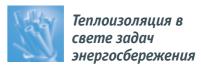
сантехника, отопление, кондиционирование

 N_{9} 2002

Ежеме чный специализированный

журнал



МАКСЛЕВЕЛ-КОМПЛЕКТ

предлагает весь комплекс услуг для отопительных систем зданий

ОБОРУДОВАНИЕ ЛИДИРУЮЩИХ ЕВРОПЕЙСКИХ ПРОИЗВОДИТЕЛЕЙ

Котлы Viessmann, Vaillant, Dakon; Горелки Giersch, Weishaupt; Газовые колонки Vaillant; Насосы Grundfos; Радиаторы Global, Demrad, Irsap; Трубы и фитинги Oventrop, Prandelli, Tiemme; Арматура Oventrop, FIV; Канализация Ostendorf; Бассейны и оборудование Astral, Pools, GRE, CTX и многое другое...

• СТРОИТЕЛЬСТВО ПРОМЫШЛЕННЫХ КОТЕЛЬНЫХ «ПОД КЛЮЧ» • • ПРОЕКТИРОВАНИЕ-КОМПЛЕКТАЦИЯ-МОНТАЖ-СЕРВИС •

ШИРОКИЙ ВЫБОР ОБОРУДОВАНИЯ СО СКЛАДА В МОСКВЕ

ДЕЙСТВУЕТ ГИБКАЯ СИСТЕМА СКИДОК

ПРИГЛАШАЕМ К СОТРУДНИЧЕСТВУ МОНТАЖНЫЕ ОРГАНИЗАЦИИ

Grundfos Alpha

Циркуляционный насос нового поколения

Современная система отопления с автоматическими терморегулирующими вентилями, установленными на батареях, поддерживает необходимую температуру в каждом помещении дома. С помощью насосов жидкость-теплоноситель циркулирует в контуре системы отопления, что обеспечивает эффективную теплоотдачу.

В зависимости от времени года и суток меняется и мощность системы отопления. Поэтому необходимо применение насосов с электронным регулированием, параметры которых автоматически меняются в зависимости от потребности системы. Таким образом, экономится до 40% электроэнергии, значительно снижается шум в трубопроводах и терморегулирующих вентилях.

GRUNDFOS ALPHA — это новый шаг в развитии циркуляционных насосов. Обладая всеми преимуществами регулируемых насосов, он имеет одну важную особенность — доступную цену.

При этом насос очень прост в монтаже и не нуждается в дополнительной настройке.

Санкт-Петербург (812) 327 43 05 321 61 18 Новосибирск (3832)18 06 58 Казань (8432) 45 11 07

Нижний Новгород (8312) 35 02 06 37 60 27 Омск (3812) 25 66 37 Иркутск (3952) 21 17 42

11

На вопросы журнала «С.О.К.» отвечает заведующая Независимой Аккредитованной испытательной лабораторей по анализу качества воды «ИСВОДЦентр», к.х.н. Лаврушина Юлия Александровна

Как экономить и как вести информационные войны

34

36

Тенденции на рынке отопительных котлов

В рубрике «Портрет предприятия» история возникновения и развития одного из крупнейших производителей насосного оборудования — немецкая компания WILO AG

62

"Сантехника, отопление, кондиционирование" Ежемесячный специализированный журнал Сентябрь 2002 г.

www.c-o-k.ru

Главный редактор
Михасёв Константин
Редактор
Данилин Николай
Научный редактор
Резников Георгий
Ответственный секретарь
Смоляницкая Татьяна
Отдел рекламы
Кононенко Светмана
Дизайн-вёрстка
Юдин Алексей

мkа@mediatechnology.ru
dnn@mediatechnology.ru

Журнал зарегистрирован в Министерстве РФ по делам печати, телерадиовещания и средств массовых коммуникаций. Свидетельство о регистрации ПИ № 77-9827 от 17 сентября 2001 года Адрес редакции: 119991, Москва, ул. Бардина, 6 тел.: (095) 135-9857, факс: (095) 135-9982 Е-mail: media@mediatechnology.ru Перепечатка фотоматериалов и статей допускается только с письменного разрешения редакции и с обязательной ссылкой на журнал (в том числе в электронных СМИ).

Мнение редакции может не совпадать с точкой зрения авторов. Редакция не несет ответственности за информацию, содержащуюся в рекламных объявлениях.

Учредитель: 000 Издательский дом "Медиа Технолоджи". Тираж: 8000 экз. Цена свободная. Отпечатано в типографии "ФП", Россия. 4

Новости, События, Факты

11

Профессионал

- Водоподготовка начинается с анализа воды
- Сварочные аппараты и крепеж для полимерных труб

14

Сантехника

- Все для профессионального монтажа труб
- Water King или комфорт мягкой воды
- «ЖИВЫЕ ЦИФРЫ» серийного строительства
- Полиэтиленовые трубы REHAU в инженерных системах зданий

28

Водоснабжение

• Комплексная водоподготовка при автономном водоснабжении

34

Маркетинг и реклама

• Как экономить и как вести информационные войны

36

Отопление

- Тенденции на рынке отопительных котлов
- Гамма газовых котлов ECO RADIO SYSTEM от Frisquet, Франция
- Конвекторное электроотопление
- Настенные электрические конвекторы
- Электрический теплый пол. Производители
- Интелектуальное отопление. Новинки от DEVI

50

Кондиционирование

- Первый съезд официальных дилеров GREE в России
- «ПЫЛЕСОСНАЯ РЕВОЛЮЦИЯ» или зачем Вам нужен встроенный пылесос...

54

Энергетика и ресурсосбережение

- Анализ параметра «Цена/Качество» для тепловой изоляции в свете задач энергосбережения
- Точка зрения на экономию воды

Портрет предприятия

• WILO AG УСПЕШНО РАБОТАЕТ В РОССИИ

69

Каталог

- Водонагреватели
- Отопительные котлы
- Кондиционеры

помощь пострадавшим от наводнения VIESMANN

Один из крупнейших производителей отопительной техники — компания Viessmann —оказывает помощь пострадавшим жителям Германии этим летом в результате наводнения. Так как мно-

гие отопительные агрегаты, установленные в домах, находящихся непосредственно в очаге катастрофы, вышли из строя, то компания решила провести беспрецедентную акцию — быстрый и небюрократический ремонт или даже полную замену установок.

Получить помощь может каждый по-

страдавший от наводнения житель, направив соответствующий запрос. Наряду с беспроцентным кредитованием на покупку новой установки компания предлагает на выбор скидку 75,- \(\) на покупку новой горелки или, соответственно, автоматики, либо до 300,- \(\) на покупку котла (в зависимости от типа).

вода зажигает огонь


Bosch Thermotechnik

Компания «Гидросфера» начала продажу в России новых газовых колонок Hydropower производства фирмы Junkers, входящей в группу Bosch. Принцип технологии Hydropower можно сравнить с принципом выработки энергии гидроэлектростанцией с помощью турбины. Аналогов данной технологии пока на российском рынке нет.

Настенные газовые энергонезависимые колонки Junkers — Hydropower WR 275-7KD1G23 (19,2 кВт) и 350-7KD1G23 (24,4 кВт) с электронным розжигом, без использования элементов питания и подключения к электросети, оснащены встроенным мини-генератором, который вырабатывает электроэнергию при открытии крана и, тем самым, обеспечивает розжиг газа. Мини-турбина генератора роз-

жига колонки, приведенная в действие водяным потоком, проходящим через колонку, производит электрический ток для зажигания горелки и обеспечивает надежный розжиг пламени, а отсутствие постоянного горения «дежурного» фитиля обеспечивает экономию газа на 25% в сравнении с обычными газовыми колонками.

«Установить и забыть» — именно под таким девизом внедряются в жизнь новые колонки Junkers. Практически бесшумные в работе колонки Junkers — Hydropower обеспечивают постоянную температуру горячей воды на выходе благодаря горелке модулирующей мощность в зависимости от расхода воды. Новые колонки оснащены самыми современными устройствами безопасности, такими как контроль тяги, контроль наличия пламени, контроль температуры воды и адаптированы для эксплуатации в России.

K-FLEX COLOR

В компании Эгопласт появились новые изоляционные материалы — первый цветной теплоизоляционный материал из вспененного каучука в рулонах. Теплоизоляция K-FLEX COLOR не требует дополнительного покрытия. В соответствии с требованиями дизайна можно выбрать любой цвет. В отличие от защитных слоев, которые наносятся на изоляцию после ее монтажа K-FLEX COLOR представляет собой единый композитный материал. Покрытие наносится в процессе производства на заводе.

Компактный защитный слой и его отличная адгезия гарантируют долговечность и эффективные изоляционные свойства. Значительно улучшены свойства проницаемости и энергетические показатели (неизменность теплопроводности в течении многих лет). Пигментная краска на водной основе обеспечивает высокую гибкость и пластичность (материал может быть изогнут на 900 без растрескивания). Изоляция может применяться, как внутри помещения, так и на улице.

ARISTOCRAT — НОВЫЙ ДИЗАЙН-РАДИАТОР

Компания «Терморос» представляет на российском рынке новый дизайн-радиатор завода ЈАGA (Бельгия) —

ARISTOCRAT, который можно использовать в качестве основного нагревательного прибора или специально для сушки полотенец.

Он изготовлен из стали с нержавеющим покрытием в виде лесенки. Горизонтальные трубки изящно изогнуты в модели ARISTOCRAT WAVE (Вейв) и имеют прямое расположение в моделях ARISTOCRAT NAUTICA (Наутика). Радиаторные трубки приварены к внешней части коллектора

серебряной пайкой без видимых швов. У дизайн-радиатора ARISTOCRAT может быть любое покрытие — глянцевая или матовая сталь натурального цвета, а также любой из 36 цветов, представленных в каталоге — от темно-серого металлика до сочного золотисто-желтого.

Высота моделей колеблется от 685 до 2110 мм. Ширина — 500, 600, 800 мм. Пространства для размещения полотенец составляют 82 мм. В зависимости от размера дизайн-радиатора его мощность меняется в пределах от 332 до 2445 Вт. Стоимость — от 309,- до 1470,- 🗆 .

ОТОПИТЕЛЬНЫЕ ПАНЕЛИ ИЗ НАТУРАЛЬНОГО КАМНЯ

STIEBEL ELTRON

"Komfotherm" — интересное совмещение функциональности отопительного прибора и красоты природного камня. Панели Komfotherm изготавливаются из мрамора или стеатита. Электронагревательный элемент вмонтирован внутри плиты, благодаря чему достигается равномерный прогрев всей ее поверхности. Для защиты от перегрева служат два встроенных предохранительных термореле. От нежелательного теплового излучения с обратной стороны прибора защищает большая теплоизолирующая пластина толщиной 4 мм.

Производитель STIEBEL ELTRON выпускает отопительные панели различных мощностей (от 0,55 до 1,4 кВт) и габаритов (500/750, 1000 или 1230/30 мм). Панели могут устанавливаться как горизонтально, так и вертикально.

GRUNDFOS SOLAR — ЦИРКУЛЯЦИОННЫЕ НАСОСЫ ДЛЯ СИСТЕМ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ С СОЛНЕЧНЫМИ ПОДОГРЕВАТЕЛЯМИ

Использование альтернативных источников энергии для систем инженерного обеспечения зданий все чаще занимает

место в нашей жизни. Это ветрогенераторы, солнечные батареи и подогреватели.

Солнечный подогреватель представляет собой замкнутый контур, в котором циркулирует теплоноситель (водный раствор гликоля). После нагрева в солнечном коллекторе этот раствор проходит через теплообменник, где отдает теп-

ло воде системы горячего водоснабжения. Для полного нагрева вода поступает в бойлер.

Для циркуляции теплоносителя в подобных системах ГВС специально разработаны насосы GRUNDFOS SOLAR на базе всем известных бессальниковых циркуляционных насосов UPS серии 100. GRUNDFOS SOLAR — это двухскоростной циркуляционный насос с «мокрым ротором». Корпус насоса имеет защитное покрытие, нанесенное методом катафореза.

Существует четыре типоразмера насоса:

Типоразмер	Максимальная подача	Максимальный напор
SOLAR 25-40	2,5	3,8
SOLAR 25-60	4,0	5,6
SOLAR 15-80	2,0	7,6
SOLAR 25-120	3,2	11,5

Ориентировочная стоимость насоса GRUNDFOS SOLAR 15-80 140,-□.

СИСТЕМА С ПРИНУДИТЕЛЬНОЙ ТЯГОЙ «ФРИСКЕ»

Технология «Фриске», которая предусматривает наличие вентилятора, подающего в котел свежий воздух, обладает тем преимуществом, что вентилятор работает при температуре окружающего воздуха. Его долговечность при этом значительно превосходит долговечность отсасывающих вентиляторов, установленных на большинстве настенных котлов, которые всасывают непосредственно «влажные» продукты горения при температуре 200°С (См. стр. 44).

РАСШИРЕНИЕ МОДЕЛЬНОГО РЯДА

Турецкая компания Demir Dokum расширила мощностной модельный ряд газовых проточных водонагревателей Demrad поставляемых в Россию. Теперь наряду с 17 кВт колонкой, появились 24 кВт, 10 кВт и 9 кВт приборы. Вся продукция Demrad имеет сертификаты соответствия, разрешение Госгортехнадзора и Санитарно-эпидемиологическое заключение.

ФРАНЦУЗСКИЙ AIRELEC ВОЗВРАЩАЕТСЯ В РОССИЮ

Французский производитель электрических обогревателей (конвекторов, нагревающих панелей, электрополотенцесушителей и т.д.) возвращается на российский рынок (стр. 44).

Фирма AIRELEC, производящая электроотопительные приборы более 40 лет и поставляющая их в 20 стран мира, покинувшая российский рынок после дефолта 1998 года, возобновляет продажи в России с осени 2002 года.

Новинки сезона 2002/2003 от французского производителя электрических отопительных приборов фирмы AIRELEC:

- единые приборы OPERA и MALDIVES для ванных комнат совмещают в себе конвектор, тепловентилятор и полотенцесушитель;
- сверхплоский конвектор с электронным управлением и программатором ELITE 3D, производится в вертикальной, горизонтальной и плинтусной версиях;
- новейший отопительный прибор DOUXAIR, использующий два типа нагревательных элементов и совмещающий в себе исключительный комфорт электрорадиатора (теплоизлучающая панель), а также скорость и экономичность нагрева электроконвектора.

ЭЛЕКТРОННЫЙ ТЕРМОСТАТ ДЛЯ ТЕПЛОГО ПОЛА ОТ КОМПАНИИ ЭЛТЕК ЭЛЕКТРОНИКС

Компания «Элтек Электроникс» отметила свой своеоб-

разный юбилей (20 месяцев выхода на рынок электрических кабельных систем нагрева) выпуском нового электронного термостата.

Термостат NLC-308В представляет собой одноступенчатый комнатный электронный термостат с внешним датчиком температуры. Термостат имеет стандартные размеры бытовых электроустановочных изделий и предназначен для монтажа

в стандартной стенной коробке.

Корпус выполнен из белой пластмассы и имеет кнопку включения, регулятор температуры и светодиодные индикаторы включения в сеть и нагрева.

Диапазон регулируемых температур от 5 до 35° С, температурный гистерезис 1° С. Коммутируемая мощность нагрузки 3,08 кВт, коммутируемое напряжение ~ 230 B/50–60 Гц. Класс защиты корпуса IP 21.

Качество продукции подтверждено сертификатом соответствия Ростеста РФ. Гарантия на термостат составляет 2 года и поддерживается сервисным центром производителя.

Компания «Элтек Электроникс» комплектует данным термостатом свои наборы теплых полов SPYHEAT(См. стр. 46).

Телефон: (095) 946-9892, E-mail: info@spyheat.ru, интернет-сайт: www.spyheat.ru

«ТЕПЛОВЕЙ» — СЕРИЯ СЕМИНАРОВ ПО ПРИМЕ-НЕНИЮ ЭНЕРГОСБЕРЕГАЮЩИХ ТЕХНОЛОГИЙ

27-28 августа группа предприятий «Тепловые системы» (г. Челябинск) провела серию тематических семинаров по применению новейших энергосберегающих технологий. Среди гостей семинара были руководители и технические специалисты ОАО «ММК», ОАО «Южноуральский арматурно-изоляторный завод», ОАО «Комбинат «Магнезит» и других предприятий региона.

На семинаре было представлено энергосберегающее оборудование таких зарубежных компаний как «Rosenberg» (Германия), Alfa Laval (Швеция), Grundfos (Германия), Giersch (Германия), Wolf (Германия), Oventrop (Германия). Особое внимание было уделено применению систем воздушного отопления для теплоснабжения предприятий.

И в частности, применение в этих системах воздухонагревателей марки «Тепловей» производства группы предприятий «Тепловые системы». Наряду с основными выпускаемыми моделями тепловой мощностью 45, 100, 170, 250, 350, 450 кВт на семинаре была представлена новая модель мощностью 1000 кВт. Данный теплогенератор предназначен для ряда технологических целей нефтяной и газовой промышленности, строительной отрасли, дорожного хозяйства, железной дороги, авиапромышленности. «Тепловей-1000» представляет собой установку прямого нагрева воздуха и имеет КПД до 100%, прост в эксплуатации, установке и обслуживании. Конструкция теплогенератора позволяет нагревать воздух до 180°С. Основное применение теплогенератор нашел в подогреве двигателей большегрузных автомобилей на открытых автостоянках

в зимнее время.

Одно из главных преимуществ «Тепловея-1000» является возможность использования теплогенератора в мобильном варианте для автостоянок. Важно также отметить экономическую эффективность при использовании теплогенератора «Тепловей-1000».

В апреле 2003 года компания планирует провести серию тематических семинаров на площадке весенней строительной ярмарки.

Отдел продвижения предприятия теплогенерирующих установок:

454092, г. Челябинск, Комсомольский проспект, 24 Тел.:(3512) 41-92-21, 96-27-31 e-mail: teplovey@teplos.ru www.teplos.ru

НОВЫЙ РОССИЙСКИЙ ПРОИЗВОДИТЕЛЬ ПОЛИМЕРНЫХ ТРУБ

В «полку» производителей полимерных трубопроводных систем прибыло. Федеральное государственное унитарное предприятие НПП «Исток» (г. Фрязино, Московской области) освоило выпуск труб из полипропилена и полиэтилена для систем холодного и горячего водоснабжения.

Экструзионная линия была поставлена компанией "YELCENCILER" (Турция), хорошо известная российским переработчикам пластмасс и имеющая устойчивую репутацию производителя оборудования оптимального по соотношению «цена/качество».

Продукция, выпущенная во Фрязино, прошла испытания в лаборатории НИИ Сантехники Госстроя РФ и получила сертификат соответствия. Первая партия труб была отгружена в Москву и в настоящее время готовится к отгрузке следующая по заказу строительного комплекса Среднего Урала.

По словам начальника комплекса, специализирующегося на выпуске товаров народного потребления Коновалова

Ю.Р., новая линия была запущена с привлечением специалистов, предоставленных Некоммерческим партнерством по развитию полимерных трубопроводных систем.

Партнером по сбыту продукции НПП «Исток» является 000 «ДИТРОН-ПЛАСТ», которое имеет широкую сбытовую сеть по регионам России и специализируется на поставках сварочного оборудования для полимерных материалов строительно-монтажным предприятиям. В планах совместной работы по расширению сбыта новой продукции НПП «Исток» определены мероприятия по совместному участию в тематических выставках в России и ближнем зарубежье, создание торговой сети в Подмосковье, освоение рынка Казахстана и других стран СНГ.

Опыт НПП «ИСТОК» в производстве продукции для оборонного комплекса и знание рынка пластмассовых трубопроводных систем 000 «ДИТРОН-ПЛАСТ» должны дать положительный результат в обеспечении строителей качественной отечественной продукцией.

ГЛАВА ГОССТРОЯ О НЕОБХОДИМОСТИ УВЕЛИЧЕНИЯ ОБЪЕМОВ СТРОИТЕЛЬСТВА ЖИЛЬЯ

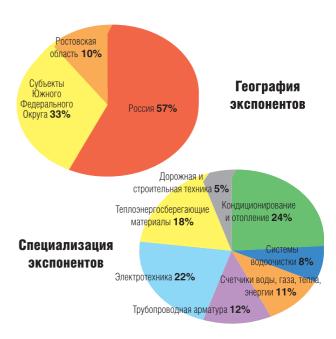
В сентябре на Втором байкальском экономическом форуме в г. Иркутске председатель Государственного комитета по строительству Анвар Шамузафаров заявил о том, что для развития ипотеки в РФ нужно повысить темпы строительства жилья в 2 раза.

Развитие ипотечного кредитования в России потребует увеличения объемов строительства жилья до 7–8 млн кв. метров в год. Глава Госстроя подчеркнул, что в настоящее время развичество в поднастоя подчеркнул, что в настоящее в поднастоя подчеркнул, что в настоящее в поднастоя подчеркнул, что в настоящее в поднастоя по

тие ипотечного кредитования сдерживается низкими темпами ввода нового жилья. Сегодня, согласно словам А. Шамузафарова, ежегодно обеспечиваются новым жильем 1,5% населения России. А. Шамузафаров отметил, что при достаточно жестких условиях ипотечного кредитования 4,7% населения России могут себе позволить взять ипотечный кредит. Как указал глава Госстроя, в настоящее время в частных руках находится 67,7% всего жилищ-

ного фонда России. Стоимость российского жилищного фонда на сегодня оценивается в 200 млрд долларов.

От редакции: Развитие рынка инженерного оборудования для жилых зданий тесно связано с объемами строительства в России, поэтому перспективы увеличения объемов вновь вводимого в строй жилья создают положительные тенденции и для поставщиков всей номенклатуры инженерного оборудования.


«ЖИЛИЩНО-КОММУНАЛЬНОЕ ХОЗЯЙСТВО. ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ» — РОСТОВ-НА-ДОНУ, 2003 год

С 5 по 7 февраля 2003 г. в ТВЦ «Роствертол» пройдет четвертая специализированная выставка сантехнического оборудования, теплосберегающих материалов, систем кондиционирования, отопления и вентиляции, электротехники и энергетики, КИПиА «Жилищно-коммунальное хозяйство. Отопление и вентиляция». Ее организаторами выступят Администрация Ростовской области, Министерство строительства, архитектуры и ЖКХ, Администрация Ростова-на-Дону, Департамент ЖКХ и энергетики, а также выставочная фирма «Даэлком».

Основные направления выставки: провод и кабель, светоэлектротехника для промышленных и гражданских объектов, электротехническое и электроустановочное оборудование, минитеплогазоэлектростанции, диагностические приборы для комплексной проверки параметров электрических сетей, высоковольтная вакуумная техника; электромонтажные материалы, приборы и системы управления, регулирования и учета потребления электроэнергии, воды, газа и др., энергоаудит, теплоэнергосберегающие материалы и технологии, металлопластиковые окна, теплые полы, трубопроводная арматура и теплообменники, наружные водопроводно-канализационные сети, насосы и насосные системы, водоочистка и водоподготовка, анализ воды, фильтрационное оборудование от бытовых до промышленных установок, компактные очистные сооружения, оборудование для тепло-водо-газоснабжения и комплектующие к ним, различные типы котлов и систем водо- и воздухонагревателей промышленного и бытового назначения, проектирование и монтаж систем теплофикации, системы и материалы тепло-звукоизоляции бытовые и промышленные,системы кондиционирования и вентиляции воздуха: оборудование, в т.ч. диагностическое, установки, материалы и комплектующие, сантехническое оборудование, принадлежности и услуги; резинотехнические изделия, уплотнители и др. бытовая сантехника и отделочные материалы; эксклюзивная сантехника, аксессуары, мебель для ванных комнат,

слесарно-монтажный инструмент, спецодежда.

В рамках выставки совместно с РГУПС пройдет общегородская научно-практическая конференция «ЖКХ и Энергетика в XXI веке». В работе конференции примут участие Заместители глав Администрации районов Ростовской области, курирующие ЖКХ, директора МУФЗ районов г.Ростова-на-Дону, представители Администрации г.Ростова-на-Дону и Ростовской обл.

«СТРОЙЗКСПО. ВОЛГАСТРОЙМАШ — 2003»

В апреле 2003 года в г. Казань состоится VIII международная специализированная выставка «СТРОЙЭКСПО.

ВОЛГАСТРОЙМАШ — 2003».

Основные разделы выставки: архитектура; строительство — технологии, материалы, оборудование; водоснабжение; отопление; вентиляция; сантехника; электроустановочные изделия; инструмент; все для ремонта; Волгастроймаш (строительная техника и оборудование, подъемно-транспортное оборудование, коммунальная техника); экология; охрана труда и техника безопасности; спецодежда.

Организаторы:

Министерство экономики и промышленности РТ,

Министерство строительства и жилищно-коммунального хозяйства РТ,

Государственный жилищный фонд при Президенте РТ,

Союз строителей РТ, Администрация г. Казани,

ОАО «Казанская ярмарка»

Место проведения:

Выставочный центр «Казанская ярмарка». ОАО «Казанская ярмарка» — это 15000 кв. метров открытой площади, 6700 кв. метров закрытой площади, три выставочных павильона, Павильон приемов и презентаций, бизнес-центр с двумя конференц-залами. Ежегодно на ОАО «Казанская ярмарка» проводится более 45 выставок и ярмарок. Все мероприятия проходят при поддержке Правительства Республики Татарстан и Администрации г. Казани. С 1993 года выставочный центр является членом Международного Союза выставок и ярмарок.

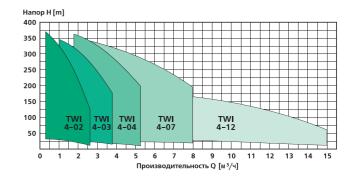
ЖУРНАЛ «С.О.К.» В САРАТОВЕ

Наш журнал участвовал в 4-ой специализированной выставке «Энергосбережение. Современный город. 2002», прошедшей в г. Саратове в середине сентября. Это мероприятие было проведено правительством Саратовской области, администрацией города Саратова, ГУ «Агентство энергосбережения» и выставочным центром «Софит-Экспо». Организаторы приложили немало усилий, чтобы уровень выставки и прошедшей в рамках ее научно-практической конференции «Энергоэффективная экономика больших и малых городов» соответствовал задачам, стоящим перед государством в этой области. Такие мероприятия позволяют быстрее находить комплексные решения в области энергоэффективности с учетом региональной специфики. Отчет о выставке читайте в журнале «С.О.К.» №10.

Скважинные насосы Wilo TWI полностью из нержавеющей стали

В сентябре 2002 года ВИЛО РУС начинает поставки на Российский рынок новых моделей скважинных насосов Wilo серии TWI.

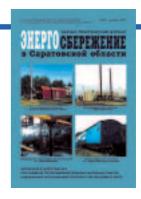
Насосы предназначены для применения в системах водоснабжения, полива, понижения уровня грунтовых вод, фонтанов, пожаротушения, повышения давления. Имея размер диаметра 4 дюйма, они могут быть установлены в скважины диаметром от 100 мм, а также в резервуары, с использованием охлаждающего кожуха. Устанавливать насосы можно как в вертикальном, так и в горизонтальном положении.


Гидравлическая часть полностью изготовлена из нержавеющей стали, что обеспечивает высокую стойкость к коррозии и износу от песка. Насосы серии TWI могут быть снабжены однофазным или трехфазным двигателем мощностью до 7,5 кВт.

Типовой ряд серии включает в себя модели, способные обеспечивать подачу жидкости с производительностью от 0,5 м³/ч до 15 м³/ч и обеспечивать напор до 410 м.

Скважинные насосы Wilo серии TWI имеют ряд конструктивных особенностей, которые выгодно отличают их от аналогичных насосов других производителей и обеспечивают их высокое качество и надежность.

- Минимальная толщина стали рабочего колеса 1 мм, точечная сварка лопатки производится в 6 местах. Втулка рабочего колеса имеет 6 контактных точек с валом насоса. Направляющий аппарат ступени изготовлен из стали с минимальной толщиной 1 мм, уплотнительное кольцо резиновое (NBR), армировано стальным кольцом.
- Высоконадежный обратный клапан, встроенный в напорную камеру, минимизирует потери напора.
- Увеличение размеров промежуточных подшипников и их расположение на каждой ступени насоса позволяет обеспечивать и поддерживать точную центровку вала. Конструкция подшипников позволяет оптимизировать смазывание и уменьшить трение, а также увеличить устойчивость при работе насоса в режиме сухого хода и упрощает процесс обслуживания насосов.
- Насосы серии ТWI имеют простые в замене подшипники и уплотнительные кольца рабочих колес, что значительно упрощает процесс обслуживания насосов.
- В конструкции муфты, соединяющей шестигранный вал насоса с валом двигателя, предусмотрен демпфирующий диск, гасящий аксиальную нагрузку вала. Вал насоса имеет штифт для надежного крепления муфты.
- Гидравлическая часть насоса полностью стыкуется с любым из двигателей с посадочными размерами, соответствующими стандарту NEMA.
- Для достижения максимальной эффективности оптимизированы гидравлические профили рабочих колес.
- Количество стяжек насоса 4, толщина стяжек составляет 1,5 мм, для насосов с большим напором толщина стяжек увеличена до 2 мм.
- Соединительный фланец насоса со стороны мотора имеет исполнение повышенной прочности.
- Электрокабель защищен планкой из нержавеющей стали, прочность которой достигается увеличением толщины материала до 1 мм.
- Таким образом, конструкция скважинных насосов Wilo серии TWI очень надежна, благодаря использованию нержавеющей стали и точечной сварке рабочих колес в большем количестве мест, чем у аналогичных насосов других произволителей
- Для создания автоматической системы водоснабжения можно дополнительно заказать части:
- прибор управления ER;
- мембранный бак;
- реле давления:
- термоусадочные, а также заливные муфты;
- кабель
- тросик из нержавеющей стали;
- электроды.



ЖУРНАЛУ «ЗНЕРГОСБЕРЕЖЕНИЕ В САРАТОВСКОЙ ОБЛАСТИ» ИСПОЛНИЛОСЬ ДВА ГОДА.

ГУ «Агентство энергосбережения» в г. Саратове издает журнал «Энергосбережение в Саратовской области» уже два года. За этот период благодаря усилиям главного

редактора А.К. Тверского и всего редакционного коллектива этот журнал превратился в совершенно необходимый инструмент, который должен быть всегда под ру-

кой у специалистов, начиная от инженерного сообщества и заканчивая политиками, т.е. всех тех, кто ищет реальные пути решения проблем энергосбережения.

$\Phi AKT = MCTMHA?$

Протокол испытаний теплогенератора, г. Сызрань, 17 июля 2001 года. В документе зафиксирован КПД, равный 1, 83. Подписи — директора НПП «Гравитон» А.Вдовиченко, доктора технических наук из Москвы, академика Российской академии космонавтики П.Лебедева и членакорреспондента Международной академии информатизации А.Изаксона. (По материалам, опубликованным в Интернете)

ЭНЕРГЕТИКА — ПРОГНОЗЫ НА БУДУЩЕЕ

В ближайшие 50 лет в энергетике должна закончиться эра углеводородов. Энергетическим компаниям следовало бы вовремя позаботиться о том, чтобы приобрести необходимые знания и опыт в сфере новой энергетики. Это случится, если они проигнорируют тот факт, что автомобилестроители переключаются на двигатели, работающие на водороде, а традиционные источники энергии уступают место возобновляемым, таким как ветровые установки и солнечные батареи. Вышесказанное не означает, что нефтяные скважины следует глушить уже завтра. В соответствии с результатами исследований Shell, в настоящее время нефть обеспечивает примерно 40% мирового энергобаланса. К 2050 г. доля нефти сократится до 25%, но все еще будет превышать долю газа и других источников энергии. Shell планирует в течение ближайших пяти лет направить от 500 млн до 1 млрд долл. на развитие новых источников энергии, концентрируясь преимущественно на солнечной и ветровой энергии.

Другая крупная компания — ВР, также прикладывает значительные усилия к развитию альтернативных источников энергии и даже предлагает расшифровывать свое название не традиционным способом (British Petroleum), а с учетом новых реалий (Beyond Petroleum, то есть за пределами нефтяной промышленности). Один из сценарных прогнозов рассматривает более революционные изменения в энергопотреблении. В соответствии с ним уже в ближайшие десятилетия начнется подъем водородной экономики, которая базируется на топливных ячейках и усовершенствованных водородных технологиях. Если произойдет прорыв в водородных технологиях, то традиционные источники энергии быстро отступят под натиском топливных ячеек, которые производят электричество из водорода, не отравляя при этом окружающую среду вредными выбросами. В этом случае уже с 2025 г. начнется значительное сокращение потребления нефти задолго до того, как ее запасы подойдут к концу. (rusenergy.com)

ЛОКТАЙТ 55

универсальный резьбовой герметик

- Надежность
- (юстировка без потери герметичности)
- Экономичность (1 катушка на 385 соединений)
- Универсальность (для металлических и пластиковых соединений)

POCTTEPM

- Широкий диапазон рабочих характеристик $(om 40 \ \partial o + 130 \ ^{\circ}C)$
- Безопасность (одобрен для использования в соединениях газа и воды, в т.ч. и питьевой)
- Быстрота и удобство (герметизация соединения за несколько секунд с помощью контейнера со встроенным ножом)

105082 Москва Рубцовская наб. 2/12, корп. 4 тел.: (095) 267-95-23 (095) 234-34-51 E-mail: rost.term@relcom.ru

СЕМИНАРЫ АКАДЕМИИ СТРОИТЕЛЬСТВА И ЖКХ РОССИИ

Государственная академия повышения квалификации и переподготовки кадров для строительства и ЖКХ России объявляет о проведении семинаров.

Семинар №1 — с 18 по 22 ноября 2002 г.:

«ЭКОНОМИКА СТРОИТЕЛЬСТВА. Резервы привлечения дополнительного финансирования в строительство и ЖКХ»

1. Организация и структура фондового рынка

Рассматриваются вопросы финансовых потоков в экономике, структуры фондового рынка, даются понятия риска и доходности. Вводится классификация ценных бумаг (ЦБ). На основе введенной классификации подробно рассматриваются особенности работы с каждым видом ЦБ.

2. Анализ доходности ценных бумаг

Вводится классификация методов исчисления доходности. Рассматриваются различные факторы, влияющие на доходность операций с ценными бумагами. Проводятся вычисления доходности отдельных видов ЦБ и портфеля ЦБ.

3. Организация торговли ценными бумагами

Рассматриваются вопросы биржевой торговли ЦБ и торговли на внебиржевом рынке. Вводятся понятия фондовых индексов.

4. Вексельное обращение в хозяйственной практике строительных предприятий и ЖКХ

Подробно рассматриваются вопросы применения векселей как в расчетах с поставщиками продукции (работ, услуг), так и для погашения задолженности строительных предприятий и ЖКХ перед бюджетами различных уровней и внебюджетными фондами.

Отдельно изучаются вопросы построения вексельных программ строительных предприятий и ЖКХ как способа оперативного привлечения оборотных средств.

Кратко освещаются особенности бухгалтерского учета векселей на предприятии.

5. Лизинговые схемы — путь привлечения инвестиций в ЖКХ

Вводится понятие лизинга и рассматриваются его различные виды (финансовый, возвратный, оперативный и др.). Подробно анализируются преимущества лизинга при приобретении оборудования, машин и механизмов по сравнению с покупкой за собственный счет и кредит. Приводятся примеры реализации лизинговых схем в строительстве и ЖКХ.

В результате участия в семинаре слушатели смогут при принятии инвестиционных решений эффективно оценивать, с одной стороны, доходность и риски различных способов вложения средств, а с другой оперативно сравнивать «стоимость» привлечения средств для нужд предприятий через кредитование, вексельные, лизинговые и др. схемы.

Семинар №2 — с 2 по 6 декабря 2002 г.:

«ТЕХНОЛОГИИ СТРОИТЕЛЬНОГО ПРОИЗВОДСТВА. Энергосберегающие технологии в системах коммунального теплоснабжения»

1. Энергосберегающие технологии — возможности ре-

Рассматриваются вопросы внедрения приборов для измерения расхода, температуры, давления жидкостей и газов в практику ЖКХ как решение актуальных проблем учета рас-

ходования энергии. С другой стороны решение вопросов энергосбережения связывается с применением новейших технологий (конструкционных материалов с высокими теплоизолирующими свойствами, полиэтиленовых напорных труб в системах подачи воды и канализации, тепловизионных систем контроля и др.).

2. Реализация концепции энергосбережения в ЖКХ с использованием частотных преобразователей

Рассматриваются общие принципы использования частотных преобразователей в народном хозяйстве. На конкретных примерах изучается опыт применения частотных преобразователей в ЖКХ. Предлагается методика расчета экономии электроэнергии с использованием частотных преобразователей для конкретных условий. Освещаются вопросы законодательной базы Российской Федерации и субъектов РФ для поиска дополнительных источников финансирования программ энергосбережения на базе частотных регулируемых приводов. На действующих объектах в Московской области происходит знакомство с условиями эксплуатации частотных преобразователей и экономическим эффектом от их внедрения.

Применение концепции энергосбережения в теплоснабжении зданий

На примере достоинств и недостатков централизованного теплоснабжения рассматриваются возможности решения вопроса энергосбережения при теплоснабжении зданий. Проводится технико-экономическое обоснование различных видов отопления, оценивается эффективность и экономическая целесообразность автономного теплоснабжения многоквартирного дома (микрорайона) и поквартирного отопления.

4. Комплексная реализация системы «Интеллектуальный дом»

Вводится понятие системы «Интеллектуальный дом» (ИД), определяются цели и задачи. Рассматривается возможность применения ИД в реформе ЖКХ для экономии ресурсов, удобства эксплуатации инженерных систем.

Основы построения и перспективы внедрения и развития систем ИД изучаются на конкретных примерах, с экономическим аспектом применения, оценкой возможностей устройства систем ИД в серийных домах, загородных домах, фермерских хозяйствах и др.

В результате участия в семинаре слушатели изучат передовой опыт внедрения энергосберегающих технологий в практику строительства и ЖКХ, ознакомятся с действующими макетами установок и серийными образцами, эксплуатируемыми на действующих объектах ЖКХ. Кроме того, слушатели смогут самостоятельно рассчитывать экономию электроэнергии с использованием частотных преобразователей, проводить оценку различных видов отопления (централизованное, автономное и поквартирное) в зависимости от условий строительства и реконструкции зданий и сооружений.

По вопросам участия в указанных семинарах обращаться к Проректору Государственной академии повышения квалификации и переподготовки кадров для строительства и ЖКХ России профессору, д.э.н.

РУМЯНЦЕВОЙ Елене Евгеньевне. Тел.:367-56-72.

На вопросы журнала «С.О.К.» отвечает заведующая Независимой Аккредитованной испытательной лабораторей по анализу качества воды «ИСВОДЦентр», к.х.н. Лаврушина Юлия Александровна

Водоподготовка начинается с анализа воды

- Каково основное направление деятельности современной лаборатории по анализу воды в системе водоподготовки?
- С какими проблемами чаще всего обращаются в лабораторию потребители воды?
- Что можно сказать о качестве питьевой воды с точки зрения экологической химии?

— Какие рекомендации по очистке воды приходится давать потребителям на основе анализа конкретного образца воды?

- Скажите, пожалуйста, если на основании данных анализа исходной воды подобрано оборудование по ее очистке, как потребитель может убедиться в эффективности его работы?
- С какими трудностями может сталкиваться потребитель после установки водоочистного оборудования?

- Решение комплексной задачи исследовать состав исходной воды по технологическим (железо, жесткость, перманганатная окисляемость, др.) и токсикологическим (нитраты, фосфаты, тяжелые металлы) показателям. Выдать рекомендации по корректировке состава воды с учетом концентрации компонентов и технологии очистки, а так же проводить исследования и моделирование процессов обработки воды.
- Используемая ими вода имеет неприятные запах и вкус (в этом случае определяем содержание сероводорода, аммиака, солей аммония), вода мутная и желтого цвета (определяем взвешенные частицы, железо органическое и неорганическое, перманганатный индекс) или бытовые водонагревательные приборы покрыты густым желтым (белым) налетом (определяем постоянную и временную жесткость, щелочность).
- Объектами наших исследований является вода централизованного и нецентрализованного водоснабжения. Так, нередки случаи обнаружения в водах из скважин нитратов, фосфатов, что свидетельствует о выбросе в водоносные слои минеральных и органических удобрений. В колодезных водах обнаруживаются фосфаты, азот аммонийный, что говорит о попадании в источник азотных, фосфорных и органических удобрений. Большое количество проб характеризуется содержанием железа и солей жесткости, значительно превышающим оптимальный физиологический уровень. В последние годы наметилась тенденция обнаружения сероводорода и сульфидов в водах, как следствие загрязнения воды органическими соединениями и серобактериями. Кроме того, в скважинах водах Москвы и области нередки случаи обнаружения нефти и нефтепродуктов, которые попадают в воду в процессе бурения (охлаждающая жидкость солярка) и вследствие проникновения в неглубокие водоносные слои бензина и дизельного топлива с автозаправочных станций или закачивания под землю производственных отходов. Подобные загрязнения способны полностью вывести из строя фильтры-обезжелезиватели и фильтры-умягчители.
- Прежде всего, воду обезжелезивать (при содержании железа выше 0,3 мг/л), умягчать (при жесткости выше 3,0–4,5 мг÷экв/л до уровня 1,5–2,0 мг÷экв/л, который рекомендован для нормальной работы бытовых приборов). Даем и такие рекомендации, как удалять марганец, органические соединения, анионы (фосфаты, нитраты, сульфаты), а также сероводород и азот аммонийный. Необходимо отметить, что рекомендации выдаются не только на основании оценки соответствия качества воды требованиям нормативных документов, но и с учетом оптимальных физиологических уровней содержания компонентов. Сейчас уже недостаточно сказать потребителю, что вода соответствует (не соответствует) требованиям нормативных документов, важно учитывать токсикологические последствия употребления воды с высоким содержанием вредных веществ. Например, существует показатель «перманганатная окисляемость», характеризующий содержание органических соединений, значение которого согласно СанПиН составляет 5 мг 0_2 /л. Однако, по мнению медиков, вода, имеющая величину перманганатного индекса более 2 мг 0_2 /л, не рекомендуется к употреблению. Вот почему обязательным первоначальным этапом любой водоподготовки является анализ исходной воды.
- Только сравнительный химический анализ воды до и после фильтра по скорректированным показателям (железо, жесткость, перманганатная окисляемость, pH, взвешенные вещества, цветность и мутность) покажет реальную картину по работе оборудования.
- Иногда потребители обращаются по поводу ощутимого сероводородного запаха воды после угольных фильтров, особенно в водонагревательных котлах. Мы рекомендуем устранять его, а лучше, предотвращать путем правильного подбора фильтрующего материала, а именно сочетания угля с ДЭАЭЦ. Нередки случаи, когда потребитель устанавливает фильтры на магистраль, которая ранее длительно эксплуатировалась: в таком случае вода после очистки бывает более загрязненной солями жесткости, железом и некоторыми токсичными металлами, чем исходная, вследствие смыва старых наслоений с труб очищенной водой. Известны случаи, когда при содержании железа в исходной воде на уровне 2–3 мг/л и нормально работающих фильтрах вода к потребителю попадает желтого или желто-оранжевого цвета и окрашивает сантехническое оборудование. Подобное бывает, когда наряду с неорганическим железом в воде находятся гуматы железа или свободные гуминовые кислоты. Эти соединения образуют коллоидные растворы и практически не задерживаются стандартными обезжелезивателями. Для их устранения в обычные фильтры-обезжелезиватели вносятся специальные органические добавки.

Сварочные аппараты и крепеж для полимерных труб

На вопросы журнала «С.О.К.» отвечает коммерческий директор ООО «ДИТРОН-ПЛАСТ» Жуков Александр Владимирович

— Не так давно в нашей стране появилось чешское оборудование DYTRON, которое ранее в Россию не поставлялось. Не могли бы Вы более детально рассказать о данной торговой марке?

— Надо отметить тот факт, что ранее ручные сварочные аппараты DYTRON в Россию поставлялись, но не напрямую.

Технология сварки, используемая в данном оборудовании — классическая, но для любого современного оборудования главным критерием является качество. Само понимание качества значительно сложнее, чем простое отсутствие самопроизвольных поломок при бережном обращении с оборудованием.

Качество — это и дорогой провод питания, который не боится ни контакта с горячими рабочими поверхностями аппарата, ни неосторожного наезда на него электрокара по бетонному полу. Это и жесткая конструкция, которая выдержит удары и другие непредусмотренные нагрузки. Всего не перечислить. В конце концов, это ощущения человека, который берет аппарат в руку и начинает им работать. В этом смысле аппараты DYTRON — действительно профессиональная техника.

В России хорошо известны сварочные аппараты ряда немецких, английских фирм, особенно аппараты для сварки встык труб сравнительно боль-

ших диаметров, которые изготавливаются с хорошим качеством. В этом ключе для специалистов следует отметить ряд выгодных технических решений DYTRON, которые в конечном счете облегчают работу монтажника и повышают ее качество.

Более десяти лет назад, когда у нас начали развиваться пластиковые трубопроводы, рынок был очень нетребовательным к качеству. В связи с этим наибольшее распространение в России получили недорогие «сварочники», чаще всего турецкого производства, если говорить о ручных аппаратах. По поводу их долговечности существуют разные мнения. Сегодня пришла пора качест-

венной техники. При рассмотрении соотношения «цена/качество» продукция DYTRON относится к лидерам рынка.

Сравнительно низкий вес — одно из значительных преимуществ для ручной техники. Конструкция аппаратов продумана настолько тщательно, что сниже-

ется крупнейшим предприятием этой отрасли в Центральной Европе. И, кстати, активно участвует в международной кооперации как производитель качественных комплектующих. Первая партия ручных сварочных аппаратов была выпущена в 1986 году. Кстати, у нас есть

диаметрам труб из ПП. Кроме этого, в ассортименте Capricorn — масса оригинальных полезных изделий. Монтажник, который в первый раз видит каталог Capricorn, рассматривает его долго и с восторгом. То же можно сказать об ERICO (торговая марка CADDY). Это, как

ние веса не повлияло на прочность. Совершенно стандартное для DYTRON изготовление рам аппаратов из нержавеющей стали — что может быть надежнее для работы в поле? И еще много мелочей, понятных и интересных специалистам. Соответственно, и гарантию на все оборудование DYTRON безбоязненно дает на 2 года, на это больше никто не решился. И заметьте, все это при более низких ценах, чем у других европейских аналогов. Чехия вообще традиционно славится в Европе относительно низкими ценами.

