/70 ℃ потери давления первичной стороны, кПа	20	20	20
80/60 °C потери давления вторичной стороны, кПа	30	30	30
Присоединения	HP 1 ¼ "	Ду 65	Ду 65
Вес, кг	75	250	250
Артикул	05030110	05030111	05030112

Арт. 02010060 Адаптер коллектора 160 – 198 кВт


Состав

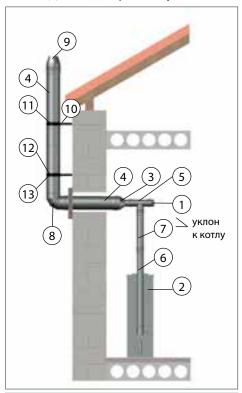
- 1 подключение теплообменника
- 4 уголок резьбовой 1/2"
- 5 воздухоотводчик
- 6 отсечной вентиль KAV 20
- 7 кран шаровой 1/2"
- 8 кран шаровой 3/4"

Арт. 02010061 Адаптер коллектора 240 – 396 кВт

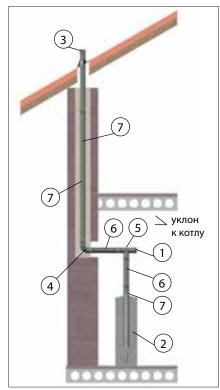

- 1 подключение теплообменника
- 4 воздухоотводчик
- 5 уголок резьбовой 1/2"
- 6 отсечной вентиль KAV 20
- 7 кран шаровой 3/4"
- 8 кран шаровой 1/2"

ПОКАЗАТЕЛИ КОЛЛЕКТОРНОЙ СИСТЕМЫ ТЕПЛОГЕНЕРАТОРНЫХ

	С гидрострелкой			С теплообменником		
Наименование	80-112 кВт, 1С	160-198 кВт, 2С	240-396 кВт, 3C, 4C	80-112 кВт, 1Т	160-198 кВт, 2T	240-396 кВт, 3T, 4T
Тип подключения	BP 1 ½″	Ду 50, PN 16	Ду 65, PN 16	HP 1 ¼″	Ду 50, PN 16	Ду 65, PN 16
Циркуляционный насос котлового контура	Hacoc 25-80					
Предохранительный клапан котлового контура	Давление сраб. 0,3 МПа					
Расширительный бак котлового контура	нет 8 л					
Наличие пломбируемого вентиля для установки расширительного бака котлового контура	да					


Технические характеристики циркуляционных насосов

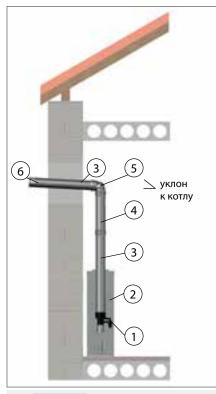
Дымоудаление


СХЕМЫ ДЫМОХОДОВ МВ 4.1-40, МВ 4.1-60

Дымоход через стену

- 1 05040006 Заглушка ревизии МОНО, Ду 80, Aisi 316, с манжетой для конденсационного котла
- (2) **05020050** или **05020051** Котел GEFFEN 4.1
- **3 05040007** Переход МОНО-ТЕРМО/30, Ду 80, Aisi 316, с манжетой для конденсационного котла
- (4) **05040008** Труба 1 м с хомутом, Ду 80, ТЕРМО/30, Aisi 316, с манжетой для конденсационного котла
- (5) **05040005** Тройник 87, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- 6 05040002 Труба 0,5 м, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- 7 05040001 Труба 1 м, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- **8 05040011** Отвод 87, Ду 80, ТЕРМО, Aisi 316, с манжетой для конденсационного котла
- 9 **05040009** Конус с хомутом Ду 80, ТЕРМО, Aisi 316
- (10) 05040013 Крепление-подвес L=350 мм
- (11) **05040012** Крепление универсальное D 130–135
- (12) **05040016** Площадка монтажная термо ДУ100/150 Aisi 316/Aisi 304 с хомутом
- (13)**05040015** Крепление основное L=350 мм

Дымоход в шахте

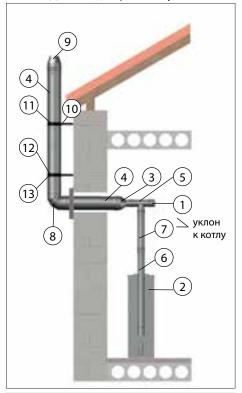


- 1 05040006 Заглушка ревизии МОНО, Ду 80, Aisi 316, с манжетой для конденсационного котла
- **2 05020050** или **05020051** Котел GEFFEN 4.1
- (з)Основа кровельная
- 4 **05040004** Отвод 87, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- (5) **05040005** Тройник 87, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- (6) **05040002** Труба 0,5 м, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- 7 05040001 Труба 1 м, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла

Для жесткого скрепления элементов дымохода рекомендуется использовать

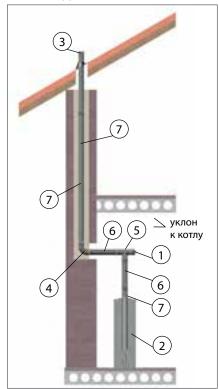
05040010 Хомут трубный на болте Ду 80

Дымоход только через стену



- 1 **05040042** Обратный клапан дымохода Ду 80
- **2 05020050** или **05020051** Котел GEFFEN 4.1
- (3) **05040008** Труба 1м с хомутом, Ду 80, МОНО/30, Aisi 316, с манжетой для конденсационного котла
- **4 05040002** Труба 0,5 м, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- (5) **05040011** Отвод 87, Ду 80, МОНО, Aisi 316, с манжетой для конденсационного котла
- **6 05040044** Наконечник дымохода Ду 80

При использовании схемы для дымоходов только через стену обратите внимание на региональные нормы, расстояние до окон и проёмов


СХЕМЫ ДЫМОХОДОВ МВ 4.1-80, МВ 4.1-99, МВ 3.1-127, МВ 3.1 -145

Дымоход через стену

- 1) **05041006** Заглушка ревизии МОНО, Ду 100, Aisi 316, с манжетой для конденсационного котла
- (2) **05020052** или **05020053** Котел GEFFEN 4.1
- 3 **05041007** Переход МОНО-ТЕРМО/30, Ду 100, Aisi 316, с манжетой для конденсационного котла
- (4) **05041008** Труба 1м с хомутом, Ду 100, ТЕРМО/30, Aisi 316, с манжетой для конденсационного котла
- (5) **05041005** Тройник 87, Ду 100, МОНО, Aisi 316, с манжетой для конденсационного котла
- 6 05041002 Труба 0,5 м, Д 100, МОНО, Aisi 316, с манжетой для конденсационного котла
- 7 05041001 Труба 1 м, Ду 100, МОНО, Aisi 316, с манжетой для конденсационного котла
- (8) **05041011** Отвод 87, Ду 100, ТЕРМО, Aisi 316, с манжетой для конденсационного котла
- (9) **05041009** Конус с хомутом Ду 100, ТЕРМО, Aisi 316
- (10) 05040013 Крепление-подвес L=350 мм
- (11) **05040012** Крепление универсальное D 130–135
- (12) 05041013 Площадка монтажная термо ДУ 100/160 Aisi 316/Aisi 304 с хомутом
- (13) **05040015** Крепление основное L=350 мм

Дымоход в шахте

- 1 05041006 Заглушка ревизии МОНО, Ду 100, Aisi 316, с манжетой для конденсационного котла
- **2 05020052** или **05020053**. Котел GEFFEN 4.1
- (3)Основа кровельная
- 4 05041004 Отвод 87, Ду 100, МОНО, Aisi 316, с манжетой для конденсационного котла
- (5) **05041005** Тройник 87, Ду 100, МОНО, Aisi 316, с манжетой для конденсационного котла
- **6 05041002** Труба 0,5 м, Ду 100, МОНО, Aisi 316, с манжетой для конденсационного котла
- 7 **05041001** Труба 1м, Ду 100, МОНО, Aisi 316, с манжетой для конденсационного котла

Для жесткого скрепления элементов дымохода рекомендуется использовать

05041010 Хомут трубный на болте Ду 100

СХЕМА ДЫМОУДАЛЕНИЯ ДЛЯ КОТЛА GEFFEN MB 4.1 Длина горизонтального участка 500 мм

Дымоходы стойкие к конденсату. Допускается направлять конденсат из дымохода в котел.

Необходимо обеспечить газоплотность дымоходов. В поставляемых дымоходах газоплотность обеспечивается наличием силиконовых уплотнительных манжет.

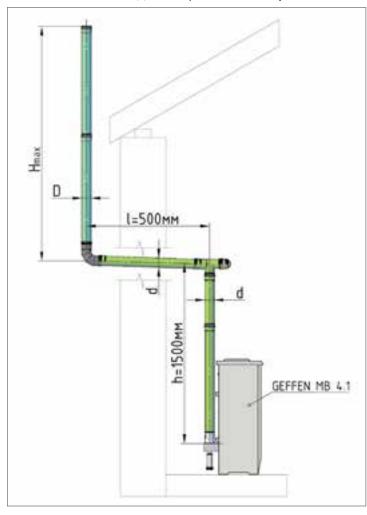
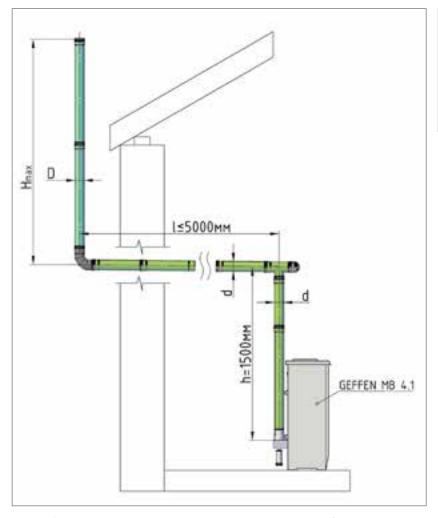


Таблица максимальных высот дымохода для котлов Geffen $^{\circ}$ MB 4.1 при h = 1500 мм, l = 500 мм

Модель котла	МВ 4.1 — 40 кВт			
Диаметр соединительной	d	D	d	D
линии (d)/ дымохода (D), мм	80	80	80	100
Максимальная высота Нтах, м	2	0	4	.0


Модель котла	MB 4.1 — 56 кВт						
Диаметр соединительной	d	D	d	D			
линии (d)/ дымохода (D), мм	80	80	80	100			
Максимальная высота Hmax, м	1	2	4	0			

Модель котла	MB 4.1 — 80 кВт						
Диаметр соединительной	d	D	d	D			
линии (d)/ дымохода (D), мм	100	100	100	115			
Максимальная высота Нтах, м	2	2	4	0			

Модель котла		MB 4.1 — 99 кВт						
Диаметр соединительной	d	D	d	D	d	D	d	D
линии (d)/ дымохода (D), мм	100	100	100	115	100	120	100	130
Максимальная высота Нтах, м	1	1	2	5	3	6	4	0

^{*} для котлов МВ 3.1-127, МВ 3.1-145 требуется аэродинамический расчет в каждом случае

СХЕМА ДЫМОУДАЛЕНИЯ ДЛЯ КОТЛА GEFFEN MB 4.1 Длина горизонтального участка 5000 мм

Дымоходы стойкие к конденсату. Допускается направлять конденсат из дымохода в котел. Необходимо обеспечить газоплотность дымоходов.

В поставляемых дымоходах газоплотность обеспечивается наличием силиконовых уплотнительных манжет.

Таблица максимальных высот дымохода для котлов Geffen $^{\circ}$ MB 4.1 при h = 1500 мм, l = 5000 мм

таолица максимальных выс	o : H2o	~H~ H					. 5555	
Модель котла	MB 4.1 — 40 кВт							
Диаметр соединительной	С	ı	[)	(d t	[)
линии (d)/ дымохода (D), мм	8	0	8	0	8	0	10	00
Максимальная высота Нтах, м		1	6			4	0	
Модель котла				MB 4.1 -	– 56 кВт			
Диаметр соединительной	С	ł	[)	(t	[)
линии (d)/ дымохода (D), мм	80		8	0	80		100	
Максимальная высота Нтах, м		4	1			1	8	
Модель котла				MB 4.1 -	— 80 кВт			
Диаметр соединительной	d D d		d t	D				
линии (d)/ дымохода (D), мм	100 100			100			15	
Максимальная высота Нтах, м		1	4			3	1	
Модель котла				MB 4.1 -	– 99 кВт			
Диаметр соединительной	d	D	d	D	d	D	d	D
линии (d)/ дымохода (D), мм	100	100	100	115	100	120	100	130
Максимальная высота Hmax, м	5 15 19 31					1		

^{*} для котлов МВ 3.1-127, МВ 3.1-145 требуется аэродинамический расчет в каждом случае

КАСКАДНАЯ СХЕМА ДЫМОУДАЛЕНИЯ ДЛЯ КОТЛОВ GEFFEN MB 4.1 Длина горизонтального участка 1000 мм

 О — обратный клапан (клапан для препятствия проникновения дымовых газов от работающего котла через неработающий в помещение теплогенераторной). Допускается не использовать обратный клапан при наличии разряжения в горизонтальном коллекторе и установке контрольных приборов безопасности, останавливающих работу котлов при отсутствии разряжения.

Дымоходы стойкие к конденсату. Допускается направлять конденсат из дымохода в котел.
Необходимо обеспечить газоплотность дымоходов.
В поставляемых дымоходах газоплотность обеспечивается наличием силиконовых уплотнительных манжет.

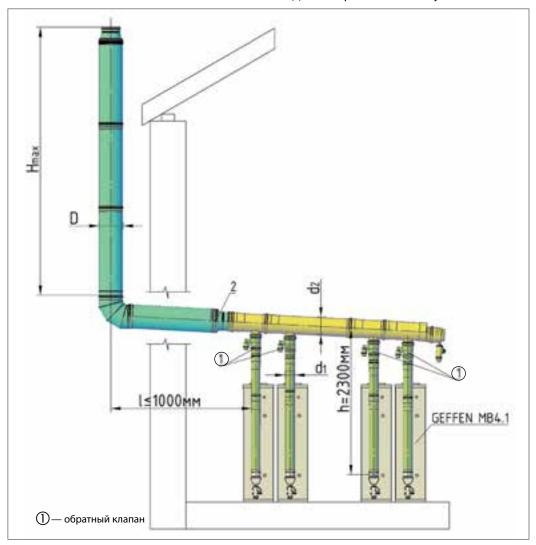
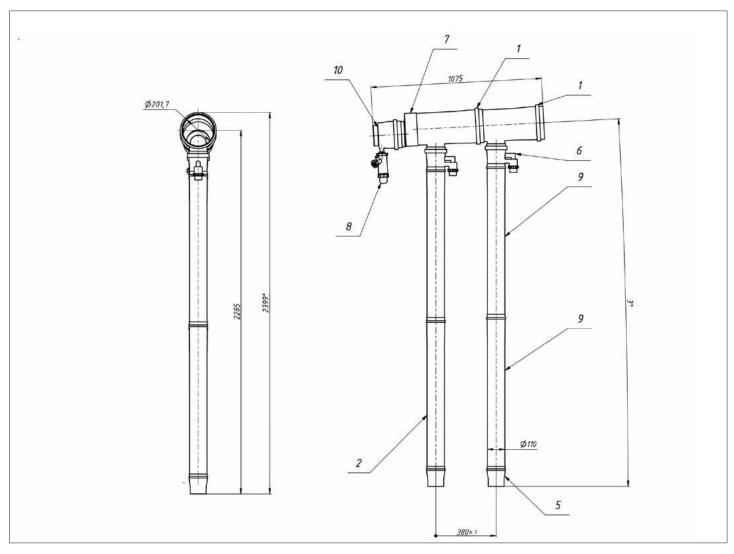



Таблица максимальных высот дымохода для каскада из котлов Geffen® MB 4.1 при I \leq 1000 мм

Мощность системы	240 –297 кВт	240 –297 кВт 320 – 396 кВт				
Диаметр дымохода (D), мм	200	250				
d1, мм	110					
d2, мм	200					
Максимальная высота Нтах, м	> 40 5 > 40					

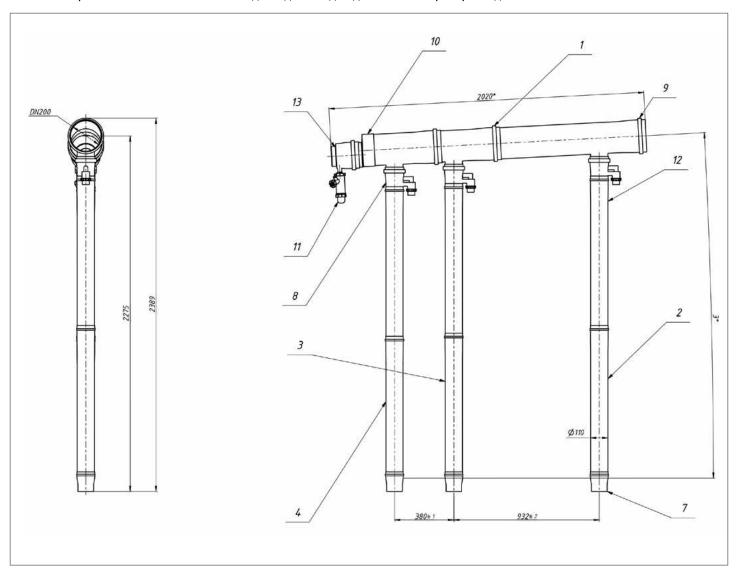
Арт. 05040037 Комплект каскадных дымоходов для теплогенераторных для 2-х котлов GEFFEN MB 4.1 80 – 99 кВт

Система дымоудаления для котлов GEFFEN MB 4.1 80 – 99 кВт

Мощность теплогенераторной	160 – 198 кВт
Подключение к коллектору	Ду 200 раструб
Подключение для слива конденсата	Ду 25
Материал	полипропилен
Максимальная температура	110 °C

Подходит как для влажных так и для сухих дымовых газов. Сифон для слива конденсата включен в комплект поставки. Подключения к котлам оснащены обратным клапаном для предотвращения перетока дымовых газов от работающего котла через неработающий в помещение.

Входит в комплект


1	коллектор
2, 9	вертикальная дымовая труба Ду 110
5	переход Ду 100–110
6	обратный клапан с переливом
7	редуктор концентрический
8	сифон сливной
10	заглушка

важно!

Все элементы должны иметь уплотнительные силиконовые кольца.