- Это значит, что другие чешские производители оборудования для сварки полимерных труб предлагают похожее соотношение цены и качества?
- Можно сказать, что других профессиональных производителей оборудования для сварки полимеров в Чехии нет. Ручные сварочные аппараты чешского производства, которые уже ряд лет известны в России — это изначально аппараты DYTRON, которые попадали в Россию вместе с чешской полипропиленовой трубой и фитингами, иногда под маркой производителей этой трубы и фитингов. На определенном этапе эти производители, справедливо сочтя сварочные аппараты не основным своим товаром, решили уменьшить на них затраты. С этой целью они перешли на более дешевую комплектацию, сохранив DYTRON'овский внешний вид. Чудес не бывает, эти аппараты не могли похвастаться качеством и «подмочили» репутацию чешских изделий даже на Российском рынке.

Однако, доля таких изделий на чешском рынке невелика. При своей относительной молодости DYTRON s.r.o. сегодня занимает 80% чешского рынка аппаратов для сварки полимеров и явля-

один образец из той партии — порядком потертый, но исправный. Это, конечно, «раритет» — теперь уже только для выставок.

- Помимо сварочных аппаратов, в вашем ассортименте крепеж для инженерных коммуникаций. Как вы сочетаете эти два направления?
- Дело в том, что оба товара ориентированы на одного и того же покупателя. После приобретения пластиковых труб возникает необходимость их монтажа. А это, прежде всего, оборудование для их сварки и крепеж. В области крепежных материалов мы выбрали лучших производителей: SAUER (Германия), Capricorn (Польша), ERICO (США). Ассортимент этих компаний в чем-то пересекается. Однако объединение их ассортимента позволяет самым оптимальным образом решить любую задачу по крепежу инженерных коммуникаций.

SAUER изготавливает металлический крепеж для водостоков, трубопроводов, вентиляции и пр. Это, в первую очередь, трубные хомуты. К ним — монтажные профили, планки, ленты; болты, дюбели и крюки разных модификаций; шпильки, резьбовые прутки, специальные гайки. Весь крепеж оцинкованный или из нержавейки. Часть хомутов оснащена звукопоглощающим вкладышем из специальной резины EPDM — с широким температурным диапазоном и устойчивой к ультрафиолету.

Capricorn — это, прежде всего, пластиковый крепеж для труб различного назначения и изготовленных из различных материалов — медь, сшитый полиэтилен, ПП, ПЭ, ПВХ. Соответственно, и размерный ряд хомутов, клипсов, и крюков учитывает отдельные стандарты — например, стандартные диаметры труб из меди не соответствуют

и SAUER, металлический крепеж. Но широкий ассортимент трубного крепежа дополняется еще более широким ассортиментом для электрики и телекоммуникаций. Даже удивительно, сколько простых и удобных изделий на нашем рынке знакомы пока только специалистам!

- А цены? Наверное, такой товар выгоднее производить в России? Это ведь не высокотехнологичные изделия.
- Автоматы для производства металлических хомутов или клипсов SAUER или ERICO стоят около миллиона долларов каждый. Но и производительность такого автомата огромная. За счет этого низкая себестоимость.

Кстати, такие автоматы обеспечивают и стабильное качество, не зависящее от человеческого фактора. Выйти на такой низкий уровень себестоимости при широком ассортименте — это огромные капитальные вложения. А заработать такую репутацию — это много лет упорной работы в этой отрасли.

Например, имя ERICO известно специалистам во всем мире. Представьте, что Вам предстоит укомплектовать крепежом строительство большого здания и нет возможности пересмотреть и испытать индивидуально каждый хомутик... Я бы сегодня не решился поставить на серьезную стройку крепеж неизвестного производителя и лично за него отвечать. Скорее всего, и качественный крепеж в широком ассортименте и при невысоких ценах, и качественное оборудование для сварки полимеров со временем будут производиться в России. На сегодняшний день, перечисленная выше продукция — оборудование и вспомогательные материалы, — лучшая в РФ по соотношению «цена/качество».

ROTHENBERGER BCE ДЛЯ

ПРОФЕССИОНАЛЬНОГО МОНТАЖА ТРУБ

дов и предлагает бесфитинговое соединение медных труб и инструмент для его осуществления:

- экспандеры для расширения концов труб
- отбортовщики для изготовления тройников
- развальцовщики для различных систем
- храповые и одноручные трубогибы
- газовые горелки и установки для пайки и сварки
- различные флюсы и припои. Бесфитинговый монтаж подразумевает расширение конца одной из соединяемых труб специальным инструментом — экспандером, с дальнейшим соединением этих труб враструб и проведением капиллярно-щелевой пайки. Такая операция возможна при работе с мягкой или отожженной медью. Для обеспечения надежной капиллярнощелевой пайки, раструб должен иметь правильную цилиндрическую форму; зазор между припаиваемыми поверхностями не может быть меньше 0,2 мм, но и не должен превышать 0,3 мм при номинальном диаметре трубы до 54 мм, и 0,4 мм, если диаметр выше. Глубина раструба должна быть не меньше величины, строго определенной для каждого типоразмера труб.

Действие экспандера основано на применении сегментной головки разводимой конусным стержнем. Основное отличие оригинальных сегментных головок "ROTHENBERGER" в том, что после экспандирования не происходит изменения формы сечения трубы, т.е. оно остается круглым, а не в форме шестигранника.

Покупателю предлагается несколько разновидностей экспандеров, позволя-

Инструмент для медных труб

Благодаря своим уникальным свойствам: механической прочности, пластичности, коррозионостойкости медные трубы нашли широкое применение в водопроводных, отопительных системах, системах газоснабжения, сжиженных и медицинских газов. Медные тру-

бы по степени твердости, механическим и эксплуатационным свойствам разделяются на мягкие, полутвердые и твердые.

Фирма "ROTHENBERGER" имеет много собственных разработок и ноу-хау в области монтажа медных трубопрово-

ющих расширять трубы диаметром 8-108 мм, или от $\frac{5}{16}$ — $4\frac{1}{8}$ ". Наиболее популярной моделью экспандера является ручной EXPANDER ROCAM, позволяющий расширять трубы диаметром 8-42 мм ($\frac{5}{16}$ " — $1\frac{3}{4}$ "). Предлагаются как наборы — экспандер с сегментными головками, так и отдельно экспандер, и отдельно сегментные головки. Другой разновидностью экспандера являются ручные винтовые экспандеры EXPANDER A0 и EXPANDER A1, позволяющие экспандировать трубу от 22-67 мм и 35-108 мм соответственно.

Для потребителей имеющих большие объемы работ предлагается переносной электрогидравлический экспандер EXPANDER H600, с производительностью около 1500 экспандирований в час.

Инструмент "ROTHENBERGER" также позволяет изготавливать отводы на медных трубах без использования готовых тройников, используя отбортовщики. Данный инструмент обеспечивает получение отвода необходимой высоты и диаметра для проведения капиллярно-щелевой пайки.

Можно выделить три группы отбортовщиков: ручные отбортовщики для труб диаметром от 10–108 мм и универсальный электрический отбортовщик RODRILL для труб диаметром от 8–35 мм. Применение вышеперечисленного инструмента позволяет экономить средства, отказавшись от дорогих покупных фитингов.

Монтаж труб в большинстве случаев подразумевает придание ей необходимой формы, для этой цели "ROTHENBERGER" выпускает широкую гамму трубогибов: одноручные, храповые и электрические. Особо стоит отметить одноручные храповые трубогибы арбалетного типа TUBE BENDER MAXI, позволяющие гнуть трубы диаметром от 12–26 мм из мягкой меди под углом до 90 градусов, а также стандартные трубогибы , для работы с трубами диаметром от 6–18 мм и углом сгиба до 180 градусов.

Стоит обратить внимание на трубогибы серии ROBEND: ручные ROBEND H+W и электрический ROBEND 3000, позволяющий гнуть без «гофры» и сплющивания тонкостенные трубы из стали, нержавеющей стали, меди и алюминия диаметром от 8 до 30 мм на угол до 180 градусов. Характерной особенностью трубогибов данной серии является применение гибочного сегмента ROLUB Antiblock из композитного материала, снижающего трение и не нарушающих поверхности трубы (отсутствие царапин, задиров и т.п.).

Для качественной резки меди применяются труборезы, которые не мнут трубу и не оставляют фрагменты самой трубы. Фирма «ROTHENBERGER» выпускает малогабаритные труборезы семейства MINICUT, позволяющие производить резку труб, диаметром 3–16 мм и 6–22 мм в труднодоступных местах. Очень удобен в эксплуатации телескопический труборез TUBE CUTTER 35. Благодаря телескопическому механизму режущий диск подается быстро и давление ролика на трубу точно дозируется. Данная модель имеет встроенный гратосниматель и запасной диск.

Для труб большого диаметра выпускается труборез AUTOMATIK, имеющий две модификации для труб диаметром 6–67 мм и 50–127 мм.

Специфика работы с медными трубами состоит в том, что для их соединения, в большинстве случаев, используется низко- или высокотемпературная пайка.

Немецкий концерн «ROTHENBERGER» производитель профессионального высококачественного инструмента, машин и оборудования для монтажа, ремонта и обслуживания любых типов труб диаметром до 1200 мм. История концерна "ROTHENBERGER" берет свое начало с 1949 года, момента основания фирмы в немецком городе Kelkheim (Западная Германия), который находится в 30-ти км от города Frankfurtam-Main, когда был изобретен ручной инструмент для расширения концов труб — экспандер. С того самого момента фирма начала свой путь и превратилась в крупнейшего мирового производителя профессионального инструмента для монтажа труб. В данный момент продукция фирмы производится на шести заводах в Германии, одном заводе в США, Ирландии и Испании. Дочерние предприятия, представительства и сервисные центры концерна «ROTHENBERGER» имеются по всему миру, включая Европу, Северную Америку, Средний Восток, Скандинавию, Южную Африку, Австралию и Россию.

Основная продукция фирмы производится на собственных заводах в Германии, где происходит полный цикл производства инструмента: проектирование-испытания-производствоконтроль качества-сервисное обслуживание. В широкой гамме продукции концерна "ROTHENBERGER" представлено более 500 различных типов профессинального интрумента (более 6000 моделей) для монтажа, ремонта и обслуживания медных, стальных, пластмассовых и металлопластиковых труб в системах отопления, водоснабжения, сантехники, кондиционирования и канализации, а также машины для прочистки засоров и установки алмазного бурения.

Основными клиентами данной продукции являются профессиональные монтажные и строительные фирмы, крупные машиностроительные предприятия, газовые и жилищнокоммунальные хозяйства, монтажные фирмы по промышленному и бытовому холоду, профессиональные монтажники, частные предприниматели.

Немецкое качество, надежность и эргономичность плюс разумная ценовая политика выгодно выделяют продукцию концерна "ROTHENBERGER" среди прочих западных производителей. Наличие сервисных и обучающих центров "ROTHENBERGER" позволяет не только производить гарантийное и послегарантийное обслуживание, а также техническую поддержку покупателей практически во всем мире, включая Россию и СНГ.

Из всего многообразия паяльного оборудования выпускаемого фирмой "ROTHEN-BERGER" следует выделить компактные горелки, работающие от одноразовых газовых 600 мл баллонов, а также и от баллонов емкостью 5, 27, 50 литров. Газовые горелки с одноразовыми баллонами с успехом используются для монтажных, серпламени 2200 градусов), работающие от баллонов емкостью 5, 27, 50 литров. Данные горелки могут быть использованы для пайки труб диаметром до 28 мм — твердым припоем, и диаметром 54 мм — мягким припоем.

Следует отметить, также ацетиленовую горелку AIRAC (температура

Ацетиленовая горелка

висных и ремонтных работ, в том числе в ограниченных пространствах, где затруднительно использование горелок со шлангом от больших баллонов.

Однако, наибольшей популярностью пользуется пропановые горелки AI-PROB (температура пламени 2000 градусов) и TURBOPROP (температура

пламени 2350 градусов) для пайки медных и стальных труб диаметром до 60 мм. Все вышеперечисленные горелки не нуждаются в дополнительной подаче кислорода.

Для пайки труб большого диаметра твердым припоем, а также сварки, используется горелка ALLGAS 2000, которая использует в качестве горючих газов пропан/кислород (температура пламени 2850 градусов по Цельсию) и ацетилен/кислород (температура пламени 3100 градусов). Диапазон пайки (толщина стенки трубы) до 2,5 мм, сварки 0,2-5 мм.

Наиболее мощной является горелка RE 17, которая использует в качестве горючей смеси ацетилен/кислород и может быть использована для пайки твердым припоем, сварки и резки. Диапазон сварки 0,5-20 мм, резки 3-100 мм.

Там, где запрещено использование открытого пламени применяется электрический прибор ROTHERM 2000 для безогневой пайки мягким припоем труб диаметром до 54 мм. Благодаря обхвату трубы с двух сторон, посредством угольных электродов, данный прибор быстро и равномерно прогревает место соединения труб. В отличие от газовых горелок, он не оставляет окалины на поверхности труб.

Помимо оборудования для пайки, фирма "ROTHENBERGER" выпускает широкую гамму припоев: мягкий припой для фитингов 1S (Sn96Ag4) и 3S (Sn97Cu3); и паяльные пасты ROSOL 1S (Sn97Ag3) и ROSOL 3 (Sn97Cu3), которые содержат до 60-70% самого припоя.

Перечень твердых припоев более многообразен и включает в себя меднофосфористые припои, меднофосфористые припои с добавлением серебра, специальные припои, а также паяльные пасты.

🅦 ИЛИ КОМФОРТ МЯГКОЙ ВОДЫ

ода в доме давно перестала быть роскошью, и сейчас уже трудно представить себе современное жилище, не обеспеченное водой. Несмотря на кажущуюся простоту формулы (H₂0), вода является одним из самых сложных соединений. Вода — великое лекарство, нужное для поддержания здорового тела, ясного ума и правильного баланса в тканях человеческого организма. Человек на 70% состоит из воды и поэтому должен постоянно пополнять ее количество. Одной из наиболее распространенных в России проблем стала жесткость, определяемая присутствием в воде солей кальция и магния.

Так чем же нам мешает жесткая вола? Отложения на поверхности труб, теплообменников, бытовых приборов — серьезная проблема. Это приводит не только к перерасходу энергии (до 70%), но и к авариям, отключению водопровода и отопления. Стиральная машина, гидромассажная ванна, бойлер за год работы будут выведены из строя. Также отложения накипи уменьшают диаметр проточной части труб и теплообменников, увеличивая их гидросопротивление, что влечет за собой потери в насосном оборудовании на прокачку воды. Эта проблема возникла не сегодня, и для ее решения используют как механические, так и химические способы. Они весьма трудоемки, дороги и экологически небезопасны.

С другой стороны, жесткость воды усиленно привлекает к себе внимание в связи с выявленной обратной зависимостью между жесткостью и риском сердечнососудистых заболеваний. Благотворно влияет на сердечно-сосудистую систему присутствие солей магния. Но чем мягче вода, тем меньше их там. А ведь именно магний подавляет способность организма впитывать токсичные вещества (свинец, цинк, хром, кадмий), способствующие старению мышцы сердца. Исследования также показали, что у людей, потребляющих химически мягкую воду (замещение ионов $Ca^{2+}Mq^{2+}$ на Na^{2+}), чаще наблюдается повышенное кровяное давление и содержание в крови холестерина.

Между тем, существует технология WATER KING, соединившая в себе возможность получения мягкой воды с сохранением жизненно необходимых свойств солей кальция и магния. Принцип действия этой технологии основан на изменении структуры кристалла солей жесткости под воздействием электромагнитных волн звукового диапазона. С научной точки зрения, образование накипи начинается с появления центров кристаллизации на пограничных с водой поверхностях. Площадь центров кристаллизации очень быстро возрастает и процесс энергично ускоряется.

Действие технологии WATER KING направлено как раз на разрушение центров кристаллизации. Но на этом действие прибора не заканчивается. Обработанная, «активная» вода в состоянии растворить уже имеющиеся отложения накипи.

WATER KING — это электронный умягчитель воды, способный обработать весь поток воды, проходящий по трубе, на которой он установлен. Следует отметить, что вода, обработанная прибором WATER KING, сохраняет свои «мягкие» свойства до шести дней, вне зависимости от характеристик и интенсивности обработки. Прибор желательно устанавливать на входных трубах бойлеров, вводах в квартиру или подводящих патрубках форсунок распылительных устройств. Данная технология дает возможность использовать ее как в быту, так и в промышленности. Если воду, поступающую на вход мембран и химических фильтров очистки воды предварительно обработать прибором WATER KING, то срок службы такого оборудования увеличится в несколько раз.

Прибор очень прост в установке и эксплуатации. Оборудование WATER KING проектируется для потребителя, исходя из двух параметров:

- диаметра подводящей трубы,
- мощности защищаемого от отложений накипи оборудования.
 Для того чтобы установить прибор,

достаточно просто выполнить несколько витков обмоток на трубу. Далее прибор подсоединяется к электрической сети. Работа установленного прибора не ограничивается по времени. Он способен работать 24 часа в сутки в течение многих лет. Гарантия производителя — 2 года. Потребление электроэнергии — от 2 Вт. Для работы электронного умягчителя воды WATER KING не требуется никаких расходных материалов, нет необходимости вызывать специалистов для обслуживания. Вы получаете умягченную воду без необходимости приобретения и установки дорогостоящих и крупногабаритных химических умягчителей, тем более что технология WATER KING показывает свою успешную работу на протяжении десятков лет.

Попробуйте однажды обратить внимание на жесткость воды. И, обнаружив проблему, подумайте, роскошь ли мягкая вода, особенно теперь, когда с помощью прибора WATER KING ее комфорт все быстрее выходит из понятия «излишество».

000 «WATER KING» Тел.: 191-96-96, 191-96-98, тел./факс: 191-97-98 www.waterking.ru

Технические характеристики приборов WATER KING

Название модели	Диаметр трубопровода, не более	Мощность защищаемого отопительного газового оборудования, не более	Мощность защищаемого отопительного электрического оборудования, не более
WATER KING SENTRY	32 мм	35 кВт	15 кВт
WATER KING-2	42 мм, или на два трубопровода не более 32 мм	50 кВт	30 кВт
WATER KING-3	64 мм, или на два трубопровода не более 42 мм	350 кВт	50 кВт

«ЖИВЫЕ ЦИФРЫ» серийного строительства

Этим материалом мы хотим помочь избавиться от стереотипов о дороговизне полимерных труб и отразить реальную стоимость изготовления системы отопления/водоснабжения по фактически выполненным объемам работ. На наш взгляд, это должно стать вторым этапом популяризации энергосберегающих технологий с применением систем из полимерных материалов на Российском рынке, т.к. объективно оценивая их преимущества, мы, «по умолчанию», обязательно представляем удорожание стоимости конечного квадратного метра.

Так ли это? Сколько стоит система отопления/водоснабжения в расчете на один квадратный метр?

Приведенный ниже пример является скорее исключением из правил, т.к. выполнен по типовой для России системе с одной лишь заменой материала. Обычной же для Европы практикой применения ПЕКС-труб является горизонтальная лучевая разводка, которая позволяет существенно уменьшить количество магистральных стояков, раз-

местив их в заранее устроенной нишею. От них производится подключение конечных потребителей через распределительный коллектор, который для каждой квартиры индивидуален, что, в свою очередь, позволяет устанавливать приборы учета потребления воды, тепла и т.д.

Однако в настоящий момент заказчик не всегда согласен идти на полную переработку проекта, что и приводит к необходимости изготовления систем

аналогично приведенной в данном материале. Еще раз хочется отметить, что данная система «неудобна» для реализации при помощи полимерных материалов, т.к. ведет к необходимости производства работ трубами больших диаметров (в основном Д25), которые значительно дороже меньших диаметров, используемых при горизонтальной лучевой системе.

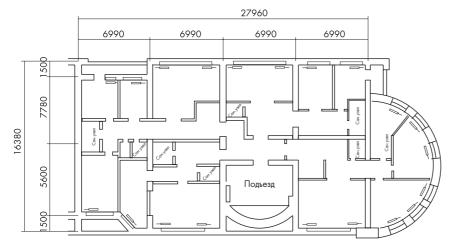
Одним словом, мы представляем Вам «неудобный» для полимеров проект:

Устройство системы отопления блок секции 9-ти этажного жилого дома. (г. Саратов, ул. Вольская)

Тип материала: система труб ПЕКС с комбинированным использованием фитингов:

- при скрытом монтаже напрессовочные;
- на доступных участках компрессионные.

Тип системы отопления: «классический» стояковый проект с сохранением Ду без переработки проекта, т.е. только замена материала. 1-ый этаж — тупиковая двухтрубная с нижней разводкой; жилые этажи (2–9) — тупиковая однотрубная с П-образными стояками.


Приборы отопления:

- в жилом доме чугунные радиаторы МС-140;
- в офисной части (1-ый этаж) конвектора «Универсал» и чугунные радиаторы МС-140

Источник тепла: индивидуальный тепловой пункт.

Температурные параметры: теплоносителя 95° C/ 70° C; наружная температура воздуха до -27° C.

Общая площадь блок секции (двух подъездов): 5 604,2 кв. метров жилой площади.

Важные детали:

- Штрабление стен можно избежать, если на ранней стадии строительства заложить ниши в местах устройства стояков и радиаторов. В противном случае это удорожание работ на производство работ по устройству ниш.
- Кроме принципиальной замены материала, система будет скрыта в конструкции стены, т.е. соответствовать высоким эстетическим требованиям, что также избавит новых хозяев от затрат на демонтаж и дальнейшее устройство современной системы. Это также позволит эксплуатировать систему в соответствии с просчитанными и заложенными нормами расхода воды, потерь тепла и т.д., т.е. не будет произведено стихийного, не санкционированного процесса замены установленных труб на разнотипные материалы и разно размерные участки в каждой отдельной квартире.
- Мы ведем речь об устройстве системы «с высоким уровнем комфорта» и с возможностью его дальнейшего наращивания, путем несложной установки терморегулирующего оборудования.

- Узлы подключения приборов отопления предусматривают возможность их быстрого демонтажа с целью замены непосредственно самих приборов.
- Расходы на дальнейшую эксплуатацию будут многократно снижены, что особенно важно если Вы намереваетесь оставить построенный дом на сво-

ем обслуживании — Ваши долгосрочные капитальные вложения, экономия от которых скажется уже после 2–3 лет эксплуатации.

Таким образом, мы оценим фактическое изменение стоимости системы отопления/водоснабжения без учета объективных преимуществ системы,

т.е. мы оцениваем только стоимость квадратного метра.

Однако, произведенные неотделимые улучшения, могут и должны участвовать в повышении потребительской привлекательности проекта, с его объективно возможным удорожанием при конечной реализации.

Стоимость материалов и работ по монтажу системы отопления из труб БИР ПЕКС:

Nº	Наименование	Ед.изм.	Кол-во	Сумма \$
1	Магистральные трубопроводы системы отопления в техподполье из ПЕКС-труб Д 32–63 с креплениями	М.	397	3 262,00
2	Фитинги для магистральных трубопроводов	-	-	3 997,00
3	Теплоизоляция магистральных трубопроводов	М.	397	853,00
4	Трубы стояков системы отопления из ПЕКС-труб с креплениями и гофрой Д 20–25	М.	1711	5 697,00
5	Узел отключения и сброса стояка системы отопления	Шт.	42	435,00
6	Узел подключения радиатора в жилом доме с термостатом	Шт.	184	6 753,00
7	Узел подключения конвектора в офисах без терморегулятора	Шт.	36	223,00
8	Узел подключения радиатора в офисах с термостатом	Шт.	16	516,00
9	Стоимость радиаторов чугунных с перегруппировкой, опрессовкой и кронштейнами	Секц.	1509	5 921,00
10	Стоимость конвекторов	Шт.	41	490,00
11	Стоимость материалов и работ по монтажу теплового пункта	Шт.	1	12 200,00
12	Стоимость работ по монтажу системы отопления, включая транспортные расходы и расходные материалы	Шт.	1	8 700,00
		Итого:	49	047,00 \$

Стоимость материалов и работ по монтажу систем водоснабжения из труб БИР ПЕКС и канализации:

Nº	Наименование	Ед.изм.	Кол-во	Сумма \$
1	Магистральные трубопроводы системы водоснабжения в техподполье из ПЕКС-труб Д 40–50 с креплениями	М.	511	4 900,00
2	Фитинги для магистральных трубопроводов	_	_	617,00
3	Теплоизоляция магистральных трубопроводов	М.	511	1 270,00
4	Трубы стояков системы водоснабжения из ПЕКС-труб с креплениями Д 25–32	М.	356	1 650,00
5	Теплоизоляция для стояков системы водоснабжения	М.	36	630,00
6	Фитинги для стояков системы водоснабжения	_	_	1 059,36
7	Узел отключения и сброса стояка системы водоснабжения	Шт.	18	378,20
8	Водомерный узел с обвязкой и креплениями	Шт.	104	2 249,60
9	Стоимость работ по монтажу системы водоснабжения, включая транспортные расходы и расходные материал	Ы —	-	2 115,36
10	Трубы и фасонные части из полипропилена для системы канализации	_	_	3 430,38
11	Стоимость работ по монтажу системы канализации, включая транспортные расходы и расходные материалы	_	_	1 111,44
		Итого:	19	411.34 \$

При замене термостатических клапанов на терморегулирующие вентиля общая сумма уменьшится на 3200 у.е.. При отказе от теплоизоляции общая сумма (отопление и водоснабжение) уменьшится на 2750 у.е..

Таким образом, суммарные цифры по блок секции (2 подъезда) выглыдят следующим образом:

	Объем работ	итого \$	Стоимость на 1 кв.м. \$
1	Полная стоимость материалов и работ по устройству системы отопления/водоснабжения	68 458,34	12,22
2	Стоимость материалов и работ по монтажу системы отопления/водоснабжения из труб		
	и фитингов БИР ПЕКС (сумма по выделенным позициям), т.е. без учета стоимости приборов		
	отопления, теплового пункта, водомерных узлов и теплоизоляции магистральных трубопро-		
	водов, что может быть заменено для условий других зданий.	41 414,36	7,39
3	То же, что п.2, но с учетом замены термостатических элементов на терморегулирующие	38 214,36	6,82

Стоимость по пункту 1 предусматривает изготовление магистральных трубопроводов в подвальной части из ПЕКС-труб с использованием шаровой запорной арматуры.

Стоимость выполнения аналогичных работ для этой же блок секции из двух подъездов на базе стальных черных/оцинкованных труб будет равна \$ 48 500,00. Но эта цифра не включает прямых дополнительных затрат:

- на теплоизоляцию труб— \$ 1 483,00
- узлы подключения приборов отопления с быстросъемным разъемом «американка», термостатическими клапанами и автоголовками для радиаторов — \$ 7 269,00
- водомерные узлы с креплениями \$ 2 249,00 Таким образом, общий объем капитальных вложений для условно эквивалентной

системы, без учета эстетичности и срока службы, из стальных труб будет равен \$ 59 501,00, что в пересчете на один квадратный метр \$ 10,62, т.е. абсолютное удорожание системы из полимерных труб ПЕКС в максимальной комплектации для данного проекта составит всего 13,5%, а от общей стоимости строительства не более 0,9%.

Выводы и Аналитика

Для более детального анализа полученных цифр мы обратимся к старым «советским» строительным нормам по составлению проектно-сметной документации, которые

регламентировали затраты на устройство системы отопления/водоснабжения для строящихся объектов. При данном сравнении мы опять не будем учитывать повышенного уровня комфорта: радиаторы с термостатическими клапанами и термоголовками, трубы скрыты в конструкцию стен, расчетный срок службы системы увеличен в 3–4 раза.

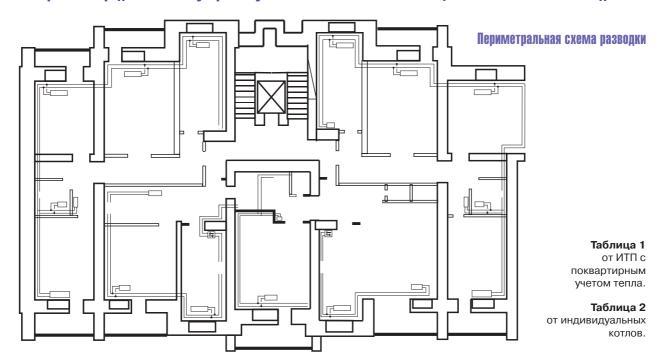
Так вот, согласно нормативных документов, эти затраты выглядят следующим образом: (Таблица затрат на стр. 20)

Статья затрат Процентное соотношение от стоимости строительства

В приведенном выше варианте, денежный эквивалент устройства всех коммуникаций, с учетом изготовления теплового узла, но за вычетом приборов отопления (как и требуется по нормативу), составляет \$ 60 047,34.

Если составить арифметическую пропорцию процентов и суммы, то мы можем получить сметную стоимость строительства (все в тех же нормах), которая будет равна \$ 884 344,62. Что в переводе на стоимость квадратного метра означает \$ 157,80. Таким образом, стоимость

вновь построенного и оборудованного всеми необходимыми инженерными коммуникациями квадратного метра жилой площади должна равняться 4 891,80 руб.!!!


Рыночная же стоимость жилья значительно выше.

Вывод:

На стоимость квадратного метра выбор материала трубопровода не влияет. Полученные расчеты, позволяют утверждать, что уже

сегодня возможно изготовление системы отопления/водоснабжения с применением современных ПЕКС-труб в соответствии и в пределах существующих строительных норм. Сама же система будет выполнена с максимальным «уровнем комфорта», отвечать последним требованиям и нормам энергосбережения, а прослужит в 3-4 раза дольше, требуя на обслуживание значительно меньшие средства.

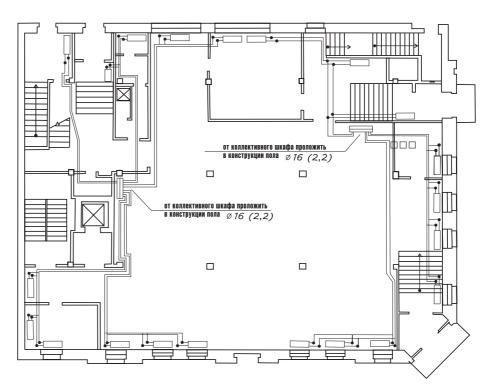
Коммерческое предложение по устройству системы отопления блок секции 9-ти этажного жилого дома.

Смета работ и затрат по монтажу системы отопления в 9-ти этажном жилом доме общей жилой плошадью 2740 м² с поквартирным отоплением от ИТП, одним стояком на подъезд и узлами учета тепла на каждую квартиру.

Nº	Наименование	Ед.изм.	Кол-во	Сумма \$
1	Трубы БИР ПЕКС для системы отопления жилого дома	-	-	4 228,50
2	Крепеж для труб БИР ПЕКС системы отопления жилого дома	-	-	452,90
3	Гофротруба и теплоизоляция для труб системы отопления жилого дома	-	-	1 098,81
4	Фитинги системы отопления жилого дома	-	-	3 514,03
5	Узел подключения радиатора с терморегулятором	шт.	180	4 921,20
6	Узлы поквартирного учета тепла	шт.	36	3 322,89
7	Монтаж системы отопления	-	-	7 561,00
8	Радиаторы чугунные с опрессовкой, перегруппировкой и кронштейнами	секц.	895	3 302,55
9	Тепловой узел с бойлерами ГВС жилого дома и работами по монтажу	шт.	1	6 000,00
	Общая стоимость материалов и работ:		34	4 401,88
• Cm	оимость системы отопления в пересчете на один квадратный метр жилой площади составит	•		12.56
	учета стоимости терморегуляторов, узлов поквартирного учета тепла, приборов отопления			

и теплового пункта стоимость системы на 1м^2 составит: 11,41 Таким образом, расчетная сметная стоимость строительства 1 м² должна составлять (расчитывается из пропорции 6,72% затрат на отопление/водоснабжение):

124,59

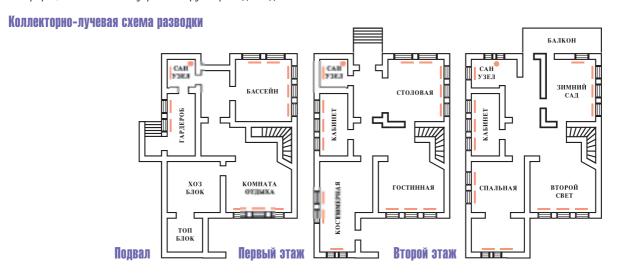

Смета работ и затрат по монтажу системы отопления в 9-ти этажном жилом доме общей жилой площадью 2740 м² с индивидуальными теплогенераторами (котлами) в каждой квартире.

Nº	Наименование	Ед.изм.	Кол-во	Сумма \$
1	Трубы БИР ПЕКС для системы отопления жилого дома	-	-	3 118,50
2	Крепеж для труб БИР ПЕКС системы отопления жилого дома	-	-	375,00
3	Гофротруба для труб системы отопления жилого дома	-	-	822,15
4	Фитинги системы отопления жилого дома	-	-	1 437,48
5	Узел подключения радиатора с терморегулятором	шт.	180	4 921,20
6	Монтаж системы отопления	-	-	5 502,30
7	Радиаторы чугунные с опрессовкой, перегруппировкой и кронштейнами	секц.	895	3 302,55
8	Котел индивидуальный, отопительный, двухконтурный	шт.	36	39 600,00
	Общая стоимость материалов и работ:		5	9 079,18

При отказе от терморегуляторов стоимость системы в пересчете на один квадратный метр составит:
 Пункт 8 данной сметы не включает в себя стоимость проектных работ по газу, затраты по увеличению диаметра газового стояка и устройству дымоходов, а также монтажу котельного оборудования.

Коммерческое предложение по устройству системы отопления административного здания.

Лучевая схема разводки



Смета работ и затрат по монтажу коллекторно-лучевой схемы отопления, водоснабжения и канализации в четырехэтажном административном здании общей площадью 2140 м² от индивидуальной котельной (без учета ее стоимости).

Nº	Наименование	Ед.изм.	Кол-во	Сумма \$
1	Труба БИР ПЕКС, гофра, крепеж	-	-	2 710,40
2	Узел подключения радиатора с терморегулятором	шт.	14	382,76
3	Узел подключения радиатора без терморегулятора	шт.	75	915,00
4	Коллекторные шкафы с обвязкой	шт.	8	1 491,58
5	Фитинги стояков системы отопления	-	-	315,00
6	Радиаторы чугунные с опрессовкой, перегруппировкой и кронштейнами	секц.	525	1 837,50
7	Система водоснабжения и канализации (труба и фитинги)	-	-	1 039,40
8	Монтаж системы отопления, водоснабжения и канализации	-	-	5 224,15
	Общая стоимость материалов и работ:		1.	3 915,79
	оимость системы отопления в пересчете на один квадратный метр общей площади составит:			6,37
	учета стоимости , приборов отопления, но с учетом водоснабжения и канализации			
	римость системы на 1 м² составит:			5,64
	им образом, расчетная сметная стоимость строительства 1 м² должна составлять: считывается из пропорции 6,72% затрат на отопление/водоснабжение)			83,12

Коммерческое предложение по устройству системы отопления коттеджа.

- Данный расчет составлен для коттеджа с общей отапливаемой площадью 580 м².
- Система отопления с лучевой разводкой (трубы системы отопления от коллекторных шкафов до приборов отопления прокладываются по полу).
- В качестве приборов отопления принимались, вариант «Минимум» чугунные радиаторы, вариант «Максимум» алюминиевые радиаторы.
- Узлы подключения радиаторов в варианте «Минимум» не имеют запорной или регулировочной арматуры (минимальный уровень комфорта), в варианте «Максимум» с автоматическими терморегуляторами (максимальный уровень комфорта).
- Напольное отопление применяется в следующих помещениях: около бассейна, прихожая, холл.
- Трубы и фитинги для обвязки котла из меди.
- В качестве запорной арматуры котла и в коллекторных шкафах взяты шаровые краны.
- Для случаев «Минимум» и «Максимум» удорожание происходит только за счет применения автоматики и увеличения уровня комфорта, т.е. система внутренних трубопроводов идентична.

Смета работ и затрат по монтажу коллекторно-лучевой схемы отопления, водоснабжения и канализации в трехэтажном коттедже, общей площадью 580 м² от индивидуальной котельной (без учета ее стоимости).

Nº		Ед.изм.	Кол-во	Сумма тіп \$	max \$
	Материалы системы отопления:			3 115,96	4 906,90
1	Стояки системы радиаторного и напольного отопления	-	-	168,30	168,30
2	Трубы, фитинги, коллекторные шкафы	-	-	1 132,62	1 132,62
3	Напольное отопление	M ²	47	463,64	463,64
4	Узел подключения радиатора	ШТ	33	293,70	773,14
5	Радиаторы чугунные	секц.	290/203	1 226,00	2 537,50
	Обвязка котла:			1 268,64	3 768,64
1	Насос фирмы Грундфос (Германия)	ШТ	1	150,00	150,00
2	Котел (мощность 48 кВт)	ШТ	1	500,00	3000,00
3	Трубы и фитинги для обвязки котла (медь)	-	-	618,64	618,64
	Монтажные работы:			1 636,14	1 821,36
	Общая стоимость работ и материалов по монтажу системы отопления:			6 020,74	10 496,90
	оимость системы отопления в пересчете на один квадратный метр отапл			10,38	18,10
• Бе:	учета ст. терморегуляторов, приборов отопления и теплового пункта сі	тоимость систе	мы на 1 м² составит.	6,08	7,22
• Тан	им образом, расчетная сметная стоимость полного строительства 1 м² д. считывается из пропорции 6,72% затрат на отопление/водоснабжение)	олжна составля	ть:	110,53	131,27

ЗАО "ГРАНД ОТЭКС РЕГИОН" Проектирование, сервис, монтаж, продажа • Котлы отопительные Slant/Fin, Fulton от 18 до 1000 кВт • Водонагреватели AmericanWHG до 450 л (газ, электричество) • Электроконвекторы, тепловентиляторы Dimplex • Конвекторы для систем водяного отопления Slant/Fin Тел.: Москва (095) 933-4837, 933-4843, 933-4849, 402-6231. С.-Петербург (812) 272-8991, 272-8116 E-mail: outex@mail.ru Internet: www.outex.ru

Российский производитель труб из сшитого полиэтилена для холодного и горячего водоснабжения и отопления

ООО "Фирма "БИР ПЕКС"

Тел./факс: (8452) 33 24 36 (8452) 48 41 14 (095) 317 29 63

e-mail: byrpex@rsm.ru

Официальный сайт: www.bvrpex.ru

Представители в регионах:

Качество подтверждено заключением РАН РФ

OTHYCTHT

- Репортаж с выставки
- Умягчение воды: ионообменные смолы, виды, принцип действия, эффективность
- Системы прецизионного кондиционирования воздуха с «гибкой» технологией работы для помещений с компьютерной техникой

(095) 367-54-72; 165-62-06; 165-53-26

Фанкойлы

любой мощности со склада в Москве

Полиэтиленовые трубы **REHAU** в инженерных системах зданий

Производственная программа REHAU охватывает широкий спектр отраслевых направлений. Одно из самых значимых мест в ней занимает ряд систем, специально предназначенных для инженерного оборудования зданий. В этой сфере потребителю предлагается комплексная система, включающая материалы, инструменты и оборудование, необходимые для проведения санитарно-технических работ на любом объекте, как на возводимом вновь, так и на реконструируемом.

Система питьевого водоснабжения

Для транспортировки питьевой воды (холодной и горячей) в жилых, общественных и производственных зданиях используется программа HIS, включающая в себя толстостенные трубопроводы марки RAUHIS и фасонные части со штуцерами под холодную запрессовку с помощью подвижной гильзы. Такая система предназначена для эксплуатации при рабочем избыточном давлении до 0,1 МПа и постоянной рабочей температуре до 90°С, в случае пиковых нагрузок кратковременно до 110°С.

Трубы RAUHIS изготавливаются из молекулярно сшитого полиэтилена PE-Xa.

Буква «а» в обозначении материала свидетельствует о способе сшивки материала с добавлением пероксидов. Пероксидная сшивка позволяет добиться равномерной и максимально высокой степени сшивки по всей толщине материала трубы, даже для трубопроводов больших диаметров. Этот способ обеспечивает максимальную долговечную прочность материала.

Трубопроводы из полиэтилена пероксидной сшивки характеризуются следуюшими свойствами:

- устойчивость к коррозии;
- отсутствие отложений на внутренней поверхности;
- хорошее поглощение гидравлического шума;
- термоустойчивость и устойчивость к высокому давлению;
- токсикологическая и физиологичес-

кая безопасность;

- высокая ударная вязкость, даже при низких температурах;
- память формы;
- низкие потери давления в трубах и фитингах;
- устойчивость к механическому износу;
- гибкость;
- низкая теплопроводность.

Трубы для водопроводной разводки внутри зданий выпускаются на следующие диаметры 16х2,2 мм, 20х2,8 мм, 25х3,5 мм, 32х4,4 мм, 40х5,5 мм, 50х6,9 мм, 63х8,7 мм.

Трубы RAUHIS сертифицированы для

использования в системах горячего и холодного водоснабжения во многих странах, в том числе на них имеются российские сертификат соответствия и санитарно-эпидемиологическое заключение. Эти трубы прошли испытание согласно нормативу W270 Германского объединения газового и водного хозяйства DVGW «Размножение микроорганизмов на материалах, используемых для транспортировки питьевой воды». При этом было установлено, что трубы из сшитого полиэтилена не способствуют размножению микроорганизмов.

Фасонные части системы разводки внутренней водопроводной сети HIS вы-

полнены из латуни, устойчивой к вымыванию цинка, которая была специально разработана для транспортировки питьевой воды (Рис. 2). Латунные фасонные части и подвижные гильзы защищены также и от коррозионного растрескивания в соответствии с требованием DIN 50916.

Вся система оснащена полным набором фасонных частей, включая переходники на резьбу и под пайку, которые позволяют решать вопросы перехода на трубопроводы из другого материала (сталь, медь и др.).

Система отопления

Для систем отопления фирмой REHAU выпускаются как тонкостенные трубопроводы RAUTHERM S красного цвета, так и толстостенная труба фиолетового цвета RAUPINK.

В соответствии с требованиями СНиП 2.04.05-91 трубопроводы из полимерных материалов, используемые в системах отопления, должны иметь защитный кислородонепроницаемый слой. Коэкструзивный кислородонепроницаемый слой, который имеют все отопительные трубы REHAU, состоит из этиленвинилалкоголя (ЭВАЛ) — материала с наилучшим защитным эффектом.

Отопительные трубы REHAU имеют очень широкую область применения.

Для поэтажной радиаторной разводки, а также для систем напольного отопления (Рис. 3).

Для систем настенного отопления могут применяться трубы RAUTHERM S диаметром 14х1,5 мм и 12х2,0 мм (Рис. 4).

При ремонте систем отопления в зданиях без отселения жильцов и нежелательности проведения сварочных работ и прокладки штроб может быть использована разводка отопительной сети в плинтусе. Фирма REHAU поставляет для этой цели плинтус марки RAUUNO только для прокладки отопительных труб и марки RAUDUO для совместной прокладки отопительных труб и электросетей.

При выборе канала RAUDUO необходимо, однако, учитывать ограничение по температуре для системы отопления, чтобы температура в камере для электропроводки не превышала 30°C.

С целью унификации использования фасонных частей в водопроводной и отопительной разводках, а также облегчения комплектации заказа была разработана толстостенная труба RAUPINK, имеющая такие же типоразмеры, как и водопроводная труба RAUHIS: 16x2,2 мм, 20x2,8 мм, 25x3,5 мм, 32x4,4 мм, 40x5,5 мм, 50x6,9 мм, 63x8,7 мм. Увеличение толщины стенки, по сравнению с трубами RAUTHERM S позволило повысить рабочие параметры труб до следующих значений:

t1/t2 = 90°/70°С и P = 0,09 МПа; t1/t2 = 70°/55°С и P = 0,11 МПа;

t1/t2 = 60°/50°C и P = 0,12 МПа. Отопительная труба RAUPINK характеризуется следующими свойствами:

- коррозионная устойчивость;
- отсутствие накипи даже при многолетней эксплуатации;
- трещинностойкость;
- стабильность формы;
- удобство монтажа за счет оптимального соотношения гибкости и прочности;
- устойчивость к старению при повышенной температуре;
- высокая прочность при температуре до –50°С (выдерживает несколько циклов замораживания и оттаивания теплоносителя без потери свойств);
- высокая прочность на истирание и разрез (по трубам можно ходить, протаскивать их через монтажные проемы, шахты);
- высокая устойчивость к воздействию химических веществ (напр. этиленгликоля);
- поглощение гидравлического шума;

Монтаж трубопроводов REHAU

Монтаж труб с применением труб REHAU отличается тем, что не требует ни сварки, ни пайки, ни нарезки резьбы и в отличие от клеевых соединений не требует особо чистых условий на монтажной площадке и абсолютно безвреден для здоровья.

Метод соединения называется аксиальной запрессовкой с помощью подвижной гильзы. Данный способ соединения является собственной разработкой REHAU для труб из PE-Xa. Оно абсолютно герметично и относится к классу неразъемных соединений, что позволяет замоноличивать разводку в штробу или

стяжку без обеспечения доступа к фасонным частям. Герметичность и неразъемность достигаются за счет обратной усадки труб после их расширения (память формы) и аксиальной запрессовкой (надвижкой) гильзы.

Сам процесс соединения очень прост: гильза надевается на трубу, труба расширяется без какого-либо нагрева при помощи специального эспандера, входящего в комплект монтажного инструмента, и надевается на штуцер фитинга, после чего производится надвижка гильзы на штуцер фасонной части с помощью запрессовочных тисков (Рис. 6).

Соединение на подвижной гильзе обеспечивает следующие преимущества:

- исключаются сварка, пайка и другие пожароопасные работы;
- весь процесс соединения находится под визуальным контролем, и если не отмечается видимых перекосов, то можно быть уверенным в герметичности выполненного соединения;
- сужения живого сечения в местах соединения практически не происходит;
- не требуется высокая квалификация монтажника;
- отсутствуют резиновые уплотнения, которые со временем стареют и разрушаются.

Для сборки такого соединения были разработаны специальные монтажные инструменты. Весь инструмент находится в удобном чемодане и по своим качествам соответствует условиям монтажной плошадки.

В зависимости от условий монтажа можно выбрать инструмент оптимально соответствующий условиям работы. Инструменты бывают 5-ти типов: механический RAUTOOL M1, механико-гидравлический RAUTOOL H1, электрогидравлический RAUTOOL E1, аккумуляторный RAUTOOL A1 и электрогидравлический для больших диаметров (50 и 63 мм) RAUTOOL G1.

Системы внутренней канализации

REHAU выпускает два вида труб для безнапорных систем внутренней канализации: обычные серые полипропиленовые трубы марки НТ и шумопоглащающие трубы RAUPIANO.

Трубы и фасонные части системы НТ выпускаются из самозатухающего полипропилена RAU-PP 1221, соответствующего самому высокому классу огнестойкости строительных материалов В1 по стандарту DIN 4102. Они могут использоваться для трубопроводов внутренней канализации при температуре стоков до +95°C (кратковременно).

Трубы НТ имеют следующие условные проходы: 40, 50, 75, 110, 125 и 150. Программа фасонных частей к ним способна удовлетворить любые запросы проектировщиков и монтажников. Существуют все необходимые переходники, в том числе и на чугунные трубы.

Канализационные трубы REHAU отличают следующие преимущества:

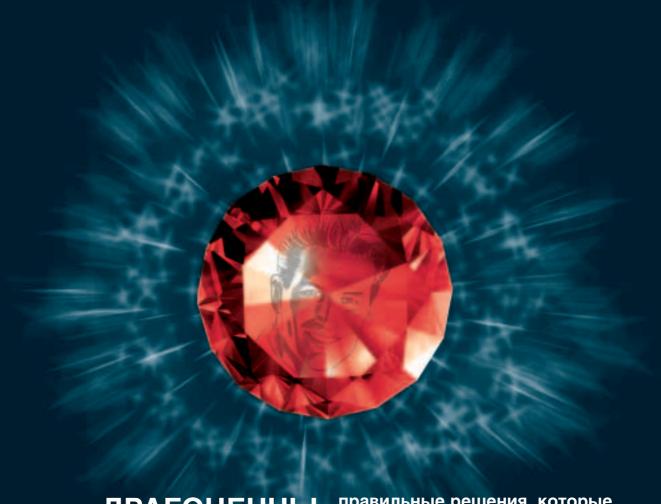
- высокая герметичность (выдерживают избыточное давление до 0,05 МПа);
- стабильность формы труб и фасонных частей;
- широкий ассортимент фасонных деталей, позволяющий создавать системы практически любых конфигураций.

Дополнительно к трубам НТ специалистами фирмы REHAU была разработана шумопоглощающая система внутренней канализации RAUPIANO (Рис. 7). В институте строительной физики имени Фраунгофера (Германия) на специально построенном стенде были проведены исследования системы RAUPIANO, доказывающие снижение уровня шума от канализационных стояков по сравнению, например,

с обычными серыми полипропиленовыми трубами более чем в два раза.

Такие шумопоглащающие свойства достигаются за счет использования специального материала (полипропилена с минеральными добавками) и особого шумоизолирующего крепления, которое не позволяет шуму и вибрации передаваться на поверхности, к которым крепятся трубопроводы, что особо актуально в зданиях и помещениях с повышенными требованиями по уровню комфорта.

Трубы REHAU для водопровода, отопления и канализации отлично себя зарекомендовали на сотнях различных объектов по всему миру. Многие из этих трубопроводов были смонтированы более чем 35 лет назад и до сих пор работают без каких-либо протечек и изменений основных свойств.


В России наблюдается активный рост использования трубопроводов REHAU, это происходит в основном за счет увеличения постоянных потребителей.

Качество соединения можно оценить на лабораторных стендах в учебном центре РЕХАУ в Москве, где проводятся испытания на ударную прочность в замороженном состоянии, устойчивость при высоких температурах, испытания на разрыв и гидравлический удар.

Вы увидите много интересного и получите ответы на вопросы, связанные с проектированием и монтажом надежных трубопроводов систем отопления, водоснабжения, холодоснабжения и канализации.

Оформить заявку на участие в очередном семинаре можно в компании МАСТЕР ВАТТ.

ДРАГОЦЕННЫ

правильные решения, которые мы принимаем сегодня. От них зависит наше спокойствие, внутреннее равновесие и благополучие завтра...

Трубы и фитинги для отопления и водопровода

Котельное оборудование

Радиаторы биметаллические и алюминиевые

Радиаторы стальные панельные

Теплые полы

Бойлеры и расширительные емкости

Насосы

Трубы канализационные

Термостатическая и запорная арматура

Польные отопительные каналы

107392, Москва: ул. Хромова, д. 7/1 (095) 168-5004 (095) 168-4210 E-mail: masterw@orc.ru Белгород: ООО «ЛЕКС» (0722) 34-67-73 (0722) 31-23-70 Хабаровск: ООО «ТЕПЛОТЕРМ» (4212) 32-55-00 (4212) 32-71-11

Комплексная водоподготовка при автономном водоснабжении

Современная система водоснабжения коттеджа представляет собой сложный комплекс устройств. Необходимыми составляющими такой системы являются не только насос, реле давления, манометр, гидроаккумулятор, обратный клапан и прочие необходимые для подачи воды приборы, но и комплексная подобранная под состав воды система очистки.

ногда скважины бурят с нарушением технологии и не представляют потребителю данные химического анализа и дебет скважины (количества воды, которое можно выкачать из нее за единицу времени). А эти данные являются необходимым условием первого этапа создания схемы водоподготовки при автономном водоснабжении.

Появление спроса на чистую воду в доме сделало системы очистки воды обычным рыночным товаром, началась конкурентная борьба за уровни их продаж. Образовался настойчивый поток рекламной информации, которая необходима для продажи систем очистки. Но в рекламно-информационных материалах не всегда делается акцент на качественную составляющую процесса и его необходимость. В специальных изданиях и средствах массовой информации говорится о многочисленных загрязнениях, содержащихся в питьевой воде, делающих ее опасной для здоровья человека. Очевидна необходимость применения устройств для очистки вод от вредных примесей. Но производство и продажа таких

устройств является предметом бизнеса, и это ограничивает потребителя в правильности и объективности выбора.

Обычно потребитель реально не представляет соответствия функций прибора поставленным задачам. Очень трудно разобраться в большом количестве существующих в настоящее время приборов для очистки воды (как отечественных, так и зарубежных). Все они сильно отличаются друг от друга не только по принципу работы и технологии, но и по ценам. Для того, чтобы определиться с линейкой необходимых приборов очистки воды в системе автономного водоснабжения необходимо иметь правильные данные о качестве воды используемого источника и характеристики возможных очистных систем.

Многие компании предлагают комплексное обслуживание, включающее химический анализ воды, подбор и поставку требуемого оборудования. Качество очистки воды очень сложно оценить. Отличия во вкусе воды до и после всех фильтров системы очистки еще не говорит о том, что очищенная вода достаточ-

но чиста и, следовательно, вам правильно рекомендовали систему очистки.

В США порядок приобретения фильтрационной системы или установки начинается с того, что необходимо отобрать порцию воды для анализа и отправить ее на независимую экспертизу. Независимой экспертизой является государственная экспертиза (соответствует СЭС), не заинтересованная в продаже какоголибо очистного оборудования. Такая экспертиза должна выдать полный анализ воды и рекомендации, показывающие какой тип технологии очистки может быть применен для проанализированной воды, а затем можно обратиться в любую фирму, занимающуюся продажей водоочистителей (а лучше сразу в несколько), которые порекомендуют конкретные установки, обеспечивающие рекомендованную экспертизой технологию. Из нескольких рекомендованных установок покупатель выбирает ту, которая ему больше нравится по тем или иным критериям, в том числе по стоимости. После того как выбор сделан, фирма-продавец производит монтаж выбранной установ-

ЗАО «Мембраны» проектирует, изготавливает и поставляет под ключ установки, предназначенные для получения высококачественной питьевой воды из водопроводной или артезианской

ОЧИЩАЕМ ВОДУ ЛЮБОЙ СЛОЖНОСТИ

1. Комбинированные установки подготовки воды для коттеджа. Для получения воды хозяйственно-бытового назначения (душ, туалет, водонагреватель и др.) предусмотрена механическая очистка, удаление железа, марганца, сероводорода, солей жесткости с использованием оптимально подобранных сорбирующих и ионообменных загрузок в зависимости от качества исходной воды. Для получения высококачественной питьевой воды используют мембранную фильтрующую систему типа «Ручеек 2С/10 Комфорт»

II. Мембранные установки для получения питьевой воды в поселке или микрорайоне. Включают узлы предочистки, мембранной фильтрации, сорбции и стерилизации. Установки изготавливаются для стационарного водопровода или для автономных пунктов раздачи воды.

600016, г. Владимир, ул. Б.Нижегородская, 77 т.(0922) 27-64-39, факс.(0922) 23-46-65 e-mail:Vladimir@memb.elcom.ru, http://memb.by.ru


Системы для удаления растворенного железа, марганца и сероводорода с автоматической иили ручной обработкой поомывки

ки. Отбирается еще одна проба воды и направляется опять на независимую экспертизу. И если химический анализ воды из-за нарушения технологии очистки не будет соответствовать тому, который был рекомендован после первичного анализа, фирме-продавцу не только придется вернуть покупателю деньги, но и возместить моральный ущерб.

Вариант, когда одни и те же специалисты делают анализ и рекомендуют установку работает чаще всего в России.

Крупные зарубежные производители стараются расширить рынок сбыта своего оборудования — в России появляются фирмы-представительства и фирмы-дилеры, осуществляющие продажу оборудования. Главной задачей таких фирм является осуществление оптовых продаж. Среди фирм, работающих на отечественном рынке, немало групп, пытающихся наладить производство систем, работающих по «авторской» технологии организаторов фирм, в основном — специалистов по очистке воды. Такие технологии основаны на классических, известных методах по очистке воды, но часто содержат оригинальные инженерные решения. Есть определенный перебор в рекламировании сверхвозможностей фильтров, но для специалиста, работающего с какой-либо водоочистной технологией,

Промышленное оборудование для водоподготовки

важны не просто показатели качества очищенной воды, а технические параметры работы систем — время работы, в течение которого система производит воду с требуемым качеством, прогноз времени выхода системы из строя, возможность ее регенерации и т.д.

Проблема разработки компактных очистных систем сложна. В отличие от крупных водоочистных станций, где существуют склады реагентов и бригады обслуживающего персонала, домашние ус-

тановки должны иметь малые габариты и работать в автоматическом режиме, а также иметь невысокую стоимость и минимальные эксплуатационные затраты.

Индивидуальное жилище — это сложный объект внедрения водоочистной технологии, где любая система подвергается самой серьезной проверке на надежность и эффективность. Частный заказчик должен следовать во взаимоотношении с подрядчиками таким критериям как «надежность», «гарантийные обязательства», «сервис» и «ответственность».

Можно отметить, что прорыва в разработке очистных технологий нет, а известные технические решения имеют как преимущества, так и недостатки.

Любая вода характеризуется биологическими, органическими и химическими показателями. Во многих случаях используется вода из артезианских скважин, которая характеризуется, как правило, повышенным содержанием ионов жесткости и растворенного железа. В этой ситуации улучшение органолептических свойств воды представляет собой сложную техническую задачу.

Но современную экологическую проблему создали не эти примеси, а загрязнение природных вод огромным количеством истинно растворенных токсичных загрязнений антропогенного характера,

ЭКОНОМИЧНАЯ ВОДОПОДГОТОВКА

ОБОРУДОВАНИЕ СЕРТИФИЦИРОВАНО

ПРИГЛАШАЕМ К СОТРУДНИЧЕСТВУ ДИЛЕРОВ

- РАЗРАБОТКА ПРОЕКТОВ "ПОД КЛЮЧ"
- КОНСУЛЬТАЦИИ ПО РЕКОНСТРУКЦИИ И ОПТИМИЗАЦИИ
 СУЩЕСТВУЮЩЕГО ОБОРУДОВАНИЯ ПО ВОДОПОДГОТОВКЕ
- ОБУЧЕНИЕ, ГАРАНТИЯ, СЕРВИС

ОБОРУДОВАНИЕ И КОМПЛЕКСЫ ВОДОПОДГОТОВКИ ДЛЯ БЫТОВОГО И ПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ

- МЕХАНИЧЕСКАЯ ОЧИСТКА ВОДЫ
- УМЯГЧЕНИЕ И ОБЕЗЗАРАЖИВАНИЕ
- УДАЛЕНИЕ ЖЕЛЕЗА, МАРГАНЦА, СЕРОВОДОРОДА
- **ОБЕССОЛИВАНИЕ**
- **О ИЗМЕНЕНИЕ И КОНТРОЛЬ ПАРАМЕТРОВ ВОДЫ**
- **О СИСТЕМЫ ПРОПОРЦИОНАЛЬНОГО ДОЗИРОВАНИЯ И ДР.**

"КФ Центр" - Центр водных технологий

127106 Москва, ул.Гостиничная, д.9, кор.4 Тел.: (095) 482-1783/92/94/97 http://www.kfcentr.ru, E-mail: info@kfcentr.ru таких как летучие галогеноводы, высокомолекулярные органические вещества, гербициды, пестициды, нитраты, ионы тяжелых металлов и радионуклиды. Из существующих специальных методов очистки воды наиболее известны сорбция на активном угле, аэрация, ионный обмен и мембранные методы.

Подземные артезианские воды хотя и не несут бактериального загрязнения, но и кроме повышенного содержания растворенного железа и ионов жесткости часто содержат повышенные концентрации фтора и сероводорода. Вблизи крупных промышленных предприятий возможно загрязнение водоносных горизонтов нитратами, органическими веществами антропогенного происхождения, солями тяжелых металлов. Когда вода, подаваемая в эти индивидуальные дома, не соответствует требованиям ГОСТ «Вода питьевая», требуется ее очистка.

Типичный европейский коттедж содержит обычно все типы водоочистной аппаратуры и включает следующие ступени очистки: патронный фильтр для задержания взвешенных веществ; фильтр с каталитической загрузкой для удаления железа и сероводорода (в случае необходимости) — эти устройства обычно рассчитываются на весь расход воды, подаваемой в дом; отдельная установка для умягчения воды для водонагревателя и горячего водоснабжения; отдельная установка для приготовления питьевой воды, устанавливаемая перед кухонным краном.

Эффективность и надежность работы любой системы очистки воды зависит от ее своевременного обслуживания. Общая сумма затрат, стоимость сервисных услуг, запчастей и реагентов будут являться главными критериями при выборе фирмы-поставщика. При подборе системы водоподготовки для конечного потребителя главными должны быть следующие вопросы:

непрерывного действия

- Кто будет устанавливать и осуществлять сервисное обслуживание?
- Будет ли установка обеспечивать требуемое качество воды?
- Срок службы установки?
- В чем состоит сервисное обслуживание и какова его стоимость в год?
- Каким образом осуществляется гарантийное обслуживание?

Точка зрения специалиста:

(материал предоставлен Группой компаний «Маэстро»)

Проблемы очистки воды для городской квартиры и для загородного дома различны. В первом случае муниципальные службы уже выполнили большую часть работы по доведению качества воды до уровня, соответствующего требованиям СанПиН 2.1.4.599-96. Решение доочистки водопроводной воды в городской квартире технически достаточно просто и легко осуществимо. Труднее реализовывать на практике проект комплексного водообеспечения загородного дома.

Первая задача хозяина коттеджа подвести воду к своему участку. Если участок может быть обеспечен водой путем подключения к уже действующему водопроводу, то можно переходить к решению задачи очистки. Если нет, то следует решить, каким способом необходимо добывать драгоценную влагу. Колодец не годится из-за низкой производительности и сомнительного качества колодезной воды, которая по сути представляет собой грунтовые воды с глубины от 1 до 20 м, пополняемые сезонными осадками. Вода из колодца не может обеспечить требуемый «городской» уровень комфорта.

Вода из артезианской скважины поступает с известняковых водоносных горизонтов с глубины 30-200 м. Производительность такой скважины может составлять несколько тысяч литров в час. Вода сначала может казаться прозрачной, но при наличии в ней растворенного железа наблюдается эффект надрезанного яблока — железо на воздухе окисляется и выпадает в осадок. Бурение индивидуальной артезианской скважины стоит дорого. При объединении нескольких хозяев можно осуществить роторное бурение и эксплуатацию такой скважины по приемлемым для каждого участника ценам.

Большинство застройщиков в московском регионе принимают решение о бурении сравнительно неглубокой скважины глубиной несколько десятков метров на воду с песчаных горизонтов. Для этого используется метод шнекового бурения, более дешевого, чем роторное.

В каждом регионе выбор типа скважины зависит от местных условий. В любом случае бесперебойная подача воды зависит не только от свойств самого водоносного горизонта, но и от надежности используемого оборудования, от точного выполнения технологии бурения.

Следующей задачей водоснабжения является очистка поступающей из скважины воды. В первую очередь следует выполнить анализ химического и бактериологического состава воды в специальной лаборатории. Вода может иметь разную степень жесткости, содержать нерастворимые механические примеси, взвесь, растворенные железо, марганец, иметь неприятный запах, цветность, мутность, в ней могут находиться опасные бактерии. Механические примеси, песок могут привести к засорению и более бы-

строму износу труб и сантехники. Содержащееся в воде растворенное железо и марганец портят вкус и цвет воды, загрязняют сантехнику и являются одной их причин коррозии. Жесткость воды определяется наличием в ней растворенных солей магния и калия, высокое содержание которых приводит к появлению накипи в трубах. Это может привести к порче посудомоечной и водонагревательной техники, стиральных машин, выходу из строя клапанов бытовой техники. Кроме того, жесткая вода отрицательно действует на кожу и волосы.

Не существует единого фильтра, задерживающего все эти включения. Поэтому процесс очистки воды является многоступенчатым.

Фильтры классифицируются по своему применению и предназначены для решения следующих характерных проблем с водой:

- механическая очистка удаление нерастворенных примесей, взвешенных частиц глины, песчинок, ржавчины и т.п.;
- удаление растворенного железа и марганца;
- умягчение воды;
- удаление растворенных в воде газов, улучшение вкуса и запаха;
- удаление органических примесей;
- обеззараживание воды;
- бытовые фильтры.

Фильтр грубой очистки справится с большим количеством крупных примесей. Осадочные фильтры бывают следующих типов: автоматические установки с фильтрующими средами, фильтры патронного типа со сменными картриджами, сетчатые самопромывные и др. Фильтры засыпного типа осветлят мутную воду и значительно увеличат ресурс работы последующих фильтров более тонкой очистки, а добавление небольшого количества серебросодержащего сорбента предохранит всю фильтрационную цепочку от заражения бактериями. По способу сохранения фильтрующих свойств фильтры можно разделить на промываемые, чья фильтрующая способность может быть восстановлена, и заменяемые после фильтрации заданного объема воды. В многоступенчатой системе картриджных фильтров удаляют не только крупные примеси, но и многие другие нежелательные вещества и микроорганизмы: накипь, хлор, ионы тяжелых металлов, соли, спорообразующие цисты и др.

Наиболее важная и достаточно трудная задача— удаление растворенных

в воде железа и марганца. В качестве сорбента для обезжелезивания воды используют природные или синтетические цеолиты, содержащие оксид марганца, являющиеся катализатором окисления железа и марганца в более высокие валентные состояния. Окисленные частицы осаждаются на поверхности сорбента. Фильтрующие материалы подбираются в зависимости от физико-химических свойств воды. Metal Ease — природный материал с повышенной степенью окислительной активности, Birm — синтезированное вещество, хорошо работающее с аэрированной водой, Greensand — цеолит, покрытый окисью марганца, регенирируемый раствором КМпО₄ («марганцовки»). При выборе сорбента надо учитывать, какой тип канализации действует в доме. В случае септика не рекомендуется выбирать сорбент на основе перманганата калия, т.к. сбрасываемая при промывке фильтра вода может погубить полезные бактерии системы канализации. Периодически необходимо проводить взрыхляющую промывку сорбента обратным током воды, а затем уплотнительную промывку прямым током. Кроме того, следует заранее рассчитать возможности канализационной системы принять большой объем воды (до 400-500 л) во время промывки фильтров.

Высокая жесткость воды определяется присутствием в ней большого количества ионов кальция и магния. Местные различия по этому параметру весьма заметны. Например, вода в московском регионе довольно жесткая, в Санкт-Петербурге, наоборот, почти не содержит кальция и магния.

Работа установки по умягчению воды основана на прохождении ее через колонки с ионообменной смолой (натрийкатионитом). Соли жесткости устраняются за счет обмена катионов кальция и магния на катионы натрия. Через определенное время эксплуатации фильтра производится регенерация свойств ионообменной смолы с помощью раствора поваренной соли. Работа установок полностью автоматизирована: один-два раза в месяц производится единственная ручная операция – добавление твердой поваренной соли в бак солерастворителя. Обязательно надо умягчать воду, поступающую в систему горячего водоснабжения, а также используемую для мытья посуды, стирки и приготовления пищи. Тем, кто часто бывал в горах хорошо известно, какой вкусный чай получается на воде из горных рек, которая почти не содержит солей жесткости.

Для полива сада, работы фонтана или работы сливного бачка туалета воду умягчать нет необходимости.

Существуют комбинированные фильтры для очистки воды. В них способность к умягчению воды сочетается с удалением растворенного железа, органических соединений, свинца и других тяжелых металлов. Использование макропористых анианитов в сочетании с сильнокислотными катионитами позволяет эффективно удалять трудно окисляемые комплексы «органического» железа. Подбор фильтрующих материалов производится специалистами индивидуально.

Для улучшения органолептических показателей воды (вкуса, запаха, цвета), удаления хлора и вредных органических соединений используются угольные фильтры. Гранулированный активированный уголь за счет пористости обладает огромной активной поверхностью. Неизбирательная физическая сорбция угля происходит за счет необратимого захвата высоко- и низкомолекулярных соединений микропорами поверхности. Современные технологии производства активированных углей, импрегнированных серебром, позволяют значительно увеличить ресурс эффективной работы фильтров. Добавление небольшого количества серебросодержащего сорбента позволяет очистить воду от опасных бактерий. Лучшим сырьем для активированного угля является скорлупа кокоса. Из нее получается уголь с высокими

адсорбирующими свойствами.

Очень эффективны установки для обеззараживания воды, основанные на облучении ультрафиолетовым излучением с длиной волны 253,7 мкм. При этом не используются какие-либо химические реагенты, вкус воды не изменяется.

Довольно часто, особенно на глинистых и песчаных почвах, вода бывает мутной. Для приведения ее к норме используются осветлительные фильтры. В качестве фильтрующих материалов в таких аппаратах применяется сорбент Filter Ease. Данный материал позволяет эффективно очищать воду от окисленного железа, ила, взвеси и устраняет мутность.

Отдельную группу фильтров для тонкой доочистки небольшого количества воды, предназначенной для питья и приготовления пищи, составляют системы обратного осмоса. Они содержат полупроницаемую мембрану, задерживающую до 98—99% примесей и пропускающую молекулы воды.

Не существует фильтров, за которыми не требуется контроль и профилактический уход. Ресурс фильтров зависит не только от качества воды, но и от правильного ухода за его состоянием.

Приведем пример комплектации системы водоподготовки и очистки на примере коттеджа среднего размера (жилая площадь — 250 кв.м), в котором постоянно проживает семья из 4 человек. В доме 2 туалета, душ и ванная комната, открытый бассейн площадью 20 кв. м. Участок имеет площадь 20 соток. Летом требуется полив газона и цветника. Средний расход воды составляет 0,5 куб.м на человека в час, следовательно, производительность фильтрующей цепочки должна быть около 2 куб.м/час.

Месторасположение объекта: Истринский район Московской области.

Исходя из протокола исследования качества питьевой воды, можно предложить установить следующее фильтровальное оборудование для получения воды, соответствующей требованиям ГОСТ 2874-82 «Вода питьевая» и СанПиН 2.1.4.559-96.

Производительность:

1,5-2,0 куб.м/час.

Фильтр-осветлитель для удаления взвеси и устранения мутности. В качестве фильтрующего материала применяется сорбент FilterEase (модель FFA 100 Safe Water Technology, США).

Фильтр-обезжелезиватель

(модель GFA 941-20, США) с сорбентом Green Sand с автоматической регенерацией раствором перманганата калия, для удаления 10-кратного превышения количества железа и марганца. Фильтр работает в автоматическом режиме по заданной программе.

Для заданной производительности необходим размер минерального бака не менее 13х54 дюйма. Ресурс работы сорбента — до 4 лет, после чего его требуется его заменить.

Фильтр-умягчитель (модель WSC 941-10, США). Представленный выше анализ показывает соответствие жесткости воды принятым в России нормам. Однако, рекомендуем снизить жесткость до комфортной величины 1,5–2,5 мг÷экв/л. Это позволит увеличить срок службы бытовых водонагревательных приборов и системы отопления. Более мягкая вода приятнее и полезнее для волос и кожи. В предложенных умягчителях используется ионообменная смола с высокими обменными характеристиками и механической прочностью. Срок службы смо-

лы — не менее 5 лет, после чего производится досыпка или замена смолы. Давление воды, необходимое для работы фильтра — 2,8 бар.

Постфильтр (модели: F-74, F-76 Honeywell, Германия). Фильтр с байпасом размером пор 100 мкм после фильтрационной установки в любом из предложенных вариантов предотвратит попадание в чистую воду частичек сорбента.

Для улучшения вкуса питьевой воды под мойку в кухне можно поставить **бытовой фильтр тонкой очистки**. Модели: 310 UF, RO 301 (CШA).

Водоподготовка и водоочистка дело недешевое. Стоимость бурения и обустройства скважины может составлять от \$ 3500 до \$ 5000, стоимость современной системы фильтрации — от \$2500 до \$ 4500. Правильно подобрать оборудование вам помогут опытные специалисты из надежных, давно работающих в этой сфере фирм. Такие фирмы, располагая современной лабораторной и технической базой, способны решить самые сложные задачи — от бурения скважин на воду, подбора и монтажа насосного оборудования и анализа воды до индивидуальной комплектации и монтажа оборудования по очистке воды. Производится гарантийное и постгарантийное обслуживание, при необходимости — ремонт и модернизация действующего оборудования.

В результате оптимального подбора всего комплекса оборудования водоснабжения потребитель оказывается в несомненном выигрыше — пьет кристально чистую, вкусную и полезную воду, а все инженерные системы дома, требующие воды, работают надежно и не требуют дополнительных затрат.

Результаты анализа воды:				
Наименование	Анализ воды	Нормативные требования		
Железо общ.	3,30 мг/л	0,30 мг/л		
Жесткость общ.	5,2 мг-экв/л	От 1 до 7 мг-экв/л		
Кислотность Ph	7,66	6,0–9,0		
Цветность	42 град.	20 град.		
Мутность	27,7	1.5		

Независимая Аккредитованная испытательная лаборатория по анализу качества воды «ИСВОДЦентр»

117071, Москва, ул. Донская, 32. Тел/факс: (095) 955-92-54

Свидетельство об аккредитации №ГСЭН.RU/ЦОА.328 от 30.07.2002 г.

Фирма "AUCT" работает на рынке информационных технологий, специализируясь на выпуске электронных каталогов на компакт-дисках (CD-ROM) и разработке программного обеспечения.

132-45-59

E-mail: office@water-technics.ru

В 1998 году была открыта серия "Строительство" по тематикам:

- 1. "Строительные машины, механизмы и инструмент"
- 2. "Отопление, водоснабжение, вентиляция, канализация и кондиционирование" Серия предназначена для специалис-

серия предназначена для специалистов строительной отрасли и содержит: подробную информацию (изображения, технические характеристики, монтажные схемы), а также список фирм-поставщиков по всем видам оборудования на российском рынке с адресами и номерами телефонов не только по Москве, но и по регионам.

НОВИНКА: фонтанные установки CASCADE и NATURA

Издание является ценным источником информации для служб снабжения и отделов маркетинга торговых и строительных организаций для расширения товарного ассортимента и поиска региональных партнеров. Практика распространения предыдущих выпусков показала интерес к продукту именно у специалистов, особенно в регионах России. Все участники каталога имеют возможность разместить подробнейшую информацию о своей продукции, региональных представительствах и условиях работы с партнерами.

Фирма "Адаптивные информационные системы и технологии"

тел. /факс: 336-14-55, 334-36-12 E-mail: aist@comcor.ru www.infoclub.ru

ОТОПЛЕНИЕ, ВОДОСНАБЖЕНИЕ, ВЕНТИЛЯЦИЯ И КАНАЛИЗАЦИЯ

- Оборудование для систем отопления;
- Инструменты для сантехнических работ;
- Очистные сооружения канализации;
- Оборудование для ГВС;
- Насосное оборудование;
- Трубы и фасонные изделия;
- Системы вентиляции;
- Системы кондиционирования;
- Оборудование для бассейнов;
- Емкости для воды и топлива;
- Оборудование для ванных комнат;
- Оборудование для туалетов.

СТРОИТЕЛЬНЫЕ МАШИНЫ, МЕХАНИЗМЫ И ИНСТРУМЕНТ

- Автомобильная техника;
- Дорожная техника;
- Инженерно-строительное оборудование;
- Инструмент аккумуляторный;
- Инструмент для домашнего использования;
- Инструмент с приводом от ДВС;
- Электроинструмент;
- Насосное оборудование;
- Пневматическое оборудование и инструмент;
- Сварочное оборудование;
- Станки для деревообработки;
- Тепловое оборудование;
- Электротехническое оборудование.

ОБОРУДОВАНИЕ И ПОСТАВЩИКИ

Street Course of the

www.aclub.ru

Как экономить рекламный бюджет

Елена Петрова, независимый консультант по PR, г. Санкт-Петербург Экономия средств в рекламной кампании при сохранении эффективности может быть выполнена за счет концентрации усилий. Это означает более точное «попадание в цель» и более точную подготовку к действиям по проведению рекламной кампании. Зачастую экономия на размещении и изготовлении рекламы достигается за счет увеличения времени и ресурсов на подготовительном этапе.

1. Использование средств PR для распространения информации о товаре или услуге. Распространение информации по нерекламным каналам, то есть создание информационных поводов, которые привлекли бы СМИ,

более активное поведение сотрудников фирмы в неформальной обстановке позволяет сэкономит на размещении традиционной рекламы и, кроме того, усилить эффект концентрации внимания потециального потребителя на самых важных темах.

- 2. Простая система мотивации в части «рекламный ход». Небольшой объем рекламы не стоит тратить на создание «разнообразных впечатлений». Ничто не должно отвлекать внимания потребителя от главной цели. В творческих решениях стоит учитывать мотивы и стиль именно «центральной части» целевой аудитории.
- 3. Использование действительно хорошего «креатива» Точное по художественному и выразительному решению текстовое и образное сообщение усилит воздействие. Креативную часть разработки необходимо тестировать для того, чтобы выбрать действительно впечатляющее решение. Не стоит использовать «среднего качества» креатив.
- 4. Гибкое реагирование на данные контроля эффективности. Следить за тем, какое впечатление производит реклама, и вносить коррективы.
- 5. Стоит планировать рекламную кампанию как единую систему продвижения информации, рассчитанную на долгий срок. Это позволяет накапливать и суммировать информационные усилия. Не стоит делать ярких и непоследовательных информационных посланий для публики. Сильные противоречивые элементы возбуждают чувства публики, но быстро забываются.
- 6. Более точное выяснение целевой аудитории (нет необходимости охвата «на всякий случай» аудитории, которая не относится к «центральной» части целевой группы) Для сравнения «широкий охват» часто планируется при больших рекламных бюджетах. Вычисление целевой аудитории дает существенную экономию на СМИ.
- 7. Использование экспертных методов оценки аудитории (например, метод «качественных» интервью, анализ данных продавцов). Не стоит проводить объемные исследования результата после размещения рекламы. Их стоит заменить более тщательной проверкой (например, методом фокусных групп, методом выборочного исследования покупателей на месте продажи) до выпуска рекламы.
- 8. Не стоит экономить на исследованиях и доверять только интуиции но исследования стоит проводить силами собственной организации, привлекая специалистов только для решения узло-

вых моментов. Сотрудник организации имеют неиспользованные ресурсы креатива и много реально ценных знаний о клиенте. Не стоит пренебрегать этим «дополнительным ресурсом». Надо только правильно организовать процесс.

- 9. Увеличение объема и роли личных продаж. И внедрение «стандартных рекламных блоков, которые будут включены продавцами в систему аргументации. Это способствует косвенному накоплению позитивной информации о фирме.
- 10. Экономия за счет скидок при размещении в СМИ. Не стоит экономить усилий на разработки хорошего медиа-плана.

Информационные войны как оружие борьбы за рынки.

Игорь Кайбанов, генеральный директор Компании «ArtCraft» г. Санкт-Петербург

Предотвращение негативной информации — тот пробный камень, на котором и проверяется профессионализм.

Рассмотрим пример. Появилась статья, негативно описывающая свойства Вашего товара, в качестве положительного примера приводящая товар Вашего конкурента. Алгоритм Ваших действий может быть следующим:

Проводим контент-анализ статьи, разделяя по позициям негативные и позитивные высказывания и отмечая, к кому они относятся.

Проводим первичную экспертизу, характеризующую достоверность и недостоверность информации, оцениваем, ущемляет ли изложенное честь и достоинство личность.

Находим явную ложь и готовим факты, опровергающие эту ложь.

Делаем собственное заключение о характере статьи, подтверждая его простыми подсчетами.

В том случае, если Вы убеждаетесь в «заказном» характере статьи, собираем информацию об авторе (псевдониме), подбирая все его статьи за последние месяцы. После сбора статей распределяем по позициям содержание и их направленность. Делаем выводы о предполагаемых контактах автора и потенциальных заказчиках материала.

Получаем консультацию адвоката на предмет содержания в статье признаков дискредитации Вашей компании и ее товара, признаков недобросовестной конкуренции в том случае, если «заказной» характер статьи будет доказан, а также административно наказуемых деяний (клеветы, оскорбления) или

признаков злоупотребления свободной массовой информацией.

Составляем список лиц, с которым желательны предварительные переговоры. Ваш список может включать в себя: представителей учредителей издания, редактора газеты, кого- либо из руководителей профессиональных журналистских ассоциаций.

Проводим предварительные переговоры, показывая, что Ваша компания обеспокоена таким порядком действий конкурентов на рынке, не предъявляя претензий Вашим партнерам по переговорам. При необходимости, продолжаем переговоры с руководством газеты, выясняя причины, приведшие к появлению статьи.

Посылаем свои выводы и комментарии руководству Вашего конкурента, упомянутого в статье, подчеркивая тот факт, что Вы не считаете их виновными в появлении скандального материала, но подчеркиваете то, что подобные действия журналиста могут быть расценены как некорректная политика компании в отношении конкурентов на рынке.

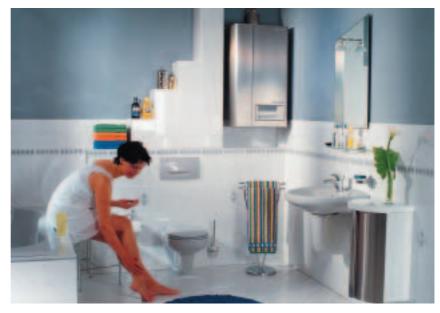
По результатам переговоров Вы можете достигнуть нужного соглашения с руководством газеты, потребовав от редакции несоответствующих действительности сведений в соответствии со статьей №43 Закона РФ «О средствах массовой информации». Право на ответный комментарий, реплику в том же СМИ Вы имеете на основании статьи №46 Закона РФ «О средствах массовой информации». Вы можете обратиться в суд с исковым заявлением, в том случае если статья содержит признаки административно наказуемых деяний; обратиться в регистрирующий орган Госкомпечати с просьбой принять меры к редакции, допустившей злоупотребления свободной массовой информацией. А также передать собранные материалы и отчеты о переговорах в другие средства массовой информации.

Кроме того, имейте в виду, что если распространенная информация носит социально значимый характер, Вы можете обратиться в Судебную палату по информационным спорам при Президенте РФ. А в тех случаях, когда Вы имеете основание полагать, что публикация оплачена конкурентом, Вы можете обратиться в Территориальное управление Антимонопольного Комитета РФ с заявлением о недобросовестной конкуренции и нарушении Закона РФ «О рекламе».

Вы также должны формировать и распространять позитивные материалы о Ваших услугах.

Тенденции на рынке отопительных котлов

Сегодняшний российский рынок отопительного оборудования во многом повторяет путь, который за последние десятилетия прошла Европа. Это, прежде всего, рост требований к качеству и комфортности. Что касается проблем экономии и вредного воздействия на окружающую среду, то здесь, в силу низких цен на энергоресурсы, мы серьезно отстаем от Европы.


ктивные поставки на российской рынок европейских отопительных котлов в первые годы вызывали некоторое недоверие: суровые российские условия, низкое давление газа... Еще большее недоверие вызвало появление настенных котлов. Ситуация напоминала историю про импортные автомобили, которые не «созданы» для российских дорог и отечественного бензина. Но как показало время — и импортные автомобили, и импортные автомобили, и импортные отопительные котлы не хуже отечественных чувствуют себя в Российских условиях.

Компактные размеры и отсутствие необходимости в котельном помещении для настенных котлов — один из важнейших аргументов в пользу последних. Их относительно невысокая цена, плюс экономия средств на строительство котельного помещения, позволяют существенно сократить затраты на отопление дома. Высокому спросу на настенные котлы в Европе способствовало появление на рынке высоконадежных аппаратов, способных обеспечить хороший комфорт для потребителя и обогреть дом площадью до 300–450 кв.м.

Сегодняшняя ситуация по продажам настенных котлов в Европе существенно отличается от российской. Еще в 1998 году настенные котлы в Европе занимали более 80% рынка от продаж котлов в целом. В количественном выражении это около 4 млн штук. Только в Италии в этот году было продано около 1 млн настенных котлов, а в Германии это число приблизилось к 450 000 тыс. штук. Сегодня европейский оборот по настенным котлам оценивается суммой около 2,4 млрд евро в год.

Для примера, в Голландии — 95% от общего количества продаваемых котлов занимают настенные, а из них около 70% конденсирующие. Газом в Нидерландах отапливается 96% от общего числа домов и квартир.

Тенденция роста продаж настенных котлов сохранилась в Европе и в последние годы, даже в условиях спада на рынке отопительного оборудования. Ес-

тественно, рост их продаж происходит за счет вытеснения более дорогостоящих в производстве напольных моделей, которые пока незаменимы для отопления зданий больших площадей.

Что касается конкуренции отопительного оборудования на разных видах топлива, то на европейском рынке заметно снижение популярности жидкотопливных котлов. Это может быть связано с определенными неудобствами доставки и стоимостью топлива. В России повышенный спрос на газовое оборудование обусловлен хорошо развитой инфраструктурой доставки газа до потребителя и дешевизной данного вида топлива.

В прошлом году на европейском рынке отопительного оборудования наблюдался небольшой спад. Исключением стала Великобритания, Нидерланды и Венгрия. Однако продажи настенных газовых теплогенераторов, по сравнению с прошедшим годом, хотя и немного, но выросли. В условиях снижения продаж на внутренних рынках, для европейских производителей существенно растет роль экспорта. Россия, сегодня, не является крупнейшим импортером на рыке отопительного оборудования, но потенциал ее не-

сравнимо велик.

Сегодня импортные отопительные котлы уже заняли значительную часть российского рынка отопительного оборудования, а продажи настенных котлов уже опередили продажи напольных и этот рост продолжается.

В России практически отсутствует спрос на конденсирующие котлы, хотя в Европе их продается больше 50% от общего количества, а в Швейцарии, Голландии, Австрии и Германии в последние годы наблюдается существенный рост их продаж. Основные причины этого — их высокая цена и низкие тарифы на газ в России. Средняя цена двухконтурного конденсирующего котла, мощностью 24 кВт в Германии составляет около 3000,-□.

Одной из особенностей Европы, является то, что производители держат высокие цены на внутреннем рынке. Для примера, стоимость настенных котлов в России в 2–3 раза ниже чем Германии или Голландии. Стоимость же настенных котлов, в сравнении с напольными, у нас 1,5–2,5 раза ниже, в то время как в Германии эта разница практически отсутствует. Безусловно, котлы, продающиеся на европейском рынке, отличаются от поставляемых в Россию, в первую очередь,

Газовые настенные котлы для индивидуального отопления

Почему котел ARISTON Т2 идеален для поквартирного теплоснабжения?

- сдвоенный теплообменник: надежность и простота обслуживания
- мощность 23 кВт: отопление до 230 м² и горячая вода 13 л/мин.
- максимальный комфорт: плавная модуляция мощности и быстрая подача горячей воды
- открытая и закрытая камера сгорания для любых типов домов
- устойчивая работа при давлении газа 4–5 мбар
- минимальные габариты: 30х40х70 см

Газовые накопительные водонагреватели

- температура воды постоянна при изменении расхода
- горячей воды хватает одновременно на много точек
- расход воды не имеет минимума
- давление воды не имеет значения
- низкое давление газа не влияет на температуру воды
- накипь образуется значительно дольше и не ухудшает работу аппарата

по предъявляемым к ним экологическим требованиям. Показатель эмиссии NOx для настенных котлов, продающихся в странах Евросоюза лежит в пределах 35–40 мг/кВт÷ч, а для конденсирующих котлов 20–25 мг/кВт÷ч. Для котлов, экспортируемых в Россию, этот показатель, как правило, больше 200 мг/кВт÷ч!

Нельзя сказать, что поставляемые сегодня на российский рынок газовые отопительные котлы сильно отличаются от своих зарубежных сородичей по комфорту и функциональным возможностям, что на первый взгляд выражается в цене. Нет. Политика продвижения торговой марки адаптируется к реальным условиям и не может идти вразрез с ними. Этим все и объясняется, так что российский потребитель может гордиться тем, что приобретает европейский продукт по более дружественной цене.

При отсутствии жестких нормативов на давление в газовых сетях, для российских потребителей наиболее важной характеристикой настенного котла является его расчетное номинальное давление. Величина 13 мбар, стала неким стандартом, для котлов поставляемых в Россию, Польшу, Латвию, Литву, Украину... Что и говорить, даже она не всегда выдерживается, а европейский стандарт 20 мбар практически отсутствует в России. При пониженном давлении

газа происходит падение мощности котла и в худшем случае его отключение.

С 1 января 2002 года в странах ЕС вступил в силу закон, по которому минимальная гарантия на технически сложное оборудование определена сроком в 2 года. В России, в соответствии с нашим законодательством, большинство поставщиков и производителей обеспечивают лишь однолетнюю гарантию. Дальнейшую гарантию работы котла, потребитель получает, как правило, при заключении договора на сервисное обслуживание.

Гарантия качества и срок эксплуатации зависит от качества материала и качества сборки. В настоящее время, при постоянно меняющихся условиях и предъявлении новых норм по экономичности и экологичности работы оборудования нет необходимости делать котлы вечными, внедряя совершенные, дорогостоящие материалы. Как правило, зарубежные производители устанавливают срок службы на приборы такого типа 10-15 лет, после чего они подлежат замене на новый. Это правильно, так как за это время оборудование устаревает в моральном и техническом плане, плюс введение повышенных налогов

при эксплуатации старых установок делает их использование экономически невыгодным.

Одними из самых известных производителей газовых котлов в Европе являются Ariston, Baxi, Beretta, Buderus, Frisquet, Roca, Saunier Duval, Junkers, Vaillant, Viessmann.

Ведущие немецкие изготовители настенных котлов Vaillant и Bosch Thermotechnik (включая Junkers) удерживают более 40% европейского рынка. Из них 25% приходится на Vaillant.

Сегодня на российском рынке представлены настенные котлы практически всех ведущих производителей Европы, и даже ушедший после кризиса 1998 года Bosch Thermotechnik вновь вернулся в Россию по маркой Junkers.

Немаловажным фактором любого оборудования является его вес и размеры. Настенное оборудование изначально подразумевает облегченность конструкции и компактность. Транспортировка и монтаж громоздких аппаратов доставляет определенные неудобства и, в конечном итоге, сказывается на увеличении расходов. Поэтому обращение с более компактными и легкими приборами более выгодно для поставщика.

Современные настенные котлы хорошо вписываются в интерьер и не требуют оборудования котельного помещения. Именно этот факт позволяет использовать оборудования такого типа даже для поквартирного отопления, на что имеется специальное письмо Госстроя России, регламентирующее право использования индивидуальных настенных теплогенераторов на природном газе в жилых зданиях независимо от этажности.

В последние годы в ряде городов по согласованию с Госстроем России проводилось экспериментальное строительство многоэтажных жилых зданий с применением поквартирных систем теплоснабжения, в которых в качестве источников теплоты использовались индивидуальные теплогенераторы на при-

родном газе. В связи с отсутствием достаточного опыта применения таких систем в многоэтажных жилых домах в условиях Российской Федерации, проектирование и строительство таких систем выполнялось по отдельным техническим условиям. Опыт подтвердил достаточно высокую эффективность применения указанных систем, их надежность и безопасность в эксплуатации.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГАЗОВЫХ НАСТЕННЫХ КОТЛОВ

Приготовление горячей воды

Для приготовления горячей воды в двухконтурных котлах используется вторичный теплообменник. Некоторые двухконтурные котлы имеют специальную функцию быстрого получения горячей воды. Иногда для более комфортного ГВС в котлах устанавливается небольшой встроенный бойлер. Для максимально комфортного ГВС используют одноконтурные котлы в комплекте с бойлером косвенного нагрева. Это самый дорогой вариант, к тому же он требует дополнительного места для бойлера ГВС.

Горелка

Важнейший показатель для модулирующей горелки — диапазон модуляции. У самых лучших настенных аппаратов параметр лежит в диапазоне 20–100%. Обычно 30–100%.

Циркуляционный насос и мембранный бак

В самых простых настенных котлах, как правило, устанавливаются одноступенчатые циркуляционные насосы. В более дорогих моделях 2–3 ступенчатые или с плавной регулировкой оборотов, в зависимости от нагрузки. Объем мембранного бака варьируется в зависимости от мощности котла.

Отвод продуктов сгорания.

Существует два типа котлов: с принудительным и естественным отводом продуктов сгорания. Котлы с принудительным отводом продуктов сгорания не требуют наличие в здании дымохода. Отработавшие газы в таких котлах отводятся по специальным трубам (труба в трубе), через отверстие в стене или крыше.

Материал теплообменника

Существует два основных материала теплообменников. Это медь и нержавеющая сталь. Каждый из них имеет свои плюсы и минусы. Практически на всех котлах, произведенных для Европы теплообменник изготавливается из нержавеющей стали.

Объявление!