Для продолжения систем дымоудаления могут использоваться стандартные элементы дымоходов из нержавеющей стали диаметром 200 мм. Обратите внимание, что материал дымохода должен быть кислотостойким, например Aisi 304

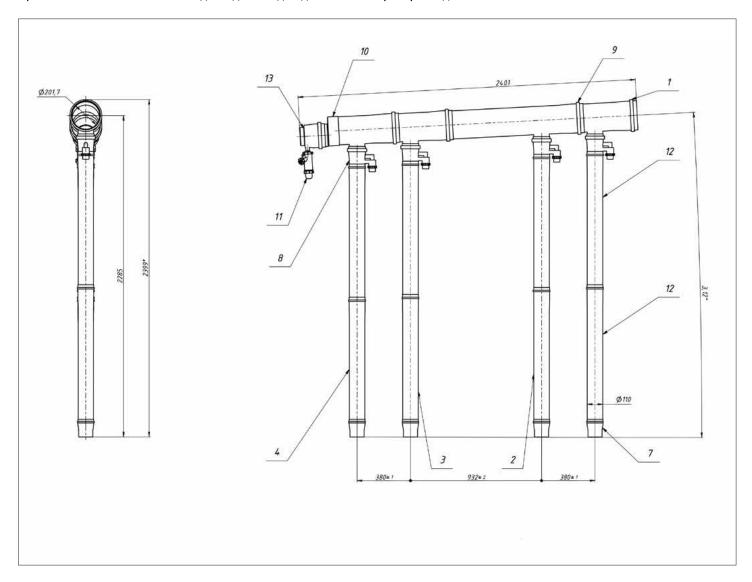
Арт. 05040038 Комплект каскадных дымоходов для теплогенераторных для 3-х котлов GEFFEN MB 4.1 80 – 99 кВт

Входит в комплект

1, 9	коллектор
2, 3, 4, 12	вертикальная дымовая труба Ду 110
7	переход Ду 100–110
8	обратный клапан с переливом
10	редуктор концентрический
11	сифон сливной
13	заглушка

Система дымоудаления для котлов GEFFEN MB 4.1 80 – 99 кВт

Мощность теплогенераторной	240 – 251 кВт
Подключение к коллектору	Ду 200 раструб
Подключение для слива конденсата	Ду 25
Материал	полипропилен
Максимальная температура	110 ℃


Подходит как для влажных так и для сухих дымовых газов. Сифон для слива конденсата включен в комплект поставки. Подключения к котлам оснащены обратным клапаном для предотвращения перетока дымовых газов от работающего котла через неработающий в помещение.

важно!

Все элементы должны иметь уплотнительные силиконовые кольца.

Для продолжения систем дымоудаления могут использоваться стандартные элементы дымоходов из нержавеющей стали диаметром 200 мм. Обратите внимание, что материал дымохода должен быть кислотостойким, например Aisi 304

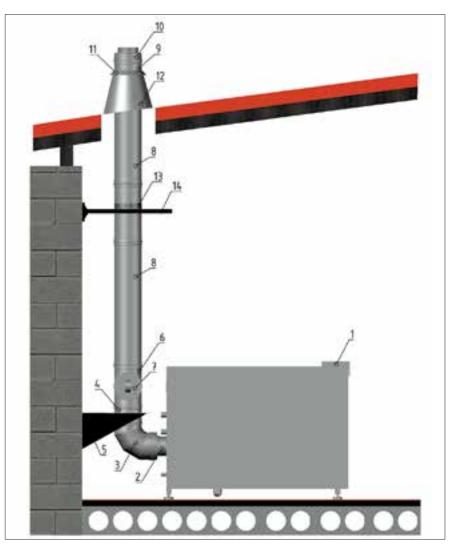
Арт. 05040039 Комплект каскадных дымоходов для теплогенераторных для 4-х котлов GEFFEN MB 4.1 80 – 99 кВт

Система дымоудаления для котлов GEFFEN MB 4.1 80 – 99 кВ

Мощность теплогенераторной	339 – 396 кВт
Подключение к коллектору	Ду 200 раструб
Подключение для слива конденсата	Ду 25
Материал	полипропилен
Максимальная температура	110 °C

Подходит как для влажных так и для сухих дымовых газов. Сифон для слива конденсата включен в комплект поставки. Подключения к котлам оснащены обратным клапаном для предотвращения перетока дымовых газов от работающего котла через неработающий в помещение.

Входит в комплект


1, 9	коллектор
2, 3, 4, 12	вертикальная дымовая труба Ду 110
7	переход Ду 100–110
8	обратный клапан с переливом
10	редуктор концентрический
11	сифон сливной
13	заглушка

важно!

Все элементы должны иметь уплотнительные силиконовые кольца.

Для продолжения систем дымоудаления могут использоваться стандартные элементы дымоходов из нержавеющей стали диаметром 200 мм. Обратите внимание, что материал дымохода должен быть кислотостойким, например Aisi 304

Схемы удаления для котлов серии МВ 3.1 от 200 до 2000 кВт через кровлю

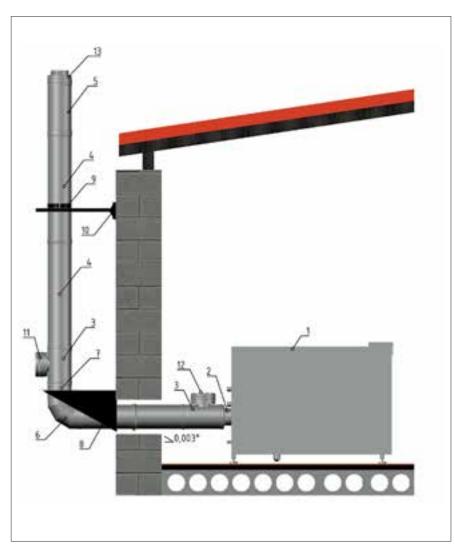
Внутренний диаметр дымохода соответствует диаметру присоединительного патрубка дымоудаления котла. Диаметр заглушки ревизии, взрывного клапана, прохода через кровлю, фартука, универсального крепления подбирается по наружному диаметру дымохода.

Не допускается эксплуатация дымоходов с котлами GEFFEN без уплотнительных силиконовых колец (диаметр кольца соответствует внутреннему диаметру дымохода). В случае, если уклон кровли превышает 15°, выбрать соответствующий проход кровли.

В качестве силового крепления используется крепление регулируемое 700. Максимальная нагрузка на крепление — 50 кг. При превышении данной нагрузки установить дополнительные крепления.

Фиксация вертикального положения дымохода осуществляется универсальным креплением совместно с креплением-подвесом. Данный элемент необходимо устанавливать через каждые 2 м дымохода.

Общую высоту дымохода определить согласно CП 7.13330.2012.


Проход через кровлю выполнить с использованием гильзы, заполненной негорючим материалом.

Запрещается размещать сочленения элементов дымохода в перекрытиях.

	Наименование	Кол-во	MB 3.1-200, 251 , 301	MB 3.1- 400, 500	MB 3.1- 660, 800	MB 3.1- 1060, 1199	MB 3.1- 1600, 2000
1	Котел конденсационный газовый водогрейный типа GEFFEN MB 3.1	1					
2	Переход Моно/Термо	1	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
3	Отвод Термо 87° с хомутом	1	_	Ду 200	Ду 250	Ду 300	Ду 350
4	Площадка монтажная Термо с хомутом	1	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
5	Крепление регулируемое КР 700, (весовая нагрузка 50 кг)	по расчету			_		
6	Тройник Термо 87° с хомутом	1	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
7	Заглушка ревизии Термо	1	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
8	Труба Термо L 1000 мм с хомутом	по расчету	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
9	Труба Термо L 500 мм с хомутом	по расчету	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
10	Конус Термо с хомутом	1	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
11	Фартук	1			_		
12	Проход кровли универсальный 0-15°	1	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350
13	Крепление универсальное	по расчету			_		
14	Крепление подвес	по расчету			_		
	Уплотнительное кольцо силиконовое	по расчету	Ду 150	Ду 200	Ду 250	Ду 300	Ду 350

Все элементы должны иметь уплотнительные силиконовые кольца!

СХЕМЫ УДАЛЕНИЯ ДЛЯ КОТЛОВ СЕРИИ МВ 3.1 ОТ 400 ДО 2000 кВт ЧЕРЕЗ СТЕНУ

Внутренний диаметр дымохода соответствует диаметру присоединительного патрубка дымоудаления котла. Диаметр заглушки ревизии, взрывного клапана, прохода через кровлю, фартука, универсального крепления подбирается по наружному диаметру дымохода.

Не допускается эксплуатация дымоходов с котлами GEFFEN без уплотнительных силиконовых колец (диаметр кольца соответствует внутреннему диаметру дымохода).

В случае, если уклон кровли превышает 15°, выбрать соответствующий проход кровли.

В качестве силового крепления используется крепление регулируемое 700. Максимальная нагрузка на крепление — 50 кг. При превышении данной нагрузки установить дополнительные крепления.

Общую высоту дымохода определить согласно СП 7.13330.2012.

Проход через кровлю выполнить с использованием гильзы, заполненной негорючим материалом.

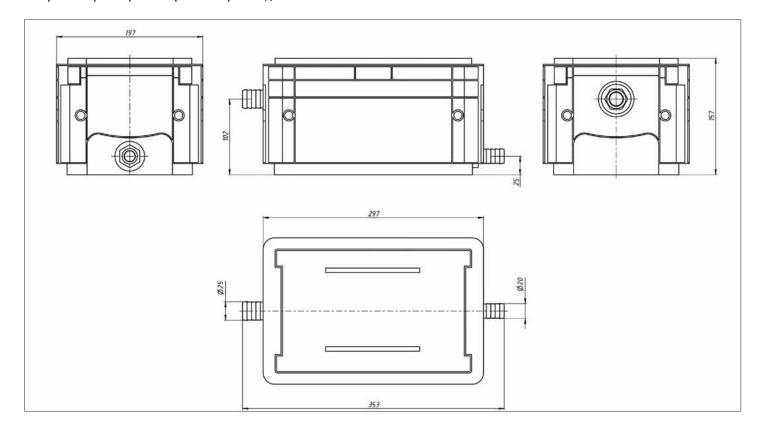
Запрещается размещать сочленения элементов дымохода в перекрытиях.

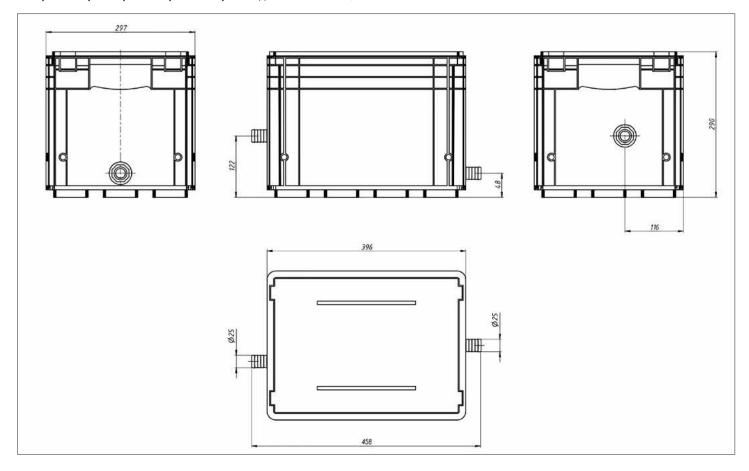
	Наименование	Кол-во	MB 3.1-400, 500	MB 3.1-660, 800	MB 3.1- 1060,1199	MB 3.1-1600, 2000
1	Котел конденсационный газовый водогрейный типа GEFFEN MB 3.1	1				
2	Переход Моно/Термо	1	Ду 200	Ду 250	Ду 300	Ду 350
3	Тройник Термо 87° с хомутом	2	Ду 200	Ду 250	Ду 300	Ду 350
4	Труба Термо L 1000 мм с хомутом	по расчету	Ду 200	Ду 250	Ду 300	Ду 350
5	Труба Термо L 500 мм с хомутом	по расчету	Ду 200	Ду 250	Ду 300	Ду 350
6	Отвод Термо 87° с хомутом	1	Ду 200	Ду 250	Ду 300	Ду 350
7	Площадка монтажная Термо с хомутом	1	Ду 200	Ду 250	Ду 300	Ду 350
8	Крепление регулируемое КР 700 (весовая нагрузка 50 кг)	по расчету		_	_	
9	Крепление универсальное	по расчету		_	_	
10	Крепление подвес	по расчету		_	 -	
11	Заглушка ревизии Термо	1	Ду 200	Ду 250	Ду 300	Ду 350
12	Заглушка взрывного клапана Термо	1	Ду 200	Ду 250	Ду 300	Ду 350
13	Конус Термо с хомутом	1	Ду 200	Ду 250	Ду 300	Ду 350
	Уплотнительное кольцо силиконовое	по расчету	Ду 200	Ду 250	Ду 300	Ду 350

Все элементы должны иметь уплотнительные силиконовые кольца!

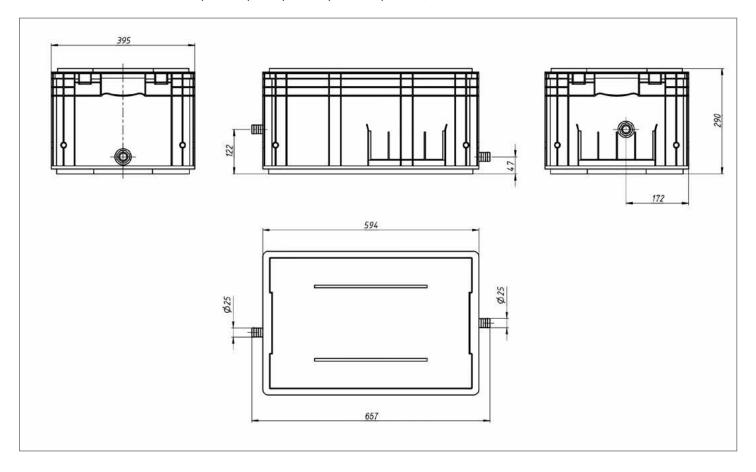
Нейтрализация конденсата

Входит в комплект

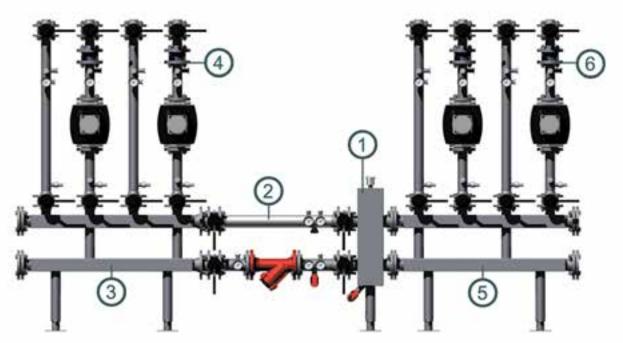

- Нейтрализатор с крышкой;
- Набор переходных штуцеров;
- Шланг для подключения к конденсатоотводчику котла;
- Фильтр сетчатый;
- рН экспресс тест;
- Реагент для нейтрализации;
- Хомуты


Нейтрализаторы конденсата GEFFEN

N	Артикул	ул Наименование		одитель- сть	Масса загруз-	Штуцер	
			кВт	л/ч	ки, кг	вход	выход
1	05040045	Нейтрализатор конденсата GLN150 для котлов до 150 кВт	150	15	6	Ду 20	
2	05040046	Нейтрализатор конденсата GLN200 для котлов до 200 кВт	200	20	7		
3	05040047	Нейтрализатор конденсата GLN500 для котлов до 500 кВт	500	50	12		
4	05040048	Нейтрализатор конденсата GLN700 для котлов до 700 кВт	700	70	14		Ду 25
5	05040049	Нейтрализатор конденсата GLN1000 для котлов до 1000 кВт	1000	100	16	Ду 25	Ду
6	05040050	Нейтрализатор конденсата GLN1200 для котлов до 1200 кВт	1200	120	20		
7	05040051	Нейтрализатор конденсата GLN1600 для котлов до 1600 кВт	1600	160	26		
8	05040052	Нейтрализатор конденсата GLN2000 для котлов до 2000 кВт	2000	200	30		


Габаритные размеры нейтрализатора конденсата GLN150

Габаритные размеры нейтрализатора конденсата GLN200, GLN 500



Габаритные размеры нейтрализатора конденсата GLN700, GLN1000, GLN1200, GLN1600, GLN2000

MKC 1300

ПОДБОР МОДУЛЬНОЙ КОЛЛЕКТОРНОЙ СИСТЕМЫ ДЛЯ КОТЕЛЬНОЙ

1 Выбор гидравлического разделителя

Мощность котельной при ΔT=20 °C, кВт	132 184	185 304	305 465	466722	723 1125	1126 1625	1626 2890
Диаметр подключения гидравлического разделителя, мм	50	65	80	100	125	150	200
Артикул	02070500	02070650	02070800	02071000	02071250	02071500	02072000

Пример:

для котельной общей мощностью 300 кВт подойдет гидравлический разделитель Ду 65

2 Выбор подключения коллектора

Диаметр фланца подключения коллектора равен диаметру фланца гидравлического разделителя.

(3) Выбор коллектора котлового контура

Диаметр фланца коллектора выбираем равным диаметру фланца гидравлического разделителя.

Количество контуров равно количеству котлов. Если контуров более 3-х, то стыкуют два коллектора последовательно. Пример:

для котельной на 4 котлах с гидравлическим разделителем Ду 65 необходимо использовать для сбора воды с котлов два 2-контурных коллектора Ду 65.

4 Выбор модулей для котлового контура

Диаметр подсоединения модуля выбирается исходя из мощности котла:

Модуль	D32	D40	D50	D65
Мощность котла, кВт	40 120	121 220	221 329	330 550

Использование конкретного насоса выбирается с учетом гидравлического сопротивления оборудования: Сопротивление = (Котел + Трубопроводы соединения + Модуль + Подключение котел/коллектор + Запас 0,1 – 0,3 бар). Сопротивление коллектора и гидравлического разделителя в данном расчете пренебрежимо мало. Пример: для котельной с котлами **GEFFEN** возможно использование следующих модулей

	гидравлический разделитель (dP = 0,5 м)						
мощность котла	наименование модуля	артикул					
127	Модуль прямой D 32 с Pumpman GRS 32/8	02023310					
145	Модуль прямой D 32 с Pumpman GRS 32/8	02023310					
200	Модуль прямой D 40 с энергоэффективным Pumpman PX1 1x220 V	02024102					
200	Модуль прямой D 40 с IMPPUMPS GHND basic II 40-70F 3x400V	02034100					
251	Модуль прямой D 40 с энергоэффективным Pumpman PX1 1x220 V	02024102					
251	Модуль прямой D 40 с IMPPUMPS GHND basic II 40-70F 3x400V	02034100					
301	Модуль прямой D 40 с энергоэффективным Pumpman PX1 1x220 V	02024102					
301	Модуль прямой D 40 с IMPPUMPS GHND basic II 40-70F 3x400V	02034100					
400	Модуль прямой D 50 с энергоэффективным Pumpman PX2 1x220 V	02025102					
500	Модуль прямой D 65 с энергоэффективным Pumpman PX3 1x220 V	02026602					
660	Модуль прямой D 65 с энергоэффективным Pumpman PX3 1x220 V	02026602					
800	Модуль прямой D 65 с энергоэффективным Pumpman PX3 1x220 V	02026602					

	разделительный теплообменник (dP = 3 м)	
мощность котла	наименование модуля	артикул
127	Модуль прямой D 32 с Pumpman GRS 32/8	02023310
145	Модуль прямой D 32 с Pumpman GRS 32/12-M 1x220 V	02023303
200	Модуль прямой D 40 с Pumpman GRS 40/10F-M 1x220V	02024105
200	Модуль прямой D 40 с Pumpman GRS 40/10F 3x380V	02024101
251	Модуль прямой D 40 с Pumpman GRS 40/10F-M 1x220V	02024105
251	Модуль прямой D 40 с Pumpman GRS 40/10F 3x380V	02024101
301	Модуль прямой D 40 с Pumpman GRS 40/10F-M 1x220V	02024105
301	Модуль прямой D 40 с Pumpman GRS 40/10F 3x380V	02024101
400	Модуль прямой D 50 с энергоэффективным Pumpman PX2 1x220 V	02025102
500	Модуль прямой D 65 с энергоэффективным Pumpman PX3 1x220 V	02026602
660	Модуль прямой D 65 с энергоэффективным Pumpman PX3 1x220 V	02026602
800	Модуль прямой D 65 с энергоэффективным Pumpman PX3 1x220 V	02026602

(5)

Выбор коллектора сетевого контура

Сетевой контур может содержать несколько потребителей. Диаметр коллектора выбирается равным диаметру подключения гидравлического разделителя.

Типовые потребители: отопление, ГВС накопительного типа, ГВС проточного типа, вентиляция, технологические процессы. Коллекторы можно стыковать в группы с необходимым количеством контуров. При недостатке места их нужно стыковать под прямым углом, используя комплект угловых подсоединений. При необходимости повысить надежность системы предлагается использовать 2-контурные коллекторы с резервированием, на них могут быть установлены как группы с резервом, так и без него. Пример:

система предусматривает наличие 4-х потребителей — отопление, вентиляция, ГВС, технологические процессы. Один из потребителей нуждается в повышенной надежности и 100% резервировании. В предыдущих пунктах был подобран гидравлический разделитель Ду 65. Следовательно, для системы подойдет один 2-контурный коллектор Ду 65 и один 2-контурный коллектор с резервированием Ду 65.

(6)

Выбор модулей для потребителей

Диаметр подсоединения модуля выбирается исходя из мощности потребителя:

Модуль	D32	D40	D50	D65
Мощность котла, кВт	40 120	121 220	221 329	330 550

Мощность указана при ΔT=20 °C

Обязательной процедурой для выбора насоса, установленного в модуле, является проведение расчета потерь давления. Выбирается насос, обеспечивающий циркуляцию заданного количества теплоносителя при преодолении рассчитанных потерь давления + запас 0,2 ... 0,3 бар

Диаметр фланца модуля может не совпадать с диаметром фланца на коллекторе. Для этого предназначены специальные адаптеры (с. 95)

1. Отопление с температурой, отличной от температуры, подаваемой котлом 2. Вентиляция, не имеющая собственных средств регулирования 3. Приготовление ГВС в проточном теплообменнике 4. Технология, требующая температуру, отличную от температуры, подаваемую котлом	Смесительный модуль
1 Отопление с температурой подараемой котлом	Прямой модуль

Необходимо выбрать степень резервирования

Модуль без резерва (т.н. «холодный резерв)	Резервный насос хранится на складе
Модуль со сдвоенным насосом	Используемый насос имеет две моторные части, что позволяет
Модуль со сдвостным насосом	при выходе из строя одной эксплуатировать другую
Модуль с резервным насосом	Модуль имеет два насоса

ГИДРАВЛИЧЕСКИЕ РАЗДЕЛИТЕЛИ ДУ 50 ... 200

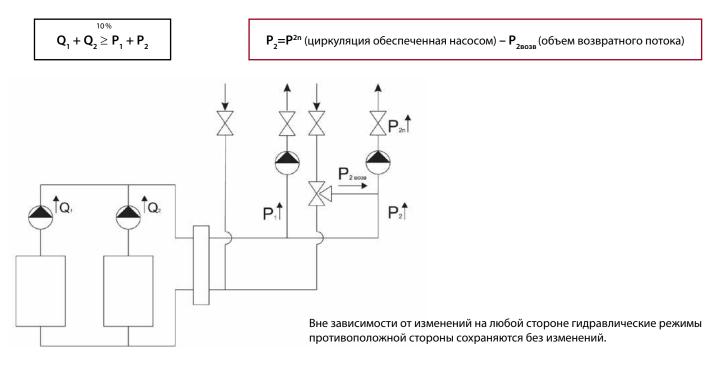
используются для создания в тепловой схеме согласующего гидравлического участка с малым перепадом давления. Обеспечивают возможность циркуляции теплоносителя различного объема в котловом и отопительных контурах. Гидравлический разделитель подбирается исходя из суммарной мощности котлов, таким образом, чтобы скорость движения теплоносителя в горизонтальном направлении находилась в диапазоне 1,1 — 1,2 м/с.

Исходя из этих данных подбирается диаметр подключения фланца гидравлического разделителя.

Пример:

Суммарная мощность котельной (Р) — 980 кВт, разница температур между падающей и обратной линией (Δ T) — 20°C

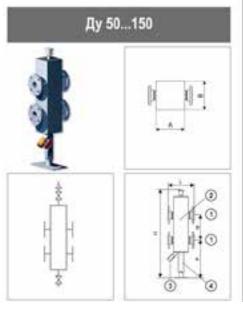
Сначала определяем расход теплоносителя:


$$Q = \frac{0,86 \times P}{\Delta T} \qquad Q = \frac{0,86 \times 980}{20} = \boxed{4,24 \text{ м}^3/\text{ч}}$$
 где Q — расход, м³/ч
Сечение диаметра подключения определяем по формуле:
$$\boxed{Q = \frac{Q}{S}} \qquad \boxed{S = \frac{Q}{V}} \qquad S = \frac{42,14}{3600 \times 1,1} = 0,011 \text{ м}^2$$
 где V — скорость, м/с

Из расчета следует, что подходит гидравлический разделитель Ду 125

Мощность котельной при $\Delta T = 20$ °C, кВт	132 184	185 304	305 465	466 722	723 1125	1126 1625	1626 2 890
Максимальный расход, м³/ч	5,6 7,9	7,9 13	13 20	20 31	31 48,4	48,4 69,9	69,9 124,3
Диаметр подключения гидравлического разделителя, мм	50	65	80	100	125	150	200

Правила применения:


Расход первичного контура на 10% больше расхода вторичного контура

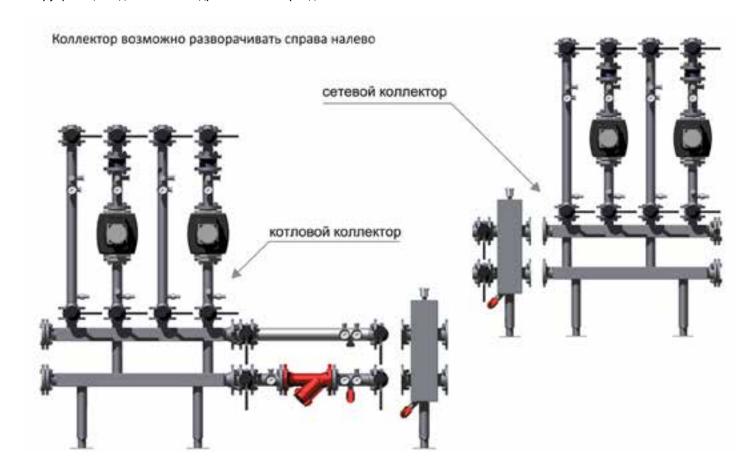
Входит в комплект

- сливной кран;
- автоматический воздухоотводчик;
- штуцер для установки КИП ВР 1/2";
- напольный крепеж;
- полимерное покрытие.

Дополнительное оборудование:				
01092015	Гильза погружного датчика L = 65 мм МКС 70/ МКС 135			
05030102	Гильза погружного датчика L = 150 мм МКС 70/ МКС 135			

	Ду50	Ду65	Ду80	Ду 100	Ду125	Ду 150	Ду200
Максимальный проток	7,91	13,07	20	33,2	48,38	69,88	124,27
Максимальная мощность, кВт при Δ t 20 °C	184	304	465	722	1125	1625	3000
L, MM	264	284	315	352	352	408	575
Н, мм	883	958	1123	1222	1265	1277	1962
М, мм	220	270	325	375	440	525	1000
А, мм	140	160	160	200	200	200	377
В, мм	140	160	160	200	200	200	545
Р, мм	398-488	408-498		438-528		336	500
Водовместимость, л	10	14,6	19	34	38,2	43,6	184
Вес, кг	23	29,8	36,8	52,4	77,1	82,6	240

	Максимальная скорость в горизонтальном сечении 1,1 м/с				
1	Фланец 1,6 МПа	1	Фланец 1,6 МПа Ду 200		
	Ду 50 Ду 65 Ду 80 Ду100 Ду 125 Ду 150	2	Штуцер для КиП BP 1/2"		
3	Штуцер для кип BP 1/2"	3	Фланец 1,6 МПа		
4	Дренажный кран 1"	4	Ревизионный люк Ду 200		
(5)	Регулируемая по высоте опора	(5)	Воздухоотводчик		
	Совместимость с коллекторами и подключениями				
	Ду 50 Ду 65 Ду 80 Ду 100 Ду 125 Ду 150				


смотреть таблицу соответствия стр. 95

Артикул	Наименование
02070500	Гидравлический разделитель Ду 50
02070650	Гидравлический разделитель Ду 65
02070800	Гидравлический разделитель Ду 80
02071000	Гидравлический разделитель Ду 100
02071250	Гидравлический разделитель Ду 125

Артикул	Наименование
02071500	Гидравлический разделитель Ду 150
02072000	Гидравлический разделитель Ду 200

КОЛЛЕКТОРЫ Ду 50..125

Коллектор — теплораспределительная гребенка, состоящая из подающего и обратного контуров. В схеме котельной с гидравлическим разделителем диаметр фланца подключения коллектора выбираются равным диаметру фланца подключения гидравлического разделителя.

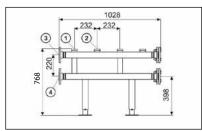
В схеме котельной с разделительным теплообменником необходимо руководствоваться значением максимальной тепловой нагрузки (пропускной способности) коллектора, а в схеме с гидравлическим разделителем — максимальной тепловой нагрузкой гидравлического разделителя.

	Коллектор Ду 50	Коллектор Ду 65	Коллектор Ду 80	КоллекторДу 100	Коллектор Ду 125
Максимальная тепловая нагрузка*, кВт	250	415	630	985	1534
Максимальный расход **	10,6	18	27,2	42,4	66,1

^{*} тепловая нагрузка указана для Δ t 20 ° C

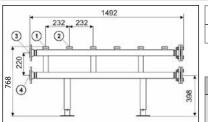
^{**} расход указан при скорости 1,5 м/с

Входит в комплект


- заглушки Ду 50, прокладки Ду 50;
- болты М16х80, гайки М16, шайбы А16;
- регулируемые по высоте опоры;
- полимерное покрытие

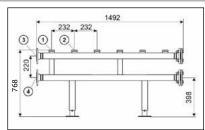
Дополнительное об	борудование:
-------------------	--------------

02090500 Комплект угловых присоединений Ду 50



Вес = 32,1 кг
Водовместительность 10 л

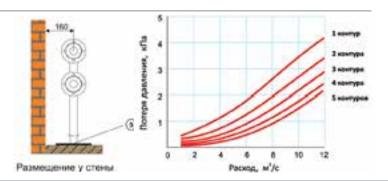
Артикул	Наменование
02010002	2-контурный кол- лектор Ду 50



Вес = 40,1 кг	
Водовместительность 15,2 л	

Артикул	Наменование
02010003	3-контурный кол- лектор Ду 50

2-контурный коллектор с резервированием Ду 50



Вес = 39,4 кг	
Водовместительность 14,9	Л

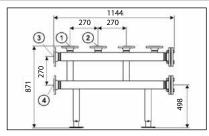
2-контурный	Артикул	Наменование
02010012 коллектор с резервированием Ду 50	02010012	1

Mayana	10.63/		
Максимальный поток при v = 1,5 м/с	10,6 м³/час		
Максимальная тепловая нагрузка, кВт, при ∆ t 20°C	250 кВт		
Площадь сечения коллектора S	0,006 m ²		
① Подключение, резьба 2"			
② Подключение, резьба 2"			
③ Подключение, фланец Ду 50; 1,6 МПа			
④ Подключение, фланец Ду 50; 1,6 МПа			
⑤ Опоры, регулируемые по высоте			

Совместимость с модулями: D 32, D 40; с гидравлическими разделителями: Ду 50. Смотреть таблицу соответствия стр. 95

Входит в комплект

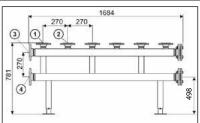
- заглушки Ду 65, прокладки Ду 65;
- болты М16х80, гайки М16, шайбы А16;
- прегулируемые по высоте опоры;
- полимерное покрытие


Дополнительное оборудование:

02090650

Комплект угловых присоединений Ду 65

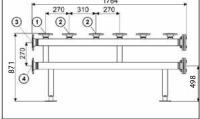
2-контурный коллектор Ду 65



Вес =56,2 кг Водовместительность 18,5 л

Артикул	Наменование
02010004	2-контурный коллектор Ду 65

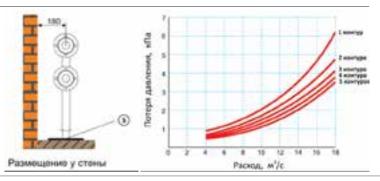
3-контурный коллектор Ду 65



Вес = 74,9 кг	
Водовместительность 27,5 л	

Артикул	Наменование
02010005	3-контурный коллектор Ду 65

2-контурный коллектор с резервированием Ду 65



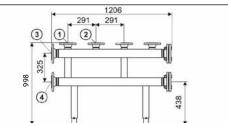
\vdash	Вес = 75,5 кг
	Водовместительность 28,7 л

Артикул	наменование
02010014	2-контурный коллектор
	с резервированием Ду 65

Mayanna - , , , , , , , , , , , , , , , , , ,	103/	
Максимальный поток при v = 1,5 м/с	18 м³/час	
Максимальная тепловая нагрузка, кВт, при ∆ t 20°C	415 кВт	
Площадь сечения коллектора S	0,0081 m ²	
① Подключение, фланец Ду 50; 1,6 МПа		
② Подключение, фланец Ду 50; 1,6 МПа		
③ Подключение, фланец Ду 65; 1,6 МПа		
Подключение, фланец Ду 65; 1,6 МПа		
© Опоры, регулируемые по высоте		

Совместимость с модулями: D 32, D 40, D 50; с гидравлическими разделителями: Ду 65. Смотреть таблицу соответствия стр. 95

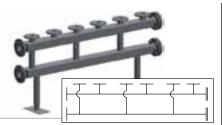
^{*} высота может меняться за счет регулируемых опор на величины 408, 438, 468, 498

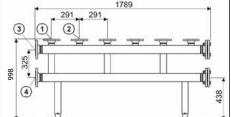

Входит в комплект

- заглушки Ду 80, прокладки Ду 80;
- болты M16x80, гайки M16, шайбы A16;
- прегулируемые по высоте опоры;
- полимерное покрытие

Дополнительное оборудование:		
02090800	Комплект угловых присоединений Ду 80	

2-контурный коллектор Ду 80

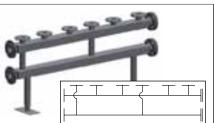


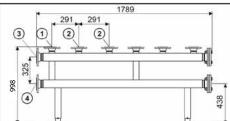


Вес =77,6 кг Водовместительность 38 л

Артикул	Наменование
02010006	2-контурный кол- лектор Ду 80

3-контурный коллектор Ду 80

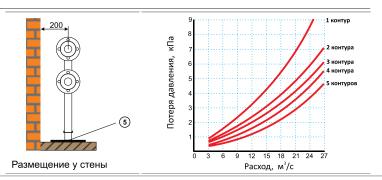




Вес = 104,3 кг	
Водовместительность 62,2 л	

Артикул	Наменование
02010007	3-контурный кол- лектор Ду 80

2-контурный коллектор Ду 80 с резервированием



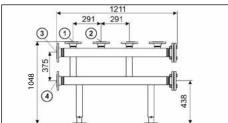
Bec =	Вес = 104 кг
	Водовместительность 61,1 л

Артикул	Наменование
02010016	2-контурный коллектор с резер- вированием Ду 80

Максимальный поток при v = 1,5 м/с	27,2 м³/час
Максимальная тепловая нагрузка, кВт, при Δ t 20°C	630 кВт
Площадь сечения коллектора S	0,017 m ²
① Подключение, фланец Ду 65; 1,6 МПа	
② Подключение, фланец Ду 65; 1,6 МПа	
③ Подключение, фланец Ду 80; 1,6 МПа	
④ Подключение, фланец Ду 80; 1,6 МПа	
© Опоры, регулируемые по высоте	

Совместимость с модулями: D 32, D 40, D 50, D 65 с гидравлическими разделителями: Ду 80. Смотреть таблицу соответствия стр. 95

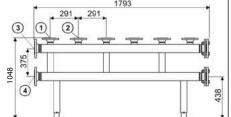
Входит в комплект


- заглушки Ду 100, прокладки Ду 100;
- болты М16х80, гайки М16, шайбы А16;
- прегулируемые по высоте опоры;
- полимерное покрытие

Дополнительное оборудование:

02091000 Комплект угловых присоединений Ду 100

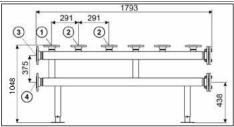
2-контурный коллектор Ду 100



Вес =84,8 кг Водовместительность 41,5 л

Артикул	Наменование
02010008	2-контурный кол- лектор Ду 100

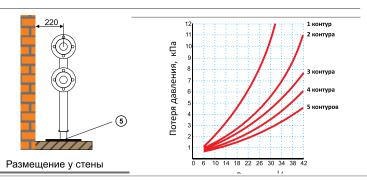
3-контурный коллектор Ду 100



Вес = 114,9 кг	
Водовместительность 63,2 л	

Артикул	Наменование
02010009	3-контурный кол- лектор Ду 100

2-контурный коллектор Ду 100 с резервированием



Вес = 112,5 кг
Водовместительность 61,8 л

Артикул	Наменование
02010018	2-контурный кол- лектор с резерви- рованием Ду 100

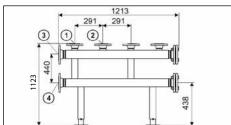
Максимальный поток при v = 1,5 м/с	42,4 м³/час
Максимальная тепловая нагрузка, кВт, при Δ t 20°C	985 кВт
Площадь сечения коллектора S	0,017 m ²
① Подключение, фланец Ду 65; 1,6 МПа	
② Подключение, фланец Ду 65; 1,6 МПа	
③ Подключение, фланец Ду 100; 1,6 МПа	
④ Подключение, фланец Ду 100; 1,6 МПа	

Совместимость с модулями: D 32, D 40, D 50, D 65; с гидравлическими разделителями: Ду 100. Смотреть таблицу соответствия стр. 95

⑤ Опоры, регулируемые по высоте

Входит в комплект

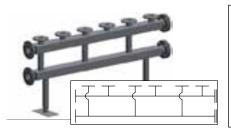
- заглушки Ду 125, прокладки Ду 125;
- болты М16х80, гайки М16, шайбы А16;
- прегулируемые по высоте опоры;
- полимерное покрытие

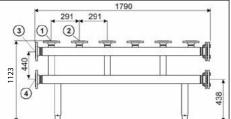

Д	ополнительное	обор	удование :
_	0110711171167101106	CCCP	удованис

02091250

Комплект угловых присоединений Ду 125

2-контурный коллектор Ду 125

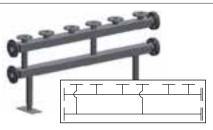


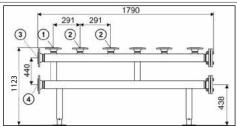


Вес =125 кг Водовместительность 55,6 л

Артикул	Наменование
02010019	2-контурный кол- лектор Ду 125

3-контурный коллектор Ду 125

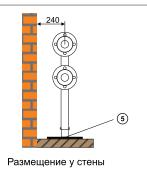


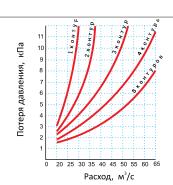


Вес = 162 кг	
Водовместительность 85,6 л	

Артикул	Наменование
02010021	3-контурный кол- лектор Ду 125

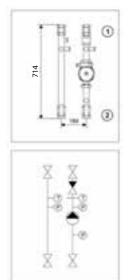
2-контурный коллектор Ду 125 с резервированием




Вес = 159 кг	
Водовместитель	ность 84,2 л

Артикул	Наменование	
02010022	2-контурный кол- лектор с резерви- рованием Ду 125	

Максимальный поток при v = 1,5 м/с	66,1 м³/час
Максимальная тепловая нагрузка, кВт, при Δ t 20°C	1534 кВт
Площадь сечения коллектора S	0,025 m ²
① Подключение, фланец Ду 65; 1,6 МПа	
② Подключение, фланец Ду 65; 1,6 МПа	
③ Подключение, фланец Ду 125; 1,6 МПа	
④ Подключение, фланец Ду 125; 1,6 МПа	
© Опоры, регулируемые по высоте	


Совместимость с модулями: D 32, D 40, D 50, D 65; с гидравлическими разделителями: Ду 125. Смотреть таблицу соответствия стр. 95

МОДУЛЬ НАСОСНЫЙ D 32 ПРЯМОЙ

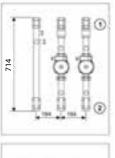
Входит в комплект

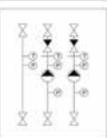
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:			
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.	
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.	