Редакция журнала С.О.К. начинает подготовку медиа-плана на 2003 год. Приглашаем руководителей фирм и специалистов принять участие в формировании тематической направленности журнала С.О.К. в 2003 году с учетом мировых тенденций в области климатической техники, сантехнического оборудования и ресурсо-энергосбережения. НОВЫЕ ПРОЕКТЫ ЖУРНАЛА С.О.К. в 2003 году — ТЕМАТИЧЕСКИЕ КАТАЛОГИ.

Ждем Ваших предложений и пожеланий: 119991, Москва, ул. Бардина, 6 ИД «Медиа Технолоджи» по факсу: (095) 135-9982 e-mail: media@mediatechnology.ru

Электрические проточные водонагреватели
VED, VED E classic,
VED E exclusiv, VED E solar

Экстраэксклюзив

ОТОПИТЕЛЬНЫЕ КОТЛЫ | ОБОГРЕВАТЕЛИ | ВОДОНАГРЕВАТЕЛИ | ФИЛЬТРЫ | СУШИЛКИ ДЛЯ РУК

ГИДРО СФЕРА® проессиональные решения119 991 **Москва**, ул. Вавилова 30 (095)795 31 81

195 027 **Санкт-Петербург**,
Большеохтинский пр. 10 (812)224 09 03

www.hydrosfera.ru

Настенные электрические конвекторы

Перспективы расширения российского рынка электрических конвекторов достаточно хороши. Большое количество статей в СМИ на тему электрического отопления начинает сдвигать проблему в область практического увеличения данного сегмента рынка.

астенный электрический конвектор — это отопительный модуль, состоящий из металлического корпуса, выполняющего дизайнерскую и защитную функцию, с отверстиями в нижней части для поступления холодного воздуха и в верхней части — для выхода нагретого и нагревательного тэна — токопроводящего элемента в изоляторе, который герметично запаян в стальную трубку с радиатором. Датчик безопасности устанавливается внутри корпуса конвектора и обеспечивает отключение питания в аварийных ситуациях при перегреве нагревательного элемента. Крепежная рама навешивается с помощью винтов на любую поверхность помещения, а на нее надевается конвектор. Данная конструкция и режим эксплуатации практически не изменяют влажности помещения, не пересушивают воздух, не сжигают кислород и осевшую на тэн пыль. Защитный декоративный корпус безопасен даже для детей, его наружная температура со-

ставляет 45-65°С. Современные конвекторы защищены от повышенной влажности и капель воды. Отключение питания не нарушает функциональных возможностей оборудования, и после подачи напряжения электроконвектор сразу начинает работать.

Фирмы-производители выпускают конвекторы со встроенным термостатом и без него. Для нескольких конвекторов в одном помещении целесообразна установка одного термостата на всю группу обогревателей. Термостаты бывают электронные и электромеханические. Электронные отличаются бесшумностью работы, надежностью и высокой точностью ($\pm 0.1^{\circ}$ C), но более высокой ценой. Точность электромеханических составляет $\pm 0.5-1^{\circ}$ C. При одинаковом заданном уровне температуры электронные термостаты дают экономию до 4% по электроэнергии в сравнении с электромеханическими.

Общие недостатки электрических конвекторов, свойственные всем кон-

векционным системам: образование конвекционных потоков воздуха, циркулирующих по помещению и поднимающих за собой пыль и неравномерный нагрев помещения, особенно по высоте.

Главным в электрическом конвекторе является качество изготовления нагревательного элемента, использование нержавеющей стали и сплавов алюминия. Срок службы таких приборов составляет до 15–20 лет.

Капитальные затраты на электрические конвекторы, используемые в качестве основного отопления, являются достаточно низкими и составляют от 5 до 10\$ за 1 м² отапливаемой площади. Возможность широкого диапазона регулировки температур в каждом помещении, полного отключения любой отапливаемой зоны, точного отслеживания заданной температуры позволяет сократить расход электроэнергии до 60 % в зависимости от интенсивности эксплуатации жилища. При отсутствии че-

ловека в помещении устанавливается экономичный уровень температур.

Данный температурный режим способствует относительно быстрому прогреву помещения, длительной эксплуатации несущих конструкций здания, обеспечивает предотвращение конденсата, влажности и плесени. Это в конечном итоге способствует более длинному сроку жизни и самого жилого здания.

Электрические конвекторы Vaillant, Германия.

Особенности — быстрый и бесшумный нагрев различных помещений, точная установка необходимой температуры для нагрева помещения в диапазоне 4–35°С, встроенный термостат и защита от замерзания, высокая степень безопасности: класс защиты IP 24 (защита от брызг воды), возможность применения — конвекторы для настенного монтажа, для отопления и поддержания заданной температуры в различных помещениях.

- Оснащение: металлический корпус светло-кремового цвета, сетевой выключатель, кабель с евроштекером для моделей до 2 кВт и кабель для стационарного подключения к электросети для моделей 2,5 кВт, регулятор температуры от 5 до 35°С, защита от перегрева и защита от брызг воды.
- Диапазон мощностей 750; 1000;

1500; 2000; 2500 кВт. Габариты: ширина — от 390 до 915 мм, 430 мм, глубина — 85 мм.

Электрический конвектор ECOTHERM (THERMOBALT), Финляндия.

Особенности — два модельных ряда, отличающиеся только дизайном — ELE-GANCE и SUPERNOVA. В каждом модельном ряду — 4 варианта мощности (500 Вт — модель ТК 500, 1000 Вт — модель ТК 1000, 1500 Вт — модель ТК 1500 и 2000 Вт — модель ТК 2000) и столько же вариантов с электронным термостатом.

Все эти модели — настенного типа, с возможностью напольного использования при помощи дополнительного комплекта колесиков. ТЭН конвекторов состоит из нихромового стержня, окиси магния, как изолятора, стальной нержавеющей трубки со стальным оребрением и нерассыхающимися заглушками на краях.

• Уровень защиты — ІР 24.

Конвекторы THERMOR, Франция.

Особенности — плавная регулировка температуры нагрева с возможностью ограничения диапазона регулировки, нагревательные элементы из нержавеющей стали с алюминиевой решеткой

конвекции, возможность установки режима антизамораживания. Нагревательный элемент из нержавеющей стали, хрома, никеля с алюминиевым рефлектором. Средство регулировки — электромеханический термостат с чувствительностью 0,3°С; режим антизамерзания. Параметры безопасности — термический ограничитель с автоматическим

включением, индекс защиты — IP24, класс защиты — 2, защита от перегрева. Возможность ограничения температуры поверхности до $+65^{\circ}$ C.

Монтаж — специальные комплекты для настенного и напольного монтажа.

- Цвет: белый.
- Размеры: высота 44, толщина 8 см. Конвекторы от Thermor сконструированы так, что позволяют объединить их в универсальную систему, управляемую всего лишь одним программируемым термостатом, с помощью которой можно отапливать все жилище.

Электрические конвекторы AIRELEC, Франция.

Особенности — две модели: BASIC (с электромеханическим термостатом) и TACTIC (с электронным термостатом). Два цвета — белый и алебастр.

Закрытый нагревательный элемент Airelec с алюминиевыми ламелями для лучшего теплообмена. Точность электромеханического термостата — 1° C, электронного — 0.1° C.

Тонкий «дизайн», видимая глубина — 3 см.

Эти конвекторы для настенного монтажа для отопления и поддержания заданной температуры в различных помещениях. Защита от перегрева и защита от брызг воды. Без острых углов.

ТАСТІС: мощностной ряд — 500, 750, 1000, 1250, 1500, 1750, 2000 Вт.

• Габариты: Высота — от 360 мм до 840 мм, ширина — 400 мм, глубина — 80 мм.

Поставляется в комплекте с настенным крепежом.

BASIC: мощностной ряд — 500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000 Вт.

 Габариты: Высота — от 280 мм до 1000 мм, ширина — 400 мм, глубина — 80 мм.

Гамма газовых котлов

<u>ECO RADIO SYSTEM</u>

от Frisquet, Франция

Roteл HYDROMOTRIX 45 кВт

Гамма газовых котлов ECO RADIO SYS-TEM от Frisquet, Франция

Производитель газовых котлов французская компания ФРИСКЕ ставит главной задачей обеспечение безопасности и комфорта на все более высоком уровне за счет постоянного внедрения инновационных технологий. Немногие компании в мире оснащены собственным конструкторским бюро и лабораторией, имеющей право проводить собственные сертификационные испытания. Frisquet комплектует свои котлы беспроводной микропроцессорной системой управления Eco Radio System, обладающей широким набором функций управления и безопасности. Она может одновременно регулировать два отопительных контура с разными температурами в диапазоне от 20 до 85°C.

Гамма газовых котлов с ECO RADIO SYSTEM (дополнительно по ECO RADIO

SYSTEМ — см. журнал «С.О.К.» №6, стр. 57) включает в себя настенные одноконтурные и двухконтурные котлы с естественной тягой HYDROMOTRIX мощностью 23 кВт (расход ГВС — 11 л/мин), 32 кВт (расход ГВС — 15 л/мин) и 45 кВт (расход ГВС — 19 л/мин); настенные одноконтурные и двухконтурные котлы турбо HYDROMOTRIX мощностью 23 кВт (расход ГВС — 12 л/мин) и 32 кВт (расход ГВС — 16 л/мин); настенные котлы HYDROCONFORT мощностью 23 кВт с встроенным бойлером из нержавеющей стали емкостью 80 л или 120 л (расход ГВС — 20 л/мин); напольные одноконтурные и двухконтурные котлы PRESTIGE мощностью 23 кВт (расход ГВС — 12 л/мин) и 30 кВт (расход ГВС — 15 л/мин), а также напольный одноконтурный котел PRESTIGE мощностью 50 кВт. Используемое топливо — природный газ и пропан.

Бойлер из нержавеющей стали UPEC 120 л поставляется для подсоединения к котлам HYDROMOTRIX и PRESTIGE. Настенные и напольные отопительные котлы Frisquet оснащены высококлассными атмосферными горелками. Такая горелка состоит из полых стержней, внутри которых находится сопло «Вентури». Газ поступает в них через инжекторы, благодаря чему происходит его предварительное смешивание с воздухом. Горелка рассчитана на использование низкого пламени, что позволяет использовать камеру сгорания малой высоты и кроме того исключается прогорание горелки.

Общие для всех котлов ФРИСКЕ преимущества использования системы ECORADIOSYSTEM: автоматическая защита от замерзания (если котел размещен, например в гараже), опция ЭКО-СТОП-МАКС, позволяющая адаптировать потребности или полностью отключать горячую воду для домов с режимом временного проживания, защита от размножения бактерий — бойлер периодически нагревается до температуры, превышающей нормальную рабочую температуру, чтобы нейтрализовать легионелл.

Эти котлы обладают всеми необходимыми функциями и устройствами: иони-

зационный детектор пламени, газовый блок с двумя электроклапанами, электронное зажигание, электронная система DAT с автоматическим повторным включением спустя 10 минут и индикатором режима работы, электронная защита от перегрева, электронная защита в случае недостатка воды, двойная защита от замерзания: котел и система отопления, расширительный бак 12 л, трехходовой клапан с приводом от двигателя, трехскоростной циркуляционный насос, регулятор температуры горячей воды АРТ, встроенная система отключения санитарной горячей воды, подсоединение для подключения второго контура отопления, теплоизоляция из стекловаты и пенополиреутана, защита от недостаточного давления газа.

Котел HYDROMOTRIX 45 кВт

Из гаммы котлов HYDROMOTRIX следует выделить котел с естественной тягой мощностью 45 кВт. Это единственный настенный котел такой большой мощности, которая фактически реализована за счет уникальных возможностей медного теплообменника ФРИСКЕ. HYDROMOTRIX адаптируется к любым отопительным системам и кроме того, его функции могут быть расширены. Это мощный и долговечный котел с высоким КПД.

Компания ФРИСКЕ дает долгосрочную гарантию 5 (пять!!!) лет на горелку, водонагреватель и бойлер и 2 года на комплектующие.

FRISQUET S.A.

20, rue Branly-Zl Beauval-77109 Meaux, France www.frisquet.fr

Франции:

Ирш Фабрис, директор по экспорту Tel: 8-10-33-1-60 09 91 44 Fax: 8-10-33-1-60 25 38 50 E-mail: fhirsch@frisquet.fr

Россия, г.Москва: Вергазова Алла,

торговый представитель в России

Тел./факс: (095) 316 07 98 Моб.тел: (095) 104 72 08 E-mail: alfia@mail.magelan.ru

Конвекторное электроотопление

Давайте попробуем непредвзято и спокойно поразмышлять: Почему электроотопление до сих пор занимает такую малую часть рынка отопления в России? И достойно ли оно большего?

Вопрос этот покажется не праздным, если Вы знаете, что электроотопление занимает во Франции до 40% рынка (а Север Франции вполне сопоставим по климату со средней полосой). Еще один, уже российский, факт: мы крайне редко слышим о водяных и т.п. теплых полах, этот рынок в России почти целиком занят ЭЛЕКТРИЧЕСКИМИ греющими полами (кабелями).

аковы же реальные преимущества и недостатки электрического отопления?

- 1. Считается, что это дорого, и это действительно дорого, если Вы используете ИЗЛУЧАЮЩИЕ ПАНЕЛИ самый дорогой тип электронагревателя, имитирующий тепло Солнца;
- 2. Те, кто знает, что стандартный электронагреватель КОНВЕКТОР часто говорят, что он «выжигает» кислород. И это правда для нагревателей прошлого поколения, использовавших открытую спираль. Однако все совре-

менные конвекторы используют ЗАКРЫТЫЙ нагреватель, который не только не накаляется, но и не нагревается выше 80 гр;

- 3. Вообще само название КОНВЕКТОР пришло от электроконвекторов, хотя сейчас так называют и «радиаторы центрального парового отопления с улучшенной циркуляцией воздуха»;
- 4. Также считается, что при отоплении затраты денег (цена электроэнергии) на единицу тепла в электроотоплении (по сравнению с газовым котлом, к примеру) наибольшая. И это правда, но и здесь есть одно НО: это действительно так, если вы без конца нагреваете и охлаждаете помещение. Для помещения же с хорошей теплоизоляцией все несколько иначе: точность регулировки температуры В

ПОМЕЩЕНИИ у электроконвекторов наивысшая, поэтому температура не колеблется значительно, кроме того вам не надо прогревать систему трубопроводов — вот почему доля продаж электроотопления в районах, где очень холодно (например в Иркутской области), выше, чем в средней полосе;

5. Теперь специальный абзац для строителей: установка конвекторного электроотопления на порядок дешевле, чем любой другой системы (нет труб, нет котлов, даже управляются они по силовой сети) + стоимость ХОРОШЕГО кон-

вектора не намного выше стоимости водяного радиатора + не требуется подводка коммуникаций + повесить конвектор можно даже после отделки и перевесить на другое место безо всяких хлопот; кроме того, с монтажем может справиться любой электрик, а гарантия тепла в доме по сути обеспечивается гарантией производителя на конвектор;

6. А теперь абзац для потребителей: конвекторы с электронной регулировкой допускают колебания температуры В ПО-МЕЩЕНИИ не более 1/10 градуса, могут программироваться ПО КАЖДОМУ ПОМЕ-ЩЕНИЮ (в т.ч. режимы «незамерзания», «ночной» и т.п., прогаммирование по зонам), работать в системе ЕІВ (возможно дистанционное управление); НЕ ТРЕБУ-ЮТ ОБСЛУЖИВАНИЯ, полностью пожарои взрывобезопасны; кроме того, при переезде их можно забрать с собой; электроконвекторы не шумят и не протекают.

В общем преимущества очевидно более весомы, нежели недостатки. А при постоянно снижающихся ценах на конвекторы, можно расчитывать, что уже в ближайшее время они займут достойное место среди других отопительных приборов.

Крупнейшим европейским производителем электроотопительных приборов является французское предприятие AIRELEC. В России AIRELEC предлагает две самые массовые линейки: экономический конвектор BASIC по очень невысокой цене, и самый продаваемый во Франции (а это крупнейший в Европе рынок электроконвекторов) конвектор ТАСТІС, отличающийся уникальным сверхплоским дизайном и удобным электронным управлением.

Официальный дистрибьютор AIRELEC в России:

REXEL

ЭСТ-ЭЛЕК

ЭЛЕКТРОТЕХНИЧЕСКОЕ ОБОРУДОВАНИЕ

107113, г. Москва, ул. Сокольнический вал 1 КВЦ "Сокольники", Павильон №5 Тел. (095) 956-2299 Факс (095) 956-4494 est-elec@rexel.ru

443095, г. Самара, ул. Ташкентская 196, блок Б Тел./Факс (8462) 179-169, 179-159 rexel@transit samara ru 354000, Краснодарский край г. Сочи, ул. Роз 113 Тел./Факс (8622) 92-60-60, 32-46-80 rexel@sochi.ru

ЭЛЕКТРИЧЕСКИЙ ТЕПЛЫЙ ПОЛ. ПРОИЗВОДИТЕЛИ

SPYHEAT

В кабельных системах SPYHEAT используется экранированный кабель с одной нагревательной жилой, в котором экран служит и вторым проводником, подключаемым к нулевому проводу. Такой тип кабеля позволяет использовать его в помещениях с повышенной влажностью, имеет нулевой уровень электромагнитного излучения, удобен при монтаже, и обладает невысокой стоимостью.

Для удобства потребителей системы комплектуются всем необходимым

и упаковываются в фирменные коробки. Комплекты различаются по мощности нагрева. В состав комплекта входят: нагревательный кабель, стальная монтажная лента, терморегулятор Eltec Electronics с датчиком температуры пола, штатив для монтажа датчика температуры пола, инструкция по монтажу и эксплуатации с гарантийным талоном. Качество продукции подтверждено соответствующими сертификатами РОСТЕСТа Российской Федерации.

Гарантия на нагревательный кабель составляет 17 лет, на терморегулятор — 2 года. По результатам испытаний срок службы нагревательного кабеля составляет не менее 25 лет.

Достоинствами предлагаемого нагревательного кабеля являются:

- Сниженное тепловыделение на 1 м кабеля, позволяющее обеспечить более равномерный и быстрый нагрев пола.
- Фторопластовая изоляция, выдерживающая температуру нагрева центральной жилы до 300°С, что обеспечивает высокую устойчивость к локальным перегревам.
- Большой запас по мощности, что создает высокую устойчивость к локальным перегревам.
- Использование медной оплетки кабеля, характеризующейся высокой тепло и электропроводностью, что обеспечивает равномерность распределения тепла по всей поверхности кабеля и высокую экранирующую способность. (См. стр. 5)

Комплект теплых полов SPYHEAT	Мощность (Вт)	Длина кабеля (м)
SH-150	150	15
SH-300	300	25
SH-450	450	30
SH-600	600	40
SH-850	850	55
SH-1200	1200	75
SH-1500	1500	75

STIEBEL ELTRON — "Thermofloor"

Обычно греющий кабель поставляется в скрученном виде. При монтаже его приходится укладывать «змейкой» на толстую бетонную стяжку. В системе Thermofloor производства STIEBEL ELTRON «змейка» заранее закреплена на несущей основе, что упрощает и удешевляет монтаж. Панели Thermofloor мощностью 150 Вт/м² имеют ширину 0,5 м, что позволяет применять их как в ванных комнатах и небольших туалетах, так и в помещениях большей площади. Толщина стяжки составляет всего 3 мм. Они легко укладываются под напольное покрытие на клей для плитки или шпатлевку.

Thorin&Thorin

Компания «Thorin&Thorin» (Швеция), входящая в транснациональную корпорацию Тусо, производит нагревательные кабели с 1934 года. Из всех производимых компанией продуктов выделим нагревательные кабели с постоянным сопротивлением и саморегулируемые нагревательные кабели для «Теплого пола». «Thorin&Thorin» поставляет на российский рынок как кабели традиционной конструкции, аналогичные кабелям других фирм, так и высококачественные кабели специальной конструкции марки T2-Green. Более высокая стоимость компенсируется их высочайшей надежностью в работе.

Резистивный нагревательный кабель T2-GREEN

Основные конструктивные особенности T2-GREEN — это:

Уникальная конструкция, при которой нагревательный элемент в виде спирали намотан на изоляционную основу, что гарантирует полное отсутствие внутренних напряжений.

- Токоведущий обратный проводник, плотным экраном облегающий нагревательный элемент и тем самым обеспечивающий «нулевое» электромагнитное поле.
- «Невидимая связь» между нагревательным и электрическим проводниками.
- Патент (S) 9306934-8.
- Оболочка, не содержащая хлора, т.е. безопасная для здоровья. Нагревательный мат

Электрический нагревательный мат представляет собой двужильный тонкий нагревательный кабель, закрепленный на сетке. Готовые комплекты Т2-QuickNet включают регулятор, с помощью которого поддерживается заданная температура пола и собственно кабель на сетке, площадью от 2 до 12 кв.м. Сетка легко режется, подгоняется под любую сложную конфигурацию по-

ла и прикрепляется к нему благодаря клеевой основе. При использовании матов T2-QuickNet толщина нагревательного слоя определяется толщиной клеевого слоя и напольного покрытия, тем самым обеспечивая ее минимальное значение.

KIMA — Heating Cable AB

Шведская компания КІМА обладает более чем полувековым опытом производства нагревательных кабелей и различных специализированных систем обогрева и заслуженно пользуется хорошей репутацией в данной области. Производимые ей нагревательные кабели и системы обогрева выделяются уровнем качества, надежности, долговечности. Достаточно упомянуть, что такие известные производители, как VOLVO, SAAB, SCANIA, ELECTROLUX используют в своих изделиях в качестве элементов обогрева только продукцию компании KIMA. Компания KIMA помимо самой современной производственной базы имеет мощный научно-исследовательский центр в г. Хассельхолм. В странах Западной Европы и, что особенно важно, Скандинавии, где холод и снег зимой является нормой, компания КІМА уже несколько десятилетий подряд прочно удерживает ведущие позиции.

Основные особенности нагревательных кабелей КІМА:

- Кабели КІМА бронированы и экранированы. Стандартные кабели только экранированы. Бронирование, в частности, позволяет корректно использовать кабели КІМА для обогрева в зданиях, где возможны определеные подвижки конструкций и просадки фундаментов, а также в районах с повышенной сейсмичностью. За счет специального бронирования и уникальной технологии скрутки греющих жил, кабели КІМА свободно переносят механические напряжения, возникающие в данных ситуациях.
- Кабели КІМА имеют защиту Armoring Class C. Стандартные — на порядок меньшую. В результате кабели КІМА свободно выдерживают пережимающие и давящие механические нагрузки в 5–10 раз большие по сравнению с нагрузками, которые способны выдержать стандартные кабели.
- Для изготовления внутренней изоляции кабелей КІМА использован специально разработанный компанией

KIMA поперечно-сшитый полиэтилен класса hD (высокой плотности) с особым распределением кристаллизованных и аморфных зон. Данная изоляция обеспечивает уникальную долговечность кабелей КІМА, а также стойкость к локальным и общим перегревам. Качество данной изоляции таково, что кабели КІМА способны сохранять работоспособность в течение многих десятилетий даже при повреждении внешней изоляции. Внешняя изоляция выполнена из разработанного компанией КІМА ПВХ стойкого к УФ излучению и воздействию химреагентов. Данная изоляция имеет антипириновые добавки и модификаторы повышения механической прочности. Следует особо отметить, что качество внешней изоляции кабелей КІМА таково, что они обладают нулевой эмиссией в окружающую среду. Поэтому их используют даже для обогрева изнутри трубопроводов с питьевой водой.

- Компанией КІМА разработана уникальная технология нанесения слоя изоляции на нагревательные проводники. В результате в изоляции кабелей КІМА полностью отсутствуют микро пузырьки воздуха. Этим обеспечивается, во-первых, эффективность передачи тепла от нагревательных проводников и, во-вторых, устраняются неравномерности распределения температур внутри самого кабеля. Степень однородности изоляции кабелей КІМА на порядок превосходит аналогичный показатель у обычных кабелей.
- За счет меньшей погонной мощности (ватт/метр) нагревательные секции КІМА имеют большой метраж по сравнению с аналогичными нагревательными секциями других производителей. Поэтому кабели КІМА обеспечивают наиболее щадящий и комфортный обогрев, а также наиболее равномерное распределение температур на напольном покрытии.
- Для изготовления нагревательных проводников в кабелях КІМА использована уникальная технология скрутки тонких нихромовых жил. Проводники, изготовленные по данной технологии, обладают уникальными свойствами гибкости и отсутствия внутренних напряжений. В результате даже при значительном перегреве, вызванном, например, недостаточным теплоотводом с по-

- верхности кабеля, нагревательные проводники кабелей КІМА остаются механически нейтральными и не прожигают изоляцию ни на прямолинейных участках, ни в местах изгиба кабельных плетей.
- Компанией КІМА разработана уникальная технология размещения нагревательных проводников внутри кабеля. Уникальность данной конструкции взаиморасположения проводников состоит в том, что в результате электромагнитное поле кабелей КІМА согласно измерениям SEMKO (государственный сертификационный орган Швеции) не превосходит 15 нТ. Нулевой уровень согласно данным SEMKO составляет 60 нТ. Электромагнитное поле стандартного двухпроводникового нагревательного кабеля составляет 170—190 нТ.

DEV

Фирма DEVI основана в Дании в городе Копенгаген в 1942 году. Данная торговая марка достаточно широко известна в России и хорошо разрекламирована Теплый пол от DEVI — это полный комплекс кабельных нагревательных систем. В настоящее время продвигает свои разработки с целью интеграции в «интеллектуальный дом».

ТЕПЛОЛЮКС

Российская компания 000 «Специальные Системы и Технологии» предлагает полный спектр нагревательных кабелей для применения во всех областях промышленности, строительства и в быту. Среди них кабели для теплых полов «ТЕПЛОЛЮКС» (одно- и двухжильные экранированные), антиобледенительных систем для крыш и водостоков «ТЕПЛОСКАТ», для тротуаров, лестниц, пандусов «ТЕПЛОДОР», для обогрева трубопроводов «ТЕПЛОМАГ», а также специальные кабели «ТЕПЛОФЛЕКС» для обогрева узлов технологического оборудования с рабочими температурами до 800°C.

Саморегулирующиеся кабели меняют свое сопротивление в зависимости от окружающей температуры и могут использоваться без терморегуляторов. Их можно отрезать нужной длины по размеру обогреваемой зоны. Этим свойством обладают также зональные кабели параллельного сопротивления. Бронированному кабелю не страшна ни лопата дворника, ни перенапряжение в сети.

ИНТЕЛЛЕКТУАЛЬНОЕ ОТОПЛЕНИЕ. HOBUHKU OT DEVI.

Развивая принятую в 2000 году идею интеллектуального отопления, датская фирма DEVI (год образования 1942) — один из лидеров в области кабельных электрических систем отопления — выпустила на рынок новое оборудование для управления «теплым полом» и системами снеготаяния.

ачалом развития концепции стал терморегулятор deviregTM 550, который является неотъемлемой частью кабельной отопительной системы deviheatTM.

Используя принцип FUZZY LOGIC ("нефиксированной" или "обучающейся" логики), терморегулятор самостоятельно изучает влияние среды и параметров помещения на режимы отопления и оптимизирует эти режимы с помощью запатентованной системы экономии энергии и повышения комфорта.

Devireg™ 550 стал первым разумным терморегулятором для системы отопления — «теплый пол». Сочетание интеллектуального таймера и самообучающегося терморегулятора в хорошо продуманном, с точки зрения дизайна, едином корпусе, позволили 550-й модели опередить время. В 2001 году на мировом форуме дизайнерских разработок в Ганновере (Германия) терморегулятор devireg™ 550 был награжден дипломом Interaction Design Award за лидерство в области технологий для пользователя.

В 2001 году DEVI выпустила на рынок новый тип нагревательного мата для подогрева зеркал.

DevimatTM для подогрева зеркал используется в ванных комнатах и других помещениях для предотвращения запотевания зеркала и предохранения его от воздействия влаги. Нагревательный мат монтируется на стене в клеевую основу, на которую потом будет закреплено зеркало.

В 2002 году DEVI продолжила развивать концепцию интеллектуального отопления. Сейчас, научно — техническим центром фирмы подготовлен к выпуску абсолютно новый продукт, позволяющий осуществлять управление отоплением через персональный компьютер (PC) — DEVICOM™ PC•PRO.

DEVICOM™ PC•PRO включает в себя:

Интерфейс — устройство для подключения терморегуляторов devireq^{тм} 550

к персональному компьютеру (РС).

- Инструкцию по установке.
 НЕОБХОДИМОЕ ОБОРУДОВАНИЕ:
- PC+COM-port, Win95, Hard disk 3,5 Mb BO3MOЖHOCTU:
- Подключение к локальной сети до 32 устройств (терморегулятор devireg™ 550).
- Возможность тестирования всех подключенных D 550 и обнаружения ошибок в их работе.
- Предупреждение пользователя о некорректности введенных им параметров.
- Управление через ИНТЕРНЕТ из любой точки мира.

Для управления системами снеготаяния с установкой в бетон и асфальт выпущена интеллектуальная метеостанция, включающая в себя специальный терморегулятор devireg™ 850 ground и набор цифровых датчиков температуры.

Система devireg™ 850g используется для поддержания наружных площадей (например, зоны парковок, дорожки, въезды в гаражи, ступени, рампы, проезжие части, мосты и т.д.) свободными ото льда и снега.

Система полностью автоматическая

и управляется микропроцессорным терморегулятором при помощи интеллектуальных датчиков, расположенных в отапливаемом грунте. Каждый датчик измеряет одновременно температуру и влажность и на основании этих измерений регулятор включает и выключает нагревательный элемент.

Сочетая показания влажности и температуры, система способна на 75% сократить потребление электроэнергии по сравнению с системами, которые измеряют только температуру. Цифровые датчики, используемые для devireg[™] 850g, также дают более точные измерения по сравнению с подобными аналоговыми системами. Результат — оптимальная функциональность и низкое потребление энергии.

В 2003 году DEVI начнет выпуск интеллектуальной метеостанции devireg^{тм} 850г для управления системами снеготаяния на крышах.

DEVI - 3TO TENNЫЙ ПОЛ.

60 лет на рынке, ISO 9001, ISO 1400 www.de-vi.ru, e-mail:devi@corbina.ru

Горьковское ш, «Владим. тракт», п.20	-Ж	798-7161
Ярославское ш., «Тракт-Терминал»		231-3815
Строгино, «Строительная ярмарка»		798-7164
м.«Каширская», Каширский Двор, п. Л	№95	320-9298
«Новый Каширский Двор», пав. № 9-	7	798-7162
Каширское ш., ТК «Твой Дом»		798-7173
Северное Бутово, «Теплый пол		768-4390
м.«Сокол»	158-9855,	943-9265
ТК «Крокус Сити», 65-й км. МКАД		961-7118
м. «Войковская», «Строй-Двор»		933-5841
м. «Фрунзенская», «Росстройэкспо»		201-0038
м.«Киевская»	240-1576,	240-5475
м.«Теплый стан», 41-й км. МКАД		727-4031
м.«Красносельская»	267-6135,	267-6244
м.«Сокольники»		231-3688
м.«Молодежная»	786-1211,	149-2052
м. «Беговая»	774-8197,	940-2198

теплый пол – это DEVI. ТЕПЛЫЙ ПОЛ

ТОНКИЙ НАГРЕВАТЕЛЬНЫЙ МАТ-3 мм ЗАЩИТА КРЫШ, ТРУБ, ПЛОЩАДОК

м.«Пр.Вернадского», «БАУЛАНД»		938-9370
м.«Алтуфьево», «Дмитровский Двор:	»	743-5961
м.«Кузнецкий мост»	921-4611,	921-5892
м.«Нахимовский пр»	120-6294,	125-4127
м.«Пражская», «Электронный Рай»		389-4490
м.«ВДНХ», МГСУ,	737-0066	доб.118
м.«Владыкино»		903-7714
ул.Бутырская, 11		285-3607
м.«Люблино», «Люблинское поле»		785-3535
м.«Калужская»; «Краун Декор»		935-4700
м.«Калужская»; «Термоклуб»	128-9397,	933-6670
м.«Рязанский пр»; «Термоклуб»	174-7634,	933-6670
Митино, «Термоклуб»	752-0117,	933-6670
м.«Павелецкая»; «Термоклуб»	959-6892,	933-6670
м. «Бибирево», «Миллион мелочей»	502-4026,	504-6930
м. «Войковская», «ЭТМ»	742-4531,	785-0421
г. Химки	571-7010,	793-4688

В РАМКАХ РОССИЙСКОЙ СТРОИТЕЛЬНОЙ НЕДЕЛИ

8-ая международная выставка

СИСТЕМЫ ОТОПЛЕНИЯ, ВЕНТИЛЯЦИИ, КОНДИЦИОНИРОВАНИЯ

Павильоны Форум и 4

8-11 апреля 2003 Москва Экспоцентр на Красной Пресне

В рамках выставки: 5-й Международный Форум специалистов "Отопление. Вентиляция. Кондиционирование." Синий зал.

ОРГАНИЗАТОР:

ПРИ ПОДДЕРЖКЕ

Первый съезд официальных дилеров GREE в России

6 сентября 2002 г. состоялся первый съезд официальных дилеров GREE в России. Это несомненно значимое мероприятие для кондиционерного рынка состоялось в Москве в Петровском салоне отеля Марриотт-Аврора. Насыщенная программе съезда была выполнена полностью. Подведены итоги сезона. Состоялось награждение лучших региональных дилеров. Обсуждены перспективы развития бренда в России. Проведены выработка политики продвижения торговой марки GREE на следующий 2003 год и обмен опытом успешных продаж (выступления региональных дилеров). В работе съезда принимало участие все высшее руководство компании GREE — президент, исполнительный директор и генеральный менеджер.

Президент GREE Mr. Zhu JiangHong

Mr. Zhu JiangHong- уникальная личность, выдающийся бизнесмен мирового уровня, представитель современного поколения китайских бизнесменов. Он сумел за 10 лет из небольшого предприятия создать транснациональную корпорацию, на заводах которой производят кондиционеры ведущих мировых торговых брендов. Компания GREE производит сейчас 3 млн 500 тыс. кондиционеров в год, из них на экспорт — более 1 млн

(в 2003 г. планируется — 1 млн 600 тыс.).

Компания GREE — это новая генерация китайского бизнеса. Об этом свидетельствует мощный рост стоимости акций компании. Теперь те, кто их приобрел несколько лет назад, стали очень состоятельными людьми, т.к. цена акций увеличилась более чем в 1000 раз.

Секрет всех этих успехов в уникальной личности господина Хонга. Он очень известный человек. Его лично знают выс-

шие руководители Китая. Ведущие Азиатские и европейские форумы считают за честь добиться его участия в качестве гостя

Россия — страна, в которой завершается европейское турне господина Хонга. В ходе своего короткого посещения он принял участие в работе первого съезда дилеров GREE, познакомился с ситуацией в России и поделился своим деловым опытом.

На вопрос редактора журнала «С.О.К.» Данилина Н.Н. отвечает президент компании GREE Electric Appliance Inc. Mr. Zhu JiangHong:

Высокое качество требует наличия и системы подготовки высококвалифицированных специалистов. Каким образом в Китае для производства идет подготовка новых кадров и используется ли иностранные специалисты при организации нового производства?

— Персонал, работающий на нашем предприятии — это полностью китайский персонал. В вопросах подбора персонала, мы действуем по принципу жесткой конкуренции.

Поскольку в условиях жесткой конкуренции предприятию необходимо выживать, то сам процесс выживания во многом зависит именно от профессионализма персонала. В противном случае предприятие просто неработоспособно. Наши технические специалисты прежде всего занимаются самообучением, но многих работников мы посылаем учиться за рубеж в Японию, в Америку, в Германию. Мы очень благодарны нашим зарубежным партнерам, которые размещают заказы на производство кондиционеров у нас под своей торговой маркой. Они выдвигают очень жесткие требования и приносят новые технологии, и тем самым дополнительно обучают наш персонал. Поскольку заказы западных компаний очень велики, то, исполнение заказа с ненадлежащим качеством может принести огромные убытки. Но всем известно, что информация по современным технологиям является закрытой информацией, на каждом заводе разрабатываются свои технологии, и они не всегда продаются, даже если есть необходимость купить эту технологию. Поэтому очень часто приходится собственными силами разбираться в проблемах, чтобы понять как это должно работать. Мы всячески поощряем наших работников, которые хотят изучать зарубежные технологии, которые пытаются думать, которые стараются выучить что-то новое. Таким образом, они вырастают в хороших специалистов. Наша компания несомненно уделяет большое внимание к разработке новых продуктов, новых товаров и вкладывает достаточно большие деньги в разработку новинок. Система распространяется на весь персонал, который мы в денежном выражении стимулируем к новым изысканиям, новым исследованиям. Поэтому можно сказать, что мы никогда не приглашали иностранцев на наши предприятия, все технологии осваивали только собственными силами.

«ПЫЛЕСОСНАЯ РЕВОЛЮЦИЯ»

или зачем Вам нужен встроенный пылесос...

Владельцам современных загородных домов и больших квартир хорошо известно, какой это тяжелый труд — поддерживать чистоту и порядок в своем жилище, какой изнурительной и долгой может быть уборка. И любая хозяйка прекрасно знает, как после нескольких часов нелегкой физической работы становится тяжело переносить за собой пылесос, особенно если в доме есть лестница... К тому же, не всегда удобно использовать обычный пылесос для чистки труднодоступных мест. А шум от работающего пылесоса, при котором другие члены семьи не могут расслабиться перед телевизором или разговаривать по телефону? А часто засоряющиеся фильтры и мешки для мусора?

осле уборки можно увидеть мириады маленьких пылинок, висящих в воздухе и легкий специфический запах, который раньше мы принимали за запах настоящей чистоты. А виновником этого «безобразия» является Ваш пылесос, поскольку его фильтр или система фильтров не улавливают мелкие частицы размером меньше 0,6 мкм, бактерии, сапрофиты. Этот поток воздуха выбрасывается обратно в убираемое помещение и поднимает в воздух пыль, которую Вы не успели собрать. А потом и Вы сами, и Ваши дети дышите таким воздухом, который для людей, страдающих аллергией или астмой, является причиной обострения болезни. Ведь в домашней пыли содержится намного больше вредных микрочастиц и бактерий, чем в уличной, поскольку на улице имеются природные системы очистки — солнце, дождь, ветер. Что же делать в этой ситуации?

И тут на помощь приходят встроенные системы уборки.

На российском рынке уже достаточно много предложений различных фирм, занимающихся поставками центральных встроенных пылесосов. Сегодня мы остановимся на оборудовании итальянской компании AERTECNICA.

Встроенные системы уборки AERTECNICA являются отличной альтернативой переносным бытовым пылесосам и предназначены для установки в жилых, офисных и производственных помещениях любой площади. Основными составляющими системы пылеудаления являются пылесос, трубопроводы и розетки для подключения гибкого шланга.

Центральная установка системы с пылесборником, оснащенная глушителем, размещается в нежилом помещении (в подвале, в гараже, на лоджии, балконе или в шкафу), поэтому во вре-

мя работы пылесоса в жилом помещении отсутствует шум. Турбина центральной установки создает в трубопроводе разряжение, необходимое для транспортировки мусора, его отделения в зоне очистки. Далее воздух выбрасывается наружу.

Герметичный трубопровод диаметром 50 мм размещается в полу, стенах или за подвесными потолками. Прокладку трубопроводов лучше осуществлять до того, как были проведены отделочные работы в помещении. По трубам воздух с пылью попадает в центральную установку.

В убираемых помещениях устанавливаются розетки для подключения гибкого шланга (длиной 7–9 м) с нужной насадкой. Включение пылесоса происходит несколькими способами: при открытии крышки розетки, специальным переключателем на ручке шланга или дистанционно при помощи карманного

пульта. Мощность двигателя регулируется посредством потенциометра, расположенного на ручке шланга. В помещениях, требующих частой уборки — на кухне или в прихожей, на уровне пола размещаются специальные щелевые розетки (лотки), включаемые от клавиши. Достаточно подмести мусор к лотку и включить клавишу.

Пройдя очистку циклонным фильтром и доочистку картриджным фильтром, воздух выводится наружу. Он полностью очищен и не создает неудобств ни Вам — владельцу системы, ни Вашим соседям. Сочетание циклонного метода очистки и доочистки картриджем — на сегодняшний день самый эффективный способ.

Например, удаление крупных и тяжелых частиц мусора при любом механизированном способе уборки приближается к 100%. А вот частицы более мелких фракций при разных способах уборки удаляются с различной эффективностью. Для сравнения: при использовании только циклонного метода очистки удаляется чуть более 70% частиц размером 5-6 мкм и всего 25% частиц размером 1-2 мкм. У водяного фильтра те же показатели составляют соответственно 80-83% и 35-40%, а вот при методе «циклон + фильтр», который использует AERTECNICA, эти показатели намного выше — 95-97% и 89-91%. Картридж полиэстрового фильтра доочистки не задерживает клещей (сапрофитов) и бактерии, поэтому не следует опасаться их накопления в пылесборнике.

Пылесосы имеют встроенную электронную систему плавного пуска SOFT START (Siemens), а модели серии Р систему безопасности с аварийным отключением пылесоса при перегреве двигателя, засорении фильтра, наполнении контейнера, включении пылесоса более шести раз за минуту (допустим, балуются дети) или непрерывной работе системы более 30 минут, если Вы отвлеклись или забыли выключить пылесос. Аварийные отключения отображаются на панели пылесоса и дублируются на сигнальной выносной панели, которая располагается в удобном для Вас месте на этаже.

Модели серии 80 предназначены для

- Предназначены для уборки в жилых, офисных и производственных помещениях любой площади
- Идеальная фильтрация воздуха
- Экологически чистые выбросы
- Удобство и простота использования
- Тиши
- Долговечность

ВСТРОЕННЫЕ СИСТЕМЫ УБОРКИ

квартир, не имеющих достаточного места для установки пылесоса. Двигатель в этом случае охлаждается не воздухом из помещения, в котором установлен пылесос, а предварительно очищенным воздухом из гибкого шланга. Это единственный из всех известных пылесосов, который можно устанавливать в герметичном шкафу (коробе) на не застекленном балконе без устройства венти-

ляции для охлаждения двигателя. Это самая малогабаритная модель — размеры короба ограничены только размерами пылесоса — 58х28 см (ВхД).

Помимо пылесосов бытового назначения фабрика AERTECNICA выпускает промышленные системы пылеудаления, которые рассчитаны на помещения

большой площади — гостиницы, офисные здания, торговые центры, рестораны, промышленные предприятия.

Пылесос в таких системах разбит на несколько составляющих: силовой модуль, сепаратор, панель управления, предохранительный клапан и др. В зависимости от убираемой площади в каскад собираются несколько силовых модулей мощностью 1,5-13 кВт. Диаметры магистральных воздухопроводов в таких системах достигают 160 мм. Для того, чтобы максимально упростить обслуживание промышленного пылесоса, разработана специальная система самоочистки картриджного фильтра, превращая его в «необслуживаемый». Очистка внутренних поверхностей фильтра производится воздухом при помощи встроенных внутрь картриджа инжекторов (давление 4 атм.). Во время очистки воздух под давлением поступает в инжекторы и продувает картридж в направлении изнутри наружу. При этом пыль с наружной поверхности фильтра падает в контейнер. Работа этой системы может быть запрограммирована по таймеру (AEG) начала очистки, ее окончания и периодичности циклов очистки. Все промышленные пылесосы рассчитаны на питание 380 В. Ресурс трехфазных двигателей в 20 раз превышает ресурс однофазных, они не имеют ограничений по продолжительности работы, т. е. могут работать практически круглосуточно, поэтому промышленные пылесосы более надежны и долговечны, чем бытовые. Расчет промышленных систем ведется строго индивидуально с учетом специфики рабочего режима здания.

Благодарим компанию Виватэкс-М за предоставленный материал

109147, г. Москва, ул. Марксистская, д.20, стр.1, этаж 3. Тел./факс: (095)363-3854, 912-0051, 912-3705, 912-0572 http://www.vivatex.ru e-mail: info@vivatex.ru

<u>ТОЧКА ЗРЕНИЯ НА</u> <u>ЭКОНОМИЮ ВОДЫ</u>

(Из статьи генерального директора МГП «Мосводоканал» С.В. Храменкова «Стратегия действий водных компаний в условиях жилищно-коммунальной реформы»

BCT 4/2002

Понятие «горячая вода» как товар не существует. Теплоснабжающие организации не покупают холодную воду у МГП «Мосводоканал» на нужды централизованного горячего водоснабжения, хотя в соответствии с действующим законодательством являются абонентами и обязаны покупать воду (соответственно стоимость воды должна включаться в тариф на горячую воду); теплоснабжающие организации не заинтересованы в оперативном устранении утечек воды на заводомерных сетях горячего водоснабжения (в настоящее время не утверждены нормативы потерь воды на этих сетях).

нализ результатов опроса общественного мнения ясно показывает, что в ответах присутствуют две составляющие:

- 1. Жители, практически не задумываясь, четко реагируют на качество предоставляемых услуг.
- 2. Не все однозначно отвечают на вопрос о необходимости установки водосчетчиков, понимая, что за установку счетчика надо платить, а будет ли от этого выгода, еще не известно.

Уместно здесь привести высказывание французского экономиста Фредерика Бастиа еще в XIX в.: «Бросьте взгляд на земной шар. Когда народы бывают самыми счастливыми, самыми нравственными, самыми миролюбивыми? Когда закон реже всего вмешивается в частную, личную деятельность; когда правительство меньше дает себя чувствовать; когда личность имеет наибольшую силу, а общественное мнение наибольшее влияние; когда не так многочислен его состав управления и не так сложно его устройство; когда легче равномернее налоги...».

Обратимся к существующей системе управления городским хозяйством на примере г. Москвы. Система управления городским хозяйством (речь идет об обеспечении таких услуг, как снабжение холодной и горячей водой, электрои теплоэнергией) имеет слабо управляемую горизонтальную и частично вертикальную структуру управления, основанную на договорных отношениях между ресурсоснабжающими и жилищными организациями, жилищными организациями, жилищными организациями.

Договоры, заключенные между этими организациями, часто носят монопольный характер, исходя из сложившейся практики заключения договоров. Отсюда и издержки при заключении договоров, нарушение прав и обязанностей отдельных субъектов коммунального сектора, неплатежи и низкое качество оказываемых услуг. В договорах между Дирекциями единого заказчика (ДЕЗ) с ресурсоснабжающими организациями отсутствуют условия об объемах и качестве отдельных коммунальных услуг с необходимыми параметрами, поставок ресурсов. Например, ответственность теплоснабжающей организации за подачу тепловой энергии измеряется в гигакалориях, при этом ДЕЗ отвечает за соответствие температуры воздуха и горячей воды в жилых домах.

Роль местных органов власти, как правило, сводится к урегулированию взаимоотношений и предотвращению конфликтных и аварийных ситуаций. Для простоты изложения проиллюстрируем это на технологической схеме по предоставлению и потреблению энергоресурсов. Выработка и поставка энергоресурсов в город осуществляется ресурсоснабжающими организациями: ОАО «Мосэнерго», РАО «Газпром», МГП «Мосводоканал». Далее через систему теплоснабжающих организаций-покупателей, а потом через жилищные организации ресурсы (услуги) поступают потребителю, в том числе населению.

Отношение к установке в квартирах счетчика за счет проживающих: 73 % отрицательно; 12 % положительно; 15 % затруднились ответить.

Анализируя указанную технологическую схему, нетрудно понять, что самым слабым незащищенным звеном в этой цепочке является потребитель, т. е. житель города. Эта схема может работать только в условиях жесткой командноадминистративной системы, в которой и была создана. При этом важно отметить, что наиболее экономически и финансово устойчивыми являются РАО «Газпром», ОАО «Мосэнерго», МГП «Мосводоканал» по праву монопольного положения на рынке предоставляемых услуг. Финансовое положение других теплоснабжающих организаций целиком зависит от конечных потребителей, т. е. от ДЕЗов и бюджетной дотации.

До настоящего времени в Москве существует проблема с обеспечением горячей водой. В цикле приготовления и подачи воды для нужд горячего водоснабжения города принимают участие четыре основные организации: МГП «Мосводоканал», МГП «Мосгортепло», МГП «Мостеплоэнерго», МП «Теплоремонтналадка» и ДЕЗы. МГП «Мосводоканал» отвечает за подачу воды до ДТП, где происходит ее подогрев. Теплоснабжающая организация подогревает воду и подает ее до жилого дома. Жилищная организация подает горячую воду непосредственно населению и осуществляет расчеты с жителями.

В противоречие п. 72 действующих Правил пользования системами коммунального водоснабжения и канализации РФ (утвержденных постановлением правительства РФ № 167 от 12.02.1999 г.) оплата за питьевую воду, полученную теплоснабжающей организацией для

централизованного горячего водоснабжения и на собственные нужды, производится за весь фактический объем полученной питьевой воды, определяемый по показаниям средств измерений. Несмотря на это в Москве не устранено противоречие, при котором завышенное давление в ЦТП и утечки на заводомерных сетях приводят к увеличению удельного водопотребления и соответственно к увеличению задолженности жилищных организаций перед МГП «Мосводоканал» за оказанные услуги водоснабжения. Таким образом, все убытки по утечкам на сетях горячего водоснабжения приходятся на жилищные организации, которые не могут их компенсировать за счет потребителей (доборы с населения запрещены). В результате удельное водопотребление питьевой воды в Москве остается высоким и составляет 380 л/(чел÷сут).

Совершенствование расчетов за жилищно-коммунальные услуги.

В Москве сложилась ситуация, при которой потребитель (население) вынужден оплачивать коммунальные услуги по различным книжкам, квитанциям. В случае спорных вопросов, возникающих при оплате коммунальных услуг, конкретный гражданин должен объездить целый ряд организаций, выясняя их. Прежде всего жителям Москвы такая ситуация неудобна, а кроме того не позволяет осуществлять адресное предоставление льгот по оплате коммунальных услуг через центр жилищных субсидий. Например, в расчетном центре 3еленограда был проведен эксперимент, где отмечена положительная работа центра и перспективность применяемой схемы расчетов с населением за коммунальные услуги.

Проблема сверхнормативного водопотребления в жилом фонде.

В настоящее время достаточно остро стоит вопрос сверхнормативного водопотребления в жилом фонде города. МГП «Мосводоканал» выставляет жилищной организации счет на оплату услуг водоснабжения и водоотведения по показаниям приборов учета, установленных в ЦТП или на вводе в жилой дом, а жилищная организация осуществляет расчеты с населением по установленным нормативам и ставкам оплаты услуг водоснабжения и водоотведения. Учитывая, что норматив водопотребления составляет 320 л/(чел÷сут), в ряде районов Москвы имеется значи-

тельное превышение установленного норматива (сверхнормативное водопотребление).

В то же время одиннадцать ДЕЗ не имеют сверхнормативного водопотребления. В указанных дирекциях эксплуатацией внутридомовых систем водоснабжения занимаются квалифицированные специалисты, которые в большинстве случаев своевременно проводят плановые и технические ремонты.

В настоящее время не определен порядок предъявления и отнесения убытков жилищных организаций, вызванных утечками через водоразборную арматуру в квартирах потребителей (жителей), или, при невозможности отнесения убытков на потребителей, расходы жилищных организаций по эксплуатации жилищного фонда. Жилищные организации не имеют возможности регулярно проводить обследование внутридомовых сетей и оборудования, выявлять утечки воды через санитарно-техническую арматуру, установленную в жилом фонде (ввиду отсутствия специалистов и по другим причинам) у жилищных организаций отсутствует финансовая заинтересованность в проведении работ по ресурсосбережению в жилом фонде города.

На начальном этапе находится кампания по оснащению жилых домов приборами учета тепла и горячей воды. Сейчас правительством Москвы принято решение, по которому МГП «Мосводоканал» будет отвечать за организацию работ по установке и обслуживанию внутридомовых и квартирных приборов учета воды в жилищном фонде города. В новых жилых домах в Москве установка квартирных водосчетчиков производится с 1997 г., однако порядка организации учета потребления воды и ее оплаты по показаниям измерительных приборов в настоящее время не существует, и население продолжает осуществлять плату по нормативам.

В последние два года в Москве под давлением теплоснабжающих (МГП «Мосгортепло», МГП «Мостеплоэнерго») и частично жилищных организаций было принято решение о переходе на прямые расчеты с населением. По состоянию на 1 января 2002 г. практически завершился переход на прямые расчеты с населением между МГП «Мосгортепло» и МГП «Мостеплоэнерго». Было предложено МГП «Мосводоканал» перейти на прямые расчеты с населением. Но здравый смысл взял верх, и этого не произошло. Переход на прямые расчеты

с населением по теплоснабжению, несмотря на кажущиеся на первый взгляд преимущества (получение денежных платежей, минуя посредника в лице ДЕЗ), имеет существенные недостатки. К ним следует отнести: снижение уровня защищенности каждого потребителя из-за отсутствия профессионального контроля последними качества предоставляемых услуг (технологические параметры: температура, давление и т. д.); возникновение различных нестыковок по эксплуатации внутридомовых систем теплоснабжения (эксплуатация внутридомовых систем осуществляется одной организацией, а платежи перечисляются другой); увеличение необоснованной численности персонала теплоснабжающих организаций и как следствие удорожание услуг; отсутствие финансовой заинтересованности у теплоснабжающих организаций по ресурсосбережению и др.

Отсюда вывод — оплата всех жилищно-коммунальных услуг должна осуществляться не по нормативам потребления, а по показаниям приборов учета и по единой квитанции, т. е. по принципу «одного окна». Хорошее управление городским хозяйством состоит в искусстве найти разумный компромисс между двумя требованиями — обеспечение эффективности ресурсоснабжающего предприятия и соблюдение интересов жителей города.

А теперь о стратегии действий, направленных на проведение реформы предприятий водопроводно-канализационного хозяйства. У многих может сложиться впечатление, что реформа будет проходить самостоятельно без активных действий со стороны участников этого процесса. За 10 лет реформы не было случая, чтобы хотя бы одна организация отчиталась в выполнении плана мероприятий или программы действий. Оценивая важность и значение проводимой работы, необходимо отметить, что со стороны администрации города должен постоянно осуществляться контроль за реализацией мероприятий по модернизации городской инфраструктуры (не исключено создание специального административного органа при правительстве Москвы на период проведения реформы).

Наиболее правильным является заключение «контракта» между ресурсоснабжающими организациями и городской администрацией на право предоставления услуг по водоснабжению, канализации, теплу, электроэнергии, обслуживанию жилищного фонда. В нашем случае — это контракт между МГП «Мосводоканал» и Управлением жилищно-коммунального хозяйства правительства Москвы. Контракт должен быть универсальным, гарантировать доступность и хорошее качество услуг.

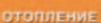
В то же время контракт усиливает «защищенность» водных компаний независимо от их организационно-правовой формы собственности. Основное содержание контракта сводится к следующему: основные условия производственной деятельности (забор воды, технологические параметры, качество очистки, условия приема сточных вод, ресурсосбережение и т. д.); ценообразование и тарифная политика (порядок установления тарифов, льгот, сверхнормативное водопотребление, порядок погашения задолженности и т. д.); инвестиции в объекты водопроводно-канализационного хозяйства; порядок распределения прибыли; природоохранная деятельность. Контракт состоит из 15 глав.

В качестве реперных, основополагающих принципов по модернизации и реформированию жилищно — коммунального хозяйства следует принять следующие направления:

1. Провести ревизию существующей нормативной базы Москвы по жилищно-

- коммунальной реформе и привести ее в соответствие с действующим федеральным законодательством.
- 2. Привести действующие договоры ресурсоснабжающих организаций с жилищными в соответствие с законодательством Российской Федерации, включив в них: условия о порядке расчетов в зависимости от наличия приборов учета воды в ЦТП, жилом доме, квартире; ответственность в случае невыполнения перечня параметров качества жилищно-коммунальных услуг; порядок оплаты потребителями услуг и ответственность за своевременность осуществления платежей и др. Предусмотреть в трудовых договорах (контрактах) личную ответственность руководителей и жилищных управляющих компаний за своевременность платежей.
- 3. Установить в качестве эксперимента двухуровневый тариф на коммунальные услуги (оптовый и розничный), в частности, на услуги водоснабжения и канализации. Применение данного тарифа в расчетах между ресурсоснабжающей (оптовый тариф) и жилищной (розничный тариф) организациями позволило бы решить ряд экономических и юридических вопросов (в частности, выплата комиссионного вознаграждения и т. д.), повысило бы заинтересованность жилищных организаций.

- 4. Провести инвентаризацию, реструктуризацию и ликвидацию задолженности бюджетных организаций и других потребителей (в том числе населения) перед организациями водопроводноканализационного хозяйства. Признанная задолженность должна быть включена в расходную часть соответствующих бюджетов.
- 5. Привлечение инвестиций в жилищно-коммунальное хозяйство должно осуществляться при активной государственной поддержке путем создания финансовых механизмов минимизации рисков привлечения частного капитала (в Москве реализовано шесть крупных инвестиционных проектов по модернизации водопроводных и канализационных сооружений). Необходимо законодательно закрепить порядок привлечения частного капитала и принять закон «О концессиях».
- 6. Провести поэтапные преобразования жилищно-эксплуатационных, специализированных организаций в открытые акционерные общества. Преобразование ресурсоснабжающих организаций в открытые акционерные общества должно осуществляться при условии, что объекты сетевой инфраструктуры (водопроводные, тепловые, канализационные сети) должны находиться в собственности города.



SHK MOSCOW 2003

7-я международная специализированная выставка

КОНДИЦИОНИРОВАНИЕ

ОБОРУДОВАНИЕ

7-й европейский симпозиум "Современное энергоэффективное оборудование для теплоснабжения и климатизации зданий"

26-29 мая 2003

Россия, Москва Выставочный комплекс ЗАО "Экспоцентр" на Красной Пресне Павильон № 7

Дополнительная информация: тел.: (095) 256-73-95, 255-27-36 факс: (095) 205-72-07, 255-27-71

www.shk.ru E-mail: ShatovM@messedi.ru

Анализ параметра «Цена/Качество»

для тепловой изоляции в свете задач энергосбережения

Тимофей Автономов (000 «Термафлекс Изоляция»)

О задачах энергосбережения сказано уже достаточно много. На самых разных уровнях идет разговор о необходимости многократного снижения затрат на энергию, расходуемую на инженерное обеспечение строящихся и существующих объектов. На регулярной выставке-конференции «Москва — энергоэффективный город», проходящей два раза в год в столичной Мэрии, 50 % докладов посвящено проблемам увеличения эффективности систем, ответственных за подачу в дом тепла и воды. При этом ни у кого не возникает сомнений в том, что делать это нужно. Когда мы слышим прогнозы о стоимости, например, электроэнергии в 2003 году, становится понятно, что делать это нужно было «вчера».

о даже сейчас, когда многие из нас, начинают платить за энергию и другие коммунальные услуги почти столько, сколько они стоят на самом деле, продолжает теплиться идея «ложной» экономии, когда в затраты на возведение здания вносятся деньги, вложенные до момента сдачи госкомиссии. Все, что происходит после, выносится за рамки сметы и перекладывается на плечи эксплуатационных служб, а далее, как вы сами понимаете, на нас — счастливых обитателей приватизированного жилья.

Стоит отметить, что за последние 5-7 лет появились фирмы, внедряющие альтернативный вариант анализа реальных затрат взамен спорного (не хочется употреблять слово «традиционного») принципа «после нас хоть потоп». Как правило, это комплексные объединения крупных инвесторов, строителей, проектировщиков и эксплуатационных служб. В этом случае начинает зарождаться заинтересованность не только в безусловном снижении стоимости устанавливаемого оборудования, но и в сокращении будущих эксплуатационных расходов, а кроме этого в сохранении позитивного имиджа фирмы на долгие годы. Ответственность перед собой и своими клиентами заставляет нас учиться считать день-

Как решить эту задачу? Как угнаться за двумя зайцами и достичь снижения стоимости жилья до \$ 250/м², одновременно снизив расход энергии на 40%

(обе цифры назывались в качестве опорных координат докладчиками на вышеупомянутой конференции)?

Первая цифра сегодня кажется нереальной. Действительно, система центрального кондиционирования, созданная по всем правилам и обеспечивающая принятые европейские климатические нормы и оптимальное энергопотребление, по разным оценкам обходится покупателю от \$ 60 до \$ 100 за квадратный метр. Энергоэффективная двухтрубная система внутреннего отопления (качественные трубы, надежная изоляция, современные стальные радиаторы, балансировочное оборудование, термостатические клапаны и счетчики) также будет стоить недешево.

Следует отдавать себе отчет в том, что сейчас, когда 70% действительно качественного оборудования импортируется, говорить о снижения стоимости «эргономичного» жилья можно только учитывая дальнейшую экономию на протяжении нескольких лет после ввода в эксплуатацию объекта. Главное сомнение состоит в том, что до сих пор не существует механизмов получения реальной отдачи от продажи качественного жилья, кроме повышения стоимости квадратного метра. Создание равноценных отечественных марок позволит снизить цены, но это пока в будущем. Возможно, один из путей по которому можно пойти, это «скрытый целевой кредит», при котором часть себестоимости жилья, эквивалентная «заряженности» инженерии, превращается в коммунальные платежи. Участникам создающегося «кондоминиума» или другого сообщества владельцев недвижимости можно предложить, например, оплачивать потребляемую энергию по повышенной ставке. В этом случае плательщики (мы с вами) будут максимально заинтересованы в том, чтобы снизить потребление энергии и сократить свои серьезно возрастающие расходы. Более высокая цена на энергию будет оправдана наличием высокотехнологичных приборов в системе отопления, в том числе счетчиков, позволяющих нам контролировать потребление тепла. В итоге оплата по такому принципу может быть даже ниже, чем обычно.

Важнейшим элементом, позволяющим повышать КПД такой системы, становится тепловая изоляция.

В этой статье мы сделаем попытку раскрыть смысл предлагаемых специалистами проектных институтов и поставщиками вариантов изолирования и сравнить их эффективность.

оявление современных теплоизоляционных материалов в России произошло около 10 лет назад и было встречено с большим энтузиазмом всеми специалистами, связанными с теплоизоляцией. Под современными материалами мы понимаем вспененные продукты в виде труб и листов. До сих пор ходят легенды о технически насыщенных семинарах, проведенных специалистами уважаемой фирмы «Армстронг» тогда, когда даже системы промышленного холода

изолировальсь прошивными матами.

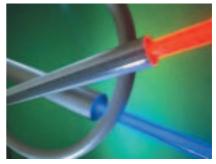
Время не стоит на месте. Технология производства вспененных теплоизоляционных материалов повышается бла-

годаря ежедневной экспериментальной работе лабораторий крупнейших производителей. Многое из того, что впервые было показано в начале девяностых годов прошлого века, теперь воспринимается как вчерашний день. В России появились продукты других европейских фирм-производителей. В 2001 году, например, после многолетнего успешного присутствия на нашем рынке, было создано представительство «Термафлекс» — производителя одного из самых высококачественных теплоизоляционных материалов. Сегодня в России — множество «флексов». Возможность выбора является, с одной стороны, положительным фактором, но с другой, часто подталкивает к тому, чтобы, выбирая изоляцию, просто закрыть глаза и указать пальцем в небо, успокаивая себя тем, что изоляция — 1/1000 часть всего остального оборудования (в рублях) и не может серьезно повлиять на работу системы.

Конечно, это неправильно. Во-первых, грамотный подход заключается в том, чтобы при проектировании рассматривался КОНКРЕТНЫЙ материал, а не материал «типа Термафлекс» или «типа Армаселл». К сожалению, подделки под высококачественные материалы или просто введение в заблуждение заказчика подменой запроектированного материала иным, более дешевым не редкость. Опытный специалист начнет выбор материала с выбора вида изоляции. Причем нам необходимо выбрать не только между минеральной (или стеклянной) ватой и вспененным материалом. Основной вопрос встает тогда, когда выясняется, что существует множество марок вспененных материалов, а в каждой марке несколько модификаций. Крайне опасным бывает произвольный выбор изоляции, когда весь расчет (если он был) основывался на одних теплофизических характеристиках, а на деле они оказываются иными.

Строгое соблюдение проекта — второй необходимый принцип создания надежной и энергоэффективной инженерной системы. Самые грубые ошибки, когда просто вычеркивается некий минераловатный материал, а на его место запи-

сывается, например, Термафлекс, позади. В этих случаях поставщики оборудования часто получали спецификацию с листовой вспененной теплоизоляцией.

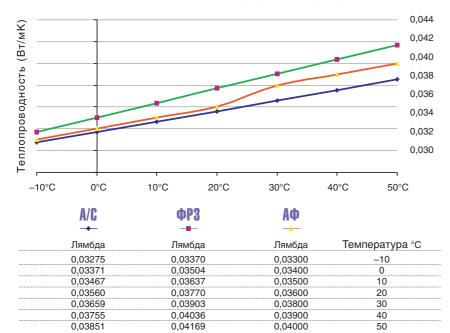

указанной в кубометрах или предложенной к монтажу на систему с температурой 150°С. Это было бы даже забавно, если бы не огромные потери времени и денег при экстренном исправлении ошибок, которых могло бы и не быть.

Сегодня, мы гораздо чаще сталкиваемся с более тонкими и коварными ошибками, связанными, например, с одинаковыми окончаниями названий материалов (Термафлекс, К-Флекс, Рубафлекс, Энергофлекс и т.п.). Случается так, что в обычной строительной суете, теплоизоляция выбирается неосознанно и отличается от заложенной в проекте. Это неправильно.

Все вспененные материалы делятся на 2 основные группы. ВСПЕНЕННЫЙ ПОЛИЭТИЛЕН и ВСПЕНЕННЫЙ СИНТЕТИ-ЧЕСКИЙ КАУЧУК — две ветви одного дерева, имеющие общую среду обитания (инженерные системы зданий), но дающие различные плоды. Кроме этого, в 2001 году в Европе был создан третий вид материала, представляющий собой комбинацию различных сырьевых компонентов и получивший название ПЕКАУ. На сегодняшний день этот материал является объективно наиболее интересным с точки зрения совмещения полезных качеств каучука и полиэтилена. Он был создан специалистами научной лаборатории Термафлекс, получил название Термафлекс А/С Смарт Лайн и заслуживает отдельной статьи.

Огромным заблуждением является мнение о том, что теплофизические характеристики всех вспененных материалов почти одинаковы. Например, важнейшая характеристика — коэффициент теплопроводности (λ) при 10°С для материала Термафлекс ФРЗ составляет не более 0,033 Вт/мК, для К-Флекс ЕС — не более 0,037 Вт/мК, а для Армаселл АС — не более 0,039 Вт/мК. На всякий случай повторим, что чем теплопроводность ниже, тем теплоизоляционные

свойства материала лучше. Несложные вычисления покажут, что одинаковые задачи, решаемые, например, в системе отопления, требуют большей толщины


слоя, например, для Армаселл АС по сравнению с Термафлекс ФРЗ.

Особенно стоит отметить принципиальное значение, которое имеет модификация материала, выраженная в буквенном коде сразу после марки. Бывает так, что под общим, достаточно известным именем с хорошей репутацией поставляется материал, имеющий другие свойства, просто более дешевый. Заказчику же предоставляется документация на более дорогой, лучший материал, незначительно отличающийся маркировкой. Вывод: необходимо контролировать соответствие реально поставляемого материала тем документам, которые были предоставлены в процессе проектирования и коммерческого предложения.

Еще одно важное замечание. Теплопроводность — переменная величина, зависящая от множества факторов, и, в первую очередь, от температуры (см. рис.1), при которой она измерена. Чем меньше температура, тем ниже (лучше) теплопроводность. Серьезные поставщики всегда указывают температуру, при которой измерена теплопроводность (λ), при этом, по международным нормам принято давать худший из экспериментальных результатов для того, чтобы клиент всегда получал товар с лучшими свойствами. К сожалению, отечественные поставщики (и, увы, производители) иногда пренебрегают этим «правилом хорошего тона» и просто указывают в своих проспектах «λ=0,038». Сравнивать такой параметр с аналогичными характеристиками других материалов нельзя, так как мы не можем сравнить условия, при которых они измерены.

Еще одна важнейшая характеристика для теплоизоляционных материалов — коэффициент сопротивления диффузии водяного пара, иногда называемый фактором сопротивления влажности (µфактор). Этот безразмерный коэффициент показывает отношение паропрони-

(Рис.1): Зависимость теплопроводности от температуры для Термафлекс А/С, ФРЗ, АФ

цаемости насыщенного водяными парами воздуха (бв) к паропроницаемости материала (δ): $\mu = \delta B / \delta$. Качественным материалом можно считать тот, для которого этот параметр составляет не менее 3500. Практическое значение этой цифры состоит в том, что чем она больше, тем стабильнее теплопроводность на протяжении всего срока эксплуатации (для качественной изоляции 25 лет и более) и тем меньше ухудшаются теплоизоляционные свойства материала на системах с отрицательным перепадом температур. Именно на этих системах наиболее негативно сказывается процесс образования влаги. Если влажностный барьер материала недостаточно высок, то не достаточно ответственный поставщик может просто обойти этот факт и не указывать его рядом с вполне приличной лямбдой. Это допустимо для минеральной ваты, которую серьезные поставщики никогда не порекомендуют на низкотемпературное оборудование. Поставщик вспененных материалов, не дающий эту информацию, заставляет усомниться в своей компетентности. В этих случаях готовьтесь к тому, что материал будет насыщаться влагой, и теплопроводность будет расти (ухудшаться), а затраты на энергию, которой для производства холода требуется гораздо больше, будут неконтролируемо расти.

Таким образом, выбирая изоляцию для низкотемпературного оборудования, следует особое внимание обращать на µ-фактор, указанный в документах, так как именно от него будет зависеть практическая теплопроводность (даже очень низкая изначально) с самого начала эксплуатации (табл. 1).

Механические свойства также являются важнейшей характеристикой вспененных изоляционных материалов. Каучуковые материалы (Термафлекс АФ, К-Флекс ЕС, К-Флекс СТ, Армаселл АС) имеют традиционно большую эластичность по сравнению с полиэтиленом (Термафлекс ФРЗ). Эластичность теплоизоляционного материала имеет положи-

тельную и отрицательную стороны. Безусловно, при монтаже на медную кондиционерную трубу высокая эластичность облегчает процесс и позволяет вести предварительный монтаж быстрее. С другой стороны, высокая эластичность сопровождается тем, что при монтаже на диаметры ДУ более 50, продольное разрезание каучуковой трубной изоляции приводит к потере цилиндрической формы и склеивание несколько затруднено. На таких трубах удобнее работать с полиэтиленом. В целом можно сказать, что трудозатраты при монтаже вспененного каучука и вспененного полиэтилена одинаковы. Мнение о том, что материалы из каучука позволяют сократить трудозатраты, так как материал можно «натягивать» на местные утолщения без «дополнительной кройки» является ошибочным и многократно опровергнуто практикой. В таких местах в материале резко возрастают внутренние напряжения, и срок службы его заметно снижается.

У материалов из полиэтилена (Термафлекс ФРЗ) механическая прочность выше, чем у каучука. К сожалению, мягкость и гибкость каучука сопровождается невысокой прочностью на разрыв. При монтаже и эксплуатации таких материалов (Термафлекс АФ, К-Флекс ЕС) это необходимо учитывать.

Температурный диапазон. Усредненный температурный диапазон для материалов из полиэтилена составляет от -80 до +95°C. Для каучука: от -40 до +104°С. Низкая отрицательная граница справедлива, в первую очередь, для действительно качественных материалов (Термафлекс ФРЗ, Термафлекс А/С) и позволяет применять их на низкотемпературном оборудовании. Положительным отличием полиэтилена в этом случае также можно назвать неизменность эластичности при самых низких температурах, в то время, как каучуковые материалы «затвердевают» и становятся хрупкими уже при −20°С.

(Таблица 1): Сравнение основных свойств вспененных теплоизоляционных материалов

Nº	Материал	Вид изоляции Полиэтилен/Каучук	Теплопроводность Вт/мК, при 0°С, не более	Сопротивление диффузии водяного пара, не менее	Температурный диапазон, °С
1	Термафлекс ФРЗ	полиэтилен	0,0320	3 500	-80+95
2	Термафлекс А/С	пекау	0,0340	7 000	-80+95
3	Термафлекс АФ	каучук	0,0340	7 000	-40+105
4	Термакомпакт	полиэтилен	0,0320	5 000	-80+95
5	К-флекс ЕС	каучук	0,0360	3 000	-40+116
6	К-флекс СТ	каучук	0,0360	7 000	-40+105
7	К-флекс ЭКО	каучук	0,0380	4 000	-70+150
8	Армафлекс АС	каучук	0,0380	3 000	-40+105
9	Армафлекс АФ	каучук	0,0360	7 000	-40+105
10	Армафлекс ЭйчТи	каучук	0,0400	10 000	-40+150
11	Туболит	полиэтилен	нет данных	нет данных	нет данных
12	Энергофлекс	полиэтилен	0,037 (друг. источник 0,045)	нет данных	-40+100

Кроме этого, сегодня производители каучука выпускают ряд материалов для перегретой воды или пара с высшей температурной границей до +150°С (Кфлекс Эко, Армаселл ЭйчТи). Материалы эти недешевы, но бывают весьма востребованы в случаях, когда у заказчика не остается выбора из-за необходимости экономить пространство. В стандартной ситуации, системы с перегретой водой вполне допустимо изолировать качественными минераловатными изделиями (кашированные цилиндры Роквул, Парок, стекловолокно Изовер). Но, как говорится, это уже совсем другая история.

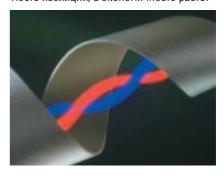
Подводя итоги нашего скромного анализа вспененных материалов и методов их выбора для конкретных проектов, остановимся на последнем параметре, часто решающем.

Цена. В России это слово имеет магическое действие. Я, например, никогда не рассматриваю цену отдельно от качества продукта, за который плачу деньги. Уверен, что найдется немало людей, разделяющих эту точку зрения. Тем не менее, отвечая на непременный вопрос «сколько стоит?», я бы порекомендовал сравнивать не просто розничные цены на материал и глубину оптовых скидок, а весь комплекс вопросов, связанных с трудозатратами, сервисом, возможностью товарного кредита, наличием на складе, а также, безусловно, репутацией фирмы, предлагающий тот или иной теплоизоляционный материал.

Такая элементарная вещь, как окупаемость оборудования, также может убедительно показать, что именно мы покупаем и почему проектировщик предлагает нам тот или иной размер. Ниже приводится таблица, созданная на основе расчета по одной из программ, которые предоставляют поставщики вместе со своей продукцией (в данном случае, Термафлекс) дающая возможность оценить экономию энергоресурсов в конкретных цифрах.

Представим себе систему внутреннего отопления для небольшого загородного

коттеджа в ближнем Подмосковье. Примем для расчета усредненный наружный диаметр трубы 35 мм и общую длину 100 метров. Кстати, на популярный вопрос



о том, что именно нужно изолировать в системе внутреннего отопления, можно ответить так, что в идеальном случае изолируются все неэффективно излучающие поверхности, т.е. все кроме приборов отопления. Неизолированная труба, проходящая в стене, быстрее теряет энергию, чем нагревает помещение, которое она якобы может обогревать.

Расчет проведем для разной толщины, начиная с нулевой, для того чтобы было понятно, как происходит окончательный выбор типоразмера, когда затраты на дальнейшее увеличение толщины становятся малоокупаемыми. В качестве энергоносителей рассмотрим электричество по цене 1,10 руб/кВт÷час (для подмосковных частных потребителей с потреблением более 12 кВт) и природный газ по цене 0,54 руб за 1 куб.м. (цены по состоянию на 15.09.02, включая налоги). Для расчета возьмем один отопительный сезон (190 дней) и круглосуточно работающую систему отопления. Площадь излучающей поверхности трубы в нашем случае около 20 кв. метров.

Из построенной таблицы (табл. 2) ясно, что соответствовать СНиПу изоляция начинает с толщины 13 или 20 мм. Именно здесь излучаемая тепловая энергия близка к указанной для данных условий в СНиПе «Тепловая изоляция», созданном, правда, когда вспененных материалов в России еще не было (отсюда возможна незначительная разница в цифрах). Самый заметный скачок экономии

энергии происходит при переходе на толщину 13 и 20 мм. Дальнейшее увеличение толщины резко увеличивает стоимость изоляции, а экономичность растет

не столь существенно. Следовательно, максимальная окупаемость и разумное энергопотребление для данной системы отопления наступит при выборе толщины теплоизоляционного слоя в 20 мм, с возможностью использования изоляции 13 мм. Опираясь на вышесказанное, мы обязательно должны уточнить, что все расчеты делались для материала Термафлекс ФРЗ и не применимы к другим видам вспененных материалов.

Окупаемость теплоизоляционного материала в течение полутора отопительных сезонов, в случае использования электроэнергии, и существенная экономия более дешевого (пока) природного газа, наглядно показывают реальную ситуацию с оценкой стоимости качественных вспененных теплоизоляционных материалов. Отдельной темой для интереснейшего анализа может быть сравнение сегодняшних российских цен на энергоносители с голландскими, например. Мы пока ограничимся для расчета сегодняшними (весьма щадящими) ценами, которые, к сожалению, очень быстро растут. Тем актуальнее становится вопрос, поднятый в этой статье и тем интереснее продолжить исследование этой темы в дальнейшем. Мы планируем вернуться к ней уже в следующем номере.

Старая пословица о том, что скупой платит дважды, особенно наглядно подтверждается именно в случае анализа рынка теплоизоляционных материалов для внутренних инженерных систем.

(Таблица 2): Затраты и получаемая экономия для изоляции Термафлекс ФРЗ

1	Nº	Толщина	Стои	мость	Температура	Потери			Экономичность			
		изоляции,	руб/пог.м	суммарная	поверхности,	тепла,	%	Электричеств	о (1,10/кВт÷ч)	Газ (0,54/куб.		
		мм	(15.09.2002)	(х100 пог.м)	°C	Вт/кв.м		кВт/ч	Сумма,руб	куб.м С	умма,руб	
	1	0	0,00	0,00	95,00	96,20	0,00	0,00	0,00	0,00	0	
	2	6	29,76	2 976,00	47,50	41,50	57,00	4 988,22	5 487,04	514,84	278,01	
	3	9	35,96	3 596,00	41,10	33,50	65,00	5 721,52	6 293,67	590,52	318,88	
	4	13	60,45	6 045,00	36,40	27,20	72,00	6 294,01	6 923,41	649,61	350,79	
	5	20	105,71	10 571,00	32,20	21,20	78,00	6 838,56	7 522,42	705,82	381,14	
	6	25	142,91	14 291,00	30,60	18,70	81,00	7 069,11	7 776,02	729,61	393,99	
	7	31 (6+25)	215,76	21 576,00	29,50	16,90	82,00	7 233,78	7 957,16	746,61	403,17	

В феврале 2002 года исполнилось пять лет дочернему предприятию немецкой фирмы WILO GmbH из Дортмунда — 000 «ВИЛО РУС», а с 2001 года оно работает и в Белоруссии. В 1998 году были открыты дочерние предприятия — ВИЛО Украина и ВИЛО Балтика. В настоящее время «ВИЛО РУС» поставляет в Россию современное насосное оборудование для систем отопления, водоснабжения, вентиляции, кондиционирования воздуха, отвода стоков марок WILO и Salmson, а также оборудование для бассейнов, аквапарков и подготовки питьевой и технической (котловой) воды фирмы GrЯпbeck в рамках программы «WILO-GrЯпbeck-Водоподготовка». Надежность оборудования WILO, Salmson и GrЯпbeck, обусловленная высоким качеством конструкции и изготовления, удобство в монтаже и эксплуатации, самые современные эргономические параметры обеспечили этой продукции широкую известность во всех регионах России.

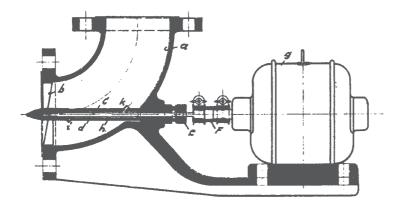
Немецкая фирма WILO из Дортмунда, расположенного в самой индустриально развитой области Германии, успешно работает уже 130 лет. В 1872 году Луис Оплендер основал фабрику по производству фитингов из латуни и меди. Фабрика успешно развивалась, и в 1920 году было решено освоить новое направление деятельности — водоснабжение/отопление.

> До этого времени электродвигатели не подходили для использования в качестве приводного механизма, так как они работали с открытыми контактными кольцами. Использование таких электродвигателей в водяных системах отопления могло привести к многочисленным авариям. Только благодаря изобретению швабским инженером Г. Баукнехтом первого закрытого (герметичного) электродвигателя стало возможным использование двигателей в ускорителях циркуляции. Его друг, вестфальский инженер В. Оплендер, изобрел такую конструкцию, на которую он получил патент в 1929 году.

В колене трубы было установлено насосное колесо в форме пропеллера. Привод осуществлялся через вал с уплотнениями, который, в свою очередь, приводился в действие электродвигателем. В то время данный ускоритель циркуляции еще не называли «насосом». Этот термин начали использовать позже, но так как слово «насосы» всегда связывают со словосочетанием «поднимать воду», то подобные ускорители циркуляции можно смело назвать первыми циркуляционными насосами. Они изготавливались почти до 1955 года.

Из первых букв имени Вильгельма Оплендера

Из первых букв имени Вильгельма Оплендера сложилось название фирмы и торговая марка, которые стали синонимом технически совершенного, комфортного, надежного насосного оборудования.


Специалисты WILO являются авторами многих разработок и внедрений в области насосной техники для инженерных систем зданий. Это и первый электронный насос, и бессальниковый многоступенчатый насос, фекальный насос с использованием нержавеющей стали и композитного материала, единственный в мире вертикальный повысительный насос с мокрым ротором (MVIS), а также циркуляционный насос со встроенной запорной арматурой.

Zu der Patentschrift 540 139 Kl. 36c Gr. 4

Dipl. Jng. Wilhelm Opländer in Dortmund

Aus einem Propeller bestehender Umlaufbeschleuniger in der Leitung
einer Warmwasserheizungsanlage

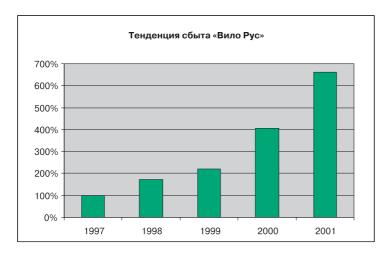
Patentiert im Deutschen Reiche vom 13. November 1929 ab

Вестфальский инженер В. Оплендер изобрел ускоритель циркуляции, на который он получил патент в 1929 году.

Пять лет работы «ВИЛО РУС» на Российском рынке характеризуются приведенной ниже диаграммой. Помимо традиционного роста продаж насосного оборудования также радует и значительный прогресс продвижения оборудования для бассейнов и водоподготовки.

Особо следует отметить качественное изме-

нение запросов наших уважаемых партнеров и клиентов: существенно выросло число заказов на насосы и много насосные установки с частотным приводом и на оборудование с автоматическим управлением. Среди лидеров продаж в 2001 году. оборудования WILO — установки повышения давления с насосами MVI, насосы серии ТОР, IP, а также бытовые станции типа НWJ.


Развивается сбыт оборудования марки Salmson, второго по мощности и значимости производителя промышленной группы WILO. В 2001 году сбыт насосов этой марки увеличился в 5,5 раз по сравнению

с 2000 годом, первым годом вывода оборудования Salmson на российский рынок. Количественные показатели продаж пока очень скромные,

но большие консольные насосы серии NO, напорные баки и установки очистки закрытых систем от Salmson уже сейчас очень востребованы.

Объем сбыта оборудования для бассейнов, выпускаемого по программе «WILO-GrЯnbeck-Водоподготовка», ежегодно прирастает минимум на 30%. Причем, как и в насосном оборудовании, основной объем сбыта приходится не на бытовой сектор, а на крупные объекты, которые строят муниципальные структуры, крупные фирмы и очень богатые люди.

Увеличение объема продаж оборудования для подготовки технической (котловой) и питьевой воды в 2001 году составило 100% по срав-

на мировом рынке

1965 год

Фирма WILO выходит на мировой рынок: образуются первые дочерние предприятия за пределами Германии.

1973 год

Создан первый насос для систем водоснабжения. Далее история развития отмечена 1978 годом, когда в Ирландии в городе Лимерике было основано первое производство насосного оборудования вне границ Германии.

1984 год

WILO приобрела французскую фирму-производителя насосов — Pompes Salmson. В конце 80-х годов произошло внедрение серии насосов Star. Это были первые в мире выпущенные WILO электронные циркуляционные насосы. Через три года был создан первый и единственный в мире вертикальный многоступенчатый насос с мокрым ротором для систем водоснабжения.

1993 год

Внедрена на рынок серия ТОР. На сегодняшний день это одна из самых популярных серий в Европе. Следующим этапом расширения раздела водоснабжения стало создание первого насоса с электронным управлением серии MVIE, MVISE.

2001 год

Компания WILO представила потребителю уникальный насос с мокрым ротором, созданный по ЕСМ-технологии для применения как в системах отопления, так и в системах кондиционирования. ЕСМ (Electronic Commutated Motor) - это технология электронной коммутации двигателя с ротором на постоянных магнитах. Эта конструкция двигателя была впервые использована в насосах Stratos и имеет следующие преимущества по сравнению с насосами с мокрым ротором с асинхронными моторами:

- Снижение потребляемой мощности в 2 раза
- Увеличение КПД при полной и частичной нагрузке в 2 раза
- Улучшенные гидравлические и механические характеристики. (использование 3D рабочего колеса, дополнительные уплотнения и фильтры)
- Снижение годового потребления энергии до 80% благодаря электронному подбору мощности по сравнению с насосами без электронного управления
- Уменьшение габаритных размеров и веса на четверть.
- Диапазон температур от 10°С до +110°С для систем отопления и кондиционирования.

нению с прошлым годом, что также объясняется значительно более серьезным подходом наших Заказчиков, понимающих, что на водоподготовке экономить нельзя — себе дороже!

Разумеется, и для оборудования WILO, и для Salmson и GrЯnbeck достигнутые объемы продаж являются очень малой долей рынка тепловодоснабжения, потенциал которого в России сопоставим только с ее размерами.

Основные этапы в истории WILO перечислены выше и нельзя не заметить, что WILO является лидером и первооткрывателем во многих областях производства насосов, но и не возможно быть первыми везде. А уж развиваться при отсутствии конкуренции и подавно не реально, поэтому WILO благодарит

своих конкурентов за то, что они помогают развиваться и искать новые решения для удовлетворения все возрастающих требований потребителей насосного оборудования.

Так, например, для систем водоснабжения в индивидуальных домах с 1998 года WILO производит автоматические компактные насосные станции серии HWJ, а с 1999 года серии — HMC, HMP, FWJ, FMP, FMC, которые совмещают в себе насос, мемб-

ранный бак, реле давления и трубную обвязку и являются практически бесшумными. Результатом длительной работы по совершенствованию систем пожаротушения стало создание насосных установок серии FFS. Установки этой серии были разработаны для того, чтобы обеспечить надежную и мощную подачу воды для тушения пожара при невысоких затратах на приобретение, монтаж

и эксплуатационные условия. В этих компактных насосных установках реализованы все необходимые функции контроля, безопасности и сигналы тревоги.

Необходимо отдельно рассказать о насосах серии ТР, которые обеспечивают максимальный расход до 350м³/ч и максимальный напор до 28 м. Корпус электродвигателя изготовлен из не-

ржавеющей стали по технологии изготовления ракет и не имеет сварных соединений. Насосная часть выполнена из высокопрочного синтетического материала, который обладает уникальными прочностными свойствами и устойчивостью к коррозии. Насос серии ТР при равных технических показателях в 1,5 – 2 раза легче аналогов из чугуна что значительно уменьшает трудоемкость и время монтажа. Используемый высокопрочный синтетический материал превосходит по своим качествам нержавеющую сталь, посколь-

ку, последняя, при нахождении в агрессивной среде, со временем все-таки подвергается точечной коррозии. Серийная взрывозащита.

С 1991 года WILO имеет сертификат качества ISO 9001, а в 1999 году получила сертификат ISO 14001.

	Наименование						
1	Системы отопления и горячего водоснабжения	1					
2	Промышленные области применения		2				
3	Повышение давления и подачи жидкости			3			
4	Подача грунтовой воды				4		
5	Системы бытового водоснабжения					5	
6	Канализационные и грязевые насосы						6
WILO STRATOS, RS, RL, TOP-S, TOP-E	Бессальниковые циркуляционные насосы	Χ	Χ				
IPn, IL, Ipg, IL-E, IP-E	Циркуляционные насосы с «сухим ротором» и одноступенчатые насосы «ин–лайн»	Х	Χ				
ER, CR, VR, TOP-Control, Drain-Control, SK	Регулирующие/управляющие устройства	Χ	Χ	Χ	Χ	Χ	Χ
Bn, Bl	Одноступенчатые моноблочные насосы	Χ	Χ	Χ			
NP	Одноступенчатые консольные стандартные насосы	Χ	Χ	Χ			
MRH, WRH, MRV, WRV	Многоступенчатые центробежные насосы		Χ	Χ			
FBS	Насосы для бассейнов		Χ				
MHI, MHIE	Многоступенчатые горизонтальные центробежные насосы	Χ	Х	Х		Х	
MVI, MVIE	Многоступенчатые центробежные насосы высокого давления	Χ	Χ	Χ		Χ	
MVIS, MVISE	Многоступенчатые центробежные насосы высокого давления с «мокрым ротором»		Χ	Х		Χ	
CO, COR, Vario	Установки для водоснабжения и повышения давления	Χ	Χ	Χ			
TWU, TWI	4-, 6-, 8-, 10- и 12 дюймовые скважинные насосы		Χ		Χ	Χ	
WJ, MC	Самовсасывающие струйные насосы					Χ	
MP, TWU-5	Бытовые многоступенчатые насосы					Χ	
HMC, HMP, FWJ, FMP, FMC, HWJ	Бытовые автоматические насосные станции			Χ		Χ	
Баки	Диафрагменные напорные гидробаки	Χ	Χ	Χ	Χ	Χ	
TM, TMW, TC, TSS TP, TP 40S	Дренажные и канализационные насосы						Χ
TMH, IMP, KH, FH, L, M, XL, WS, XXL, D-FH	Автоматические установки для водоотведения и канализации						Х

Дочернее предприятие WILO — 000 «ВИЛО РУС»

Москва, 123423, ул. Народного Ополчения, 34

Тел.: (095) 946-86-21, Факс: (095) 946-86-22, E-mail: wilo@orc.ru Internet: www.wilo.ru Региональные технические бюро и представительские фирмы

Астрахань	(8512) 398400	Казань	(8432) 450222	Ростов-на-Дону	(8632) 673095
Владивосток	(4232) 300105	Минск	(37517) 2316269	Самара	(8462)349451
Волгоград	(8442) 349248	Н.Новгород	(8312) 660355	Санкт-Петербург	(812) 3247721
Воронеж	(0732) 521526	Новосибирск	(3832) 106292	Саратов	(8452) 341310
Екатеринбург	(3432) 623413	Омск	(3812) 294232	Тюмень	(3452) 352150
Иркутск	(3952) 400915	Пермь	(3422) 347332	Уфа	(3472) 370059

РОССИЙСКАЯ ВЫСТАВКА С МЕЖДУНАРОДНЫМ УЧАСТИЕМ

«РЕКОНСТРУКЦИЯ, РЕМОНТ И СТРОИТЕЛЬСТВО ТРУБОПРОВОДНЫХ СИСТЕМ»

Проводится под патронатом Комитета Государственной Думы по энергетике, транспорту и связи

27-30 ноября 2002 г.

Россия. Москва. ГАО ВВЦ. павильон № 69

Организаторы:

Министерство энергетики РФ, Министерство промышленности, науки и технологий РФ, Министерство природных ресурсов РФ, Министерство обороны РФ, Госстрой РФ, Госгортехнадзор России, ОАО «Газпром», ОАО «Роснефть», АО ВНИИСТ, Российское общество по неразрушающему контролю и технической диагностике, ЗАО «Полимергаз», ЗАО «Объединенная металлургическая компания», Некоммерческое Партнерство по развитию полимерных трубопроводных систем.

Цель выставки:

Поиск экономически и технологически обоснованных путей повышения эффективности реконструкции, ремонта, строительства, технической диагностики, утилизации и консервации объектов трубопроводного транспорта, а также совершенствование законодательной и нормативной базы, регламентирующей эти направления хозяйственной деятельности.

Уважаемые коллеги!