Kv 14,4

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	134 кВт
	Максимальный расход теплоносителя	5,76 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/4"
2	Присоединение к коллектору	BP — 1 1/2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02023302	1,0	11,5	0,04	11,46
Модуль прямой D 32	2,0	11,0	0,19	10,81
c Unipump UPC 32-120 1x220 V	3,0	10,7	0,43	10,27
Циркуляционный насос	4,0	10,0	0,77	9,23
UPC 32-120	5,0	9,5	1,2	8,3
Артикул 02023310	1,0	7,5	0,04	7,46
Модуль прямой D 32	2,0	7,0	0,19	6,81
c Pumpman GRS 32/8 1x220 V	3,0	6,4	0,43	5,97
Циркуляционный насос	4,0	5,8	0,77	5,03
Pumpman GRS 32/8	5,0	5,3	1,2	4,1
Артикул 02023303	1,0	11,4	0,04	11,36
Модуль прямой D 32	2,0	10,7	0,19	10,51
c Pumpman GRS 32/12-M 1x220 V Циркуляционный насос	3,0	10,0	0,43	9,57
	4,0	9,5	0,77	8,73
Pumpman GRS 32/12-M	5,0	8,5	1,2	7,3


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02023311	1,0	7,2	0,04	7,16
Модуль прямой D 32 c IMPPUMPS	2,0	6,8	0,19	6,61
GHN 32/80-180 1x230 V	3,0	6,2	0,43	5,77
Циркуляционный насос IMPPUMPS	4,0	5,6	0,77	4,83
GHN 32/80-180	5,0	4,9	1,2	3,7
Артикул 02023312	1,0	10,8	0,04	10,76
Модуль прямой D 32 c IMPPUMPS GHN 32/120-	2,0	9,8	0,19	9,61
180 1x230 V	3,0	8,8	0,43	8,37
Циркуляционный насос IMPPUMPS	4,0	7,8	0,77	7,03
GHN 32/120-180	5,0	6,5	1,2	5,3

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 32 ПРЯМОЙ С РЕЗЕРВИРОВАНИЕМ

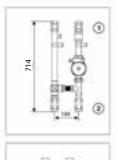
Входит в комплект

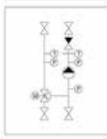
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:			
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.	
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.	

Kv 14,4

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	134 кВт
	Максимальный расход теплоносителя	5,76 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/4"
2	Присоединение к коллектору	BP — 1 1/2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033300	1,0	11,5	0,04	11,46
Модуль прямой D 32 2 х	2,0	11,0	0,19	10,81
c Unipump UPC 32-120 1x220 V	3,0	10,7	0,43	10,27
Циркуляционный насос	4,0	10,0	0,77	9,23
Unipump UPC 32-120	5,0	9,5	1,2	8,3
Артикул 02033302	1,0	7,5	0,04	7,46
Модуль прямой D 32 2 x	2,0	7,0	0,19	6,81
c Pumpman GRS 32/8 1x220 V	3,0	6,4	0,43	5,97
Циркуляционный насос	4,0	5,8	0,77	5,03
Pumpman GRS 32/8	5,0	5,3	1,2	4,1
Артикул 02033301	1,0	11,4	0,04	11,36
Модуль прямой D 32 2 х	2,0	10,7	0,19	10,51
c Pumpman GRS 32/12-M	3,0	10,0	0,43	9,57
Циркуляционный насос	4,0	9,5	0,77	8,73
Pumpman GRS 32/12-M	5,0	8,5	1,2	7,3


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033310	1,0	7,2	0,04	7,16
Модуль прямой D 32 2 x c IMPPUMPS GHN 32/80-	2,0	6,8	0,19	6,61
180 1x230 V	3,0	6,2	0,43	5,77
Циркуляционный насос IMPPUMPS	4,0	5,6	0,77	4,83
GHN 32/80-180	5,0	4,9	1,2	3,7
Артикул 02033311	1,0	10,8	0,04	10,76
Модуль прямой D 32 2 x c IMPPUMPS GHN 32/120-	2,0	9,8	0,19	9,61
180 1x230 V	3,0	8,8	0,43	8,37
Циркуляционный насос IMPPUMPSGHN	4,0	7,8	0,77	7,03
32/120-180	5,0	6,5	1,2	5,3

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

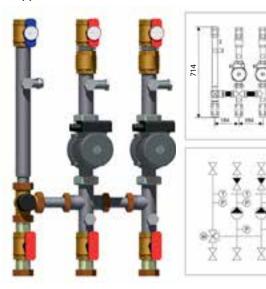
МОДУЛЬ НАСОСНЫЙ D 32 СМЕСИТЕЛЬНЫЙ

Входит в комплект

- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополните	Дополнительное оборудование:			
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.		
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50	1 шт.		

Kv 10,8


	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	134 кВт
	Максимальный расход теплоносителя	5,76 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/4"
2	Присоединение к коллектору	BP — 1 1/2"

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02023304	1,0	11,5	0,08	11,4
Модуль смесительный D	2,0	11,0	0,34	10,7
32 c Unipump UPC 32-120 220 V	3,0	10,7	0,77	9,9
Циркуляционный насос	4,0	10,0	1,37	8,6
UPC 32-120	5,0	9,5	2,14	7,4
Артикул 02033220	1,0	7,5	0,08	7,4
Модуль смесительный D 32	2,0	7,0	0,34	6,7
c Pumpman GRS 32/8	3,0	6,4	0,77	5,6
1x220 V Циркуляционный насос	4,0	5,8	1,37	4,4
Pumpman GRS 32/8	5,0	5,3	2,14	3,2
Артикул 02023305	1,0	11,4	0,08	11,3
Модуль смесительный D 32 с Pumpman GRS 32/12-М Циркуляционный насос Pumpman GRS32/12-M	2,0	10,7	0,34	10,4
	3,0	10,0	0,77	9,2
	4,0	9,5	1,37	8,1
	5,0	8,5	2,14	6,4

Артикул, параметры модуля, насос	Расход, м³∕ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033222	1,0	7,2	0,08	7,1
Модуль смесительный D 32 c IMPPUMPS GHN	2,0	6,8	0,34	6,5
32/80- 180 1x230 V Циркуляционный насос ІМРРИМРЅ GHN 32/80-180	3,0	6,2	0,77	5,4
	4,0	5,6	1,37	4,2
	5,0	4,9	2,14	2,8
Артикул 02033223 Модуль смесительный D 32 c IMPPUMPS GHN 32/120-180 1x230 V	1,0	10,8	0,08	10,7
	2,0	9,8	0,34	9,5
	3,0	8,8	0,77	8,0
Циркуляционный насос IMPPUMPS	4,0	7,8	1,37	6,4
GHN 32/120-180	5,0	6,5	2,14	4,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 32 СМЕСИТЕЛЬНЫЙ С РЕЗЕРВИРОВАНИЕМ

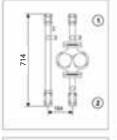
Входит в комплект

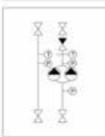
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.		
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50	1 шт.		

Kv 10,8

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	134 кВт
	Максимальный расход теплоносителя	5,76 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/4"
(2)	Присоединение к коллектору	BP — 1 1/2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033307	1,0	11,5	0,08	11,4
Модуль смесительный	2,0	11,0	0,34	10,7
D 32 2 x c Unipump UPC 32-120 1x220 V	3,0	10,7	0,77	9,9
Циркуляционный насос	4,0	10,0	1,37	8,6
UPC 32-120	5,0	9,5	2,14	7,4
Артикул 02033309	1,0	7,5	0,08	7,4
Модуль смесительный D 32	2,0	7,0	0,34	6,7
2 x c Unipump GRS 32/8	3,0	6,4	0,77	5,6
1x220 V Циркуляционный насос	4,0	5,8	1,37	4,4
Pumpman GRS 32/8	5,0	5,3	2,14	3,2
Артикул 02033308	1,0	11,4	0,08	11,3
Модуль смесительный D 32 2 x с Pumpman GRS 32/12-M 1x220 V Циркуляционный насос Pumpman GRS32/12-M	2,0	10,7	0,34	10,4
	3,0	10,0	0,77	9,2
	4,0	9,5	1,37	8,1
	5,0	8,5	2,14	6,4


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033312	1,0	7,2	0,08	7,1
Модуль смесительный D 32 2 x c IMPPUMPS GHN	2,0	6,8	0,34	6,5
32/80-180 1х230 V Циркуляционный насос IMPPUMPS	3,0	6,2	0,77	5,4
	4,0	5,6	1,37	4,2
GHN 32/80- 180	5,0	4,9	2,14	2,8
Артикул 02033313 Модуль смесительный D 32 2 x с IMPPUMPS GHN 32/120-180 1x230 V Циркуляционный насос IMPPUMPS	1,0	10,8	0,08	10,7
	2,0	9,8	0,34	9,5
	3,0	8,8	0,77	8,0
	4,0	7,8	1,37	6,4
GHN 32/120-180	5,0	6,5	2,14	4,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 32 ПРЯМОЙ СО СДВОЕННЫМ НАСОСОМ

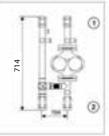
Входит в комплект

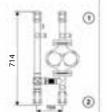
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °С (для монтажа на гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.		

Kv 18,9

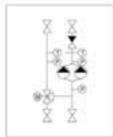
	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	134 кВт
	Максимальный расход теплоносителя	5,76 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/4"
(2)	Присоединение к коллектору	BP — 1 1/2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033314	1,0	7,0	0,02	6,98
Модуль прямой D 32 c IMPPUMPS GHND	2,0	6,5	0,11	6,39
32/80-180 1x230 V	3,0	6,0	0,25	5,75
Циркуляционный насос IMPPUMPS	4,0	5,3	0,44	4,86
GHND 32/80-180	5,0	4,8	0,69	4,11


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033315	1,0	10,3	0,02	10,28
Модуль прямой D 32 c IMPPUMPS GHND 32/120-180 1x230 V	2,0	9,0	0,11	8,89
	3,0	8,0	0,25	7,75
Циркуляционный насос IMPPUMPS G	4,0	6,5	0,44	6,06
HND 32/120-180	5,0	5,0	0,69	4,31

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 32 СМЕСИТЕЛЬНЫЙ СО СДВОЕННЫМ НАСОСОМ



Входит в комплект

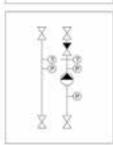
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.		
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50	1 шт.		

Kv 12,6

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	134 кВт
Максимальный расход теплоносителя		5,76 м³/час
	Максимальная скорость	2 м/с
①	Присоединение к контуру	BP — 1 1/4"
2	Присоединение к коллектору	BP — 1 1/2"

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033316	1,0	7,0	0,06	6,9
Модуль смесительный D 32 c IMPPUMPS GHND 32/80- 180 1x230 V	2,0	6,5	0,3	6,3
	3,0	6,0	0,5	5,5
Циркуляционный насос IMPPUMPS	4,0	5,3	1,0	4,3
GHND 32/80- 180	5,0	4,8	1,6	3,2


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02033317	1,0	10,3	0,06	10,2
Модуль смесительный D 32 c IMPPUMPS GHND	2,0	9,0	0,3	8,8
32/120-180 1x230 V	3,0	8,0	0,5	7,5
Циркуляционный насос IMPPUMPS	4,0	6,5	1,0	5,5
GHND 32/120-180	5,0	5,0	1,6	3,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 40 ПРЯМОЙ

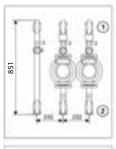
Входит в комплект

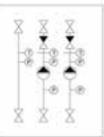
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на ги- дравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.		

Kv 19,8

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	210 кВт
	Максимальный расход теплоносителя	9,03 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/2"
2	Присоединение к коллектору	BP — 2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02024102	2,0	10,0	0,10	9,9
Модуль прямой D 40 с энергоэффективным	4,0	9,9	0,40	9,5
Pumpman PX1 1x220 V	6,0	9,4	0,91	8,5
Циркуляционный насос PUMPMAN STAR-PX1	8,0	8,2	1,60	6,6
Артикул 02024105 Модуль прямой D 40 с Pumpman GRS 40/10F-M 1x220 V Циркуляционный насос Pumpman GRS 40/10F-M	2,0	11,7	0,10	11,6
	4,0	11,2	0,40	10,8
	6,0	10,3	0,91	9,4
	8,0	9,0	1,60	7,4


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02024101	2,0	11,5	0,10	11,4
Модуль прямой D 40 c Pumpman GRS 40/10F	4,0	10,8	0,40	10,4
3x380 V	6,0	10,3	0,91	9,4
Циркуляционный насос Pumpman GRS 40/10F 3x380 V	8,0	9,0	1,60	7,4
Артикул 02024107 Модуль прямой D 40	2,0	16,8	0,10	16,7
c IMPPUMPS GHN basic II 4	4,0	16,0	0,40	15,6
0- 190F 3х400 V Циркуляционный насос	6,0	15,8	0,91	14,9
IMPPUMPS GHN basic II 40-190F	8,0	14,8	1,60	13,2
Артикул 02024106 Модуль прямой D 40 с IMPPUMPS GHN basic II 40-120F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II 40-120F	2,0	10,2	0,10	10,1
	4,0	9,8	0,40	9,4
	6,0	9,3	0,91	8,4
	8,0	8,5	1,60	6,9

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 40 ПРЯМОЙ С РЕЗЕРВИРОВАНИЕМ

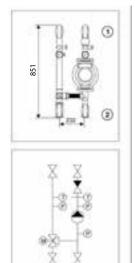
Входит в комплект

- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	5030104 Манометр D63 t=150 °C (для монтажа на			
03030104	гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа маноме-	3 шт.		
03030103	тров на гидравлическом модуле	Эші.		

Kv 19,8

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	210 кВт
	Максимальный расход теплоносителя	9,03 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/2"
2	Присоединение к коллектору	BP — 2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034090 Модуль прямой D 40	2,0	10,0	0,10	9,9
2 x с энергоэффективным	4,0	9,9	0,40	9,5
Pumpman PX1 1x220 V Циркуляционный флан-	6,0	9,4	0,91	8,5
цевый насос PUMPMAN STAR-PX1	8,0	8,2	1,60	6,6
Артикул 02034094	2,0	11,7	0,10	11,6
Модуль прямой D 40 2 x c Pumpman GRS 40/10F-M 1x220 V Циркуляционный насос Pumpman GRS 40/10F-M	4,0	11,2	0,40	10,8
	6,0	10,3	0,91	9,4
	8,0	9,0	1,60	7,4

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034089 Модуль прямой D 40	2,0	11,5	0,10	11,4
D 40 2 x c Pumpman GRS	4,0	10,8	0,40	10,4
40/10F 3x380 V Циркуляционный насос	6,0	10,3	0,91	9,4
Pumpman GRS 40/10F 3x380 V	8,0	9,0	1,60	7,4
Артикул 02034096 Модуль прямой D 40	2,0	16,8	0,10	16,7
2 x c IMPPUMPS GHN basic II	4,0	16,0	0,40	15,6
40-190F 3х400 V Циркуляционный насос	6,0	15,8	0,91	14,9
IMPPUMPS GHN basic II 40-190F	8,0	14,8	1,60	13,2
Артикул 02034095 Модуль прямой D 40 2 x c IMPPUMPS GHN basic II 40-120F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II 40-120F	2,0	10,2	0,10	10,1
	4,0	9,8	0,40	9,4
	6,0	9,3	0,91	8,4
	8,0	8,5	1,60	6,9

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 40 СМЕСИТЕЛЬНЫЙ

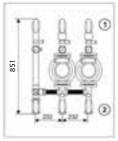
Входит в комплект

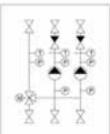
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.		
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50	1 шт.		

Kv 15,7

	Максимальная мощность, кВт, при ∆ t 20°C	210 кВт
	Максимальный расход теплоносителя	9,03 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/2"
2	Присоединение к коллектору	BP — 2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02024108	2,0	11,7	0,2	11,5
Модуль смесительный D 40 c Pumpman GRS	4,0	11,2	0,7	10,6
40/10F-M 1x220 V Циркуляционный насос Pumpman GRS 40/10F-M	6,0	10,3	1,4	8,9
	8,0	9,0	2,6	6,4
Артикул 02024104 Модуль смесительный D 40 с Pumpman PX1 1x220 V Циркуляционный флан-	2,0	10,0	0,2	9,8
	4,0	9,9	0,7	9,3
	6,0	9,4	1,4	8,0
цевый насос PUMPMAN STAR-PX1	8,0	8,2	2,6	5,6


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02024109	2,0	10,2	0,2	10,0
Модуль смесительный D 40 с IMPPUMPS GHN basic	4,0	9,8	0,7	9,2
II 40-120F 3x400 V	6,0	9,3	1,4	7,9
Циркуляционный насос IMPPUMPS GHN basic II 40-120F	8,0	8,5	2,6	5,9
Артикул 02024110 Модуль смесительный D	2,0	16,8	0,2	16,6
40 c IMPPUMPS GHN basic II 40-190F 3x400 V	4,0	16,0	0,7	15,4
Циркуляционный насос	6,0	15,8	1,4	14,4
IMPPUMPS GHN basic II 40-190F	8,0	14,8	2,6	12,2
Артикул 02024103	2,0	11,5	0,2	11,3
Модуль смесительный D 40 с Pumpman GRS 40/10F 3x380 V Циркуляционный насос Pumpman GRS 40/10F	4,0	11,0	0,7	10,4
	6,0	10,0	1,4	8,6
	8,0	9,0	2,6	6,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 40 СМЕСИТЕЛЬНЫЙ С РЕЗЕРВИРОВАНИЕМ

Входит в комплект

- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:					
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.			
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.			
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50	1 шт.			

Kv 15,7

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	210 кВт
Максимальный расход теплоносителя		9,03 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/2"
2	Присоединение к коллектору	BP — 2"

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034097	2,0	11,7	0,2	11,5
Модуль смесительный D 40 2 x с Pumpman GRS	4,0	11,2	0,7	10,6
40/10F-M 1x220 V Циркуляционный насос Pumpman GRS 40/10F-M	6,0	10,3	1,4	8,9
	8,0	9,0	2,6	6,4
Артикул 02034093 Модуль смесительный D 40 2 x с Pumpman PX1 1x220 V Циркуляционный флан-	2,0	10,0	0,2	9,8
	4,0	9,9	0,7	9,3
	6,0	9,4	1,4	8,0
цевый насос PUMPMAN STAR-PX1	8,0	8,2	2,6	5,6

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034098 Модуль смесительный D	2,0	10,2	0,2	10,0
40 2 x c IMPPUMPS GHN	4,0	9,8	0,7	9,2
basic II 40-120F 3x400 V Циркуляционный насос	6,0	9,3	1,4	7,9
IMPPUMPS GHN basic II 40-120F	8,0	8,5	2,6	5,9
Артикул 02034099 Модуль смесительный D	2,0	16,8	0,2	16,6
40 2 x c IMPPUMPS GHN basic II 40-190F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II 40-190F	4,0	16,0	0,7	15,4
	6,0	15,8	1,4	14,4
	8,0	14,8	2,6	12,2
Артикул 02034091	2,0	11,5	0,2	11,3
Mодуль смесительный D 40 2 x c Pumpman GRS 40/10F 3x380 V Циркуляционный насос Pumpman GRS 40/10F	4,0	11,0	0,7	10,4
	6,0	10,0	1,4	8,6
	8,0	9,0	2,6	6,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 40 ПРЯМОЙ СО СДВОЕННЫМ НАСОСОМ

Входит в комплект

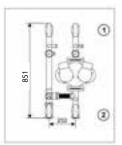
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C	3 шт.		
03030104	(для монтажа на гидравлическом модуле)	эші.		
05030103	Отсечной клапан для монтажа манометров	3 шт.		
03030103	на гидравлическом модуле	эші.		

Kv 28,8

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	210 кВт
	Максимальный расход теплоносителя	9,03 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/2"
2	Присоединение к коллектору	BP — 2"

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034100 Модуль прямой D 40 с IMPPUMPS GHND basic II 40-70F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 40-70F 3x400 V	2,0	6,4	0,04	6,36
	4,0	5,8	0,19	5,61
	6,0	5,0	0,43	4,57
	8,0	4,5	0,77	3,73


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034101 Модуль прямой D 40 с IMPPUMPS GHND basic II 40-120F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 40-120F 3x400 V	2,0	10,2	0,04	10,16
	4,0	9,8	0,19	9,61
	6,0	9,2	0,43	8,77
	8,0	8,4	0,77	7,63

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

9

МОДУЛЬ НАСОСНЫЙ D 40 СМЕСИТЕЛЬНЫЙ СО СДВОЕННЫМ НАСОСОМ

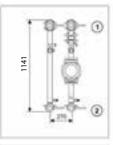
Входит в комплект

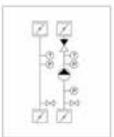
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C для монтажа на гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров н а гидравлическом модуле	3 шт.		
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50	1 шт.		

Kv 18,9

	Максимальная мощность, кВт, при ∆ t 20°С	210 кВт
	Максимальный расход теплоносителя	9,03 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	BP — 1 1/2"
(2)	Присоелинение к коллектору	BP — 2"


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034102 Модуль смесительный D 40 с IMPPUMPS GHND basic II 40-70F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 40-70F 3x400 V	2,0	6,4	0,1	6,3
	4,0	5,8	0,4	5,4
	6,0	5,0	1,0	4,0
	8,0	4,5	1,8	2,7


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02034103 Модуль смесительный	2,0	10,2	0,1	10,1
D 40 с IMPPUMPS GHND basic II 40-120F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 40-120F 3x400 V	4,0	9,8	0,4	9,4
	6,0	9,2	1,0	8,2
	8,0	8,4	1,8	6,6

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 50 ПРЯМОЙ

Входит в комплект

- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:			
05030104	Манометр D63 t=150 °С (для монтажа на ги-	3 шт.	
	дравлическом модуле)	0 =	
05030103	Отсечной клапан для монтажа манометров на	3 шт.	
05050105	гидравлическом модуле	Эш.	

Kv 28,8

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	329 кВт
	Максимальный расход теплоносителя	14,15 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 50, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 50, 1,6 МПа

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
	2,0	12,0	0,05	12,0
Артикул 02025102	4,0	11,8	0,19	11,6
Модуль прямой D 50 с энергоэффективным Pumpman PX2 1x220 V Циркуляционный насос PUMPMAN STAR-PX2	6,0	10,7	0,43	10,3
	8,0	10,0	0,77	9,2
	10,0	9,0	1,20	7,8
	12,0	8,0	1,70	6,3
A 02025105	2,0	12,3	0,05	12,3
Артикул 02035105 Модуль прямой D 50	4,0	11,9	0,19	11,7
c Pumpman GRS 50/12F-M 1x220 V Циркуляционный насос Pumpman GRS 50/12F	6,0	11,5	0,43	11,1
	8,0	11,0	0,77	10,2
	10,0	10,3	1,20	9,1
	12,0	9,7	1,70	8,0

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02025106	2,0	18,5	0,05	18,5
Модуль прямой D 50	4,0	18,0	0,19	17,8
c IMPPUMPS GHN basic II	6,0	17,5	0,43	17,1
50-190F 3х400 V Циркуляционный насос	8,0	16,8	0,77	16,0
IMPPUMPS GHN basic II	10,0	16	1,20	14,8
50-190F	12,0	15,4	1,70	13,7
Артикул 02025107	2,0	12,0	0,05	12,0
Модуль прямой D 50	4,0	11,8	0,19	11,6
c IMPPUMPS GHN basic II	6,0	11,5	0,43	11,1
50-120F 3x400 V Циркуляционный насос	8,0	10,8	0,77	10,0
IMPPUMPS GHN basic II	10,0	10,3	1,20	9,1
50-120F	12,0	9,7	1,70	8,0
Артикул 02025101	2,0	12,3	0,05	12,3
Модуль прямой D 50	4,0	11,9	0,19	11,7
c Pumpman GRS 50/12F	6,0	11,5	0,43	11,1
3x380 V Циркуляционный насос	8,0	11,0	0,77	10,2
Pumpman GRS 50/12F	10,0	10,3	1,20	9,1
3x380 V	12,0	9,7	1,70	8,0

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 50 ПРЯМОЙ ПРЯМОЙ С РЕЗЕРВИРОВАНИЕМ

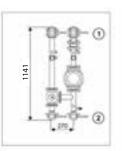
Входит в комплект

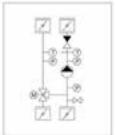
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на			
03030104	гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа	3 шт.		
03030103	манометров на гидравлическом модуле	эші.		

Kv 28,8

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	329 кВт
	Максимальный расход теплоносителя	14,15 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 50, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 50, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
	2,0	12,0	0,05	12,0
Артикул 02035102 Модуль прямой D 50 2x	4,0	11,8	0,19	11,6
с энергоэффективным	6,0	10,7	0,43	10,3
Pumpman PX2 1x220 V	8,0	10,0	0,77	9,2
Циркуляционный насос PUMPMAN STAR-PX2	10,0	9,0	1,20	7,8
	12,0	8,0	1,70	6,3
	2,0	12,3	0,05	12,3
Артикул 02035117	4,0	11,9	0,19	11,7
Модуль прямой D 50 2-х с Pumpman GRS 50/12F-M 1х220 V Циркуляционный насос Pumpman GRS 50/12F	6,0	11,5	0,43	11,1
	8,0	11,0	0,77	10,2
	10,0	10,3	1,20	9,1
	12,0	9,7	1,70	8,0


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02035107	2,0	18,5	0,05	18,5
Модуль прямой D 50	4,0	18,0	0,19	17,8
2 x c IMPPUMPS GHN basic II 50-190F 3x400 V	6,0	17,5	0,43	17,1
Циркуляционный насос	8,0	16,8	0,77	16,0
IMPPUMPS GHN basic II	10,0	16	1,20	14,8
50-190F	12,0	15,4	1,70	13,7
Артикул 02035108	2,0	12,0	0,05	12,0
Модуль прямой D 50	4,0	11,8	0,19	11,6
2 x c IMPPUMPS GHN basic II 50-120F 3x400 V	6,0	11,5	0,43	11,1
Циркуляционный насос	8,0	10,8	0,77	10,0
IMPPUMPS GHN basic II	10,0	10,3	1,20	9,1
50-120F	12,0	9,7	1,70	8,0
Артикул 02035101	2,0	12,3	0,05	12,3
Модуль прямой D 50	4,0	11,9	0,19	11,7
2 x c Pumpman GRS	6,0	11,5	0,43	11,1
50/12F 3x380 V Циркуляционный насос	8,0	11,0	0,77	10,2
Pumpman GRS 50/12F	10,0	10,3	1,20	9,1
3x380 V	12,0	9,7	1,70	8,0

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 50 СМЕСИТЕЛЬНЫЙ

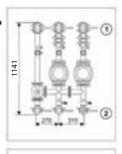
Входит в комплект

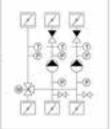
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:			
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.	
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.	
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50	1 шт.	

Kv 26,1

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	329 кВт
	Максимальный расход теплоносителя	14,15 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 50, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 50, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
	2,0	12,3	0,05	12,3
Артикул 02025103 Модуль смесительный	4,0	11,9	0,23	11,7
D 50 c Pumpman GRS	6,0	11,5	0,52	11,0
50/12F 3x380 V	8,0	11,0	0,94	10,1
Циркуляционный насос Pumpman GRS 50/12F	10,0	10,3	1,47	8,8
·	12,0	9,7	2,11	7,6
Артикул 02025109	2,0	18,5	0,05	18,5
Модуль смесительный	4,0	18,0	0,23	17,8
D 50 c IMPPUMPS GHN basic II 50-190F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II 50-190F	6,0	17,5	0,52	17,0
	8,0	16,8	0,94	15,9
	10,0	16	1,47	14,5
	12,0	15,4	2,11	13,3


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02025110	2,0	12,0	0,05	12,0
Модуль смесительный	4,0	11,8	0,23	11,6
D 50 c IMPPUMPS GHN	6,0	11,5	0,52	11,0
basic II 50-120F 3х400 V Циркуляционный насос	8,0	10,8	0,94	9,9
IMPPUMPS GHN basic II	10,0	10,3	1,47	8,8
50-120F	12,0	9,7	2,11	7,6
Артикул 02025104	2,0	12,0	0,05	12,0
Модуль смесительный	4,0	11,8	0,23	11,6
D 50 с энергоэффектив-	6,0	10,7	0,52	10,2
ным Pumpman PX2 1x220 V	8,0	10,0	0,94	9,1
Циркуляционный насос	10,0	9,0	1,47	7,5
PUMPMAN STAR-PX2	12,0	8,0	2,11	5,9
Артикия 02025119	2,0	12,3	0,05	12,3
Артикул 02035118 Модуль смесительный	4,0	11,9	0,23	11,7
D 50 c Pumpman GRS	6,0	11,5	0,52	11,0
50/12F 3x380 V Циркуляционный насос	8,0	11,0	0,94	10,1
Pumpman GRS 50/12F	10,0	10,3	1,47	8,8
3x380 V	12,0	9,7	2,11	7,6

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 50 СМЕСИТЕЛЬНЫЙ С РЕЗЕРВИРОВАНИЕМ

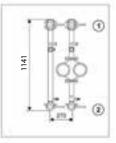
Входит в комплект

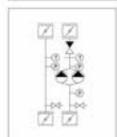
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:			
05030104	Манометр D63 t=150 °C (для монтажа на	3 шт.	
03030104	гидравлическом модуле)	эші.	
05030103	Отсечной клапан для монтажа маноме-	3 шт.	
	тров на гидравлическом модуле	эші.	
05020105	Электропривод для смесительного моду-	1	
05030105	ля МКС 1300 Ду 32, 40, 50	1 шт.	

Kv 26,1

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	329 кВт
	Максимальный расход теплоносителя	14,15 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 50, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 50, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
	2,0	12,3	0,05	12,3
Артикул 02035103 Модуль смесительный	4,0	11,9	0,23	11,7
D 50 2 x c Pumpman GRS	6,0	11,5	0,52	11,0
50/12F 3x380 V Циркуляционный насос Pumpman GRS 50/12F	8,0	11,0	0,94	10,1
	10,0	10,3	1,47	8,8
	12,0	9,7	2,11	7,6
Артикул 02035110	2,0	18,5	0,05	18,5
Модуль смесительный	4,0	18,0	0,23	17,8
D 50 2 x c IMPPUMPS GHN	6,0	17,5	0,52	17,0
basic II 50-190F 3x380 V Циркуляционный насос IMPPUMPS GHN basic II 50-190F	8,0	16,8	0,94	15,9
	10,0	16	1,47	14,5
	12,0	15,4	2,11	13,3


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02035111	2,0	12,0	0,05	12,0
Модуль смесительный	4,0	11,8	0,23	11,6
D 50 2 x c IMPPUMPS GHN	6,0	11,5	0,52	11,0
basic II 50-120F 3x400 V Циркуляционный насос	8,0	10,8	0,94	9,9
IMPPUMPS GHN basic II	10,0	10,3	1,47	8,8
50-120F	12,0	9,7	2,11	7,6
Артикул 02035104	2,0	12,0	0,05	12,0
Модуль смесительный	4,0	11,8	0,23	11,6
D 50 2 x с энергоэффективным Pumpman PX2	6,0	10,7	0,52	10,2
1x220 V	8,0	10,0	0,94	9,1
Циркуляционный насос	10,0	9,0	1,47	7,5
PUMPMAN STAR-PX2	12,0	8,0	2,11	5,9
Артикул 02035116	2,0	12,3	0,05	12,3
Модуль смесительный	4,0	11,9	0,23	11,7
D 50 2 x c Pumpman GRS 50/12F-M 1x220 V Циркуляционный насос	6,0	11,5	0,52	11,0
	8,0	11,0	0,94	10,1
Pumpman GRS 50/12F	10,0	10,3	1,47	8,8
3x380 V	12,0	9,7	2,11	7,6

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 50 ПРЯМОЙ СО СДВОЕННЫМ НАСОСОМ

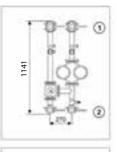
Входит в комплект

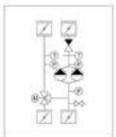
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:			
05030104 Манометр D63 t=150 °C (для монтажа на ги- дравлическом модуле) 3 шт			
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.	

Kv 53,1

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	329 кВт
	Максимальный расход теплоносителя	14,15 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 50, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 50, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02035112 Модуль прямой D 50	2,0	12,0	0,01	12,0
c IMPPUMPS GHND basic II 50-120F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 50-120 F 3x400 V	4,0	11,8	0,06	11,7
	6,0	11,3	0,12	11,2
	8,0	10,8	0,22	10,6


Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

9

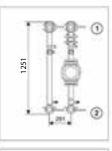
МОДУЛЬ НАСОСНЫЙ D 50 СМЕСИТЕЛЬНЫЙ СО СДВОЕННЫМ НАСОСОМ

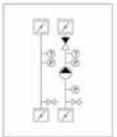
Входит в комплект

- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:			
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.	
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.	
05030105	Электропривод для смесительного модуля МКС 1300 Ду 32, 40,50	1 шт.	

Kv 37,8


	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	329 кВт
	Максимальный расход теплоносителя	14,15 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 50, 1,6 МПа
(2)	Присоединение к коллектору	Фланец Лу 50, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02035113 Модуль смесительный	2,0	12,0	0,03	12,0
D 50 c IMPPUMPS GHND basic II 50-120 F 3x400 V	4,0	11,8	0,11	11,7
Циркуляционный насос	6,0	11,3	0,25	11,1
IMPPUMPS GHND basic II 50-120 F 3x400 V	8,0	10,8	0,45	10,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 65 ПРЯМОЙ

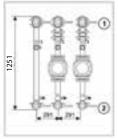
Входит в комплект

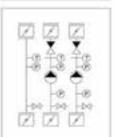
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на	3 шт.		
03030104	гидравлическом модуле)	эші.		
05030103	Отсечной клапан для монтажа манометров	3 шт.		
03030103	на гидравлическом модуле	Э Ш1.		

Kv 52,25

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	550 кВт
	Максимальный расход теплоносителя	23,65 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 65, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 65, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
	2,0	15,0	0,01	15,0
Артикул 02026602 Модуль прямой D 65	6,0	15,0	0,13	14,9
с энергоэффективным	10,0	14,9	0,37	14,5
Pumpman PX3 1x220 V	14,0	14,5	0,70	13,8
Циркуляционный насос Pumpman PX3 1x220 V	18,0	13,2	1,18	12,0
	22,0	12,2	1,77	10,4
Артикул 02026601	2,0	12,0	0,01	12,0
Модуль прямой D 65	6,0	11,5	0,13	11,4
c Pumpman GRS 65/11F 3x380 V	10,0	11,0	0,37	10,6
Циркуляционный насос	14,0	10,4	0,70	9,7
Pumpman GRS 65/11F	18,0	9,5	1,18	8,3
3x380 V	22,0	8,8	1,77	7,0


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02026606	2,0	19,0	0,01	19,0
Модуль прямой D 65	6,0	18,4	0,13	18,3
c IMPPUMPS GHN basic II	10,0	17,7	0,37	17,3
65- 190F 3х400 V Циркуляционный насос	14,0	17	0,70	16,3
IMPPUMPS GHN basic II	18,0	16,1	1,18	14,9
65- 190F 3x400 V	22,0	15,0	1,77	13,2
Артикул 02026605	2,0	11,2	0,01	11,2
Модуль прямой D 65	6,0	11,0	0,13	10,9
c IMPPUMPS GHN basic II 65- 120F 3x400 V	10,0	10,8	0,37	10,4
оз- 120г эх 4 00 v Циркуляционный насос	14,0	10,5	0,70	9,8
IMPPUMPS GHN basic II	18,0	9,8	1,18	8,6
65-120F 3x400 V	22,0	9,2	1,77	7,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 65 ПРЯМОЙ С РЕЗЕРВИРОВАНИЕМ

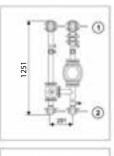
Входит в комплект

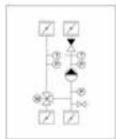
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °С (для монтажа на			
03030104	гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа маноме-	3 шт.		
03030103	тров на гидравлическом модуле	Э Ш1.		