Приглашаем вас принять участие в российской выставке «Реконструкция, ремонт и строительство трубопроводных систем»

Разделы выставки:

- 1 Законодательная и нормативная база в трубопроводном транспорте.
- 2 Инновационные и инвестиционные программы.
- Реконструкция и строительство магистральных и промысловых трубопроводов.
- 4 Ремонт линейной части трубопроводов, компрессорных и насосных станций.
- 5 Контроль качества и диагностика

- объектов трубопроводного транспорта.
- 6 Защита трубопроводов от коррозии.
- 7 Инженерные коммуникации городов и населенных пунктов с использованием полимерных и других неметаллических материалов.
- 8 Трубопроводные системы городов, строительство, эксплуатация, ре-
- 9 Трубы и трубное производство.

- Машины и оборудование для строительства и ремонта трубопроводов.
- 11 Утилизация и консервация трубопроводов.
- 12 Промышленная и экологическая безопасность трубопроводного транспорта, охрана труда.
- 13 Защита и охрана трубопроводных систем.
- 14 Подготовка и аттестация кадров.

Условия участия

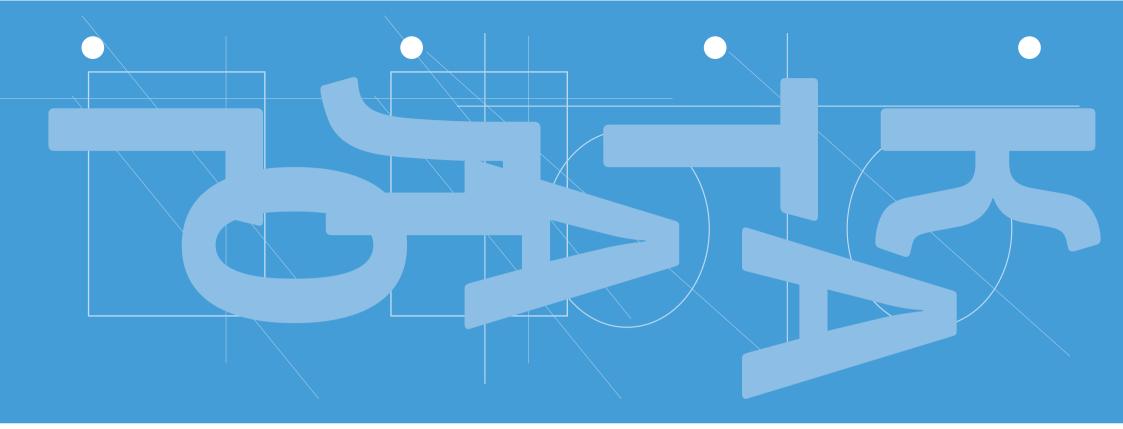
(цены приведены без учета НДС)

Стоимость 1 кв.м. экспозиционной площади за период выставки для российских фирм:

- стандартно оборудованной площади 150 у.е;
- необорудованной экспозиционной площади 130 у.е.
- открытой площади 50 у.е.

Стоимость 1 кв.м. площади увеличивается при конфигурации стенда: «Остров» на 25 %, «Полуостров» — 20 %, угловой стенд — 10 %. Регистрационный взнос 200 у. е.,

В рамках выставки будут проведены:


- научно-практическая конференция «Ресурс трубопроводов: диагностика, мониторинг, реконструкция и утилиза-
- круглый стол «Законодательное и нормативное обеспечение деятельности в области реконструкции, ремонта и строительства трубопроводных систем» и другие мероприятия.

Стоимость участия в конференции для экспонентов 100 у.е., для других организаций 200 у.е.

Отдельно состоится очередное собрание членов Некоммерческого Партнерства по развитию полимерных трубопроводных систем», на котором будет утвержден План деятельности Партнерства на 2002–2003 г.г. и состоится прием новых членов Партнерства. Сбор на организационные расходы — 50 долларов с предприятия (организации)

Заявку на участие в выставке и вопросы по работе Некоммерческого Партнерства

направлять по адресу: «Некоммерческое Партнерство по развитию полимерных трубопроводных систем»: Россия,113105, Москва, Нагорный проезд, 6, офис 215,. тел./факс (095) 127 59 89, тел. 505 52 87, E-mail: info@polypipe.ru, Баймуканов М.Н.

KATAJIOI

водонагревательной техники, отопительного оборудования и климатических установок

НАКОПИТЕЛЬНЫЕ ЭЛЕКТРОВОДОНАГРЕВАТЕЛИ

Принятые сокращения

1°C тах — максимальная температура нагрева, Р(бар)мах — максимальное рабочее давление, кВтч/24 — теплопотери за сутки, Ст — сталь, Эм — эмаль, М — медь, Пп — полипропилен, П — пластик, Сф — стеклофарфор, ТЭм — титановая эмаль, Тф — тефлон, Сенс — сенсорная панель управления, БН — безнапорный, Н — напорный, НМ — настенный монтаж, П — напольная установка, В — вертикальная установка, Г — горизонтальная установка, Г — тольная установка, Г — антизаморозковый режим, Ун — режим ускоренного нагрева, ЖК — жидкокристалический дистенией, В Т — горизонтально, НД — нет данных, См — необхимость подключения специального смесителя, То — имеет теплооментик, Т — термометр на передней панели, Встр — встраиваемый в кухню, О — подключение воды снизу, Ррf — внешняя ручка регулировки температуры, U — подключение воды серху, Дн — душевая насадка в комплекте, Гб — необходимость подключения группы безопасности, 4 т — автотест по достояние анора, П — программирование режима работы, Кв — индикатор количества смешанной воды, Цф — цифровой таймер — термометр, ст1,5 — толщина стенки в мм, Оц — оцикован, Ксл — кухонный слив в комплекте, Мин — минералосодержащее покрытие

Модель	Объем (л)	Цена (USD)	Форма	Монтаж	Мощность (кВт)	t°C max	P(бар) max	кВтч/24ч	Материал колбы	Вес (кг)	Габариты В/Ш/Г (мм)	Особенности
American Water He	ater Group	(США)			★ 3АО "Гра	анд-Отэі	сс-Регион"	(095) 933-484	3			
E-6	23	195	цилиндр	H/B	1,5/220~	65	10	0,24	Ст/ТЭм	15	38/33	Ppt°/Γ6
E-12	46	210	цилиндр	H/B	1,5/220~	65	10	0,44	Ст/ТЭм	21	74/36	Ppt°/Γ6
E-19	74	260	цилиндр	H/B	4,5/220~	65	10	0,5	Ст/ТЭм	34	83/37	Ppt°/Γ
E-30	114	295	цилиндр	H/B	4,5/220~	65	10	0,75	Ст/ТЭм	43	115/41	Ppt°/Γ
E-40	150	460	цилиндр	H/B	4,5/220~	65	10	0,92	Ст/ТЭм	54	121/47	Ppt°/Γ
E-50	190	560	цилиндр	H/B	4,5/220~	65	10	1,06	Ст/ТЭм	61	121/53	Ppt°/F
E-80	300	700	цилиндр	H/B	4,5/220~	65	10	1,51	Ст/ТЭм	80	153/61	Ppt°/Γ
E-119	450	970	цилиндр	H/B	4,5/220~	65	10	1,86	Ст/ТЭм	134	158/71	Ppt°/Γ
Ariston (Италия)												
Elite 50	50	225	цилиндр	H/HM/B	1,5/220~	75	8	1,1	Ст/ТЭм	22	555/450/480	Ат/Пр/Кв/F/Цф/Г
Elite 80	80	252	цилиндр	H/HM/B	1,5/220~	75	8	1,4	Ст/ТЭм	25,5	783/450/480	Ат/Пр/Кв/F/Цф/Г
Elite 100	100	270	цилиндр	H/HM/B	1,5/220~	75	8	1,6	Ст/ТЭм	31	935/450/480	Ат/Пр/Кв/F/Цф/Г
TI 10 OR EE	10	93	цилиндр	H/HM/B	1,2/220~	80	8	0,5	Ст/ТЭм	6,5	360/360/254	F/Ppt°/Γ
TI 10 UR EE	10	93	цилиндр	H/HM/B/U	1,2/220~	80	8	0,67	Ст/ТЭм	6,5	360/360/254	F/Ppt°/Γ
TI 15 OR EE	15	108	цилиндр	H/HM/B	1,2/220~	75	8	0,7	Ст/ТЭм	7,1	360/360/300	F/Ppt°/Γ
TI 15 UR EE	15	108	цилиндр	H/HM/B/U	1,2/220~	75	8	0,87	Ст/ТЭм	7,1	360/360/300	F/Ppt°/Г
TI 30 OR EE	30	132	цилиндр	H/HM/B	1,5/220~	75	8	0,9	Ст/ТЭм	11,2	446/446/360	F/Ppt°/Γ
TI 50 R EE	50	150	цилиндр	H/HM/B/U	1,2/220~	75	8	1,02	Ст/ТЭм	22	555/450/480	T/Ppt°/ſ
TI 80 R EE	80	166	цилиндр	H/HM/B	1,2/220~	75	8	1,37	Ст/ТЭм	25,5	783/450/480	T/Ppt°/ſ
TI 100 R EE	100	184	цилиндр	H/HM/B	1,5/220~	75	8	1,6	Ст/ТЭм	31	935/450/480	T/Ppt°/ſ
TI 80 H EE	80	190	цилиндр	Н/НМ/Г	1,2/220~	75	8	1,7	Ст/ТЭм	25,5	450/783/480	T/Ppt°/ſ
TI 100 H EE	100	200	цилиндр	Н/НМ/Г	1,5/220~	75	8	1,9	Ст/ТЭм	31	450/935/480	T/Ppt°/ſ
TI 80 RTD EE	80	231	цилиндр	H/HM/B	1,2/220~	75	8	1,56	Ст/ТЭм	28	783/450/480	T/Ppt°/To/ſ
TI 80 RTS EE	80	231	цилиндр	H/HM/B	1.2/220~	75	8	1,56	Ст/ТЭм	28	783/450/480	T/Ppt°/To/f
TI 100 RTD EE	100	257	цилиндр	H/HM/B	1,5/220~	75	8	1,9	Ст/ТЭм	33,5	935/450/480	T/Ppt°/To/l
TI 100 RTS EE	100	257		H/HM/B	1,5/220~	75	8	1,9	Ст/ТЭм	33,5		T/Ppt°/To/l
TI 120/L	120	206	цилиндр	H/HM/B	2,2/220~	75 75	8	1,6		33	935/450/480	1/Fpt /10/1
			цилиндр						Ст/ТЭм		970/495/495	
TI 150/L	150	260	цилиндр	H/HM/B	2,2/220~	75	8	1,65	Ст/ТЭм	41	1156/505/505	Ppt°/I
TI 200/L	200	300	цилиндр	H/HM/B	2,6/220~	75	8	1,75	Ст/ТЭм	51	1478/505/505	Ppt°/I
TI 50 QB EE	50	180	прямоуг	H/HM/B	2,0/220~	75	8	0,8	Ст/ТЭм	24	583/493/499	T/Ppt°/ſ
TI 80 QB EE	80	204	прямоуг	H/HM/B	2,0/220~	75	8	1	Ст/ТЭм	28	811/493/499	T/Ppt°/ſ
TI 100 QB EE	100	222	прямоуг	H/HM/B	2,0/220~	75	8	1,18	Ст/ТЭм	34	963/493/499	T/Ppt°/ſ
TI 120 QB EE	120	250	прямоуг	H/HM/B	2,2/220~	75	8	1,3	Ст/ТЭм	40	1123/493/499	T/Ppt°/ſ
TI 150 QB EE	150	270	прямоуг	H/HM/B	2,2/220~	75	8	1,5	Ст/ТЭм	47	1353/493/499	T/Ppt°/I
TI 200 STI	200	540	цилиндр	Н/П/В	3,0/220/400~	75	8	2	Ст/ТЭм	50	1320/560/625	Ppt°/ſ
TI 300 STI	300	670	цилиндр	Н/П/В	3,0/220/400~	75	8	2,85	Ст/ТЭм	71	1820/560/625	Ppt°/ſ
TI 500 STI	500	1400	цилиндр	Н/П/В	6,0/220/400~	75	8	3,6	Ст/ТЭм	146	1870/710/775	Ppt°/ſ
SG 50	50	110	цилиндр	H/HM/B	1,2/220~	75	8	1,02	Ст/Эм	НД	547/450/480	T/Ppt°/ſ
SG 80	80	125	цилиндр	H/HM/B	1,2/220~	75	8	1,37	Ст/Эм	нд	750/450/480	T/Ppt°/ſ
SG 100	100	142	цилиндр	H/HM/B	1,5/220~	75	8	1,6	Ст/Эм	НД	904/450/480	T/Ppt°/ſ
SG 80 H	80	145	цилиндр	Н/НМ/Г	1,2/220~	75	8	1,7	Ст/Эм	НД	450/750/480	T/Ppt°/ſ
SG 100 H	100	160	цилиндр	Н/НМ/Г	1,5/220~	75	8	1,9	Ст/Эм	НД	450/904/480	T/Ppt°/I
SG 10 OR	10	72	прямоуг	H/HM/B	1,2/220~	80	8	0,5	Ст/Эм	НД	360/360/254	T/Ppt°/ſ
SG 10 UR	10	72	прямоуг	H/HM/B/U	1,2/220~	80	8	0,67	Ст/Эм	НД	360/360/254	T/Ppt°/ſ
SG 15 OR	15	82	прямоуг	H/HM/B	1,2/220~	75	8	0,7	Ст/Эм	НД	360/360/300	T/Ppt°/I
SG 15 UR	15	82	прямоуг	H/HM/B/U	1,2/220~	75	8	0,87	Ст/Эм	НД	360/360/300	T/Ppt°/I
SG 30 OR	30	102	прямоуг	H/HM/B	1,5/220~	75	8	0,9	Ст/Эм	НД	446/446/360	T/Ppt°/I
SL 80	80	276	цилиндр	Н/П/В	1,2/220~	НД	8	нд	Ст/Эм	НД	НД	Ppt°/Твтог
SLE 80	80	303	цилиндр	Н/П/В	1,2/220~	нД	8	нд	Ст/Эм	нД	нд	Ppt°/Твтог
EUREKA AR	13	140	прямоуг	БН/НМ/В	2,0/220~	нд	8	нд	П	нд	487/320/230	Į.
EUREKA doccia	13	140	прямоуг	БН/НМ/В	2,0/220~	НД	8	НД	П	НД	487/320/230	Ko
BOOSTER 80	80	НД	цилиндр	H/HM/B	1,5/220~	НД	8	нд	Ст/ТЭм	НД	783/450/480	T/Ppt°/Γ6/\
BOOSTER 100	100	НД	цилиндр	H/HM/B	1,5/220~	НД	8	НД	Ст/ТЭм	нд	935/450/480	T/Ppt°/Γ6/
tlantic (Франция)	100	пд	цилипдр	TI/TIIVI/D	1,5/220~	ΠД	0	'''A	O1/TOW	ΠД	333/430/400	1/1 pt /10/:
	10	1.40	υп	/LIM/D/II	1.6/220	65	ЦΠ	υп	ЦΠ	υп	AE2/2E2/2E7	Dn
10 L SU		142	НД	/HM/B/U	1,6/230~	65 65	НД	НД	НД	НД	453/252/257	Pp Pn
10 L SO	10	142	НД	/HM/B/O	1,6/230~	65 65	НД	НД	НД	НД	453/252/257	Pp
15 L SU	15	147	НД	/HM/B/U	1,6/230~	65	НД	НД	НД	НД	402/342/347	Pp
15 L SO	15	147	НД	/HM/B/0	1,6/230~	65	НД	НД	НД	НД	402/342/347	Pp
30 L	30	164	нд	/HM/B/O	1,6/230~	65	НД	НД	НД	НД	623/343/348	Pp
50 L	50	191	нд	/HM/B/O	1,6/230~	65	НД	НД	НД	НД	920/342/347	Pp
Mural 50 L	50	188	цилиндр	H/HM/B/O	1,2/230~	65	НД	НД	Ст/Эм	НД	560/500/500	ا
Mural 75 L	75	208	цилиндр	H/HM/B/O	1,2/230~	65	НД	НД	Ст/Эм	НД	765/500/500	1
Mural 100 L	100	229	цилиндр	H/HM/B/O	1,2/230~	65	НД	НД	Ст/Эм	НД	865/500/500	Γ
Mural 150 L	150	283	цилиндр	H/HM/B/O	1,65/230~	65	НД	НД	Ст/Эм	НД	1165/520/520	Γ

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Иодель	Объем (л)	Цена (USD)	Форма	Монтаж	Мощность (кВт)	t°C max	P(бар) max	кВтч/24ч	Материал ТЭНа/колбы	Bec (кг)	Габариты В/Ш/Г (мм)	Особенност
Mural 200 L	200	336	цилиндр	H/HM/B/O	2,2/230~	65	НД	НД	Ст/Эм	НД	1480/520/520	Γ
Mural 200 TRI L	200	367	цилиндр		2,2/230/400~	65	НД	НД	Ст/Эм	НД	1480/520/520	Γ
150 L	150	408	цилиндр	Н/П/В/О	1,65/230~	65	НД	НД	Ст/Эм	НД	1165/560/560	Г
200 L	200	420	цилиндр	Н/П/В/О	2,2/230~	65	нд	нд	Ст/Эм	НД	1475/520/520	Г
200 L TRI	200	469	цилиндр	Н/П/В/О	2,2/230/400~	65	НД	НД	Ст/Эм	НД	1475/520/520	Г
250 L TRI	250	563	цилиндр	Н/П/В/О	3/230/400~	65	НД	нд	Ст/Эм	НД	1795/520/520	Г
300 L TRI	300	594	цилиндр	Н/П/В/О	3/230/400~	65	нд	НД	Ст/Эм	НД	1750/560/560	Γ
500 L TRI	500	1034	цилиндр	H/Π/B/O	5/230/400~	65	НД	нд	Ст/Эм	НД	2049/678/678	Γ
75 L	75	210	цилиндр	Η/ΗΜ/Γ/Ο	1,2/230~	65	НД	нд	Ст/Эм	НД	500/680/500	Γ
100 L	100	234	цилиндр	Η/ΗΜ/Γ/Ο	1,2/230~	65	НД	НД	Ст/Эм	НД	500/840/500	Г
150 L	150	290	цилиндр	Η/ΗΜ/Γ/Ο	1,65/230~	65	НД	НД	Ст/Эм	НД	500/1140/500	Γ
200 L	200	336	цилиндр	Η/ΗΜ/Γ/Ο	2,2/230~	65	НД	нд	Ст/Эм	НД	500/1460/500	Г
75 L	75	246	цилиндр	H/HM/B/O	2,4/230~	65	нд	нд	нд	нД	765/500/500	Гб/Стеаті
100 L	100	278	цилиндр	H/HM/B/O	2,4/230~	65	НД	нд	нд	НД	865/500/500	Гб/Стеаті
150 L	150	309	цилиндр	H/HM/B/O	3/230~	65	нд	нд	нд	нд	1165/520/520	Гб/Стеаті
200 L	200	377		H/HM/B/O	3/230~	65	НД	НД	НД	НД	1480/520/520	Гб/Стеаті
		3//	цилиндр	П/ПІVІ/D/U	3/230~	00	пд	пд	пд	пд	1400/320/320	TO/Greati
ustria Email (Abo	· · ·	0.40		11/11/10	0./000				0 (0		700/700/000	
EKF 70	70	846	прямоуг	H/HM/B	2/220~	НД	6	НД	Ст/Эм	54	762/720/320	[
EKF 100	100	1045	прямоуг	H/HM/B	2,85/220~	НД	6	НД	Ст/Эм	68	1015/720/320	[
EKF 120	120	1116	прямоуг	H/HM/B	3,35/220~	НД	6	нд	Ст/Эм	72	1215/720/320	Γ
EKF 150	150	1227	прямоуг	H/HM/B	3,95/220~	НД	6	НД	Ст/Эм	96	1488/720/320	I
EKH 50	50	512	прямоуг	H/HM/B	1,6/220~	НД	6	НД	Ст/Эм	38	586/520/520	
EKH 80	80	559	прямоуг	H/HM/B	2/220~	НД	6	нд	Ст/Эм	45	768/520/520	
EKH 100	100	590	прямоуг	H/HM/B	2,85/220~	НД	6	НД	Ст/Эм	51	901/520/520	
EKH 120	120	612	прямоуг	H/HM/B	3,35/220~	НД	6	НД	Ст/Эм	55	1036/520/520	
EKH 150	150	662	прямоуг	H/HM/B	3,95/220~	нд НД	6	нд НД	Ст/Эм	64	1236/520/520	
EKH 200	200	794	прямоуг	H/HM/B	5,05/220~	НД	6	НД	Ст/Эм	79	1570/520/520	
VS 300 EU	300	НД	цилиндр	Н/П/В	6/400~	85	6	НД	Ст/Эм	НД	1822/600/600	
VS 400 EU	500	НД	цилиндр	Н/П/В	10/400~	85	6	НД	Ст/Эм	НД	1853/750/750	l l
ахі (Италия)												
SR 501	10	80	прямоуг	H/HM/B	1,2/220~	70	8	0,63	Ст/Эм	7	432/267/250	
SR 501 CR	10	97	прямоуг	H/HM/B	1,2/220~	70	8	0,63	Ст/Эм	7	432/267/250	Ppt°/l
SR 501 SL	10	80	прямоуг	H/HM/B/U	1,2/220~	70	8	0,63	Ст/Эм	7	432/267/250	
SR 501 CR SL	10	101	прямоуг	H/HM/B/U	1,2/220~	70	8	0,63	Ст/Эм	7	432/267/250	Ppt°/
SR 515	15	90	прямоуг	H/HM/B	1,2/220~	70	8	0,67	Ст/Эм	9,2	432/350/310	. pc /
SR 515 CR	15	100		H/HM/B	1,2/220~	70	8	0,67	Ст/Эм	9,2	432/350/310	Ppt°/
			прямоуг					· ·				
SR 515 SL	15	90	прямоуг	H/HM/B/U	1,2/220~	70	8	0,67	Ст/Эм	9,2	432/350/310	
SV 530	30	108	цилиндр	H/HM/B	1,2/220~	70	8	1,0	Ст/Эм	14,3	582/340/355	ı
SV 530 R	30	110	цилиндр	H/HM/B	1,2/220~	70	8	1,0	Ст/Эм	14,3	582/340/355	Ppt°/l
SV 550	50	110	цилиндр	H/HM/B	1,2/220~	70	8	1,4	Ст/Эм	19,8	600/440/455	T/I
SV 580	80	123	цилиндр	H/HM/B	1,2/220~	70	8	1,9	Ст/Эм	25,7	800/440/455	T/I
SV 510	100	138	цилиндр	H/HM/B	1,5/220~	70	8	2,0	Ст/Эм	30,3	960/440/455	T/I
SO 580	80	141	цилиндр	Н/НМ/Г	1,2/220~	70	8	2,3	Ст/Эм	26,4	440/800/455	T/I
SO 510	100	150	цилиндр	Н/НМ/Г	1,5/220~	70	8	2,6	Ст/Эм	31	440/960/455	T/
iawar (Польша)	100	100	цининдр	11/11111/11	1,0/220	70		2,0	01/0111	0.	110/000/100	171
оw-5.1	5	98	прямоуг	БН/НМ/Г/U	2/220~	80	6	0,4	Пп	3,2	322/307/227	C
OW-5.2	5	87	прямоуг	БН/НМ/Г	2/220~	80	6	0,3	Пп	3,2	322/307/227	C
OW-10.1	10	107	прямоуг	БH/HM/Γ/U	2/220~	80	6	0,6	Пп	4,1	443/307/227	(
OW-10.2	10	97	прямоуг	БН/НМ/Г	2/220~	80	6	0,5	Пп	4,1	443/307/227	(
OW-5B	5	74	прямоуг	БН/НМ/Г	1,5/220~	80	6	0,4	Пп	4,5	432/213/227	(
OW-10B	10	84	прямоуг	БН/НМ/Г	1,5/220~	80	6	0,5	Пп	6	532/252/264	(
OW-10M	10	80	прямоуг	БН/НМ/Г	1,5/220~	80	6	0,5	Ст/Оц	8	462/525/264	(
OW-E10	10	82	прямоуг	H/HM/B	2/220~	80	6	0,7	Ст/Эм	9	487/250/250	
OW-E30	30	86	цилиндр	H/HM/B	1,5/220~	80	6	1,1	СМ/Эм	20	513/436	Ppt°/
OW-E50	50	90	цилиндр	H/HM/B	1,5/220~	80	6	1,2	СМ/Эм	34	708/436	Ppt°/
	80						6	2				
OW-E80		105	цилиндр	H/HM/B	1,5/220~	80			СМ/Эм	48	1028/436	Ppt°/
OW-E100.1	100	122	цилиндр	H/HM/B	1,5/220~	80	6	2,05	СМ/Эм	47	1028/470	Ppt°/
OW-E120.1	120	148	цилиндр	H/HM/B	2/220~	80	6	2,1	СМ/Эм	54	1180/470	Ppt°/
OW-E120.2	120	208	цилиндр	Н/НМ/Г	2/220~	80	6	2,1	СМ/Эм	54	470/1146	Ppt°/
OW-E40.5	40	120	цилиндр	H/HM/B	1,5/220~	80	6	нд	СМ/Эм	17,5	525/450	Ppt°/
OW-E60.5	60	129	цилиндр	H/HM/B	1,5/220~	80	6	НД	СМ/Эм	22,5	685/450	Ppt°/
OW-E80.5	80	143	цилиндр	H/HM/B	1,5/220~	80	6	нд	СМ/Эм	28	845/450	Ppt°/
DW-E100.5	100	168	цилиндр	H/HM/B	1,5/220~	80	6	НД	СМ/Эм	32,5	1007/450	Ppt°/
OW-E120.5	120	190	цилиндр	H/HM/B	1,5/220~	80	6	НД	СМ/Эм	38	1170/450	Ppt°/
ом-ет20.5 IBE (Швеция)	120	1 30	цилиндр	i i/i livl/ D	1,0/220~	UU	U	ПΑ	GIVI/ JIVI	J0	1170/400	rpt /
	00	404		11/11/14/20	4.5/000	00	^	0.54	0. /0	00	475/405/440	
VIKING-E 30	30	131	прямоуг	H/HM/B	1,5/220~	80	6	0,51	Ст/Эм	22	475/405/410	
VIKING-E 55	55	144	прямоуг	H/HM/B	1,5/220~	80	6	0,69	Ст/Эм	32	745/405/410	
VIKING-E 80	80	181	прямоуг	H/HM/B	1,5/220~	80	6	0,75	Ст/Эм	41	825/475/480	
VIKING-E 100	100	195	прямоуг	H/HM/B	1,5/220~	80	6	0,94	Ст/Эм	47	980/475/480	
VIKING-E 120	120	215	прямоуг	H/HM/B	1,5/220~	80	6	1,09	Ст/Эм	53	1140/475/480	
emir Dokum (Typ	ция)											
DT-50 B	50	100	цилиндр	H/HM/B	2/220~	65	6	0,9	Ст/Эм	27	640/440/440	
		.00	чиницр	1 1/ 1 11VI/ D	2/220~	00	U	0,5	31/ OIVI	<i>L I</i>	0.10,770,770	

^{*} По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

Модель	Объем (л)	Цена (USD)	Форма	Монтаж	Мощность (кВт)	t°C max	P(бар) max	кВтч/24ч	Материал ТЭНа/колбы	Вес (кг)	Габариты В/Ш/Г (мм)	Особенност
DT-50 L	50	133	прямоуг	H/HM/B	2/220~	90	6	0,9	Ст/Эм	27	640/440/440	1
DT-50 D	50	130	прямоуг	H/HM/B	2/220~	90	6	0,9	Ст/Эм	27	640/440/440	Сенс/Г
DT-65 B	65	90	цилиндр	H/HM/B	2/220~	65	6	1	Ст/Эм	31	780/440/440	[
DT-65 S	65	128	прямоуг	H/HM/B	2/220~	90	6	1	Ст/Эм	31	780/440/440	
DT-65 L	65	140	прямоуг	H/HM/B	2/220~	90	6	1	Ст/Эм	31	780/440/440	0-11-1
DT-65 D DT-80 B	65	135	прямоуг	H/HM/B	2/220~	90 65	6	1	Ст/Эм	31	780/440/440	Сенс/І
DT-80 S	80 80	90 135	цилиндр	H/HM/B H/HM/B	2/220~ 2/220~	90	6	1,1	Ст/Эм Ст/Эм	35 35	920/440/440 920/440/440	
DT-80 L	80	142	прямоуг	H/HM/B	2/220~	90	6	1,1 1,1	Ст/Эм	35	920/440/440	
DT-80 D	80	138	прямоуг	H/HM/B	2/220~	90	6	1,1	Ст/Эм	35	920/440/440	Сенс/
DT-100 B	100	117	прямоуг цилиндр	H/HM/B	2/220~	65	6	1,1	Ст/Эм	41	1110/440/440	Оенс/
DT-100 B	100	142		H/HM/B	2/220~	90	6	1,3	Ст/Эм	41	1110/440/440	
DT-100 S	100	153	прямоуг прямоуг	H/HM/B	2/220~	90	6	1,3	Ст/Эм	41	1110/440/440	
DT-100 L	120	НД	прямоуг	H/HM/B	2/220~	90	6	1,3	Ст/Эм	53	1360/490/490	
lectrolux (Швеци		пд	прямоуг	TI/TIIVI/D	2/220~	90	U	1,0	G1/GW	55	1300/430/430	
EWH-30SL	30	170	прямоуг	Н/НМ/ВГ/О	2,8/220~	70	5	0,84	Ст/Эм	20	612/380/393	Ppt°/ст1,8/
EWH-50SL	50	180	прямоуг	H/HM/BΓ/O	2,8/220~	70	5	1,17	Ст/Эм	25	812/380/393	Ррt /стт,8/
EWH-75SL	75	200	прямоуг	Н/НМ/ВГ/О	2,9/220~	70	5	1,17	Ст/Эм	30	747/489/516	Ррt /ст1,6/ Ppt°/ст1,8/
EWH-100SL	100	215	прямоуг	H/HM/BΓ/O	2,9/220~	70	5	1,53	Ст/Эм	36	912/489/516	Ррt /ст1,6/ Ppt°/ст1,8/
EWH-150SL	150	260		H/HM/BF/O	3,8/220~	70	5	1,57	Ст/Эм	48	1251/489/516	
EWH-200SL	200	270	прямоуг		3,8/220~	70	5	1,92	Ст/Эм	60	1570/489/516	Ppt°/ст1,8/
	200	270	прямоуг	Н/НМ/ВГ/О	3,0/220~	70	J	1,92	G1/3M	00	1370/409/310	ст1,8/
ieneral (Италия) 10Р	10	μп	прамочт	H/HM/B	1,2/220~	ЦΠ	8	υп	Ст/Эм	ЦΠ	ш	
10PS		ΗД	прямоуг			ΗД		НД		НД НД	НД НД	
	10	НД	прямоуг	H/HM/B/U	1,2/220~	НД	8	НД	Ст/Эм			
15FP	16	НД	прямоуг	H/HM/B	2/220~	НД		НД	Ст/Эм	НД	НД	
15FPS	16	НД	прямоуг	H/HM/B/U	2/220~	НД	6	НД	Ст/Эм	НД	НД	
30P	30	НД	цилиндр	H/HM/B	1,2/220~	НД	8	НД	Ст/Эм	НД	НД	
50P	48	НД	цилиндр	H/HM/B	1,2/220~	НД	8	НД	Ст/Эм	НД	нд	
80P	77	НД	цилиндр	H/HM/B	1,2/220~	НД	8	НД	Ст/Эм	НД	НД	
100P	100	НД	цилиндр	H/HM/B	1,5/220~	НД	8	НД	Ст/Эм	НД	нд	
150P	130	НД	цилиндр	H/HM/B	1,5/220~	НД	8	НД	Ст/Эм	НД	нд	
50P0	50	НД	цилиндр	Н/П/В	1,2/220~	НД	8	НД	Ст/Эм	НД	нд	
80P0	77	НД	цилиндр	Н/П/В	1,2/220~	НД	8	НД	Ст/Эм	НД	нд	
100PO	100	НД	цилиндр	Н/П/В	1,5/220~	НД	8	нд	Ст/Эм	НД	нд	
150PO	130	НД	цилиндр	Н/П/В	1,5/220~	НД	8	НД	Ст/Эм	НД	нд	
200FP0	200	нд	цилиндр	Н/П/В	2,4/220~	НД	6	нд	Ст/Эм	нд	нд	
Gorenje Tiki (Слов												
GB 50	50	264	цилиндр	Н/НМ/ВГ	2/220~	75	6	0,72	Ст/Эм	27	677/500/507	
GB 80	80	291	цилиндр	Н/НМ/ВГ	2/220~	75	6	0,94	Ст/Эм	34	942/500/507	
GB 100	100	311	цилиндр	Н/НМ/ВГ	2/220~	75	6	1,25	Ст/Эм	39	1112/500/507	
GB 120	120	326	цилиндр	Н/НМ/ВГ	2/220~	75	6	1,4	Ст/Эм	45	1277/500/507	
TG 30	30	118	цилиндр	H/HM/B	2/220~	75	6	1,01	Ст/Эм	21	446/430/437	
TG 50	50	128	цилиндр	H/HM/B	2/220~	75	6	1,29	Ст/Эм	23	616/430/437	
TG 80	80	143	цилиндр	H/HM/B	2/220~	75	6	1,86	Ст/Эм	30	881/430/437	
TG 100	100	150	цилиндр	H/HM/B	2/220~	75	6	2,22	Ст/Эм	34	1051/430/437	
TG 120	120	161	цилиндр	H/HM/B	2/220~	75	6	2,38	Ст/Эм	39	1216/430/437	
sea (Италия)												
S 10	10	65	прямоуг	H/HM/B	1,2/220~	85	6	нд	Ст/Эм	7	410/335/270	
SL 10	10	70	прямоуг	H/HM/B	1,2/220~	85	6	нд	Ст/Эм	7	410/335/270	
S 15	15	70	прямоуг	H/HM/B	1,2/220~	85	6	нд	Ст/Эм	10	455/350/310	
SL 15	15	70	прямоуг	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	10	455/350/310	
S/1 30	30	90	прямоуг	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	15	500/380/400	
SL 30	30	95	прямоуг	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	15	500/380/400	
SS 10	10	65	прямоуг	H/HM/B	1,2/220~	85	6	нд	Ст/Эм	7	410/335/270	
SSL 10	10	70	прямоуг	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	7	410/335/270	
SS 15	15	70	прямоуг	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	10	455/350/310	
SSL 15	15	75	прямоуг	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	10	455/350/310	
S 30	30	85	цилиндр	H/HM/B	1,2/220~	85	6	нд	Ст/Эм	15	500/380/385	
S 50	50	90	цилиндр	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	25	510/410/445	
S 80	80	100	цилиндр	H/HM/B	1,2/220~	85	6	нд	Ст/Эм	35	720/440/445	
S 100	100	110	цилиндр	H/HM/B	1,2/220~	85	6	НД	Ст/Эм	45	945/440/445	
S 120	120	140	цилиндр	H/HM/B	1,5/220~	85	6	НД	Ст/Эм	53	995/440/445	
S 150	150	160	цилиндр	H/HM/B	1,5/220~	85	6	НД	Ст/Эм	65	1125/440/445	
FP 150	150	250	цилиндр	H/HM/B	1,8/220~	85	6	нд	Ст/Эм	70	975/565/565	
PO 50	50	151	цилиндр	Н/НМ/Г	1,2/220~	85	8	нд	Ст/Эм	25	510/410/445	
PO 80	80	163	цилиндр	Н/НМ/Г	1,2/220~	85	8	НД	Ст/Эм	35	720/440/445	
	100	185	цилиндр	Н/НМ/Г	1,2/220~	85	8	НД	Ст/Эм	45	945/440/445	
		253	цилиндр	Н/НМ/Г	1,5/220~	85	8	нд	Ст/Эм	65	1125/440/445	
PO 100	150				1,5/220~	85	8	нд	Ст/Эм	70	975/565/565	
PO 100 PO 150		300	ЦИЛИНЛО	H/HIVI/BI			_		3., 5111		2. 2, 000, 000	
PO 100 PO 150 FPO 150	150	300	цилиндр	Н/НМ/ВГ			ex-M" (ng	5) 287-9908				
PO 100 PO 150 FPO 150 SO Hotwater (Ho	150 рвегия)				* 00	О "Норт		5) 287-9908 0.6	Нерж	20	680/430/430	Pnt°/
PO 100 PO 150 FPO 150 SO Hotwater (Ho	150	300 312 381	цилиндр цилиндр цилиндр	H/HM/B/O H/HM/B/O			9 9	0,6 0,9	Нерж Нерж	20 33	680/430/430 1220/430/430	Ppt°/ Ppt°/

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Модель	Объем (л)	Цена (USD)	Форма	Монтаж	Мощность (кВт)	t°C max	P(бар) max	кВтч/24ч	Материал колбы	Вес (кг)	Габариты В/Ш/Г (мм)	Особенності
15R 100	100	494	цилиндр	H/HM/B/U	2/220	85	9	0,9	Нерж	33	1220/430/430	Γ(
I5R 150	150	600	цилиндр	H/HM/B/U	2/220	85	9	1,5	Нерж	50	1690/430/430	Γ(
TS 120	120	462	цилиндр	H/Π/B/U	3/220	85	9	1,4	Нерж	30	780/580/580	Г
RTS 200	200 300	575	цилиндр	H/Π/B/U	3/220 3/220	85 85	9	2,1 2,8	Нерж	43	1220/580/580	Γ
RTS 300 RTEX 200	200	712 750	цилиндр цилиндр	H/Π/B/U H/Π/B/U	6/220/400	85	9	2,8	Нерж Нерж	57 43	1670/580/580 1220/580/580	Г Ун/Г
RTEX 300	300	931	цилиндр	H/Π/B/U	10/400	85	9	2,1	Нерж	57	1670/580/580	Ун/Г
5RIE 100	100	700	цилиндр	H/HM/B/U	2/220	85	9	0,9	Нерж	45	1220/430/430	7η/1 Το/Γ
5RIE 150	150	812	цилиндр	H/HM/B/U	2/220	85	9	1,5	Нерж	55	1690/430/430	Το/Γ
RTVE 200	200	850	цилиндр	H/Π/B/U	3/220	85	9	2,1	•	51	1220/580/580	To/I
RTVE 200	300	1000	цилиндр	H/Π/B/U	3/220	85	9	2,1	Нерж Нерж	65	1670/580/580	Το/Γ
17RAEX 400	400	1600	цилиндр	Н/П/В	10/400	85	9	3,7	Нерж	100	1980/580/580	Ун/Г
17R 600	600	2663		н/п/B	15/400	85	9	э, <i>т</i> НД	Нерж	120	1950/780/780	ун/1
17R 1000	1000	4398	цилиндр цилиндр	H/П/В	30/400	85	9	НД	Нерж	175	2000/1000/1000	· 「
17K 1000	2000	7926		H/П/В	60/400	85	9	НД	Нерж	800	2200/1300/1300	ا آ
17S 3000	3000	10043	цилиндр	н/п/B Н/П/В	60/400	85	9	нд НД	Нерж	1100	2300/1500/1500	, [
17S 5000	5000		цилиндр	н/п/B	90/400	85	9				2850/1800/1800	١
17S 5000 17S 10000	10000	НД	цилиндр	н/п/B Н/П/В	150/400	85	9	НД	Нерж	1400	4600/1900/1900	
		НД	цилиндр	П/П/Б	150/400	00	9	нд	Нерж	2600	4000/1900/1900	Γ
Giemens (Германи		шп		ELL/LIM/D/LL	0/000	0.5		0.00	П-	0.0	000/050/045	0.
D005701	5	НД	прямоуг	БН/НМ/В/U	2/220~	85	0	0,26	Пп	3,3	390/258/215	C
D005751	5	НД	прямоуг	БН/НМ/В/U	2/220~	85	0	0,26	Пп	3,3	390/258/215	C
D00575D	5	НД	прямоуг	БН/НМ/В/U	1,2/220~	85	0	0,26	Пп	3,3	390/258/215	C
D010701	10	НД	прямоуг	БН/НМ/В/U	2/220~	85	0	0,34	Пп	4,2	460/295/265	C
D010751	10	нд	прямоуг	БН/НМ/В/U	2/220~	85	0	0,34	Пп	4,2	460/295/265	C
D005801	5	НД	прямоуг	БН/НМ/В/О	2/220~	85	0	0,26	Пп	3,3	390/258/215	C
D005851	5	нд	прямоуг	БН/НМ/В/О	2/220~	85	0	0,26	Пп	3,3	390/258/215	C
D010801	10	НД	прямоуг	БН/НМ/В/О	2/220~	85	0	0,34	Пп	4,2	460/295/265	Cı
D010851	10	НД	прямоуг	БН/НМ/В/О	2/220~	85	0	0,34	Пп	4,2	460/295/265	Cı
D015201	15	НД	прямоуг	БН/НМ/В/О	3,2/220~	85	0	0,49	Пп	7,2	501/350/260	Cı
D015261	15	нд	прямоуг	БН/НМ/В/О	3,2/220~	85	0	0,49	Пп	7,2	501/350/260	Cı
DG10301	10	150	прямоуг	H/HM/B/U	2/220~	85	6	0,45	Пп	6,1	452/300/267	Г
DG30013	30	265	прямоуг	H/HM/B	3/400~	85	6	0,7	Ст/Эм	23,5	655/410/394	Г
DG30023	30	НД	прямоуг	H/HM/B	3/400~	85	6	0,7	Ст/Эм	23,5	655/410/394	Г
DG80014	80	330	прямоуг	H/HM/B	6/400~	85	6	0,7	Ст/Эм	37	975/510/525	Г
DG80024	80	НД	прямоуг	H/HM/B	6/400~	85	6	0,7	Ст/Эм	37	975/510/525	Г
DG10014	100	350	прямоуг	H/HM/B	6/400~	85	6	0,8	Ст/Эм	42	1055/510/525	Г
DG10024	100	НД	прямоуг	H/HM/B	6/400~	85	6	0,8	Ст/Эм	42	1055/510/525	Γ
DG12024	120	НД	прямоуг	H/HM/B	6/400~	85	6	0,99	Ст/Эм	48	1220/510/525	Γ
DG30015	30	НД	прямоуг	H/HM/B	3/400~	85	6	0,7	Ст/Эм	23,5	655/410/394	Γ
DG30025	30	НД	прямоуг	H/HM/B	3/400~	85	6	0,7	Ст/Эм	23,5	655/410/394	Γ
DG80015	80	НД	прямоуг	H/HM/B	3/400~	85	6	0,8	Ст/Эм	37	825/530/515	Γ
DG80025	80	НД	прямоуг	H/HM/B	6/400~	85	6	0,8	Ст/Эм	37	825/530/515	Γ
DG10015	100	НД	прямоуг	H/HM/B	3/400~	85	6	0,9	Ст/Эм	42	977/530/515	Γ
Stiebel Eltron (Гері	мания)			* 000 «Tepi	иоСтудия», тел	ı.: (095) :	242-8877, (факс: (095) 93:	3-7173			
SNU 5 Si	5	96	прямоуг	БН/НМ/В/U	2,0/220~	85	0	НД	Пп	3,2	422/263/230	Cı
SN 5 Si	5	100	прямоуг	БН/НМ/В/О	2,0/220~	85	0	нд	Пп	3,2	422/263/230	Cr
SNU 10 Si	10	114	прямоуг	БН/НМ/В/U	2,0/220~	85	0	НД	Пп	5	503/295/275	Cr
SN 10 Si	10	126	прямоуг	БН/НМ/В/О	2,0/220~	85	0	нД	Пп	5,1	503/295/275	Cı
SN 15 Si	15	171	прямоуг	БН/НМ/В/О	2,0/220~	85	0	НД	Пп	6,8	600/316/295	Cı
SN 15 S	15	175	прямоуг	БН/НМ/В/О	3,3/220~	85	0	нд	Пп	6,8	600/316/295	С
SNU 10 S+WAT5	10	185	прямоуг	БН/НМ/В	2,0/220~	85	0	нд	Пп	5	503/295/275	C
SNU 5 Si+WST5	5	161	прямоуг	БН/НМ/В	2,0/220~	85	0	нД	Пп	3,2	422/263/230	C
SHD 30 S	30	649	прямоуг	H/HM/B	21,0/380~	85	6	нд	Ст/Эм	24,5	770/410/420	Г
SHD 100 S	100	744	прямоуг	H/HM/B	21,0/380~	85	6	нД	Ст/Эм	46	1050/510/510	Г
SHU 5 Si	5	161	прямоуг	H/HM/B	2,0/220~	85	6	НД	M	5,2	422/263/230	Г
SH 10 Si	10	213	прямоуг	H/HM/B	2,0/220~	85	6	НД	M	8,2	503/295/275	. г
SHU 10 Si	10	204	прямоуг	H/HM/B	2,0/220~	85	6	НД	M	8	503/295/275	Г
SH 15 Si	15	262	прямоуг	H/HM/B	2,0/220~	85	6	НД	M	11,1	600/316/295	
SH 15 S	15	281	прямоуг	H/HM/B	3,3/220~	85	6	НД	M	11,1	600/316/295	'
SH 30 S	30	533	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	23,5	770/410/420	F /KB/F/I
SHZ 30 S	30	582	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	23,5	770/410/420	1 /1\b/1/1
SH 50 S	50	589	прямоуг	H/HM/B	6,0/400~	85	6	нд НД	Ст/Эм	30	740/510/510	[
SHZ 50 S	50	636	прямоуг	H/HM/B	6,0/400~	85	6	нд НД	Ст/Эм	30	740/510/510	ا [
	80	646					6				1050/510/510	
SH 80 S			прямоуг	H/HM/B	6,0/400~	85		НД	Ст/Эм	44]
SHZ 80 S	80	690	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	44	1050/510/510	[
SH 100 S	100	671	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	45	1050/510/510]
SHZ 100 S	100	713	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	45	1050/510/510	
SH 120 S	120	681	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	50	1210/510/510]
SHZ 120 S	120	731	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	50	1210/510/510	Γ
SH 150 S	150	717	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	62,5	1445/510/510	
SHZ 150 S	150	771	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	62,5	1445/510/510	Γ
HFA 30 Z	30	496	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	23,5	770/410/420	Γ
HFA 80 Z	80	547	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	37	1020/410/420	