Kv 52,25

	Максимальная мощность, кВт, при ∆ t 20°C	550 кВт
	Максимальный расход теплоносителя	23,65 м³/час
	Максимальная скорость	2 м/с
①	Присоединение к контуру	Фланец Ду 65, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 65, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
	2,0	15,0	0,01	15,0
Артикул 02036102 Модуль прямой D 65	6,0	15,0	0,13	14,9
2 х с энергоэффективным	10,0	14,9	0,37	14,5
Pumpman PX3 1x220 V	14,0	14,5	0,70	13,8
циркуляционный насос Pumpman PX3 1x220 V	18,0	13,2	1,18	12,0
Циркуляционный насос Pumpman PX3 1x220 V	22,0	12,2	1,77	10,4
Артикул 02036101	2,0	12,0	0,01	12,0
Модуль прямой D 65	6,0	11,5	0,13	11,4
2 x c Pumpman GRS 65/11F 3x380 V	10,0	11,0	0,37	10,6
Циркуляционный насос	14,0	10,4	0,70	9,7
Pumpman GRS 65/11F	18,0	9,5	1,18	8,3
3x380 V	22,0	8,8	1,77	7,0


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02036106	2,0	19,0	0,01	19,0
Модуль прямой D 65	6,0	18,4	0,13	18,3
2 x c IMPPUMPS GHN basic	10,0	17,7	0,37	17,3
II 65-190F 3х400 V Циркуляционный насос	14,0	17	0,70	16,3
IMPPUMPS GHN basic II	18,0	16,1	1,18	14,9
65- 190F 3x400 V	22,0	15,0	1,77	13,2
Артикул 02036105	2,0	11,2	0,01	11,2
Модуль прямой D 65	6,0	11,0	0,13	10,9
2 x c IMPPUMPS GHN basic	10,0	10,8	0,37	10,4
II 65-120F 3х400 V Циркуляционный насос	14,0	10,5	0,70	9,8
IMPPUMPS GHN basic II	18,0	9,8	1,18	8,6
65-120F 3x400 V	22,0	9,2	1,77	7,4

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 65 СМЕСИТЕЛЬНЫЙ

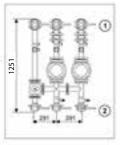
Входит в комплект

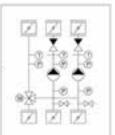
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °С (для монтажа на ги- дравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.		
05030114	Электропривод для смесительного модуля МКС 1300 Ду 65	1 шт.		

Kv 45

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	550 кВт
	Максимальный расход теплоносителя	23,65 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 65, 1,6 МПа
2)	Присоединение к коллектору	Фланец Ду 65, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02026604	2,0	15,0	0,02	15,0
Модуль смесительный	6,0	15,0	0,17	14,8
D 65 с энергоэффектив-	10,0	14,9	0,50	14,4
ным Pumpman PX3 1x220 V	14,0	14,5	0,97	13,5
Циркуляционный насос	18,0	13,2	1,60	11,6
Pumpman PX3 1x220 V	22,0	12,2	2,40	9,8
Артикул 02026603	2,0	12,0	0,02	12,0
Модуль смесительный	6,0	11,5	0,17	11,3
D 65 c Pumpman GRS 65/11F 3x380 V Циркуляционный насос Pumpman GRS 65/11F 3x380 V	10,0	11,0	0,50	10,5
	14,0	10,4	0,97	9,4
	18,0	9,5	1,60	7,9
	22,0	8,8	2,40	6,4


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02026608	2,0	19,0	0,02	19,0
Модуль смесительный	6,0	18,4	0,17	18,2
D 65 c IMPPUMPS GHN	10,0	17,7	0,50	17,2
basic II 65-190F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II	14,0	17	0,97	16,0
	18,0	16,1	1,60	14,5
65-190F 3x400 V	22,0	15,0	2,40	12,6
Артикул 02026607	2,0	11,2	0,02	11,2
Модуль смесительный	6,0	11,0	0,17	10,8
D 65 c IMPPUMPS GHN basic II 65-120F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II 65-120F 3x400 V	10,0	10,8	0,50	10,3
	14,0	10,5	0,97	9,5
	18,0	9,8	1,60	8,2
	22,0	9,2	2,40	6,8

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 65 СМЕСИТЕЛЬНЫЙ С РЕЗЕРВИРОВАНИЕМ

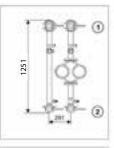
Входит в комплект

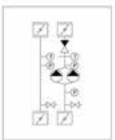
- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:					
05030104	Манометр D63 t=150 °C (для монтажа на гидравлическом модуле)	3 шт.			
05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле	3 шт.			
05030114	Электропривод для смесительного модуля МКС 1300 Ду 65	1 шт.			

Kv 45

	Максимальная мощность, кВт, при ∆ t 20°С	550 кВт
	Максимальный расход теплоносителя	23,65 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 65, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 65, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02036104	2,0	15,0	0,02	15,0
Модуль смесительный	6,0	15,0	0,17	14,8
D 65 2 x с энергоэффек-	10,0	14,9	0,50	14,4
тивным Pumpman PX3 1x220 V	14,0	14,5	0,97	13,5
Циркуляционный насос	18,0	13,2	1,60	11,6
Pumpman PX3 1x220 V	22,0	12,2	2,40	9,8
Артикул 02036103	2,0	12,0	0,02	12,0
Модуль смесительный	6,0	11,5	0,17	11,3
D 65 2 x c Pumpman GRS 65/11F 3x380 V Циркуляционный насос Pumpman GRS 65/11F 3x380 V	10,0	11,0	0,50	10,5
	14,0	10,4	0,97	9,4
	18,0	9,5	1,60	7,9
	22,0	8,8	2,40	6,4


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02036108	2,0	19,0	0,02	19,0
Модуль смесительный	6,0	18,4	0,17	18,2
D 65 2 x c IMPPUMPS GHN	10,0	17,7	0,50	17,2
basic II 65-190F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II	14,0	17	0,97	16,0
	18,0	16,1	1,60	14,5
65-190F 3x400 V	22,0	15,0	2,40	12,6
Артикул 02036107	2,0	11,2	0,02	11,2
Модуль смесительный	6,0	11,0	0,17	10,8
D 65 2 x c IMPPUMPS GHN basic II 65-120F 3x400 V Циркуляционный насос IMPPUMPS GHN basic II 65-120F 3x400 V	10,0	10,8	0,50	10,3
	14,0	10,5	0,97	9,5
	18,0	9,8	1,60	8,2
	22,0	9,2	2,40	6,8

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 65 ПРЯМОЙ СДВОЕННЫЙ НАСОС

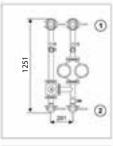
Входит в комплект

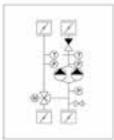
- циркуляционные насосы;
- запорная арматура;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на	3 шт.		
03030104	гидравлическом модуле)	эші.		
05030103	Отсечной клапан для монтажа манометров	3 шт.		
05050105	на гидравлическом модуле	эші.		

Kv 112,5

	Максимальная мощность, кВт, при Δ t 20 $^{\circ}$ C	550 кВт
	Максимальный расход теплоносителя	23,65 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 65, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 65, 1,6 МПа


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02036110 Модуль прямой D 65 с IMPPUMPS GHND basic II 65-190F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 65-190F 3x400 V	2,0	18,8	0,00	18,8
	6,0	18,2	0,02	18,2
	10,0	17,8	0,07	17,7
	14,0	17	0,15	16,9
	18,0	16,4	0,25	16,2
	22,0	15,5	0,40	15,1


Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02036109 Модуль прямой D 65 с IMPPUMPS GHND basic II 65-120F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 65-120F 3x400 V	2,0	11,2	0,00	11,2
	6,0	11,0	0,02	11,0
	10,0	10,7	0,07	10,6
	14,0	10,5	0,15	10,4
	18,0	10,0	0,25	9,8
	22,0	9,0	0,40	8,6

Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

МОДУЛЬ НАСОСНЫЙ D 65 СМЕСИТЕЛЬНЫЙ СДВОЕННЫЙ НАСОС

Входит в комплект

- циркуляционные насосы;
- запорная арматура;
- трехходовой клапан;
- обратный клапан;
- термометры;
- штуцеры для установки КиП ВР 1/2"

Дополнительное оборудование:				
05030104	Манометр D63 t=150 °C (для монтажа на			
03030101	гидравлическом модуле)	3 шт.		
05030103	Отсечной клапан для монтажа манометров			
03030103	на гидравлическом модуле	3 шт.		
05030114	Электропривод для смесительного модуля МКС 1300 Ду 65	1 шт.		

Kv 66,6

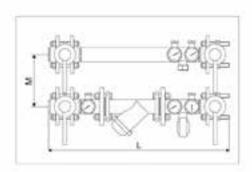
	Максимальная мощность, кВт, при ∆ t 20°С	550 кВт
	Максимальный расход теплоносителя	23,65 м³/час
	Максимальная скорость	2 m/c
①	Присоединение к контуру	Фланец Ду 65, 1,6 МПа
2	Присоединение к коллектору	Фланец Ду 65, 1,6 МПа

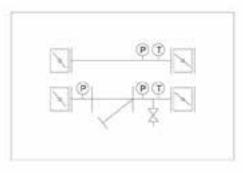
Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02036112	2,0	18,8	0,01	18,8
Модуль смесительный D 65 с IMPPUMPS GHND basic II 65-190F 3x400 V Циркуляционный насос	6,0	18,2	0,08	18,1
	10,0	17,8	0,22	17,6
	14,0	17	0,44	16,6
IMPPUMPS GHND basic II	18,0	16,4	0,73	15,7
65-190F 3x400 V	22,0	15,5	1,09	14,4

Артикул, параметры модуля, насос	Расход, м³/ч	Напор насоса, м.в.ст.	Потеря давления на трехходовом клапане, м.в.ст.	Располагае- мый напор модуля, м.в.ст
Артикул 02036111	2,0	11,2	0,01	11,2
Модуль смесительный	6,0	11,0	0,08	10,9
D 65 c IMPPUMPS GHND basic II 65-120F 3x400 V Циркуляционный насос IMPPUMPS GHND basic II 65-120F 3x400 V	10,0	10,7	0,22	10,5
	14,0	10,5	0,44	10,1
	18,0	10,0	0,73	9,3
	22,0	9,0	1,09	7,9

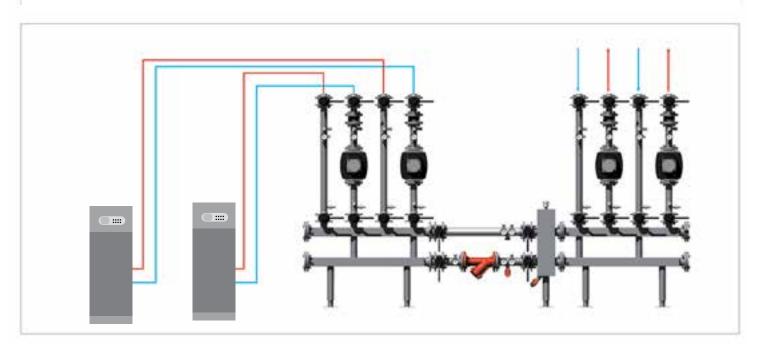
Совместимость с коллекторами Ду 50, Ду 65, Ду 80, Ду 100, Ду 125 смотреть таблицу соответствия стр.95

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРА БЕЗ НАСОСА ДУ 50...125


Входит в комплект


- фильтр фланцевый;
- дисковый поворотный затвор;
- термометры;
- манометры;
- штуцеры для установки КиП ВР 1/2";
- дренажная магистраль ВР 1"

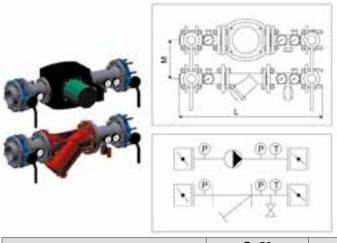
Дополнительное оборудование:			
17050700	Гильза погружного датчика L=150 мм		


Подключение коллектора

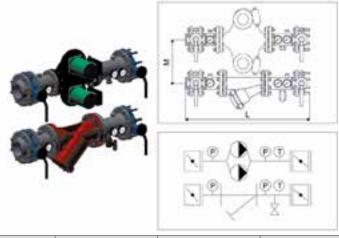
	Ду 50	Ду 65	Ду 80	ДУ 100	Ду 125
Kv	54	106	157	227	363
L, mm	724	895	835	887	1014
M, mm	220	270	325	375	440
Максимальная нагрузка, кВт	250	415	630	985	1534

	Артикул	Наименование			
02060500 Подключение коллектора Ду 50		Подключение коллектора Ду 50			
	02060650	Подключение коллектора Ду 65			
02060800 Подключение коллектора Ду 80		Подключение коллектора Ду 80			

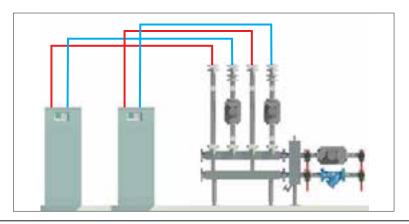
Артикул	Наименование		
02061000	Подключение коллектора Ду 100		
02061250	02061250 Подключение коллектора Ду 125		


ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРА С НАСОСОМ ДУ 50...150

Входит в комплект


- фильтр фланцевый;
- дисковый поворотный затвор;
- термометры;
- манометры;
- насос
- штуцеры для установки КиП ВР 1/2";
- дренажная магистраль ВР 1".

Дополнительное оборудование:				
17050700	Гильза погружного датчика L=150 мм			


Подключение коллектора с насосом

Подключение коллектора со сдвоенным насосом

	Ду 50	Ду 65	Ду 80	Ду 100	Ду 125
Kv	54	106	157	227	363
L, mm	775	944	885	897	1014
M, mm	220	270	325	375	440
Максимальная нагрузка, кВт	250	415	630	985	1534

Артикул	Наименование		
02060502	Подключение коллектора Ду 50 с энергоэффективным Pumpman PX2 1x220 V		
02060522	Подключение коллектора Ду 50 с IMPPUMPS GHN basic II 50-120 F		
02060518	Подключение коллектора Ду 50 с Pumpman GRS 40/10F 400 V		
02060519	Подключение коллектора Ду 50 с Pumpman GRS 50/12F 400 V		
02060515	Подключение коллектора Ду 50 с IMPPUMPS GHNM basic II 40-70 F		
02060523	Подключение коллектора Ду 50 с IMPPUMPS GHNM basic II 50-70 F		
02060524	Подключение коллектора Ду 50 с Pumpman GRS 50/12F-M 1x220 V		
02060526	Подключение коллектора Ду 50 с IMPPUMPS GHNM basic II 50-120 F 1x230 V		
02060666	Подключение коллектора Ду 65 с IMPPUMPS GHN basic II 65-120F		
02060665	Подключение коллектора Ду 65 с Pumpman GRS 65/11F 400 V		
02060668	Подключение коллектора Ду 65 с энергоэффективным Pumpman PX3 1x220 V		
02060801	Подключение коллектора Ду 80 с энергоэффективным Pumpman PX3 1x220 V		
02060806	Подключение коллектора Ду 80 с Pumpman GRS 65/11F 400 V		
02060809	Подключение коллектора Ду 80 с IMPPUMPS GHN basic II 80-120F		

02061001	Подключение коллектора Ду 100 с энергоэффективным Pumpman PX3 1x220 V
02061005	Подключение коллектора Ду 100 с IMPPUMPS GHN basic II 80-120F
02061007	Подключение коллектора Ду 100 с Pumpman GRS 65/11F 400 V
02061256	Подключение коллектора Ду 125 с Pumpman GRS 65/11F 400 V
02061257	Подключение коллектора Ду 125 с IMPPUMPS GHN basic II 80-120F
02061258	Подключение коллектора Ду 125 с энергоэффективным Pumpman PX3 1x220 V
02061006	Подключение коллектора Ду 100 с IMPPUMPS GHND basic II 80-120F
02060517	Подключение коллектора Ду 50 с IMPPUMPS GHND basic II 40-120 F
02060520	Подключение коллектора Ду 50 с IMPPUMPS GHND basic II 50-70 F
02060516	Подключение коллектора Ду 50 с IMPPUMPS GHNMD basic II 40-120 F
02060521	Подключение коллектора Ду 50 с IMPPUMPS GHNMD basic II 50-70 F
02060667	Подключение коллектора Ду 65 с IMPPUMPS GHND basic II 65-120F
02060807	Подключение коллектора Ду 80 с IMPPUMPS GHND basic II 65-120F
02060808	Подключение коллектора Ду 80 с IMPPUMPS GHND basic II 80-120F

ПРИНАДЛЕЖНОСТИ МКС 1300

5	2895009	Wilo SK702 прибор управления 2-мя насосами, мощность двигателя до 1,5 кВт
	2785300 2895012	Wilo Sk-702 прибор управления 2-мя насосами, мощность двигателя от 0,37 до 5,5 кВт Wilo Sk-702 прибор управления 2-мя насосами, мощность двигателя от 4,0 до 5,5 кВт
	05030105 05030114	Электропривод для смесительного модуля МКС 1300 Ду 32, 40, 50 Электропривод для смесительного модуля МКС 1300 Ду 65
(4)	05030104	Манометр D 63 t = 150 °C (для монтажа на гибравлическом модуле)
1	05030103	Отсечной клапан для монтажа манометров на гидравлическом модуле
	01092015 05030102	Гильза погружного датчика L = 65 мм Гильза погружного датчика L = 150 мм
2	02090500 02090650 02090800 02091000 02091250	Комплект угловых присоединений Ду 50 Комплект угловых присоединений Ду 65 Комплект угловых присоединений Ду 80 Комплект угловых присоединений Ду 100 Комплект угловых присоединений Ду 125
8	02083200	Переход 1 ¹/₂" — 2"
	02083208 02083201 02083209 02083202	Переход 1 ½" — Ду 50 Переход 1 ½" — Ду 65 Переход 2" — Ду 50 Переход 2" — Ду 65
8	02083210	Переход Ду 50 - Ду 65
	02083223 02083231 02083224 02083232 02083225 02083238 02083239 02083240 02083241 02083242	Трубка смесителя 32-40 Трубка смесителя 32-50 Трубка смесителя 32-65 Трубка смесителя 40-50 Трубка смесителя 40-65 Трубка смесителя 2 32-40* Трубка смесителя 2 32-50* Трубка смесителя 2 32-65* Трубка смесителя 2 40-65*
0	02083213	Вставка смесителя Ду 50 - Ду 65

^{*} для модулей с резервированием

Таблица соответствия коллекторов и модулей

	Коллектор Ду 50	Коллектор Ду 65	Коллекторы Ду 80, Ду 100, Ду 125
Модуль прямой D 32	02083200 — 2 шт.	02083208 — 2 шт.	02083201 — 2 шт.
Модуль прямой со сдвоенным насосом D 32	02083200 — 2 шт.	02083208 — 2 шт.	02083201 — 2 шт.
Модуль прямой с резервным насосом D 32	02083200 — 3 шт.	02083208 — 3 шт.	02083201 — 3 шт.
Модуль смесительный D 32	02083200 — 2 шт. 02083223 —1 шт.	02083208 — 2 шт. 02083231 — 1 шт.	02083201 — 2 шт. 02083224 — 1 шт.
Модуль смесительный со сдвоенным насосом D 32	02083200 — 2 шт. 02083223 —1 шт.	02083208 — 2 шт. 02083231 — 1 шт.	02083201 — 2 шт. 02083224 — 1 шт.
Модуль смесительный с резервным насосом D 32	02083200 — 3 шт. 02083223 —1 шт. 02083238 — 1 шт.	02083208 — 1 шт. 02083231 — 1 шт. 02083239 — 1 шт.	02083201 — 2 шт. 02083224 — 1 шт. 02083240 — 1 шт.
Модуль прямой D 40	•	02083209 — 2 шт.	02083202 —2 шт.
Модуль прямой со сдвоенным насосом D 40	•	02083209 — 2 шт.	02083202 —2 шт.
Модуль прямой с резервным насосом D 40	•	02083209 — 3 шт.	02083202 — 3 шт.
Модуль смесительный D 40	•	02083209 — 2 шт. 02083232 — 1 шт.	02083202 — 2 шт. 02083225 — 1 шт.
Модуль смесительный со сдвоенным насосом D 40	•	02083209 — 2 шт. 02083232 — 1 шт.	02083202 — 2 шт. 02083225 — 1 шт.
Модуль смесительный с резервным насосом D 40	•	02083209 — 3 шт. 02083232 — 1 шт. 02083241 — 2 шт.	02083202 — 3 шт. 02083225 — 1 шт. 02083242 — 1 шт.
Модуль прямой D 50		•	02083210 — 2 шт.
Модуль прямой со сдвоенным насосом D 50		•	02083210 — 2 шт.
Модуль прямой с резервным насосом D 50		•	02083210 — 3 шт.
Модуль смесительный D 50		•	02083210 — 2 шт. 02083213 — 1 шт.
Модуль смесительный со сдвоенным насосом D 50		•	02083210 — 2 шт.
Модуль смесительный с резервным насосом D 50		•	02083210 — 3 шт.
Модуль прямой D 65			•
Модуль прямой со сдвоенным насосом D 65			•
Модуль прямой с резервным насосом D 65			•
Модуль смесительный D 65			•
Модуль смесительный со сдвоенным насосом D 65			•
Модуль смесительный с резервным насосом D 65			•

[•] Для установки модуля на коллектор дополнительное оборудование не требуется

Водоподготовка для теплогенераторной

УСТАНОВКА УМЯГЧЕНИЯ И ОБЕЗЖЕЛЕЗИВАНИЯ ЁЛКА. WSDF-0,8-RX-(MIX A)

Качество воды, которой заполняется котловой контур и производится подпитка системы отопления, оказывает прямое влияние, как на эффективность работы котла, так и на длительность периода его безотказной работы. Мы готовим воду таким образом, чтобы основные показатели химического состава воды соответствовали требуемым значениям качества подпиточной воды для котлов GEFFEN® MB, а именно:

рН	7,59
грубодисперсные примеси	отсутствие
взвешенные вещества	не более 1,5 мг/л
железо общее	не более 0,3 мг/л
марганец	не более 0,1 мг/л
перманганатная окисляемость	не более 5 мгО/л
цветность	не более 20 град.
жесткость общая	не более 0,3 ⁰ Ж
жесткость оощал	(мг-экв/л)
хлориды	не более 200 мг/л
остаточный активный хлор	не более 0,3 мг/л
общее солесодержание	не более 1000 мг/л
кремний	не более 1,0 мг/л
растворенный кислород	не более 0,05 мг/л
нефтепродукты	отсутствие
сероводород, сульфиды	отсутствие

Превышение данных показателей может привести к выходу из строя котла

Основная проблема качества воды, используемой для заполнения и подпитки системы — это её высокая жесткость, которая способствует образованию накипи, существенно снижающей теплопроводность оборудования. Кроме жесткости, негативное влияние на все участки системы и оборудование теплогенераторной оказывает железо, и если сегодня его в воде нет, мы не можем быть уверены в том, что оно не появится завтра, поэтому в своих теплогенераторных мы предусмотрели универсальную установку водоподготовки, чтобы максимально защитить оборудование от негативного влияния некачественной исходной воды.

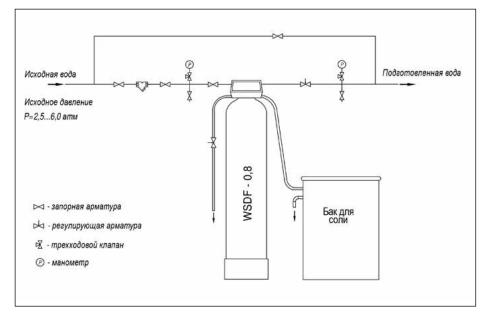
Номинальная производительность системы составляет — $0,65 \text{ м}^3/\text{ч}$, максимальная — $0,8 \text{ м}^3/\text{ч}$. Ресурс установки, при заданном значении жесткости ($1,3,5...15 \text{ }^0\text{Ж}$) исходной воды (расчитан и приведен в таблице 2) дает нам представление о том, за сколько часов система будет заполнена с учетом времени на регенерацию установки.

Также приводим таблицу расхода соли на 1 м³ очищенной воды при заданной жесткости исходной воды Таблица 1

Жесткость исходной воды, ⁰С	1	3	5	7	9	11	13	15
Расход соли на 1 м³ очищенной воды, кг	0,13	0,4	0,64	0,9	1,2	1,5	1,7	2

8-800-700-60-84

Как пользоваться таблицей расчета времени заполнения системы


Время		Установка умягчения и обезжелезив								
заполнения, час			Объем очище	нной воды, м³,	пр					
	1 ∘Ж	3 °Ж	5 °Ж	7°Ж						
1	0,65	0,65	0,65	0,50						
2	1,30	1,30	1,0	1,00						
3	1,95	1,95	→ (1,95	1,50						
4	2,60	2,60	2,60	2,00						
5	3,25	3,25	3,25	2,50						
6	3,90	3,90	Регенерация	Регенерация	Pi					
7	4,55	4,55	Регенерация	Регенерация	P					
8	5,20	5,20	4,10	3,20						
9	5,85	Регенерация	4,75	3,70						
10		видьствення	5,40	4,20						
			6.05							

При исходной жесткости 5° Ж за 3 часа система будет заполнена 1,95 м 3 очищенной воды

ТАБЛИЦА 2 РАСЧЕТА ВРЕМЕНИ ЗАПОЛНЕНИЯ СИСТЕМЫ

Время		Уста	новка умягчен	ия и обезжелез	вивания Ёлка.W	/SDF-0,8-Rx-(MI	X A)	
заполнения, час			Объем очище	нной воды, м³,	при жесткости	исходной, °Ж		
	1 °Ж	3 °Ж	5 °Ж	7 °Ж	9°Ж	11 °Ж	13 °Ж	15 °Ж
1	0,65	0,65	0,65	0,50	0,39	0,31	0,26	0,23
2	1,30	1,30	1,30	1,00	0,78	0,62	0,52	0,46
3	1,95	1,95	1,95	1,50	1,17	0,93	0,78	0,69
4	2,60	2,60	2,60	2,00	1,56	1,24	1,04	0,92
5	3,25	3,25	3,25	2,50	1,95	1,55	1,30	1,15
6	3,90	3,90	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация
7	4,55	4,55	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация
8	5,20	5,20	4,10	3,20	2,54	2,06	1,76	1,58
9	5,85	Регенерация	4,75	3,70	2,93	2,37	2,02	1,81
10	6,50	Регенерация	5,40	4,20	3,32	2,68	2,28	2,04
11	7,15	6,05	6,05	4,70	3,71	2,99	2,54	2,27
12	7,80	6,70	6,70	5,20	4,10	3,30	2,80	2,50
13	8,45	7,35	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация
14	9,10	8,00	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация
15	9,75	8,65	7,51	5,90	4,69	3,80	3,25	2,92
16	10,40	9,30	8,16	6,40	5,08	4,11	3,51	3,15
17	11,05	9,95	8,81	6,90	5,47	4,42	3,77	3,38
18	11,70	10,60	9,46	7,40	5,86	4,73	4,03	3,61
19	12,35	Регенерация	10,11	7,90	6,25	5,04	4,29	3,84
20	13,00	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация
21	13,65	11,45	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация	Регенерация
22	14,30	12,10	11,00	8,60	6,83	5,55	4,75	4,27
23	14,95	12,75	11,65	9,10	7,22	5,86	5,01	4,50
24	15,60	13,40	12,30	9,60	7,61	6,17	5,27	4,73

ТЕХНОЛОГИЧЕСКАЯ СХЕМА ВОДОПОДГОТОВКИ

Условия применения схемы						
железо	не более 10 мг/л					
марганец	не более 3 мг/л					
жесткость	не более 15 ⁰Ж					
общее солесодержание	100 — 4000 мг/л					
перманганатная окисляемость	не более 10 мг О²/л					
нефтепродукты	отсутствие					
сульфиды и сероводород	отсутствие					
цветность	не более 20 град.					
взвешенные вещества	не более 5 мг/л					
аммоний	не более 4 мг/л					
температура	+5+35 °C					
рН	5 — 9					

КОМПЛЕКС ДОЗИРОВАНИЯ

Дозирующий комплекс предназначен для обработки воды химическими реагентами с целью предотвращения коррозии и поддержания оптимального водно-химического режима водогрейных котлов и теплосети. Основными факторами, влияющими на протекание коррозионных процессов на поверхностях теплообменного оборудования является значение рН воды и содержание в ней агрессивных газов – кислорода и углекислоты.

Для котлов GEFFEN® кислород не страшен, но есть еще другие участки системы. Поэтому, чтобы продукты коррозии с этих участков не попали в котел, необходимо предусмотреть удаление кислорода и повышение значения рН методами коррекционной обработки воды за счет дозирования химических реагентов. Принцип работы заключается в точной подаче насосом-дозатором небольшого количества реагента из емкости в линию умягченной воды пропорционально её расхода.

В своих технологических схемах водоподготовки мы используем 1 реагент:

• реагент для связывания кислорода и корректировки рН — Аминат ДГ-3.

Комплект поставки

	Количество, шт.				
Наименование	Дозирование 2-х реагентов	Дозирование 1-го реагента, либо смеси реагентов			
Дозирующий насос	2	1			
Расходная емкость	2	1			
Устройство всасывания с датчиком уровня	2	1			
Водосчетчик с импульсным выходом	1	1			
Схема обвязки	500				

Водоподготовка для котельных

УСТАНОВКА УДАЛЕНИЯ ЖЕЛЕЗА И УМЯГЧЕНИЯ НЕПРЕРЫВНОГО ДЕЙСТВИЯ ЁЛКА WST (MIX A)

Водно-химический режим работы котельной должен обеспечивать бесперебойную работу нескольких составляющих. Это работа котлов, работа теплоиспользующего оборудования, а также тепловых сетей без коррозионных повреждений, и отложений накипи и шлама на внутренних поверхностях. Подготовленная подпиточная вода позволяет защитить систему от термических перегрузок и разрушений, что ведет к снижению затрат на ремонтные работы.

Установки ËЛКА WST (MIX A) компактные, в их состав входит комплексный фильтрующий материал эффективно очищающий воду в пределах допустимых концентраций от железа, марганца, жесткости, аммиака и органических соединений, что позволяет получить воду требуемого качества, как для теплосети так и для котлового контура.

Заполнение очищенной водой системы

- отопления,
- горячего водоснабжения,
- подпитка котельных установок,
- технологические линии пищевых производств.

Очистка от солей общей жесткости, железа и марганца, органических веществ, аммиака

Эффективность очистки							
Компоненты	Предельные показатели исходной воды	Показатели очищенной воды					
Жесткость, ⁰Ж	< 15	< 0,5					
Железо, мг/л	< 10	< 0,3					
Марганец, мг/л	< 3,0	< 0,1					
Перманганатная окис- ляемость, мгО/л	< 10	< 2,0					
Аммоний, мг/л	< 4	< 0,5					

Условия применения						
Общее солесодержание	100–4000 мг/л					
Нефтепродукты	отсутствие					
Сульфиды и сероводород	отсутствие					
Цветность	не более 20 град					
Взвешенные вещества	не более 5,0 мг/л					
рН	5–9					

В комплект поставки установки удаления железа и умягчения непрерывного действия ЁЛКА WST (MIX A) входят:

Наименование	Количесто
Корпус фильтра с внутренней распределительной системой	2
Солевой бак	1
Фильтрующий материал — многокомпонентная смесь	в соответствие
Поддерживающий материал — кварцевый гравий	с типоразмером установки
Клапан, управляющий работой установки по объему очищенной воды	1

Как пользоваться таблицей расчета времени заполнения системы

Время	WST-0,8-Rx-(MIX A)											
запол- нения, ч	Объем очищенной воды, м¹, при жесткости исходной, "Ж											
	1	3	5	7	9	11	13	15				
1.	0,65	0,65	0,56	0,4	0,31	0,25	0,21	0,18				
2	1,3	1,3	1/1	0,8	0,6	0,5	0.4	0,4				
3 -	2	2	17	1,2	0,9	0,8	0,6	0,5				
4	2,6	2,6	2,2	1,6	1,2	1	0,8	0,7				
5	3,3	3,3	2,8	2	1,6	1,3	1,1	0,9				
6	3,9	3,9	3,4	2,4	1,9	1,5	1,3	1,1				
7	4,6	4,6	3,9	2,8	2,2	1,8	1,5	1,3				
8	5,2	5,2	4,5	3,2	2,5	2,0	1,7	1,4				
9	5,9	5,9	5	3,6	2,8	2,3	1,9	1,6				
		1.4	5.6	4	3,1	2,5	2,1	1				
				4	3,4	2,8	2.3					
					40	3	2.5	*				

При исходной жесткости 5 $^{\circ}$ Ж за 3 часа система будет заполнена 1,7 3 очищенной воды. Проектировщик должен принять исходную жесткость и выбрать за сколько часов необходимо заполнить систему.

Время	WST-1,3-Rx-(MIX A)										
запол-	Объе	м очищ	енной в	оды, м³,	при жес	сткости	исходно	й,°Ж			
нения, ч	1	3	5	7	9	11	13	15			
1	1	1	0,82	0,58	0,45	0,37	0,31	0,27			
2	2	2	1,6	1,2	0,9	0,7	0,6	0,5			
3	3	3	2,5	1,7	1,4	1,1	0,9	0,8			
4	4	4	3,3	2,3	1,8	1,5	1,2	1,1			
5	5	5	4,1	2,9	2,3	1,9	1,6	1,4			
6	6	6	4,9	3,5	2,7	2,2	1,9	1,6			
7	7	7	5,7	4,1	3,2	2,6	2,2	1,9			
8	8	8	6,6	4,6	3,6	3	2,5	2,2			
9	9	9	7,4	5,2	4,1	3,3	2,8	2,4			
10	10	10	8,2	5,8	4,5	3,7	3,1	2,7			
11	11	11	9	6,4	5	4,1	3,4	3			
12	12	12	9,8	7	5,4	4,4	3,7	3,2			
13	13	13	10,7	7,5	5,9	4,8	4	3,5			
14	14	14	11,5	8,1	6,3	5,2	4,3	3,8			
15	15	15	12,3	8,7	6,8	5,6	4,7	4,1			
16	16	16	13,1	9,3	7,2	5,9	5	4,3			
17	17	17	13,9	9,9	7,7	6,3	5,3	4,6			
18	18	18	14,8	10,4	8,1	6,7	5,6	4,9			
19	19	19	15,6	11	8,6	7	5,9	5,1			
20	20	20	16,4	11,6	9	7,4	6,2	5,4			
21	21	21	17,2	12,2	9,5	7,8	6,5	5,7			
22	22	22	18	12,8	9,9	8,1	6,8	5,9			
23	23	23	18,9	13,3	10,4	8,5	7,1	6,2			
24	24	24	19,7	13,9	10,8	8,9	7,4	6,5			

Таблица расчета времени заполнения системы

Время	WST-0,8-Rx-(MIX A)								
запол-	Объе	м очищ	енной в	оды, м³,	при же	ткости	исходно	й,°Ж	
нения, ч	1	3	5	7	9	11	13	15	
1	0,65	0,65	0,56	0,4	0,31	0,25	0,21	0,18	
2	1,3	1,3	1,1	0,8	0,6	0,5	0,4	0,4	
3	2	2	1,7	1,2	0,9	0,8	0,6	0,5	
4	2,6	2,6	2,2	1,6	1,2	1	0,8	0,7	
5	3,3	3,3	2,8	2	1,6	1,3	1,1	0,9	
6	3,9	3,9	3,4	2,4	1,9	1,5	1,3	1,1	
7	4,6	4,6	3,9	2,8	2,2	1,8	1,5	1,3	
8	5,2	5,2	4,5	3,2	2,5	2,0	1,7	1,4	
9	5,9	5,9	5	3,6	2,8	2,3	1,9	1,6	
10	6,5	6,5	5,6	4	3,1	2,5	2,1	1,8	
11	7,2	7,2	6,2	4,4	3,4	2,8	2,3	2	
12	7,8	7,8	6,7	4,8	3,7	3	2,5	2,2	
13	8,5	8,5	7,3	5,2	4	3,3	2,7	2,3	
14	9,1	9,1	7,8	5,6	4,3	3,5	2,9	2,5	
15	9,8	9,8	8,4	6	4,7	3,8	3,2	2,7	
16	10,4	10,4	9	6,4	5	4	3,4	2,9	
17	11,1	11,1	9,5	6,8	5,3	4,3	3,6	3,1	
18	11,7	11,7	10,1	7,2	5,6	4,5	3,8	3,2	
19	12,4	12,4	10,6	7,6	5,9	4,8	4	3,4	
20	13	13	11,2	8	6,2	5	4,2	3,6	
21	13,7	13,7	11,8	8,4	6,5	5,3	4,4	3,8	
22	14,3	14,3	12,3	8,8	6,8	5,5	4,6	4	
23	15	15	12,9	9,2	7,1	5,8	4,8	4,1	
24	15,6	15,6	13,4	9,6	7,4	6	5	4,3	

Время	WST-1,8-Rx-(MIX A)											
запол-	Объе	м очищ	енной в	оды, м³,	при жес	ткости	исходно	й,°Ж				
нения, ч	1	3	5	7	9	11	13	15				
1	1,5	1,5	1,11	0,79	0,61	0,5	0,42	0,37				
2	3	3	2,2	1,6	1,2	1	0,8	0,7				
3	4,5	4,5	3,3	2,4	1,8	1,5	1,3	1,1				
4	6	6	4,4	3,2	2,4	2	1,7	1,5				
5	7,5	7,5	5,6	4	3,1	2,5	2,1	1,9				
6	9	9	6,7	4,7	3,7	3	2,5	2,2				
7	10,5	10,5	7,8	5,5	4,3	3,5	2,9	2,6				
8	12	12	8,9	6,3	4,9	4	3,4	3				
9	13,5	13,5	10	7,1	5,5	4,5	3,8	3,3				
10	15	15	11,1	7,9	6,1	5	4,2	3,7				
11	16,5	16,5	12,2	8,7	6,7	5,5	4,6	4,1				
12	18	18	13,3	9,5	7,3	6	5	4,4				
13	19,5	19,5	14,4	10,3	7,9	6,5	5,5	4,8				
14	21	21	15,5	11,1	8,5	7	5,9	5,2				
15	22,5	22,5	16,7	11,9	9,2	7,5	6,3	5,6				
16	24	24	17,8	12,6	9,8	8	6,7	5,9				
17	25,5	25,5	18,9	13,4	10,4	8,5	7,1	6,3				
18	27	27	20	14,2	11	9	7,6	6,7				
19	28,5	28,5	21,1	15	11,6	9,5	8	7				
20	30	30	22,2	15,8	12,2	10	8,4	7,4				
21	31,5	31,5	23,3	16,6	12,8	10,5	8,8	7,8				
22	33	33	24,4	17,4	13,4	11	9,2	8,1				
23	34,5	34,5	25,5	18,2	14	11,5	9,7	8,5				
24	36	36	26,6	19	14,6	12	10,1	8,9				