^{*} По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

Модель	Объем (л)	Цена (USD)	Форма	Монтаж	Мощность (кВт)	t°C max	P(бар) max	кВтч/24ч	Материал ТЭНа/колбы	Вес (кг)	Габариты В/Ш/Г (мм)	Особенно
HFA 100 Z	100	569	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	41,5	1210/410/420	
HFA 150 Z	150	598	прямоуг	H/HM/B	6,0/400~	85	6	НД	Ст/Эм	62,5	1280/410/420	
HFA 30 E	30	496	прямоуг	H/HM/B	2,0/220~	85	6	НД	Ст/Эм	23,5	770/410/420	
HFA 80 E	80	547	прямоуг	H/HM/B	2,0/220~	85	6	НД	Ст/Эм	37	1020/410/420	
HFA 100 E	100	569	прямоуг	H/HM/B	3,3/220~	85	6	НД	Ст/Эм	41,5	1210/410/420	
HFA 150 E	150	598	прямоуг	H/HM/B	3,3/220~	85	6	НД	Ст/Эм	62,5	1280/410/420	
SH 50 A	50	394	прямоуг	H/HM/B	2,0/220~	85	6	НД	Ст/Эм	НД	740/510/510	
H 80 A	80	395	прямоуг	H/HM/B	2,0/220~	85	6	НД	Ст/Эм	НД	975/510/510	
SH 100 A	100	400	прямоуг	H/HM/B	2,0/220~	85	6	нд	Ст/Эм	НД	975/510/510	
SH 120 A	120	411	прямоуг	H/HM/B	3,3/220~	85	6	НД	Ст/Эм	НД	1100/510/510	
SH 150 A	150	440	прямоуг	H/HM/B	3,3/220~	85	6	НД	Ст/Эм	НД	1280/510/510	
SH 100 A Uni	100	404	прямоуг	H/HM/B	3,9/400~	85	6	НД	Ст/Эм	НД	975/510/510	
SH 120 A Uni	120	430	прямоуг	H/HM/B	3,9/400~	85	6	НД	Ст/Эм	НД	1100/510/510	
H 150 A Uni	150	460	прямоуг	H/HM/B	3,9/400~	85	6	НД	Ст/Эм	НД	1280/510/510	
'SH 30 i	30	167	прямоуг	H/HM/B	2,0/220~	65	6	НД	Ст/Мин	НД	623/342/347	
'SH 50 i	50	184	цилиндр	H/HM/B	0,9/220~	65	6	НД	Ст/Эм	НД	560/500/524	
'SH 80 i	80	195	цилиндр	H/HM/B	1,2/220~	65	6	НД	Ст/Эм	НД	763/500/524	
SH 100 i	100	210	цилиндр	H/HM/B	1,2/220~	65	6	нд	Ст/Эм	НД	894/500/524	
SH 120 i	120	241	цилиндр	H/HM/B	1,2/220~	65	6	НД	Ст/Эм	НД	1171/500/524	
SH 150 i	150	255	цилиндр	H/HM/B	1,8/220~	65	6	НД	Ст/Эм	НД	1216/500/524	
HW 200 AC	200	1060	цилиндр	Н/П/В	6,0/400~	85	6	НД	Ст/Эм	70,5	1570/550/690	
HW 300 AC	300	1191	цилиндр	Н/П/В	6,0/400~	85	6	НД	Ст/Эм	91	1585/650/790	
HW 400 AC	400	1326	цилиндр	Н/П/В	6,0/400~	85	6	НД	Ст/Эм	121,5	1755/700/840	
HW 200 ACE	200	1010	цилиндр	Н/П/В	6,0/400~	85	6	НД	Ст/Эм	70,5	1570/550/690	
HW 300 ACE	300	1136	цилиндр	Н/П/В	6,0/400~	85	6	НД	Ст/Эм	91	1585/650/790	
HW 400 ACE	400	1267	цилиндр	Н/П/В	6,0/400~	85	6	нд	Ст/Эм	121,5	1755/700/840	
HW 300 WAC	300	1777	цилиндр	Н/П/В	6,0/400~	85	6	НД	Ст/Эм	116	1585/650/790	
HW 400 WAC	400	1912	цилиндр	Н/П/В	6,0/400~	85	6	нд	Ст/Эм	147	1755/700/840	
HO AC 600*	600	2020	цилиндр	Н/П/В	7,5/400~	60	6	НД	Ст/Эм	160	1685/750/1000	
HO AC 600**	600	2106	цилиндр	Н/П/В	12/400~	60	6	нд	Ст/Эм	160	1685/750/1000	
HO AC 1000*	1000	2945	цилиндр	Н/П/В	12/400~	60	6	нд	Ст/Эм	228	2525/750/1000	
HO AC 1000**	1000	2995	цилиндр	Н/П/В	18/400~	60	6	НД	Ст/Эм	228	2525/750/1000	
tramat (Словаки		2000	цининдр	11/11/10	10/100	00		··A	01/0111		2020/100/1000	
0 10 T	10	143	прямоуг	H/HM/B/U	2/220~	80	6	0,55	НД	8,2	440/290/290	
0 18	18	НД	прямоуг	H/HM/B	2/220~	80	6	1,06	нд	9,5	335/338/445	
0 944	10	НД	прямоуг	H/HM/B	2/220~	80	6	0,55	НД	7	460/330/250	(
0 30 J	30	224	прямоуг	H/HM/B	2/220~	80	6	0,38	Ст/Эм			Гб/I
0 50 J	50	235	, ,	H/HM/B	2/220~	80	6	0,56	Ст/Эм	26 35	680/420/432 940/420/432	Гб/
			прямоуг									
0 80 J	80	259	прямоуг	H/HM/B	2/220~	80	6	0,55	Ст/Эм	40	920/515/527	Γ6/Ι
0 120 J	120	279	прямоуг	H/HM/B	2/220~	80	6	0,72	Ст/Эм	52	1225/515/527	Γ6/Ι
0 150 J	150	299	прямоуг	H/HM/B	2/220~	80	6	0,95	Ст/Эм	62	1445/515/527	Γ6/F
0 30220	30	255	прямоуг	H/HM/B	3/220~	80	6	0,38	Ст/Эм	26	680/420/432	Γб/Ppt°/
0 50220	50	267	прямоуг	H/HM/B	3/220~	80	6	0,5	Ст/Эм	35	940/420/432	Γб/Ppt°/
0 80220	80	285	прямоуг	H/HM/B	3/220~	80	6	0,55	Ст/Эм	40	920/515/527	Гб/Ррt°/
0 120220	120	308	прямоуг	H/HM/B	3/220~	80	6	0,72	Ст/Эм	52	1225/515/527	Гб/Ррt°/
0 150220	150	326	прямоуг	H/HM/B	3/220~	80	6	0,95	Ст/Эм	62	1445/515/527	Гб/Ppt°/
0 30380	30	306	прямоуг	H/HM/B	6/400~	80	6	0,38	Ст/Эм	26	680/420/432	Гб/Ррt°/
0 50380	50	315	прямоуг	H/HM/B	6/400~	80	6	0,5	Ст/Эм	35	940/420/432	Гб/Ррt°/
0 80380	80	326	прямоуг	H/HM/B	6/400~	80	6	0,55	Ст/Эм	40	920/515/527	Гб/Ррt°/
0 120380	120	351	прямоуг	H/HM/B	6/400~	80	6	0,72	Ст/Эм	52	1225/515/527	Гб/Ррt°/
O 150380	150	360	прямоуг	H/HM/B	6/400~	80	6	0,95	Ст/Эм	62	1445/515/527	Гб/Ррt°/
OV 81	80	195	цилиндр	H/HM/B	2/220~	80	6	1,1	Ст/Эм	40	845/520/535	Гб/Рр
OV 121	120	215	цилиндр	H/HM/B	2/220~	80	6	1,3	Ст/Эм	45	1155/520/535	Гб/Рр
OV 151	150	240	цилиндр	H/HM/B	2/220~	80	6	1,6	Ст/Эм	54	1390/520/535	Гб/Рг
OV 200	200	304	цилиндр	H/HM/B	2/220~	80	6	2,1	Ст/Эм	79	1625/520/535	Гб/Рр
LOV 80	80	279	цилиндр	Н/НМ/Г	2/220~	80	6	1,3	Ст/Эм	45	520/1107/535	Гб/Рг
LOV 120	120	315	цилиндр	Н/НМ/Г	2/220~	80	6	1,5	Ст/Эм	57	520/1155/535	Гб/Рр
LOV 120	150	342	цилиндр	Н/НМ/Г	2/220~	80	6	1,9	Ст/Эм	64	520/1390/535	Гб/Рр
LOV 200	200	387	цилиндр	Н/НМ/Г	2/220~	80	6	2,4	Ст/Эм	79	520/1625/535	Гб/Рр
OV 82	80	180		H/HM/B	2/220~	80	6	1,4	Ст/Эм	30	800/470/485	10/Ρμ
			цилиндр									
OV 122	120	191	цилиндр	H/HM/B	2/220~	80	6	1,9	Ст/Эм	41	1106/470/485	
OV 152	150	212	цилиндр	H/HM/B	2/220~	80	6	2,4	Ст/Эм	48	1342/470/485	
LOV 82	80	263	цилиндр	Н/НМ/Г	2/220~	80	6	1,4	Ст/Эм	32	470/800/485	
LOV 122	120	НД	цилиндр	Н/НМ/Г	2/220~	80	6	1,9	Ст/Эм	43	470/1106/485	
LOV 152	150	НД	цилиндр	Н/НМ/Г	2/220~	80	6	2,4	Ст/Эм	50	470/1342/485	
ermex (Италия)												
FP	5	75	прямоуг	H/HM/B/O	2/220~	70	8	НД	Ст/Сф	5	315/280/270	
0P	10	80	прямоуг	H/HM/B/O	1,2/220~	70	8	НД	Ст/Сф	7,6	415/345/255	
0 PL	10	90	прямоуг	H/HM/B/O	1,2/220~	70	8	НД	Ст/Сф	7,6	415/345/255	Ppt
5 P	15	95	прямоуг	H/HM/B/O	1,5/220~	70	8	НД	Ст/Сф	9,3	455/315/310	
5 PL	15	105	прямоуг	H/HM/B/O	1,5/220~	70	8	нд	Ст/Сф	9,3	455/315/310	Ppt
							8	нд	Ст/Сф	12,5	455/370/380	
0 P/1	30	115	прямоуг	H/HM/B/O	1,2/220~	70	O	ПД	U1/UW	12,0	400/070/000	

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Модель	Объем (л)	Цена (USD)	Форма	Монтаж	Мощность (кВт)	t°C max	P(бар) max	кВтч/24ч	Материал колбы	Bec (кг)	Габариты В/Ш/Г (мм)	Особенности
10 PS	10	90	прямоуг	H/HM/B/U	1,2/220~	70	8	нд	Ст/Сф	7,6	415/345/255	Гб
10 PSL	10	90	прямоуг	H/HM/B/U	1,2/220~	70	8	НД	Ст/Сф	7,6	415/345/255	Ppt°/Γ6
15 PS	15	95	прямоуг	H/HM/B/U	1,5/220~	70	8	НД	Ст/Сф	9,3	455/315/310	Γ6
15 PSL 30 P	15 30	110 115	прямоуг	H/HM/B/U H/HM/B/O	1,5/220~ 1,2/220~	70 70	8	НД НД	Ст/Сф	9,3 14	455/315/310 500/360/370	Ppt°/Гб
50 P	50	130	цилиндр цилиндр	H/HM/B/O	1,2/220~	70	8	нд НД	Ст/Сф	17	515/440/450	Гб Гб
80 P	80	145	цилиндр	H/HM/B/O	1,2/220~	70	8	НД	Ст/Сф	23,5	725/440/450	Гб
100 P	100	170	цилиндр	H/HM/B/O	1,5/220~	70	8	НД	Ст/Сф	29,5	945/440/450	Гб
120 P	120	200	цилиндр	H/HM/B/O	1,5/220~	70	8	НД	Ст/Сф	36,5	1085/440/450	Гб
150 P	150	225	цилиндр	H/HM/B/O	1,8/220~	70	8	нд	Ст/Сф	37	1125/440/450	Гб
300 PB	260	465	цилиндр	Н/П/В/О	3/220~	70	8	НД	Ст/Сф	70	1505/565/565	Гб
50 PO	50	140	цилиндр	Η/ΗΜ/Γ/Ο	1,2/220~	70	8	нд	Ст/Сф	17	440/515/450	Гб
80 PO	80	165	цилиндр	H/HM/Γ/O	1,2/220~	70	8	НД	Ст/Сф	23,5	440/725/450	Гб
100 PO	100	185	цилиндр	Н/НМ/Г/О	1,5/220~	70	8	НД	Ст/Сф	29,5	440/945/450	Гб
120 PO	120	189	цилиндр	H/HM/Γ/0	1,5/220~	70	8	НД	Ст/Сф	36,5	440/1085/450	Гб
150 PO	150	245	цилиндр	H/HM/B/O	1,8/220~	70	8	НД	Ст/Сф	37	440/1125/450	Γ6
150 FP 150 FP0	150 150	250 275	цилиндр	H/HM/B/Ο H/HM/Γ/Ο	1,8/220~ 1.8/220~	70 70	8	НД	Ст/Сф Ст/Сф	37 37	955/565/592 565/955/592	Гб Гб
10 S	10	65	цилиндр прямоуг	H/HM/B/O	1,0/220~	70	6	НД НД	Ст/Сф	7	415/345/255	Гб
10 SL	10	70	прямоуг	H/HM/B/O	1,2/220~	70	6	НД	Ст/Сф	7	415/345/255	Ppt°/Γ6
15 S	15	75	прямоуг	H/HM/B/O	1,5/220~	70	6	нд	Ст/Сф	9	455/315/310	Гб
15 SL	15	75	прямоуг	H/HM/B/O	1,5/220~	70	6	нд	Ст/Сф	9	455/315/310	Ppt°/Γ6
30 S/1	30	90	прямоуг	H/HM/B/O	1,2/220~	70	6	нд	Ст/Сф	11,5	455/370/380	. Гб
30 SL	30	100	прямоуг	H/HM/B/O	1,2/220~	70	6	НД	Ст/Сф	11,5	455/370/380	Ppt°/Γб
10 SS	10	65	прямоуг	H/HM/B/U	1,2/220~	70	6	НД	Ст/Сф	7	415/345/255	Гб
10 SSL	10	70	прямоуг	H/HM/B/U	1,2/220~	70	6	НД	Ст/Сф	7	415/345/255	Ррt°/Гб
15 SS	15	75	прямоуг	H/HM/B/U	1,5/220~	70	6	НД	Ст/Сф	9	455/315/310	Гб
15 SSL	15	75	прямоуг	H/HM/B/U	1,5/220~	70	6	НД	Ст/Сф	9	455/315/310	Ppt°/Γ6
30 S	30	85	цилиндр	H/HM/B/O	1,2/220~	70	6	НД	Ст/Сф	12,5	500/360/370	Гб
50 S	50	90	цилиндр	H/HM/B/O	1,2/220~	70	6	НД	Ст/Сф	14,5	515/440/450	Γ6
80 S 100 S	80 100	105 120	цилиндр	H/HM/B/O H/HM/B/O	1,2/220~ 1,5/220~	70 70	6	НД НД	Ст/Сф Ст/Сф	19 28	725/440/450 945/440/450	Гб Гб
120 S	120	150	цилиндр цилиндр	H/HM/B/O	1,5/220~	70	6	НД	Ст/Сф	31	1085/440/450	Гб
150 S	150	165	цилиндр	H/HM/B/O	1,5/220~	70	6	НД	Ст/Сф	33	1125/440/450	Гб
Vaillant (Германия				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		пания Г	идросфера					
VEN B 5 O	5	103	прямоуг	БН/НМ/В	2/220~	85	0	0,26	Пп	4	412/240/218	F/Ppt°/См
VEN B 5 U	5	98	прямоуг	БН/НМ/В	2/220~	85	0	0,33	Пп	4	412/240/218	F/Ppt°/Cm
VEN B 5 U+Arm1	5	138	прямоуг	БН/НМ/В	2/220~	85	0	0,33	Пп	4	412/240/218	F/Ppt°/Cm
VEN B 5 U+Arm2		186	прямоуг	БН/НМ/В	2/220~	85	0	0,36	Пп	4	412/240/218	F/Ppt°/Cm
VEN B 5 U+Arm3		203	прямоуг	БН/НМ/В	2/220~	85	0	0,36	Пп	4	412/240/218	F/Ppt°/Cm
VEN 5 0	5	132	прямоуг	БН/НМ/В	2/220~	85	0	0,26	M	4	412/240/218	F/Ppt°/CM
VEN 5 U	5	132	прямоуг	БН/НМ/В	2/220~	85	0	0,33	M	4	412/240/218	F/Ppt°/CM
VEN 10 0 VEN 10 U	10 10	204 200	прямоуг	БН/НМ/В БН/НМ/В	2/220~ 2/220~	85 85	0	0,33 0,36	Пл Пл	8	493/290/270 493/290/270	F/Ppt°/Cm F/Ppt°/Cm
VEH 10 U	10	242	прямоуг прямоуг	H/HM/B	2/220~	85	6	0,35	M	8	493/290/270	F/Ppt°/Γ6
VEN/H 15	15	268	прямоуг	H/HM/B	2/220~	85	6	0,49	Ст/Эм	13	502/287/292	F/Ppt°/Γ6
VEN/H 30	30	287	прямоуг	H/HM/B	2/220~	85	6	0,64	Ст/Эм	18	623/342/347	F/Ppt°/Γ6
VEH 50 klassik	50	496	прямоуг	H/HM/B	2/220~	85	6	НД	Ст/Эм	30	685/500/500	F/Ppt°/Γ6
VEH 80 klassik	80	521	прямоуг	H/HM/B	2/220~	85	6	нд	Ст/Эм	50	965/500/500	F/Ppt°/Γб
VEH 100 klassik	100	553	прямоуг	H/HM/B	2/220~	85	6	нд	Ст/Эм	60	1105/500/500	F/Ppt°/Γб
VEH 50 exklusiv	50	600	прямоуг	H/HM/B	6/400~	85	6	НД	Ст/Эм	30	685/500/500	F/Ppt°/Ун/Гб
VEH 80 exklusiv	80	660	прямоуг	H/HM/B	6/400~	85	6	нд	Ст/Эм	50	965/500/500	F/Ppt°/Ун/Гб
VEH 100 exklusiv		714	прямоуг	H/HM/B	6/400~	85	6	НД	Ст/Эм	60	1105/500/500	F/Ppt°/Ун/Гб
VEH 120 exklusiv		826	прямоуг	H/HM/B	6/400~	85	6	нд	Ст/Эм	65	1245/500/500	F/Ppt°/Ун/Гб
VEH 150 exklusiv		878	прямоуг	H/HM/B	6/400~	85	6	НД	Ст/Эм	75	1495/500/500	F/Ppt°/Ун/Гб
VEH 200	200	1226	цилиндр	Н/П/В	6/400~	85	6	НД	Ст/Эм	64	1265/605/605	F/Ppt°/Ун/Гб
VEH 300	300	1331	цилиндр	Н/П/В	6/400~	85	6	НД	Ст/Эм	83	1780/605/605	F/Ppt°/Yh/Гб
VEH 400 Wester (Англия)	400	1612	цилиндр	Н/П/В	6/400~	85	6	НД	Ст/Эм	123	1685/705/705	F/Ppt°/Ун/Гб
WHE-10B	10	70	цилиндр	H/HM/B	1,2/220~	85	8	НД	Ст/Тф	6,7	445/370/195	Гб
WHE-10U	10	73	цилиндр	H/HM/B/U	1,2/220~	85	8	НД	Ст/Тф	6,7	445/370/195	Гб
WHS-30	30	94	цилиндр	H/HM/B	1,2/220~	85	8	НД	Ст/Тф	13,7	520/358/380	Гб
WHS-50	50	101	цилиндр	H/HM/B	1,2/220~	85	8	нд	Ст/Тф	3,8	555/440/450	Гб
WHS-80	80	110	цилиндр	H/HM/B	1,2/220~	85	8	нд	Ст/Тф	18,3	750/440/450	Гб
	00					85	8	нД	Ст/Тф	26,9	905/440/450	Гб
WHS-100	100	122	цилиндр	H/HM/B	1,2/220~	00						
WHS-100 WHD-120		122 165	цилиндр цилиндр	H/HM/B H/HM/B	2/220~	85	8	нд	Ст/Эм	34,5	1037/450/460	Гб
	100								Ст/Эм Ст/Эм	34,5 42,3		
WHD-120 WHD-150 WHD-200	100 120 150 200	165 238 256	цилиндр	H/HM/B	2/220~	85 85 85	8 8 8	НД НД НД			1037/450/460	Гб
WHD-120 WHD-150	100 120 150	165 238	цилиндр цилиндр	H/HM/B H/HM/B	2/220~ 2/220~	85 85	8 8	нд нд	Ст/Эм	42,3	1037/450/460 990/540/548	Гб Гб

^{*} По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

ПРОТОЧНЫЕ ЭЛЕКТРОВОДОНАГРЕВАТЕЛИ

Принятые сокращения

Qmin — мин. проток, Q*min — производительность при ∆20° K, PminB — минимальное давление, PmaxB — максимальное давление, Дн — в комплекте с душевой насадкой, 1т — для обеспечения горячей водой только одной точки, Гу — гидравлическое управление, Сп — нагревательный элемент — спираль, U — устанавливается под раковиной, О — устанавливается над раковиной, 3у — электронное управление, IP25 — вид защиты, тт — для врезания в систему и для обеспечения горячей водой одной или нескольких водоразборных точек, Т — нагревательный элемент — ТЭН, Твх60°С — максимальная температура воды на входе, Встр - поставляется в комплекте со специальным шкафом, Жк — жидкокристаллический дисплей, НД — нет данных

Модель	Цена (USD)	Мощность кВт/В	t°C max	Qmin (л/мин)	Q* (л/мин)	Pmin (бар)	Pmax (бар)	Размеры В/Ш/Г (мм)	Другие данные
Atmor (Израиль)									
Summer	30	3,5/230~	57	НД	2,5	0,3	7	180/300/110	Дн/1
Handwash	30	3,5/230~	57	НД	2,5	0,3	7	180/300/110	Kp/1
Super-5	40	5/230~	57	НД	3,6	0,3	7	180/300/110	Kp/1
Super-5	40	5/230~	57	НД	3,6	0,3	7	180/300/110	Дн/1
Super-5	43	5/230~	57	нд	3,6	0,3	7	180/300/110	Дн/1
Super-5 Uni	51	5/230~	57	НД	3,6	0,3	7	180/300/110	Кр/Дн/ ⁻
New	50	5/230~	57	нд	3,6	0,3	7	180/300/110	Kp/
New	50	5/230~	57	НД	3,6	0,3	7	180/300/110	Дн/
New	53	5/230~	57	НД	3,6	0,3	7	180/300/110	Дн/
New	62	5/230~	57	НД	3,6	0,3	7	180/300/110	Кр/Дн/
Optima	69	5/230~	57	нд	3,6	0,3	7	180/300/110	Дн/
Optima Chrome	83	5/230~	57	НД	3,6	0,3	7	180/300/110	Дн/
In-Line 5	102	5/230~	57	1,2	3,6	0,3	7	180/300/90	
In-Line 7	111	7/230/400~	57	1,2	5	0,3	7	180/300/90	
In-Line 12	103	12/400~	57	1,2	8,6	0,3	7	180/300/90	
Biawar (Польша)									
Instant 3k	78	3/230~	60	НД	2,1	НД	нд	230/109/90	Kp/
nstant 6k	81	5/230~	60	НД	3,6	НД	нд	230/109/90	Kp/
nstant 6d	88	5/230~	60	НД	3,6	нд	нд	230/109/90	Дн/
Autosensor	102	3/230~	60	НД	2,1	НД	нд	273/123/90	Kp/
Oskar OP-5	89	5,5/230~	60	нд	3,9	0,6	6	200/192/82	Kp/
Oskar OP-5	101	5,5/230~	60	НД	3,9	НД	нд	200/192/82	Дн/
Oskar OP-5	107	5,5/230~	60	нд	3,9	нд	нд	200/192/82	Дн/
Super	129	5,5/230~	60	НД	3,9	НД	нд	280/164/90	Дн/
Plus Extra	149	5,5/230~	60	нд	3,9	нд	нд	302/190/92	Дн/
OP-12.01	200	12/400~	60	НД	8,6	НД	нд	460/210/120	
OP-18.01	220	18/400~	60	нд	12,9	нд	нд	460/210/120	
0P-21.01	240	21/400~	60	НД	15	НД	нд	460/210/120	
0P-24.01	260	24/400~	60	нд	17,3	нд	нд	460/210/120	
lage (Германия)					pocфepa (095	*			
M3/SNM	121	3,5/230~	40	1	2	0,3	6	130/190/70	Гу/Сп/U/1т/IP25/0
M3/ENM	154	3,5/230~	40	1	2	0,3	6	130/190/70	Гу/Сп/U/1т/IP25/0
MD3	200	3,5/230~	40	1	2	0,3	6	130/190/70	Гу/Сп/U/тт/IР
MD4	210	4,4/230~	40	1,5	2,5	0,3	6	130/190/70	Γy/Cπ/U/ττ/IP:
MD6	215	5,7/230~	40	2,5	3,3	0,3	6	130/190/70	Γy/Cπ/U/ττ/IP:
M3/SMB	121	3,5/230~	40	1	2,5	0,3	6	130/190/70	Гу/Сп/0/1т/ІР25/0
M4/SMB	127	4,4/230~	40	1,5	3,1	0,3	6	130/190/70	Гу/Сп/0/1т/IР25/0
M4/BGS	265	4,4/230~	40	1,5	2,6	0,3	6	130/190/70	Гу/Сп/0/1т/ІР25/
M6/BGS	270	5,7/230~	40	2,5	3,3	0,3	6	130/190/70	Гу/Сп/О/1т/ІР25/Д
M7/BGS	270	6,5/230~	40	3	4	0,3	6	130/190/70	Гу/Сп/0/1т/ІР25/Д
CRS 3	190	3,0/230~	55	2	2	0,3	6	330/210/110	Гу/T/0/1т/IP25/
CRS 4	192	4,4/230~	55	2	3	0,3	6	330/210/110	Гу/T/0/1т/IP25/Į
CRS 6	196	6,6/230~	55	2,5	4,3	0,3	6	330/210/110	Γy/T/0/1τ/IP25/
CRS 8	204	8,3/230~	55	3	5,6	0,3	6	330/210/110	Гу/T/0/1т/IP25/Į
CRX 6-S	227	6,6/230~	45	2	4,3	0,3	6	330/210/110	Эу/T/0/1т/IP25/,
CRX 9-S	239	8,8/230~	45	2	5,7	0,3	6	330/210/110	Эу/T/0/1т/IP25/
CRH 3	158	3,5/230~	55	1	2,3	0,3	6	330/210/110	Γy/T/0/ττ/IP2
CRH 6	170	6,6/230~	55	1,9	4,3	0,3	6	330/210/110	Γy/T/0/ττ/IP2
CRH 9	181	8,8/230~	55	2,5	5,7	0,3	6	330/210/110	Γy/T/0/ττ/IP2
CRX 6	208	6,6/230~	55	2	4,3	0,3	6	330/210/110	Эу/Т/О/тт/ІР
CRX 9	220	8,8/230~	55	2	5,7	0,3	6	330/210/110	Эу/Т/0/тт/ІР
CBH 11	210	11/400~	55	3	7,8	0,3	10	330/210/110	Эу/Сп/U/тт/IР
CBX 11	466	11/400~	55	3	7,8	0,3	10	330/210/110	Эу/Сп/О/тт/ІР
CBX 13	466	13,5/400~	55	3	9,7	0,3	10	330/210/110	Эу/Сп/О/тт/ІР
DB 13	270	13,2/400~	50	3	9,7	0,3	10	470/230/140	Γу/Сπ/Ο/ττ/ΙΡ
DB 18	275	18/400~	50	3	12,9	0,3	10	470/230/140	Γу/Сπ/0/ττ/ΙΡ
DB 21	280	21/400~	50	3	15	0,3	10	470/230/140	Γу/Сπ/Ο/ττ/ΙΡ
DB 24	285	24/400~	50	3	17,3	0,3	10	470/230/140	Гу/Сп/О/тт/ІР
DX 18	580	18/400~	55	3	12,9	0,3	10	470/300/100	Эл/Сп/О/тт/IP25/
DX 21	590	21/400~	55	3	15	0,3	10	470/300/100	Эл/Сп/О/тт/IP25/
DX 24	600	24/400~	55	3	17,3	0,3	10	470/300/100	Эл/Сп/О/тт/IР25/
DX 27	620	27/400~	55	3	19,4	0,3	10	470/300/100	Эл/Сп/О/тт/IP25/
emir Dokum (Турци	(Я)								

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Модель	Цена (USD)	Мощность кВт/В	t°C max	Qmin (л/мин)	Q* (л/мин)	Pmin (бар)	Pmax (бар)	Размеры В/Ш/Г (мм)	Особенности
Electrolux (Швеция)									
MDT-4,4	130	4,4/230~	НД	НД	3,1	0,75	15	295/190/95	TT
MDT-6,0	120	6,0/230~	НД	нд	4,3	0,75	15	295/190/95	TT
Galaxy (Англия)									
Galaxy 6000	229	5,5/230~	60	3,6	НД	НД	10	289/227/85	Дн
Galaxy 8000	279	5,5/230~	60	3,6	нд	нд	10	289/227/85	Дн
Kospel (Польша)		40/000	00	0.5	0.0	LLD.	^	118	0 /0 / // // // // // // // // // // //
EPPV 12	НД	12/380~	60	2,5	8,6	нд	6	НД	Эу/0/тт/IР24
EPPV 18	НД	18/380~	60	2,5	12,9	НД	6	нд	Эу/0/тт/IР24
EPPV 21	НД	21/380~	60	2,5	15	нд	6	НД	Эу/О/тт/IР24
EPPV 24	НД	24/380~	60	2,5	17,3	НД	6	НД	Эу/О/тт/IР24
EPPV 27	НД	27/380~	60	2,5	19,3	нд	6	НД	Эу/0/тт/IР24
EPP 36	НД	36/380~	60	НД	НД	НД	6	НД	Гу/0/тт/ІР24
EPV 9	НД	9/380~	60	нд	НД	нд	6	НД	Гу/0/тт/IР24
EPV 12	НД	12/380~	60	НД	НД	НД	6	НД	Гу/0/тт/IР24
EPV 18	нд	18/380~	60	НД	НД	нд	6	нд	Гу/0/тт/IР24
EPV 21	НД	21/380~	60	НД	НД	НД	6	нд	Гу/0/тт/IР24
EPV 24	нд	24/380~	60	нд	НД	нд	6	нд	Гу/0/тт/IР24
EPO.G 4	НД	4/220~	НД	НД	2,5	0,15	6	НД	Гу/0/1т/IР24
EPO.G 5	НД	5/220~	НД	НД	3,6	0,15	6	нд	Гу/0/1т/IР24
EPO.G 6	НД	6/220~	НД	НД	4,3	0,15	6	НД	Гу/0/1т/ІР24
EPO.D 4	НД	4/220~	НД	НД	2,5	0,15	6	НД	Гу/U/1т/IР24
EPO.D 5	НД	5/220~	НД	НД	3,6	0,15	6	НД	Γy/U/1τ/IP24
EPO.D 6	нд	6/220~	НД	НД	4,3	0,15	6	нд	Гу/U/1т/IP24
EPJ 3,5	нд	3,5/220~	НД	НД	2,3	0,15	6	нД	Гу/О/См/ІР24
EPJ 4,4	нд	4,4/220~	нд	НД	3,1	0,15	6	нд	Гу/О/См/ІР24
EPJ 5,5	нд	5,5/220~	НД	НД	3,9	0,15	6	нд	Гу/0/См/ІР24
EPJ.P 4,4	нд	4,4/220~	нд	нд	3,1	0,15	6	НД	Гу/0/Дн/IР25
EPJ.P 5,5	нд	5,5/220~	НД	НД	3,9	0,15	6	нД	Гу/0/Дн/IР25
Redring (Англия)									
Super Extra	218	6/230~	55	НД	НД	НД	НД	НД	0/1т/Дн
Plus Extra	243	6/230~	55	НД	нД	НД	НД	НД	0/1т/Дн
Zeta Profile	250	9/230~	55	НД	нд	нд	НД	нд	0/1т/Дн
Advantage	240	7/230~	55	нд	нд	нд	НД	НД	0/1т/Дн
Florida	200	6/230~	55	НД	нд	НД	нд	нд	0/1т/Дн
California	170	7,2/230~	55	НД	НД	НД	НД	нд	0/1т/Дн
Acclaim	210	8/230~	55	НД	нд	НД	нд	нд	0/1т/Дн
Autosensor	130	3/230~	55	нд	2,1	нд	нд	нд	0/1т/См
Instant 3	110	3/230~	55	НД	2,1	НД	нд	нд	0/1т/См
Instant 7	170	6/230~	60	нд	4,3	НД	нд	нд	0/1т/См
Powerstream 8	272	8/230~	60	НД	5,7	3	10	160/307/74	0/TT/IP24
Powerstream 10	272	10/230~	60	нд	7,1	4	10	160/307/74	0/тт/IР24
Siemens (Германия)				''	,				
DH12101	240	12/400~	60	3,6	8,6	0,3	10	472/236/137	Γγ/T/0/ττ/IP25
DH18100	270	18/400~	60	4	12,9	0,6	10	472/236/137	Гу/Т/0/тт/IР25
DH21100	280	21/400~	60	4,5	15	0,8	10	472/236/137	Гу/Т/0/тт/IР25
DH24100	290	24/400~	60	5	17,3	0,9	10	472/236/137	Гу/Т/0/тт/IР25
DH12201	200	13/400~	60	3,6	9,4	0,2	10	472/236/139	Гу/Т/0/тт/ІР24
DH24200	220	24/400~	60	5	17,3	0,6	10	472/236/139	Гу/Т/0/тт/ІР24
DH05100	97	4,6/230~	60	1,3	3,6	1	10	235/144/100	Γy/T/U/ττ/IP24
DH06110	128	6,0/230~	60	2,3	4,3	1	10	235/144/100	Гу/Т/0/тт/ІР24
Stiebel Eltron (Герман						раке: (095) 933		200/111/100	13/1/0/11/11 21
DHC 3 U	207	3,5/230~	55	1,2	2,3	0,35	10	362/200/105	Гу/Т/U/тт/IР24
DHC 3	203	3,0/230~	55	1,2	2,1	0,35	10	362/200/105	Гу/Т/0/тт/ІР24
DHC 4	203	4,4/230~	55	1,4	2,1	0,35	10	362/200/105	Γy/T/0/TT/IP24
DHC 6 U	203	6,6/230~	55	2,3	4,3	0,35	10	362/200/105	Гу/Т/U/тт/IP24
DHC 6	206	6,6/230~	55	2,3	4,3	0,35	10		· · · · · · · · · · · · · · · · · · ·
DHC 8		•				-	10	362/200/105	Γy/T/0/ττ/IP24
	215	8,8/230~	55	2,9	5,7	0,35		362/200/105	Гу/Т/0/тт/ІР24
DHA 4/8 L	265	8,8/230~	55 45	2,9	5,7	0,3	10	362/200/105	Γy/T/0/ττ/IP24
DNC 3 SL	279	3,0/230~	45	1,2	2,1	0,35	10	362/200/105	Гу/Т/0/1т/ІР24/Дн
DNC 3,5 SL	287	3,5/230~	45	1,2	2,5	0,35	10	362/200/105	Гу/Т/0/1т/ІР24/Дн
DNC 6 SL	315	6,6/230~	45	2,3	4,3	0,35	10	362/200/105	Гу/Т/0/1т/ІР24/Дн
DNC 8 SL	319	8,8/230~	45	2,9	5,7	0,35	10	362/200/105	Гу/Т/0/1т/ІР24/Дн
DHE 18	666	18/400~	60	3	12,9	0,6	10	470/225/110	Эу/Сп/О/тт/IР25
DHE 21	667	21/400~	60	3	15	0,8	10	470/225/110	Эу/Сп/О/тт/IР25
DHE 24	669	24/400~	60	3	17,3	1	10	470/225/110	Эу/Сп/О/тт/IР25
DHE 27	670	27/400~	60	3	19,3	1,2	10	470/225/110	Эу/Сп/О/тт/IР25
DHF 13 C	285	13,5/400~	60	3	8,6	0,4	10	370/220/130	Гу/Т/0/тт/IР24
DHF 15 C	286	15/400~	60	3,2	10,7	0,5	10	370/220/130	Гу/Т/0/тт/ІР24
DHF 18 C	287	18/400~	60	3,5	12,9	0,6	10	370/220/130	Гу/Т/0/тт/ІР24
DHF 21 C	288	21/400~	60	3,8	15	0,7	10	370/220/130	Гу/Т/0/тт/IР24
DHF 24 C	289	24/400~	60	4,4	17,3	0,9	10	370/220/130	Гу/Т/0/тт/IР24
DHB-E 18 Si	419	18/400~	60	4	12,9	0,4	10	470/225/110	Эу/Сп/О/тт/IР25

^{*} По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

Модель	Цена (USD)	Мощность кВт/В	t°C max	Qmin (л/мин)	Q* (л/мин)	Pmin (бар)	Pmax (бар)	Размеры В/Ш/Г (мм)	Другие данные
DHB-E 21 Si	421	21/400~	60	4,6	15	0,6	10	370/220/150	Эу/Сп/О/тт/IР25
DHB-E 24 Si	422	24/400~	60	5,2	17,3	0,65	10	370/220/150	Эу/Сп/О/тт/IР25
DHB-E 27 Si	423	27/400~	60	6,1	19,3	0,75	10	370/220/150	Эу/Сп/О/тт/IР25
DHB 12 Si	307	12/400~	60	3,2	8,6	0,4	10	470/225/110	Гу/Сп/О/тт/ІР25
DHB 18 Si	309	18/400~	60	3,4	12,9	0,6	10	470/225/110	Гу/Сп/О/тт/ІР25
DHB 21 Si	310	21/400~	60	3,6	15	0,8	10	470/225/110	Гу/Сп/О/тт/ІР25
DHB 24 Si	312	24/400~	60	3,8	17,3	1	10	470/225/110	Гу/Сп/О/тт/ІР25
DHB 27 Si	322	27/400~	60	4	19,3	1,2	10	475/240/125	Гу/Сп/О/тт/ІР25
Vaillant (Германия)				★ Компания	Гидросфера ((395) 795-3181			
VED 12	285	12/400~	60	2,7	8,6	0,2	10	475/240/114	Гу/Сп/0/тт/ІР25
VED 18	284	18/400~	60	3,8	12,9	0,3	10	475/240/114	Гу/Сп/О/тт/ІР25
VED 21	287	21/400~	60	4,4	15	0,35	10	475/240/114	Гу/Сп/0/тт/ІР25
VED 24	289	24/400~	60	5,1	17,3	0,4	10	475/240/114	Гу/Сп/О/тт/ІР25
VED 27	310	27/400~	60	5,7	19,3	0,45	10	475/240/114	Гу/Сп/О/тт/ІР25
VED E 18 classic	502	18/400~	60	3	12,9	0,3	10	475/240/114	Эу/Сп/О/тт/IР25
VED E 21 classic	507	21/400~	60	3	15	0,3	10	475/240/114	Эу/Сп/О/тт/IР25
VED E 24 classic	516	24/400~	60	3	17,3	0,3	10	475/240/114	Эу/Сп/О/тт/IР25
VED E 27 classic	523	27/400~	60	3	19,3	0,3	10	475/240/114	Эу/Сп/О/тт/IР25
VED 18 EE LCD	636	18/400~	60	3	12,9	0,3	10	475/240/114	Жк/Эу/Сп/0/тт/IP25
VED 21 EE LCD	653	21/400~	60	3	15	0,3	10	475/240/114	Жк/Эу/Сп/0/тт/IР25
VED 24 EE LCD	673	24/400~	60	3	17,3	0,3	10	475/240/114	Жк/Эу/Сп/0/тт/IР25
VED 27 EE LCD	679	27/400~	60	3	19,3	0,3	10	475/240/114	Жк/Эу/Сп/0/тт/IР25
Viessmann									
Vitotron 200 DH2	190	18/400~	нд	нд	нд	нд	НД	473/237/89	Гу/Сп/О/тт/—
Vitotron 200 DH2	200	21/400~	НД	НД	НД	НД	НД	473/237/89	Гу/Сп/О/тт/–
Vitotron 200 DH2	210	24/400~	нд	нд	нд	нд	НД	473/237/89	Гу/Сп/О/тт/–
Vitotron 200 DE2	310	18/400~	НД	НД	НД	нд	НД	473/237/89	Эу/Сп/О/тт/–
Vitotron 200 DE2	320	21/400~	нд	нд	нд	нд	НД	473/237/89	Эу/Сп/О/тт/–
Vitotron 200 DE2	330	24/400~	НД	НД	НД	нд	нд	473/237/89	Эу/Сп/О/тт/—
Vitotron 200 Elotec-s	390	18/400~	нд	нд	нд	нд	нд	473/237/89	tвx55°C/Эу/Сп/О/тт/-
Vitotron 200 Elotec-s	400	21/400~	НД	НД	НД	нд	НД	473/237/89	tвx55°C/Эу/Сп/О/тт/-
Vitotron 200 Elotec-s	410	24/400~	нд	НД	нд	нд	нд	473/237/89	tвx55°C/Эу/Сп/О/тт/-
Эван (Россия)									
ЭПВН-7,5	НД	7,5/220~	нд	нд	нд	0,5	нд	560/200/250	нд
ЭПВН-9	НД	9,5/220/380~	НД	НД	НД	0,5	НД	630/370/350	нд
ЭПВН-12	НД	12/380~	НД	НД	НД	0,5	нд	630/370/350	нд
ЭПВН-15	НД	15/380~	НД	НД	НД	0,5	нд	630/370/350	НД
ЭПВН-18	НД	18/380~	нд	нд	НД	0,5	НД	630/370/350	нд
ЭПВН-24	НД	24/380~	НД	НД	НД	0,5	НД	630/370/350	нд
ЭПВН-30	НД	30/380~	нд	НД	НД	0,5	НД	630/370/350	нд
ЭПВН-36	НД	36/380~	НД	НД	НД	0,5	НД	1100/470/540	нд
ЭПВН-42	НД	42/380~	НД	НД	НД	0,5	нд	1100/470/540	нд
ЭПВН-48	НД	48/380~	НД	НД	НД	0,5	НД	1100/470/540	нд
ЭПВН-54	НД	54/380~	нд	НД	НД	0,5	НД 	1100/470/540	нд
ЭПВН-60	НД	60/380~	НД	НД	НД	0,5	НД	1100/470/540	НД
ЭПВН-72	нд	72/380~	нд	НД	НД	0,5	нд	1400/470/590	нд
ЭПВН-84	НД	84/380~	НД	НД	НД	0,5	НД	1400/470/590	НД
ЭПВН-96	нд	96/380~	нд	НД	НД	0,5	нд	1400/470/590	нд
ЭПВН-108	НД	108/380~	НД	НД	НД	0,5	НД	1400/470/590	НД
ЭПВН-120	НД	120/380~	нд	нд	нд	0,5	нд	1400/470/590	НД

Реклама в журнале С.О.К. т.:(095) 135-9857 ф.:(095) 135-9982

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

НАПОЛЬНЫЕ ОТОПИТЕЛЬНЫЕ КОТЛЫ

Принятые сокращения

2к — двухконтурный, Жт — жидкое топливо, Зп — электронный поджиг, СД — система диагностики, См — управляемый смеситель, 70л — встроенный на-копительный водонагреватель, 2ст — двухступенчатый, Дт — встроенный датчик тяги, Зпк — электронная плата самоконтроля, Пп — пьезоподжиг, Аг — атмосферная горелка, Цн — циркуляционный насос, Рб — расширительный бак, Чт — чугунный теплообменник, НД — нет данных, Ст — стальной теплооб-менник, 1ст — одноступенчатый, РуР — ручное управление работой, Ир — индикаторы работы, Пу — пульт управления, Вг — вентиляторная горелка, Авт — автономные (без подключения к эл.сети), Н-Срр — недельные/суточные режимы работы, ВстрГ — встроенная горелка, УпрВ — управление водонагрева-телем, Пд — погодный датчик, ТрО — термостатное регулирование отопительного контура, ДрО — регулирование отопления микроконтролерами