Таблица расчета времени заполнения системы

Время	WST-2,1-Rx-(MIX A)										
запол-	Объе	м очищ	енной в	оды, м³,	при же	ткости і	исходно	й,°Ж			
нения, ч	1	3	5	7	9	11	13	15			
1	1,7	1,7	1,37	0,97	0,76	0,62	0,52	0,45			
2	3,4	3,4	2,7	1,9	1,5	1,2	1	0,9			
3	5,1	5,1	4,1	2,9	2,3	1,9	1,6	1,4			
4	6,8	6,8	5,5	3,9	3	2,5	2,1	1,8			
5	8,5	8,5	6,9	4,9	3,8	3,1	2,6	2,3			
6	10,2	10,2	8,2	5,8	4,6	3,7	3,1	2,7			
7	11,9	11,9	9,6	6,8	5,3	4,3	3,6	3,2			
8	13,6	13,6	11	7,8	6,1	5	4,2	3,6			
9	15,3	15,3	12,3	8,7	6,8	5,6	4,7	4,1			
10	17	17	13,7	9,7	7,6	6,2	5,2	4,5			
11	18,7	18,7	15,1	10,7	8,4	6,8	5,7	5			
12	20,4	20,4	16,4	11,6	9,1	7,4	6,2	5,4			
13	22,1	22,1	17,8	12,6	9,9	8,1	6,8	5,9			
14	23,8	23,8	19,2	13,6	10,6	8,7	7,3	6,3			
15	25,5	25,5	20,6	14,6	11,4	9,3	7,8	6,8			
16	27,2	27,2	21,9	15,5	12,2	9,9	8,3	7,2			
17	28,9	28,9	23,3	16,5	12,9	10,5	8,8	7,7			
18	30,6	30,6	24,7	17,5	13,7	11,2	9,4	8,1			
19	32,3	32,3	26	18,4	14,4	11,8	9,9	8,6			
20	34	34	27,4	19,4	15,2	12,4	10,4	9			
21	35,7	35,7	28,8	20,4	16	13	10,9	9,5			
22	37,4	37,4	30,1	21,3	16,7	13,6	11,4	9,9			
23	39,1	39,1	31,5	22,3	17,5	14,3	12	10,4			
24	40,8	40,8	32,9	23,3	18,2	14,9	12,5	10,8			

Время	WST-2,5-Rx-(MIX A)											
запол-	Объе	м очиш	енной в				исходно	й, °Ж				
нения, ч	1	3	5	7	·		13	15				
1	2	2	1,6	1,16	0,9	0,74	0,62	0,54				
2	4	4	3,2	2,3	1,8	1,5	1,2	1,1				
3	6	6	4,8	3,5	2,7	2,2	1,9	1,6				
4	8	8	6,4	4,6	3,6	3	2,5	2,2				
5	10	10	8	5,8	4,5	3,7	3,1	2,7				
6	12	12	9,6	7	5,4	4,4	3,7	3,2				
7	14	14	11,2	8,1	6,3	5,2	4,3	3,8				
8	16	16	12,8	9,3	7,2	5,9	5	4,3				
9	18	18	14,4	10,4	8,1	6,7	5,6	4,9				
10	20	20	16	11,6	9	7,4	6,2	5,4				
11	22	22	17,6	12,8	9,9	8,1	6,8	5,9				
12	24	24	19,2	13,9	10,8	8,9	7,4	6,5				
13	26	26	20,8	15,1	11,7	9,6	8,1	7				
14	28	28	22,4	16,2	12,6	10,4	8,7	7,6				
15	30	30	24,0	17,4	13,5	11,1	9,3	8,1				
16	32	32	25,6	18,6	14,4	11,8	9,9	8,6				
17	34	34	27,2	19,7	15,3	12,6	10,5	9,2				
18	36	36	28,8	20,9	16,2	13,3	11,2	9,7				
19	38	38	30,4	22	17,1	14,1	11,8	10,3				
20	40	40	32	23,2	18	14,8	12,4	10,8				
21	42	42	33,6	24,4	18,9	15,5	13	11,3				
22	44	44	35,2	25,5	19,8	16,3	13,6	11,9				
23	46	46	36,8	26,7	20,7	17	14,3	12,4				
24	48	48	38,4	27,8	21,6	17,8	14,9	13				

Время	WST-3,2-Rx-(MIX A)											
запол-	Объе	ем очищ	енной в	оды, м³,	при же	ткости і	исходно	й,°Ж				
нения, ч	1	3	5	7	9	11	13	15				
1	2,6	2,6	2,15	1,53	1,19	0,97	0,82	0,71				
2	5,2	5,2	4,3	3,1	2,4	1,9	1,6	1,4				
3	7,8	7,8	6,5	4,6	3,6	2,9	2,5	2,1				
4	10,4	10,4	8,6	6,1	4,8	3,9	3,3	2,8				
5	13,0	13,0	10,8	7,7	6	4,9	4,1	3,6				
6	15,6	15,6	12,9	9,2	7,1	5,8	4,9	4,3				
7	18,2	18,2	15,1	10,7	8,3	6,8	5,7	5				
8	20,8	20,8	17,2	12,2	9,5	7,8	6,6	5,7				
9	23,4	23,4	19,4	13,8	10,7	8,7	7,4	6,4				
10	26	26	21,5	15,3	11,9	9,7	8,2	7,1				
11	28,6	28,6	23,7	16,8	13,1	10,7	9	7,8				
12	31,2	31,2	25,8	18,4	14,3	11,6	9,8	8,5				
13	33,8	33,8	28	19,9	15,5	12,6	10,7	9,2				
14	36,4	36,4	30,1	21,4	16,7	13,6	11,5	9,9				
15	39	39	32,3	23	17,9	14,6	12,3	10,7				
16	41,6	41,6	34,4	24,5	19	15,5	13,1	11,4				
17	44,2	44,2	36,6	26	20,2	16,5	13,9	12,1				
18	46,8	46,8	38,7	27,5	21,4	17,5	14,8	12,8				
19	49,4	49,4	40,9	29,1	22,6	18,4	15,6	13,5				
20	52	52	43	30,6	23,8	19,4	16,4	14,2				
21	54,6	54,6	45,2	32,1	25	20,4	17,2	14,9				
22	57,2	57,2	47,3	33,7	26,2	21,3	18	15,6				
23	59,8	59,8	49,5	35,2	27,4	22,3	18,9	16,3				
24	62,4	62,4	51,6	36,7	28,6	23,3	19,7	17				

Время	WST-4,1-CI-(MIX A)										
запол-	Объе	ем очищ	енной в	оды, м³,	при жес	ткости	исходно	й,°Ж			
нения, ч	1	3	5	7	9	11	13	15			
1	3,3	3,3	3,18	2,26	1,75	1,44	1,22	1,06			
2	6,6	6,6	6,4	4,5	3,5	2,9	2,4	2,1			
3	9,9	9,9	9,5	6,8	5,3	4,3	3,7	3,2			
4	13,2	13,2	12,7	9	7	5,8	4,9	4,2			
5	16,5	16,5	15,9	11,3	8,8	7,2	6,1	5,3			
6	19,8	19,8	19,1	13,6	10,5	8,6	7,3	6,4			
7	23,1	23,1	22,3	15,8	12,3	10,1	8,5	7,4			
8	26,4	26,4	25,4	18,1	14	11,5	9,8	8,5			
9	29,7	29,7	28,6	20,3	15,8	13	11	9,5			
10	33	33	31,8	22,6	17,5	14,4	12,2	10,6			
11	36,3	36,3	35	24,9	19,3	15,8	13,4	11,7			
12	39,6	39,6	38,2	27,1	21	17,3	14,6	12,7			
13	42,9	42,9	41,3	29,4	22,8	18,7	15,9	13,8			
14	46,2	46,2	44,5	31,6	24,5	20,2	17,1	14,8			
15	49,5	49,5	47,7	33,9	26,3	21,6	18,3	15,9			
16	52,8	52,8	50,9	36,2	28	23	19,5	17			
17	56,1	56,1	54,1	38,4	29,8	24,5	20,7	18			
18	59,4	59,4	57,2	40,7	31,5	25,9	22	19,1			
19	62,7	62,7	60,4	42,9	33,3	27,4	23,2	20,1			
20	66	66	63,6	45,2	35	28,8	24,4	21,2			
21	69,3	69,3	66,8	47,5	36,8	30,2	25,6	22,3			
22	72,6	72,6	70	49,7	38,5	31,7	26,8	23,3			
23	75,9	75,9	73,1	52	40,3	33,1	28,1	24,4			
24	79,2	79,2	76,3	54,2	42	34,6	29,3	25,4			

ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА ПОДБОР ОБОРУДОВАНИЯ ВОДОПОДГОТОВКИ ДЛЯ ВОДОГРЕЙНЫХ КОТЕЛЬНЫХ УСТАНОВОК

Заказчик:												
Адрес:												
контактное лицо (Ф	МО поп	іжность).										
Тел / Факс:	, , , , , , , , , , , , , , , , , , , 	imilocibj.				E-mail:						
						Linum						
Назначение оборуд				вки:				21			2.4	
Подпитка водогрейн								м ³ /ч			м³/сутки	
Количество х Мощн		ов (тип и м	арка):		-		•	1				
Объем воды в систе						ературныі	-					
Тип системы отопле				□ Закрыта	ая				IM BO	доразбором		
Подпитка (расход) с					`			м ³ /ч			м³/сутки	
Наличие накопитель	ьных емко	стей (объ	ем, ме	сто в схеме	2):							
Данные об источни	ке водосн	набжения:										
□ Скважина		□ Река, с	озеро		□ Го	р. водопро	овод			Другой:		
Показатели качеств (при наличии протог		иза воды	проси	ім приложі	ить копин	о протокол	та)					
						Подп			питоч	иточная вода		
Показа	тель		Исходная вода			Анализ			Требования фирмы или завода-изготовителя			
Цветность, град												
Запах, балл												
Привкус, балл												
Взвешенные вещест	ва, мг/л											
Окисляемость перм	., мг/л											
pН												
Жесткость общая, м	г-экв/л											
Щелочность общая,	мг-экв/л											
Хлориды СГ, мг/л												
Сульфаты 50/, мг/л												
Натрий (Na+), мг/л												
Железо (Ре общ/Ре2	+), мг/л											
Марганец, мг/л												
Сероводород, мг/л												
Кремнекислота, мг/л	1											
Солесодержание, мг	-/л											
Уд. электропроводн	ость, мкСл	м/см										
Углекислота (C0 ₂), мг	-/л											
Кислород (ОД мг/л												
Нефтепродукты, мг/	Л											

контакты наших представительств на ёлка.рф

Дата:

Подпись клиента:

ČAKO[®]

Кремнекислота (SiO32-), мг/л Солесодержание, мг/л

Углекислота (CO2), мг/л Кислород (O2) мг/л Нефтепродукты, мг/л

Уд. электропроводность, мкСм/см

ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА ПОДБОР ОБОРУДОВАНИЯ ВОДОПОДГОТОВКИ ДЛЯ ПАРОВЫХ КОТЕЛЬНЫХ УСТАНОВОК

				для	ПАРОВ	ых котель	НЫ	х устано	BOK		
Заказчик:											
Адрес:											
Контактное лицо (Ф.		ъ):									
Тел / Факс:	Полущения					E-mail:					
Источник воды		□ Сквах	кина			□ Гор. водопро	ВОЛ		□ Другое:		
			нерализа	тор		□ Умягчитель	БОД		□ Другос. □ Обратный с	OCMOC	
Предварительная обра	аботка		рбонизатс			Дегазатор			□ Другое:		
Деаэрация			варительн		рев	Температура пи в накопительно					
		□Деаэр	ратор			Температура во	оды в	накопи-			
		□Паро	RNA			тельном баке д ☐ Другое:	цеаэр	атора, «С			
Тип и марка котла		□ Бара6				□ Жаропрочны	ıe		□ Прямоточн	——— ые	
mapha noma		□Друго							П примете и		
Режим работы котла		ч/год				ч/день			дней/год		
Производительность г	ара	т/ч				летом:			зимой:		
Рабочее давление		атм				7.0.0			37		
Расход подпиточной в	ОДЫ	т/ч				Температура, °С	C				
в т.ч. на нужды ГВС		т/ч				Температура, °С					
Давление подпиточно	й воды	атм									
в т.ч. на нужды ГВС		атм									
Расход питательной вс	ОДЫ	т/ч				Температура, °С					
Давление питательной		атм									
Продувка		т/ч				Ручная Автомат		томат	Температура,	°C	
Конденсат		т/ч				% возврата:			Температура,		
Система конденсата		Матери	ал конден	ісатопро				. , , ,			
		Бак для	конденса	та				есть / нет 🗖			
Бак запаса ХОВ		□есть /	⁄ нет 🗖				06	ъем, м³			
Требования к качеству	[,] пара	□Пище	вого клас	ca		□ Прямой конта	акт с	пищей	□ В молочной	і пром	іышл.
Предусмотрена ли кор	рекционная об	работка									
Показатели качества	воды (при нал	іичии пр	отокола	анализ	а воды пр	оосим приложи	ить к	опию проток	ола)		
						Питат	гельн	ая вода			
Показат	гель		Исходная	вода		Анализ		Требования завода-изг		K	онденсат
Цветность, град											
Взвешенные вещества	, мг/л										
Окисляемость перм., м	ıгО/л										
рН											
Жесткость общая, мг-э	кв/л										
Щелочность по ф/ф, мг	⁻-экв/л										
Щелочность по м/о, мг	-экв/л										
Хлориды (Cl-), мг/л											
Сульфаты (SO42-), мг/л											
Натрий (Na+), мг/л											
Железо общее (Fe), мг/	л										
Марганец (Mn), мг/л											
Сероводород (H2S), мг.	/л						\neg				
сероводород (пез), IVII	, , ,						- 1			(

Дата: Подпись клиента: контакты наших представительств на **ёлка.рф**

ĢVKO_®

ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА ПОДБОР ОБОРУДОВАНИЯ ВОДОПОДГОТОВКИ ДЛЯ ХОЗЯЙСТВЕННО-ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

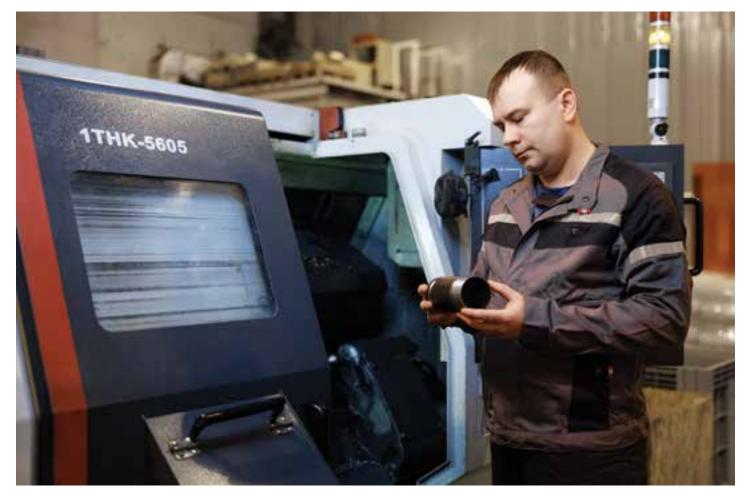
Заказчик:								
Адрес:								
Контактное лицо (Ф.И.О., должность):								
Тел / Факс:			E-mail:					
'								
Местонахождение / название объекта:								
□ Новый объект	□ Реконструкция			□ Стадия проектирования				
Водоисточник:								
□ Скважина* (указать глубину, м):	Водопровод			□ Колодец				
□ Река, озеро	□ Водонапорная баш	ня		□ Другое				
Режим водопотребления:								
□ Периодический **		□ тол	ько на выходные	дни				
□ Непрерывный		□ ceз	онный (только ле	ето или зима)				
□ односменный, кол-во часов:		□мн	огосменный, кол-	во смен/часов:				
Назначение воды:								
□ хоз-питьевые нужды	□ подпитка системы с	топле	ния	□ другое				
Пиковое водопотребление, м³/ч:		Сред	нее водопотребл	пение, м³/сутки:				
Анализ воды (обязательные показатели)								
рН (водородный показатель)			аты SO ₄ ²⁻ , мг/л					
Железо общее, мг/л		Окисл	яемость перманг	анатная, мгО/л				
Марганец, мг/л		Мутно	сть, мг/л					
Жесткость общая, °Ж		Цветн	lветность, град.					
Сероводород, мг/л		Запах	пах (вид запаха), балл					
Хлориды СГ, мг/л		Сухой	остаток (солесод	ержание), мг/л				
Анализ воды (дополнительные показатели)								
Железо (II)/Железо (III), мг/л		Щелоч	почность общая, мг-экв/л					
Натрий+Калий Na+K, мг/л			раты N0 ₃ ⁻ , мг/л					
Кальций Са ₂ +, мг/л		Фтор Г	, мг/л					
Магний Mg ₂ +, мг/л			ий SiO ₃ ¯, мг/л					
Медь Cu ₂ +, мг/л			рр остаточный свободный, мг/л					
Аммоний NH ₄ +, мг/л		Обще	е микробное числ	10				
Установочные параметры								
Наличие насосов и насосных станций для по								
Производительность, м³/ч:			водитель/Бренд:					
Давление, бар (атм):			/модель:					
Количество:		Друго	e:					
Давление в системе водоснабжения, номинал	іьное/пиковое, атм:							
Характеристика объекта:								
количество проживающих постоянно/макси-		число	точек водоразбо	pa:				
мально, человек:			40 60ccc×	(4.70 14.60 14.77) I				
количество этажей:		налич	ие бассейна (укаж	ките курометры):				
Материал и диаметр ввода водопровода:								
Площадь и высота доступного помещения по		_		—				
Канализация:	□ централизованна:	Я		□ выгребная яма				
TREE OR ALHAG 2 AMA 2 HIAMA MANAGER TOWN	СППОЙ ВОЛЬТ			□другое				
ТРЕБОВАНИЯ ЗАКАЗЧИКА К КАЧЕСТВУ ОЧИЩЕ	ннои воды:							
* Tourismus (100)	Hackborta externion							
* При наличии скважины просим приложить копик ** Периодический – Наличествует технологический		ов) на г	промывку фильтров	}				
	рерого (от оде до е чис	-5, 1141		<u> </u>				

Дата:

Подпись клиента:

АССОРТИМЕНТ

- Установки фильтрования WF
- Установки обезжелезивания WFDF
- Установки сорбционные WFC
- Установки удаления нитратов WFN
- Установки умягчения периодического действия WS
- Установки умягчения непрерывного действия WST
- Установки умягчения и обезжелезивания непрерывного действия WST (MIX A)
- Установки умягчения и обезжелезивания WSDF
- Установки типа «КАБИНЕТ»
- Аэрация
- Обратноосмотические системы
- Системы дозирования
- Уф-обезараживание
- Реагенты и фильтроматериалы
- Фильтрующие загрузки
- Тест-системы



Компания GEFFEN®

GEFFEN®

С 2011 года на объектах работает 400 МВт.

 \mathfrak{G}

Тому, кто в 2022 и 2023 г. заложил в проект, не пришлось переделывать. пересогласовывать и проходить повторную экспертизу, т. к. котлы в наличии или с понятным сроком поставки.

Помогаем проектировщикам и монтажным организациям в разработке проектных решений и 3D компоновках котельных.

Подробнее о продукте в статье на странице