Модель	Цена (USD)	Номинал. мощн. (кВт)	Вид топлива	газа (м3/ч)	1 1	Расход ж. топл. л/ч	Диаметр дымо-да (мм)	Габариты В/Ш/Г (мм)	Вес (кг)	Особенности
Buderus (Германия)				<u> </u>			377, факс: (095) 93			
Logano G124-20	20	\$1 289,68	Газ/ВстрГ	нд	нд	нд	130	1005/600/748	127	Аг/Чт
Logano G124-24	24	\$1 375,92	Газ/ВстрГ	нд	НД	НД	130	1005/600/748	127	Аг/Чт
Logano G124-28	28	\$1 477,84	Газ/ВстрГ	нд	нд	нд	150	1005/600/788	151	Аг/Чт
Logano G124-32	32	\$1 602,30	Газ/ВстрГ	НД	НД	НД	150	1005/600/788	151	Аг/Чт
Logano G234-38	38	\$2 401,00	Газ/ВстрГ	нд	НД	НД	180	1134/650/786	221	Аг/Чт
Logano G234-44	44	\$2 624,44	Газ/ВстрГ	НД	НД	НД	180	1134/650/786	221	Ar/4t
Logano G234-50	50	\$2 924,32	Газ/ВстрГ	НД	НД	НД	180	НД	221	Аг/Чт
Logano G234-55 Logano G234-60	55 60	\$3 159,52 \$3 347,68	Газ/ВстрГ	НД	НД НД	НД НД	180 200	1134/740/786 НД	255 255	Аг/Чт Аг/Чт
Logano G334-71	71	\$4 408,04	Газ/ВстрГ Газ/ВстрГ	НД	НД	нд НД	200	пд 1264/880/750	344	Аг/Чт Аг/Чт
Logano G334-90	90	\$5 121,48		НД	нд НД		225	1264/1060/775	422	Ar/4t
-9			Газ/ВстрГ	НД	нд НД	НД	250		496	
Logano G334-110	110	\$6 115,20	Газ/ВстрГ	НД		НД		1264/1240/800 1264/1420/800	572	Аг/Чт Аг/Чт
Logano G334-130	130 150	\$7 203,98	Газ/ВстрГ	НД	НД	нд нд	250 250	1466/1460/1427		
Logano GE434-150 Logano GE434-175	175	\$8 983,66 \$9 661,82	Газ/ВстрГ Газ/ВстрГ	НД	НД НД		300	1466/1460/1427		Аг/Чт Аг/Чт
Logano GE434-200	200			НД НД	НД	нд нд	300	1466/1460/1687		Аг/Чт Аг/Чт
-		\$10 335,08	Газ/ВстрГ				300			
Logano GE434-225	225	\$11 013,24	Газ/ВстрГ	НД	НД	НД		1466/1460/1792		Аг/Чт
Logano GE434-250 Logano GE434-275	250 275	\$11 686,50 \$12 369,56	Газ/ВстрГ Газ/ВстрГ	НД	НД НД	НД НД	360 360	1466/1460/1957 1466/1460/2062		Аг/Чт Аг/Чт
Logano GE434-300	300	\$12 309,30	Газ/ВстрГ	НД	НД	нд НД	360	1466/1460/2167		Аг/Чт Аг/Чт
Logano GE434-325	325	\$13 042,82		НД	нд НД		400	1466/1460/2312		Ar/41 Ar/4t
Logano GE434-350	350	\$13 720,96	Газ/ВстрГ Газ/ВстрГ	НД	нд НД	НД	400	1466/1460/2417		
ŭ		\$14 394,24	Газ/ВстрГ	НД	нд НД	НД НД	400	1466/1460/1718		Аг/Чт Аг/Чт
Logano GE434-375 Logano GE515-510	375 510	\$15 072,40	Газ/Жт	НД	нд НД	нд НД	250	1556/980/2430		Вг/Чт
Logano GE615-570	570	\$14 432,00	Газ/Жт	НД	нд НД	нд НД	360	1826/1281/1926		Вг/Чт
Logano GE615-660	660	\$14 542,22	Газ/Жт	НД НД	НД	нд НД	360	1826/1281/2096		Вг/Чт
Logano GE615-740	740	\$16 669,80	Газ/Жт	нд НД	нд НД	нд НД	360	1826/1281/2266		Вг/Чт
Logano GE615-820	820	\$17 675,28	Газ/Жт	НД	НД	НД	360	1826/1281/2436		Вг/Чт
Logano GE615-920	920	\$17 075,28	Газ/Жт	нд НД	нд НД	нд НД	360	1826/1281/2606		Вг/Чт
Logano GE615-1020	1020	\$20 241,90	Газ/Жт	НД	НД	НД	360	1826/1281/2776		Вг/Чт
Logano GE615-1110	1110	\$20 241,50	Газ/Жт	НД	НД	НД	360	1826/1281/2946		Вг/Чт
Logano GE615-1200	1200	\$22 539,02	Газ/Жт	НД	НД	НД	360	1826/1281/3116		Вг/Чт
Dakon (Чехия)	1200	ΨΖΖ 003,02	143/71(1	''A	"A	''A	000	1020/1201/0110	117/	BI) 11
P 18 luz Z	742	18	Газ/ВстрГ	1,4–2,2	нд	нд	нд	840/290/670	82	Аг/Ст/Авт
P 22 lux Z	823	22	Газ/ВстрГ	1,6–2,7	нД	нд	нд	840/290/670	90	Ar/Ct/Abt
P 26 lux Z	868	26	Газ/ВстрГ	2,0–3,2	НД	НД	нд	840/410/670	114	Ar/Ct/Abt
P 30 lux Z	890	30	Газ/ВстрГ	2,4–3,7	НД	нд	нд	840/410/670	122	Ar/Ct/Abt
P 18 lux HL	670	18	Газ/ВстрГ	1,4–2,2	НД	НД	нд	840/290/670	82	Ar/Ct/2ct
P 22 lux HL	690	22	Газ/ВстрГ	1,6–2,7	НД	нд	нд	840/290/670	90	Ar/Ct/2ct
P 26 lux HL	724	26	Газ/ВстрГ	2,0–3,2	НД	НД	нд	840/410/670	114	Ar/Ct/2ct
P 30 lux HL	770	30	Газ/ВстрГ	2,4–3,7	НД	НД	НД	840/410/671	122	Ar/Ct/2ct
P 50 lux HL	1083	48	Газ/ВстрГ	3,5–5,5	НД	НД	НД	840/654/670	210	Ar/Ct/2ct
GL 20 EKO	840	20	Газ/ВстрГ	1,5–2,3	нД	нд	нд	840/410/635	114	Ar/4T
GL 30 EKO	935	30	Газ/ВстрГ	2,3–3,7	НД	НД	НД	840/510/635	138	Ar/YT
GL 40 EKO	1100	40	Газ/ВстрГ	4,7	нд	нд	нд	840/650/635	162	Ar/YT
GL 20 EKO(H)	905	20	Газ/ВстрГ	1,5–2,3	НД	НД	НД	840/410/635	117	Аг/ЧТ/Цн
GL 30 EKO(H)	1005	30	Газ/ВстрГ	2,3–3,7	НД	нД	нд	840/510/635	141	Аг/ЧТ/Цн
GL 40 EKO(H)	1165	40	Газ/ВстрГ	4,7	НД	НД	НД	840/650/635	165	Аг/ЧТ/Цн
GL 20 EKO HL	880	20	Газ/ВстрГ	1,5–2,3	НД	нд	нд	840/410/635	114	Аг/ЧТ/2ст
GL 30 EKO HL	980	30	Газ/ВстрГ	2,3–3,7	НД	НД	нд	840/510/635	138	Аг/ЧТ/2ст
GL 20 EKO HL(H)	950	20	Газ/ВстрГ	1,5–2,3	нд	нД	нд	840/410/635	117	Аг/ЧТ/2ст/Цн
GL 30 EKO HL(H)	1050	30	Газ/ВстрГ	2,3–3,7	НД	нд	нд	840/510/635	141	Аг/ЧТ/2ст/Цн
az 60 zno nz(n)	1000		140/20191	2,0 0,1				010/010/000		711/11/201/2411
DUNKIRK (CWA)							1, (0967) 54-66-40			
UMG-3	1186	18,5	Газ	2,1	НД	НД	127	924/286/673	135	Дт/Аг/Чт/РуР/Авт/ТрО
UMG-4	1337	27,5	Газ	3	нд	нд	153	924/368/673	167	Дт/Аг/Чт/РуР/Авт/ТрО
UMG-5	1495	36,9	Газ	4	НД	НД	153	924/451/674	200	Дт/Аг/Чт/РуР/Авт/ТрО
UMG-6	1704	47,5	Газ	5,5	НД	НД	178	924/534/675	232	Дт/Аг/Чт/РуР/Авт/ТрО
UMG-7	1755	65,4	Газ	6,4	НД	НД	178	924/616/676	265	Дт/Аr/Чт/РуР/Авт/ТрО
UMG-8	1949	63,3	Газ	7,36	НД	НД	178	924/699/677	229	Дт/Аг/Чт/РуР/Авт/ТрО
UMG-9	2095	73,5	Газ	9,1	нд	НД	200	924/699/678	334	Дт/Аг/Чт/РуР/Авт/ТрО
PVW-3cLC	1617	24	Газ	3,4	нд	нд	153	735/356/600	156	2к/Эп/Дт/Чт/РуР/ТрО
PVW-4cLC	1752	31,9	Газ	3,4	НД	НД	153	735/438/590	183	2к/Эп/Дт/Чт/РуР/ТрО
PVW-5cLC	1879	40,1	Газ	4,6	НД	НД	178	735/521/590	216	2к/Эп/Дт/Чт/РуР/ТрО

^{*} По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

	Цена (USD)	Номинал. мощн. (кВт)	Вид топлива	Расход пр. газа (м3/ч)	Расход сж. газа (кг/ч)	Расход ж. топл. л/ч	Диаметр дымо-да (мм)	Габариты В/Ш/Г (мм)	Вес (кг)	Особенност
PVW-6cLC	2020	47,5	Газ	4,6	нд	нд	178	735/608/590	243	2к/Эп/Дт/Чт/РуР/Тр(
PVW-7cLC	2289	55,4	Газ	6,44	НД	НД	203	735/686/590	270	2к/Эп/Дт/Чт/РуР/Тр(
PVW-8cLC	2385	63,3	Газ	7,36	НД	НД	203	735/768/590	292	2к/Эп/Дт/Чт/РуР/Тр(
PWB-3	1072	24,9	Газ	3	НД	НД	153	795/285/675	122	Эп/Дт/Чт/РуР/Тр(
PWB-4	1178	31,9	Газ	3,4	НД	НД	153	795/370/675	145	Эп/Дт/Чт/РуР/Тр(
PWB-5	1365	40,1	Газ	4,6	НД	НД	178	795/450/675	171	Эп/Дт/Чт/РуР/Тр(
PWB-6	1569	47,5	Газ	5,5	НД	НД	178	795/535/675	198	Эп/Дт/Чт/РуР/Тр(
PWB-7	1755	55,4	Газ	6,44	НД	НД	203	795/615/675	226	Эп/Дт/Чт/РуР/Тр(
PWB-8	1819	63,3	Газ	7,3	НД	НД	203	795/700/675	250	Эп/Дт/Чт/РуР/Тр(
PWB-9	1949	73	Газ	8,3	НД	НД	203	795/780/675	279	Эп/Дт/Чт/РуР/Тр(
Ecoflam (Италия)										
Bluete m-ns	10325	13,8-90,5	Газ	НД	НД	НД	нд	1500/1392/470	НД	Н,
Bluete m-ns	13423	13,8-120,5	Газ	НД	НД	НД	нд	1950/1392/470	НД	H,
Ecomax 6	4015	38–64	Газ	нд	НД	НД	180	690/1000/1245	НД	20
Ecomax 7	4155	40–74	Газ	нд	нД	нД	180	690/1000/1245	НД	20
Ecomax 8	4790	55–90	Газ	НД	НД	НД	200	750/1045/1485	НД	20
Ferroli (Италия)										
RENDIMAX 16	1600	16,2	газ	нд	нд	нд	нд	850/400/635	70	ΑΓ/Π
RENDIMAX 23	1700	23	газ	НД	нд	НД	НД	850/400/635	84	ΑΓ/Π
RENDIMAX 30	1900	29,5	LSS /ACT	НД	НД	НД	НД 120	850/400/635	102	АГ/П
GN1 02	550	23	газ/жт	2,34	Н/Д	1,94	130	850/400/332	75	СмГ/Ч
GN1 03	650	31	газ/жт	3,16	Н/Д	2,6	130	850/400/432	100	СмГ/Ч
GN1 04	750	46	газ/жт	4,69	Н/Д	3,86	130	850/400/532	125	СмГ/Ч
GN1 05	850	58	газ/жт	5,91	Н/Д	4,87	180	850/400/632	150	СмГ/Ч
GN1 06	950	69	газ/жт	7,04	Н/Д	5,7	180	850/400/732	175	СмГ/Ч
GN1 07	1050	81	газ/жт	8,26	Н/Д	6,8	180	850/400/832	200	СмГ/Ч
GN1 08	1150	930	газ/жт	9,48	Н/Д	7,81	180	850/400/932	225	СмГ/Ч
GN2 05	2000	105	газ/жт	10,71	Н/Д	8,9	180	1086/600/670	310	СмГ/Чт/Тр(
GN2 06	2200	125	газ/жт	12,75	Н/Д	10,5	180	1086/600/780	361	СмГ/Чт/Тр(
GN2 07	2400	145	газ/жт	14,8	Н/Д	12,18	180	1086/600/890	412	СмГ/Чт/Тр(
GN2 08	2600	165	газ/жт	16,83	Н/Д	13,85	200	1086/600/1000	463	СмГ/Чт/Тр
GN2 09	2800	185	газ/жт	18,87	Н/Д	15,5	200	1086/600/1110	514	СмГ/Чт/Тр
GN2 10	3000	205	газ/жт	20,91		17,22	200	1086/600/1110	565	
					Н/Д					СмГ/Чт/Тр(
GN2 11	3200	225	газ/жт	22,96	Н/Д	18,9	200	1086/600/1330	616	СмГ/Чт/Тр
GN2 12	3700	245	газ/жт	25	Н/Д	20,58	200	1086/600/1440	670	СмГ/Чт/Тр(
GN2 13	3900	265	газ/жт	27,04	Н/Д	22,26	200	1086/600/1550	725	СмГ/Чт/Тр(
GN2 14	4200	285	газ/жт	29,08	Н/Д	23,94	200	1086/600/1660	780	СмГ/Чт/Тр(
GN-K 20	1200	23,3	газ/жт	2,37	Н/Д	1,95	130	1344/500/750	115	СмГ/Чт/ТрО/Бойле
GN-K 30	1400	31,4	газ/жт	3,2	Н/Д	2,6	130	1344/500/751	140	СмГ/Чт/ТрО/Бойле
GN-K 40	1600	46,5	газ/жт	4,74	Н/Д	3,9	130	1344/500/752	165	СмГ/Чт/ТрО/Бойле
PEGASUS 4	1650	51	газ	5,9	4,34		180	1000/550/900	260	ΑτΓ/Эπ/Чτ/Τρ
PEGASUS 5	1800	68	газ	7,9	5,79		180	1000/640/900	300	АтГ/Эп/Чт/Тр
PEGASUS 6	2050	85	газ	9,9	7,24		200	1000/720/900	340	ΑτΓ/Эπ/Чτ/Τρ
PEGASUS 7	2200	102	газ	11,8	8,68		200	1500/800/900	380	АтГ/Эп/Чт/Тр
PEGASUS 8	3600	119	газ	13,8	10,2		220	1500/930/1050	470	АтГ/Эп/Чт/Тр
PEGASUS 9	3900	136	газ	15,8	11,6		250	1500/1020/1050		АтГ/Эп/Чт/Тр
PEGASUS 10	4400	153	газ	17,9	13,1		250	1500/1100/1050		АтГ/Эп/Чт/Тр
PEGASUS 11	4700	170	газ	19,8	14,5		300	1500/1190/1050	625	АтГ/Эп/Чт/Трі
PEGASUS 12					16			1500/1130/1050		
	5000	187	газ	21,8			300			ΑτΓ/Эπ/Чτ/Tp
PEGASUS 14	5500	221	газ	25,7	18,9		300	1500/1440/1050		АтГ/Эп/Чт/Тр
PEGASUS 16	6000	255	газ	29,6	21,8		350	1500/1610/1100		АтГ/Эп/Чт/Тр
PEGASUS 18	6400	289	газ	33,5	24,6		350	1500/1780/1100		АтГ/Эп/Чт/Тр
TANTAQUA 16	1650	16,2	газ	2	1,45		100	1300/500/715	174	Эп/Чт/ТрО/Бойле
TANTAQUA 23	1750	23	газ	2,82	2,07		110	1300/500/716	192	Эп/Чт/ТрО/Бойле
TANTAQUA 30	1950	29,5	газ	3,64	2,67		130	1300/500/717	210	Эп/Чт/ТрО/Бойле
Olympia (Южная Корея	1)									
OLB-100F-R	650	11,6	ж/т	НД	НД	1,4	75	740/350/600	58	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-130F-R	695	15,1	ж/т	нд	НД	1,8	75	840/350/600	66	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-170F-R	780	19,8	ж/т	НД	нд	2,1	75	940/350/600	71	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-250F-R	945	29,1	ж/т	НД	НД	2,7	75	860/400/760	82	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-350F-R	1045	40,7	ж/т	НД	НД	3,8	75	860/400/760	97	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-130G-R	850	15,1	газ	1,5	НД	1,5	75 75	840/350/600	66	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-170G-R	965	19,8	газ	1,9	нд	1,9	75	940/350/600	71	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-250G-R	1146	29,1	газ	2,7	НД	2,7	75	860/400/760	82	2к/Эп/Ст/1ст/Ир/Пу/Е
OLB-350G-R	1415	40,7	газ	3,8	нд	3,8	75	860/400/760	97	2к/Эп/Ст/1ст/Ир/Пу/Е
0LB-130S-R	835	15,1	ж/т/Газ	1,5	НД	1,8	75	740/350/600	40	2к/Эп/Нерж.ст/1ст/Ир/Пу/Е
01 D 4700 D	920	19,8	ж/т/Газ	1,9	НД	2,1	75	740/350/600	41	2к/Эп/Нерж.ст/1ст/Ир/Пу/Е
JLB-1/0S-R	1100	29,1	ж/т/Газ	2,7	нД	2,7	75	840/350600	45	2к/Эп/Нерж.ст/1ст/Ир/Пу/Е
		40,7	ж/т/Газ	3,8	нд	3,8	75	840/350600	87	2к/Эп/Нерж.ст/1ст/Ир/Пу/В
OLB-170S-R OLB-250S-R OLB-350S-R	1195	407			1100	0,0	, ,	3 . 3/ 000000		
OLB-250S-R OLB-350S-R	1195 1780					6.6	145	1135/580/867		
OLB-250S-R OLB-350S-R OLB-500RD-R	1780	58,1	ж/т/Газ	6,8	нд	6,6	145 145	1135/580/867	180	2к/Эп/Ст/1ст/Ир/Пу/Е
						6,6 9,3 13	145 145 195	1135/580/867 1435/580/819 1424/7101089		

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Модель	Цена (USD)	Номинал. мощн. (кВт)	Вид топлива	Расход пр. газа (м3/ч)	Расход сж. газа (кг/ч)	Расход ж. топл. л/ч	Диаметр дымо-да (мм)	Габариты В/Ш/Г (мм)	Bec (кг)	Особенност
OLB2000RD-R	3840	232,6	ж/т/Газ	27	НД	26	195	1742/806/1360	425	2к/Эп/Ст/1ст/Ир/Пу/В
OLB3000RD-R	8160	348,8	ж/т/Газ	32	НД	40	318	1947/1270/1935	1201	2к/Эп/Ст/2ст/Ир/Пу/В
OLB4000RD-R	10080	465,1	ж/т/Газ	43	НД	54	318	2094/1270/2000	1221	2к/Эп/Ст/2ст/Ир/Пу/В
Roca (Италия)			- 014				15) 218-0208, 218-			
CPA 70	3040/2004	81,4	Газ/Жт	9,02	-	10,04	175	945/1254/810	285	Ст/РуР/Ир/Пу/Вг/Тр(
CPA 300	6960/5440	348,8	Газ/Жт	38,42	-	42,76	245	1162/1818/980	645	2ct/Ct/PyP/Mp/Πy/Br/Tp(
CPA 500 CPA 700	10080/8150 12490/9876	581,4 796	Газ/Жт Газ/Жт	64,17	-	71,42 99,77	295 345	1284/2155/1080 1412/2365/1210	940	2cτ/Cτ/PyP/Mp/Πy/Br/Tp(
	14186/11572	1046,5	Газ/Жт	89,64 115,13	-	128,13	395	1537/2485/1320		2cт/Ст/РуР/Ир/Пу/Вг/Тр(
NGO 50/20 GT	558	20,9	Газ/Жт	2,32	-	2,58	150	850/721/550	124	2ст/Ст/РуР/Ир/Пу/Вг/Тр(Чт/РуР/Пу/В
NGO 50/20 GT	824	45,3	Газ/Жт	4,98	-	5,54	150	850/1041/550	204	Чт/РуР/Пу/В
NGO 50/40GT NGO 50/20 GTA	1826	20,9	Газ/Жт	2,32	-	2,58	150	1762/785/600		2к/100л/Цн/Чт/РуР/Ир/Пу/Вг/УпрВ
P30-5	1244	40,7/27,9	Газ/Жт/ТвТ	4,84		5,4	170	917/729/485	262	РуР/Ир/Пу/Вг/Авт/Ч
P30-8	1420	46,7/32,6	Газ/Жт/ТвТ	5,54	_	6,17	170	917/834/485	292	РуР/Ир/Пу/Вг/Авт/Ч
G-100/30	1362	32,7	Газ	3,83	_	-	155	850/918/550	132	Пп/Аг/Чт/РуР/Ир/Пу/ВстрГ/Тр(
G-100/110	2838	126	Газ	14,56	-	-	254	1005/1659/550	361	Ππ/ΑΓ/Чт/РуР/Ир/Пу/ВстрГ/Тр(
Slant Fin (США)	2000	120	. 40	,00			201	1000, 1000, 000	00.	,, ., , , , , , , , , , , , , ,
Liberty-20	2080	23	Жт	НД	НД	2,8	152	640/290/810	НД	Вг/Цн/УпрВ/ТрО/РуР/Ч
Liberty-30	2390	36,7	Жт	нд	нд	3,8	152	640/380/810	нД	Вг/Цн/УпрВ/ТрО/РуР/Ч
Liberty-20	2840	53,3	Жт	НД	НД	5,7	178	640/460/810	НД	Вг/Цн/УпрВ/ТрО/РуР/Ч
Liberty-20	3440	68,2	Жт	НД	нд	7,6	203	640/550/810	НД	Вг/Цн/УпрВ/ТрО/РуР/Ч
Liberty-20	3950	81,3	Жт	нд	нД	9,8	254	640/630/810	нД	Вг/Цн/УпрВ/ТрО/РуР/Ч
Liberty-20	4520	94,3	Жт	НД	НД	11,7	254	640/720/810	НД	Вг/Цн/УпрВ/ТрО/РуР/Ч
GG-75	1525	18	Газ	1,8	НД	НД	127	830/340/620	134	Аг/ТрО/РуР/Чт/Дт/Эп/Ц
GG-100	1609	25	Газ	2,5	НД	НД	152	830/340/620	138	Аг/ТрО/РуР/Чт/Дт/Эп/Ці
GG-150	2351	36	Газ	3,6	НД	НД	152	830/420/620	166	Аг/Тр0/РуР/Чт/Дт/Эп/Ц
GG-175	2543	42	Газ	4,2	НД	НД	152	830/420/620	170	Аг/Тр0/РуР/Чт/Дт/Эп/Ц
GG-225	2803	58	Газ	5,8	НД	НД	178	830/510/620	201	Аг/ТрО/РуР/Чт/Дт/Эп/Ц
GG-275	3094	67	Газ	6,6	нд	НД	203	830/590/520	232	Аг/ТрО/РуР/Чт/Дт/Эп/Ц
GG-325	3479	76	Газ	7,6	НД	НД	203	830/680/620	261	Аг/ТрО/РуР/Чт/Дт/Эп/Ц
GG-375	3990	88	Газ	8,8	нд	НД	230	830/760/620	293	Аг/ТрО/РуР/Чт/Дт/Эп/Ц
GG-399	4035	97	Газ	9,7	НД	НД	245	830/760/620	295	Аг/ТрО/РуР/Чт/Дт/Эп/Ц
GXH-150	3421	36	Газ	3,6	НД	НД	178	830/510/620	188	Аг/ТрО/РуР/Чт/Дт/Эп/Цн/УпрВ/2
GXH-190	3829	46	Газ	4,6	НД	НД	178	830/510/620	209	Аг/ТрО/РуР/Чт/Дт/Эп/Цн/УпрВ/2
GXH-210	4010	52	Газ	5,2	НД	НД	178	830/590/520	234	Аг/ТрО/РуР/Чт/Дт/Эп/Цн/УпрВ/2
GXH-250	4313	61	Газ	6,1	НД	НД	203	830/680/620	261	Аг/ТрО/РуР/Чт/Дт/Эп/Цн/УпрВ/2
GXH-300	4508	70,4	Газ	7	нд	нд	203	830/680/620	268	Аг/ТрО/РуР/Чт/Дт/Эп/Цн/УпрВ/2
GG-75MV	1278	18,4	Газ	1,8	нд	нд	127	830/340/620	134	Аг/ТрО/РуР/Чт/Д
GG-100MV	1510	25,7	Газ	2,5	нд	нд	152	830/340/620	138	Аг/TpO/PyP/Чт/Д
GG-150MV	2252	36,7	Газ	3,6	нд	нд	152	830/420/620	166	Аг/ТрО/РуР/Чт/Д
GG-200MV	2654	48,7	Газ	4,9	нД	нД	178	830/510/620	197	Aг/ТрО/РуР/Чт/Д
GG-300MV	3184	70,4	Газ	7	НД	НД	203	830/680/620	257	Аг/ТрО/РуР/Чт/Д
Strebel (Австрия)										
EG 14	нд	15,5	Газ/ВстрГ	нд	нд	нд	110	905/550/795	130	Α
EG 21	НД	23	Газ/ВстрГ	НД	НД	НД	110	905/550/795	159	А
EG 28	НД	30	Газ/ВстрГ	НД	НД	НД	130	905/640/795	188	А
EG 35	НД	37	Газ/ВстрГ	НД	НД	НД	130	905/730/795	217	А
EG 42	НД	44	Газ/ВстрГ	НД	НД	НД	150	905/820/795	246	А
EG 49	НД	52	Газ/ВстрГ	НД	НД	НД	150	905/910/795	275	A
EG 56	нд	59	Газ/ВстрГ	нд	нд	нд	160	905/1000/795	305	Д
EG 70	НД	73	Газ/ВстрГ	НД	НД	НД	180	905/1230/795	365	A
EG 84	НД	88	Газ/ВстрГ	нд	НД	НД	180	905/1410/795	425	Į.
Ca 7S-4	НД	69	Газ/Жт/ВстрГ		НД	НД	НД	960/710/865	510	l l
Vaillant (Германия)									
VK INT 16/6-2 XE	H 1999	15,8	Газ/ВстрГ	НД	НД	НД	110	850/510/774	98	2ст/Чт/Эп/Аг/Ир/Дт/Эг
VK INT 21/6-2 XE	H 2152	21,2	Газ/ВстрГ	НД	НД	НД	130	850/550/774	112	2ст/Чт/Эп/Аг/Ир/Дт/Эг
VK INT 26/6-2 XE	H 2335	26,6	Газ/ВстрГ	НД	НД	НД	130	850/615/774	126	2ст/Чт/Эп/Аг/Ир/Дт/Эг
VK INT 31/6-2 XE	H 2435	31,7	Газ/ВстрГ	НД	НД	НД	150	850/680/774	142	2ст/Чт/Эп/Аг/Ир/Дт/Эг
VK INT 36/6-2 XE	H 2580	37	Газ/ВстрГ	НД	НД	НД	150	850/745/774	155	2ст/Чт/Эп/Аг/Ир/Дт/Эг
VK INT 42/6-2 XE	H 2721	42,4	Газ/ВстрГ	НД	НД	НД	160	850/810/774	169	2ст/Чт/Эп/Аг/Ир/Дт/Эг
VK INT 47/6-2 XE	H 2866	47,7	Газ/ВстрГ	НД	НД	НД	160	850/810/774	182	2ст/Чт/Эп/Аг/Ир/Дт/Эг
VK INT 20/K-1 EH	1347	20,9	Газ/ВстрГ	1,83	3,05	НД	130	850/550/774	120	1ст/Чт/Эп/Аг/Ир/Эг
VK INT 25/K-1 EH		26,2	Газ/ВстрГ	1,36	2,26	нД	130	850/615/774	135	1ст/Чт/Эп/Аг/Ир/Эг
VK INT 30/K-1 EH		31,4	Газ/ВстрГ	3,6	2,72	НД	150	850/680/774	152	1ст/Чт/Эп/Аг/Ир/Эг
VK INT 35/K-1 EH		36,7	Газ/ВстрГ	4,27	3,17	нД	150	850/745/774	166	1ст/Чт/Эп/Аг/Ир/Эг
VK INT 40/K-1 EH		41,9	Газ/ВстрГ	4,83	3,62	НД	160	850/810/774	181	1ст/Чт/Эп/Аг/Ир/Эі
VK INT 45/K-1 EH		47,3	Газ/ВстрГ	5,5	4,08	НД	160	850/875/774	195	1ст/Чт/Эп/Аг/Ир/Эг
VK 60/7-2 EH	3735	59,5	Газ/ВстрГ	НД	НД	НД	180	960/830/1070	310	2ст/Чт/Эп/Аг/Ир/Э
VK 72/7-2 EH	4154	71	Газ/ВстрГ	нд	нд	НД	200	960/930/1070	350	2ст/Чт/Эп/Аг/Ир/Эг
VK 84/7-2 EH	4565	83	Газ/ВстрГ	НД	нД	НД	200	960/1030/1070	390	2ст/Чт/Эп/Аг/Ир/Эг
VK 96/7-2 EH	5091	95	Газ/ВстрГ	нд	НД	НД	225	960/1130/1070	430	2ст/Чт/Эп/Аг/Ир/Эг
	5799	106,5	Газ/ВстрГ	НД	НД	НД	225	960/1230/1070	470	2ст/Чт/Эп/Аг/Ир/Эг
VK 108/7-2 EH						пл	//5	900/1230/1070		Z[:]/ ¬[/:¬[/:A[/////:

^{*} По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

Модель	Цена (USD)	Номинал. мощн. (кВт)	Вид топлива	Расход пр. газа (м³/ч)	Расход сж. газа (кг/ч)	Расход ж. топл. л/ч	Диаметр дымо-да (мм)	Габариты В/Ш/Г (мм)	Bec (кг)	Особенности
VK 132/7-2 EH	6939	130,5	Газ/ВстрГ	НД	НД	нд	250	960/1430/1070	555	2ст/Чт/Эп/Аг/Ир/Эпк
VK 144/7-2 EH	7505	142	Газ/ВстрГ	НД	НД	НД	300	960/1530/1070	605	2ст/Чт/Эп/Аг/Ир/Эпк
VK 156/7-2 EH VKO 22	8072 1591	154 17–22	Газ/ВстрГ	НД	НД НД	НД 3,6	300 130	960/1630/1070	655 178	2ст/Чт/Эп/Аг/Ир/Эпк до2ст/Чт/дляВг/Ир/Эпк
VKO 22 VKO 27	1620	22–27	Газ/Жт Газ/Жт	3,7 4,6	нд НД	3,0 4,4	130	965/600/520 965/600/520	183	до2ст/Чт/дляВг/Ир/Эпк
VKO 35	1742	27–35	Газ/Жт	6	НД	5,7	130	965/600/680	233	до2ст/Чт/дляВг/Ир/Эпк
VKO 42	1968	35–42	Газ/Жт	7,2	НД	7	130	965/600/680	240	до2ст/Чт/дляВг/Ир/Эпк
VKO 55	2500	42–55	Газ/Жт	9,4	нд	9	150	965/600/840	290	до2ст/Чт/дляВг/Ир/Эпк
VKO 70	2782	55–70	Газ/Жт	12	НД	11,5	150	965/600/1000	353	до2ст/Чт/дляВг/Ир/Эпк
GP 210-77	2924	59–77	Газ/Жт	НД	НД	НД	180	1295/700/803	482	Чт/Пу/Эпк/дляВг
GP 210-96	3637	78–96	Газ/Жт	НД	НД	НД	200	1295/700/933	573	Чт/Пу/Эпк/дляВг
GP 210-115	4348	97–115	Газ/Жт	нд	нд	нд	200	1295/700/1063	663	Чт/Пу/Эпк/дляВг
GP 210-134	5105	116–134	Газ/Жт	НД	НД	НД	200	1295/700/1193	753	Чт/Пу/Эпк/дляВг
GP 210-153	5815	135–153	Газ/Жт	НД	нд	НД	250	1295/700/1323	844	Чт/Пу/Эпк/дляВг
GP 210-172	6541	154–172	Газ/Жт	НД	НД	НД	250	1295/700/1453	934	Чт/Пу/Эпк/дляВг
GP 210-191	7248	173–191	Газ/Жт	нд	нд	нд	250	1295/700/1583	1024	Чт/Пу/Эпк/дляВг
Viessmann (Германия) Vitola 100 VC 10890	1970	15	Жт/ВстрГ	НД	нд	нд	130	830/640/1033	156	Чт-Ст/ТрО
Vitola 100 VC 10891	1970	18	Жт/ВстрГ	НД	НД	НД	130	830/640/1033	165	Чт-Ст/ТрО
Vitola 100 VC 10892	2105	22	Жт/ВстрГ	нд	нд	НД	130	850/667/1178	192	Чт-Ст/ТрО
Vitola 100 VC 10893	2190	27	Жт/ВстрГ	НД	НД	НД	130	865/700/1276	223	Чт-Ст/ТрО
Vitola 100 VC 10894	2315	33	Жт/ВстрГ	нд	НД	нд	130	865/700/1340	242	Чт-Ст/ТрО
Vitola 100 VC 11184	2255	15	Газ/ВстрГ	нд	НД	нд	130	830/640/1033	156	Чт-Ст/ТрО
Vitola 100 VC 11185	2255	18	Газ/ВстрГ	нд	нД	нд	130	830/640/1033	165	чт-Ст/ТрО
Vitola 100 VC 11186	2390	22	Газ/ВстрГ	НД	НД	НД	130	850/667/1178	192	Чт-Ст/ТрО
Vitola 100 VC 11187	2470	27	Газ/ВстрГ	НД	НД	НД	130	865/700/1276	223	Чт-Ст/ТрО
Vitola 100 VC 11188	2590	33	Газ/ВстрГ	НД	НД	НД	130	865/700/1340	242	Чт-Ст/ТрО
Vitola 100 VC 10840	2085	15	Жт/ВстрГ	нд	нд	нд	130	830/640/1033	156	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 10841	2085	18	Жт/ВстрГ	НД	НД	НД	130	830/640/1033	165	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 10842	2215	22	Жт/ВстрГ	НД	НД	НД	130	850/667/1178	192	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 10843	2300	27	Жт/ВстрГ	НД	НД	НД	130	865/700/1276	223	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 10844	2425	33	Жт/ВстрГ	НД	НД	НД	130	865/700/1340	242	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 11189	2370	15	Газ/ВстрГ	нд	НД	НД	130	830/640/1033	156	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 11190	2370	18	Газ/ВстрГ	НД	нд	НД	130	830/640/1033	165	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 11191	2505	22	Газ/ВстрГ	НД	НД	НД	130	850/667/1178	192	Чт-Ст/ДрО/УпрВ
Vitola 100 VC 11192	2580 2705	27 33	Газ/ВстрГ Газ/ВстрГ	НД	нд нд	нд нд	130 130	865/700/1276	223	Чт-Ст/ДрО/УпрВ Чт-Ст/ДрО/УпрВ
Vitola 100 VC 11193 Vitola 100 VC 11179	2420	15	Жт/ВстрГ	НД НД	нд НД	пд НД	130	865/700/1340 830/640/1033	156	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11179	2420	18	Жт/ВстрГ	НД	НД	НД	130	830/640/1033	165	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11181	2550	22	Жт/ВстрГ	нд	НД	НД	130	850/667/1178	192	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11182	2635	27	Жт/ВстрГ	нд	НД	нд	130	865/700/1276	223	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11183	2765	33	Жт/ВстрГ	нД	НД	нД	130	865/700/1340	242	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11194	2705	15	Газ/ВстрГ	нД	нД	нД	130	830/640/1033	156	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11195	2705	18	Газ/ВстрГ	НД	НД	нд	130	830/640/1033	165	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11196	2835	22	Газ/ВстрГ	НД	НД	НД	130	850/667/1178	192	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11197	2915	27	Газ/ВстрГ	НД	НД	НД	130	865/700/1276	223	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11198	3040	33	Газ/ВстрГ	НД	НД	НД	130	865/700/1340	242	Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 10895	2455	15	Жт/ВстрГ	нд	нд	нд	130	830/640/1033	156	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 10896	2455	18	Жт/ВстрГ	НД	НД	НД	130	830/640/1033	165	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 10897	2585	22	Жт/ВстрГ	НД	НД	нд	130	850/667/1178	192	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 10898	2670	27	Жт/ВстрГ	НД	НД	НД	130	865/700/1276	223	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 10899	2795	33	Жт/ВстрГ	НД	НД	НД	130	865/700/1340	242	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11199	2740	15	Газ/ВстрГ	НД	НД	НД	130	830/640/1033	156	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11200	2740	18	Газ/ВстрГ	НД	НД	НД	130	830/640/1033	165	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11201 Vitola 100 VC 11202	2870 2950	22 27	Газ/ВстрГ Газ/ВстрГ	НД	НД	нд нд	130 130	850/667/1178 865/700/1276	192 223	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Vitola 100 VC 11202	3080	33	Газ/ВстрГ	нд нд	нд нд	нд	130	865/700/1270	242	См/Чт-Ст/Н-Срр/Пд/ДрО/УпрВ/СД
Жуковский машиностр							тоо Тел.: (095) 556-80-		242	см/ 11-с1/11-срр/пд/дро/упрв/сд
АОГВ-11,6-1	112	11,6	Газ/ВстрГ	1,3	* *	аводскал, о. : *	117	852/305/375	30	Аг/Ст/РуР/Авт
АКГВ-11,6-1	138	11,6	Газ/ВстрГ	1,3	*	*	117	852/305/375	35	2K/Ar/Ct/PyP/Abt
АОГВ-17,4-3	146	17,4	Газ/ВстрГ	1,77	1,3	*	135	980/405/480	50	Пп/Аг/Ст/РуР/Авт
АОГВ-23,2-1	156	23,2	Газ/ВстрГ	2,55	*	*	135	980/405/480	54	Пп/Аг/Ст/РуР/Авт
АКГВ-23,2-1	210	23,2	Газ/ВстрГ	2,55	*	*	135	980/405/480	60	2K/Ππ/Ar/Cτ/PyP/Aвг
АОГВ-29-1	214	29	Газ/ВстрГ	3,35	*	*	140	980/405/480	58	Пп/Аг/Ст/РуР/Авт
АКГВ-29-1	274	29	Газ/ВстрГ	3,35	*	*	140	980/405/480	65	2К/Пп/Аг/Ст/РуР/Авт
КОВ-СГ-43	480	43	Газ/ВстрГ	6,55	*	*	165	995/455/540	75	Пп/Аг/Ст/РуР/Авт
Титан (Россия)										
КЧВ1-Гн-15	590	15	Газ/ВстрГ	1,88	НД	нд	100	1000/450/600	125	Аг/Чт/Эп/Дт/Ир
КЧВ1-Гн-24	670	24	Газ/ВстрГ	3,00	НД	НД	130	1000/500/600	155	Аг/Чт/Эп/Дт/Ир
КЧВ1-Гн-33	735	33	Газ/ВстрГ	4,14	НД	НД	150	1000/600/600	180	Аг/Чт/Эп/Дт/Ир
КЧВ1-Гн-40	870	40	Газ/ВстрГ	5,03	НД	НД	180	1000/650/600	210	Аг/Чт/Эп/Дт/Ир
КЧВ1-Гн-47	980	47	Газ/ВстрГ	5,90	нд	нд	180	1000/750/600	235	Аг/Чт/Эп/Дт/Ир

 $^{^{\}star}$ Данные, приведенные в таблице, постоянно обновляются и уточняются.

ГАЗОВЫЕ КОЛОНКИ

Принятые сокращения

Wnom — номинальная мощность, Wt — теплопроизводительность, PmaxB — максимальное давление воды, PminB — минимальное давление воды, PnomG — номинальное давление газа, Ppt° — ручка регулировки температуры, Пп — пьезоподджиг, Ppм — ручка регулировки мощности, 3п — электронный поджиг, Q*— производительность (л/мин) при дельте 25°, Мг — модулируемая горелка, Ppм — ручка регулировки мощности, Hд — нет данных, Пт — принудительная тяга, Дт — датчик тяги

Модель	Цена (USD)	Wnom (кВт)	Wt (кВт)	PmaxB (бар)	PminB (бар)	PnomG (мбар)	Расход пр. газа (м ³ /ч)	Расход сж. газа (кг/ч)	Q*	Резьба Хв/Гв/Газ	Диаметр дым. (мм)	Размеры, В/Ш/Г (мм)	Bec (кг)	Особенности
ARISTON (Италия)														
ARD 10 F	218	17,4	20	12	0,6	13	2,1	НД	10	3/4 1/2 1/2	110	680/360/220	14	Пп/Дт/Ppt°/Мг
ARD 10 FI	261	17,4	20	12	0,5	13	2,1	НД	10	3/4 1/2 1/2	110	680/360/220	14	Эп/Дт/Ppt°/Мг
ARD 13 M/F R	281	24,4	27,9	12	0,9	13	2,7	НД	13	3/4 1/2 1/2	130	755/400/220	14	Пп/Дт/Ppt°/Мг
ARD 13 M/FI R	337	24,4	27,9	12	0,8	13	2,7	НД	13	3/4 1/2 1/2	130	755/400/220	14	Эп/Дт/Ppt°/Мг
ARD 16	362	27,9	32,1	12		13	3,4	НД	16	3/4 1/2 1/2	130	755/400/220	16	Пп/Дт/Ppt°/Мг
Beretta (Италия)														
Igrabagno 11	147	18	21,2	10	0,2	13	2,27	1,8	11	1/2 1/2 1/2	110	760/350/250	13,5	Пп/Дт/Ppt°/Мг
Igrabagno 11 i	257	18	21,2	10	0,2	13	2,27	1,8	11	1/2 1/2 1/2	110	760/350/250	13,5	Эп/Дт/Ppt°/Мг
Igrabagno 14	234	24,5	28,5	10	0,2	13	3	2,25	14	1/2 1/2 1/2	130	775/400/275	15,5	Пп/Дт/Ppt°/Мг
Igrabagno 14 i	267	24,5	28,5	10	0,2	13	3	2,25	14	1/2 1/2 1/2	130	775/400/275	15,5	Эп/Дт/Ppt°/Мг
Igrabagno 17 i	380	29,5	34	10	0,2	13	3,58	2,67	17	1/2 1/2 1/2	130	765/400/275	16,5	Эп/Дт/Ррм/Мг
Igrabagno 13 SI	580	22,5	24,5	10	0,15	18	2,5	2,12	11	1/2 1/2 1/2	60/100	640/400/246	18,5	Эп/Пт/Ррt°/Дт/Мг
Igrabagno 17 SI	729	28,8	32	10	0,15	18	3,5	2,48	17	1/2 1/2 1/2	60/100	770/400/246	20	Эп/Пт/Ррt°/Дт/Мг
Junkers (Германия)														
WR 275-1 KDP	160	17,4	20	12	0,1	13	2,1	1,6	10	3/4 1/2 1/2	110	680/360/220	14	Пп/Дт/Ppt°/Мг
WR 275-3 KDB	190	17,4	20	12	0,1	13	2,1	1,6	10	3/4 1/2 1/2	110	680/360/220	14	Эп/Дт/Ppt°/Мг
WR 350-1 KDP	279	24,4	27,9	12	0,1	13	2,7	2,1	14	3/4 1/2 1/2	130	755/400/220	14	Пп/Дт/Ppt°/Мг
WR 350-3 KDB	352	24,4	27,9	12	0,1	13	2,7	2,1	14	3/4 1/2 1/2	130	755/400/220	14	Эп/Дт/Ррt°/Мг
WR 400-1 KDP	317	27,9	32,1	12	0,1	13	3,4	2,5	16	3/4 1/2 1/2	130	755/460/220	16	Пп/Дт/Ppt°/Мг
WR 400-3 KDB	379	27.9	32,1	12	0.1	13	3.4	2,5	16	3/4 1/2 1/2	130	755/460/220	16	Эп/Дт/Ррt°/Мг
Demrad (Турция)		,	- /					,-						
D 250 S	140	17,4	20,9	12	0,1	13	2,2	1,6	10	1/2 1/2 3/4	110	715/335/245	15	Пп/Дт/Ppt°
D 250 SE	155	17,4	20,9	12	0.1	13	2.2	1,6	10	1/2 1/2 3/4	110	715/335/245	15	Эп/Дт/Ррt°
D 250 T	155	17,4	20,9	12	0,1	13	2,2	1,6	10	1/2 1/2 3/4	110	715/335/245	15	Пп/ДтРрt°/Мг
D 250 TE	170	17,4	20,9	12	0,1	13	2,2	1,6	10	1/2 1/2 3/4	110	715/335/245	15	Эп/Дт/Ррt°/Мг
D 125 B	90	8,7	10,5	10	0,1	13	НД	нд	НД	нд	НД	485/255/225	6,3	Дт
Vaillant (Германия)		0,.	10,0		0, .					· :==		100/200/220	0,0	H.
MAG 19/2 XZ C+	170	17.4	21	10	0.3	13	2.1	1.9	10	3/8 1/2 3/4	110	700/350/230	13	Ррt°/Пп/Дт
MAG Premium 19/2 XZ	253	19,2	22,1	13	0,35	20	2,7	1,8	12	3/4 3/4 1/2	110	680/351/260	13	Ррt°/Пп/Ррм/Мг/Дт
MAG Premium 19/2 XIP		19,2	22,1	13	0,35	20	2,7	1,8	12	3/4 3/4 1/2	110	680/351/260	13	Ррt°/Эп/Ррм/Мг/Дт
MAG Premium 24/2 XZ	277	24,4	28,1	13	0,55	20	3,5	2,2	13	3/4 3/4 1/2	130	722/351/283	14	Ррt°/Пп/Ррм/Мг/Дт
MAG Premium 24/2 XIP		24,4	28.1	13	0,5	20	3.5	2.2	13	3/4 3/4 1/2	130	722/351/283	14	Ррt°/Эп/Ррм/Мг/Дт
Нева (Россия)	010	24,4	20,1	10	0,0	20	0,0	۷,۷	10	0/7 0/7 1/2	130	722/331/203	17	трт /оп/трм/мп/дт
Нева 3208-02	87	18	23,2	6	0,5	13	2,55	0,87	10,3	Нд	Нд	680/390/285	20	Пп/Дт
Нева 3208-06	92	18	23,2	6	0,5	13	2,55	0,87	10,3			680/390/285	20	
Нева 3208-06			23,2							Нд	Нд			Пп/Дт
	114	18 20	,	6	0,5	13	2,55	0,87	10,3	Нд	Нд	680/390/285	20	Пп/Дт
Нева 3212	96		25		0,5	13	2,53	0,93	13	Нд	Нд	680/390/285	20	Пп/Дт
Нева 3212	117	20	25	6	0,5	13	2,53	0,93	13	Нд	Нд	680/390/285	20	Пп/Дт
Protherm (Чехия)		47.7		10	0.5	40			40	1/0 1/0 1/0	440	74.4/0.40/0.44	40	D 10/F
18 POP	Нд	17,7	Нд	10	0,5	13	Нд	Нд	10	1/2 1/2 1/2	110	714/340/311	12	Ppt°/Ππ
23 POP	Нд	22,6	Нд	10	0,5	13	Нд	Нд	13	1/2 1/2 1/2	125	714/380/311	15	Ppt°/Ππ
Ванадий-Тула (Россия)	46-		06 -	* (адий-Тул	а" т.: (0872	2) 46-69-2	В, т/ф.	: (0872) 45-74		740/000		B /F /5 : "
ПРОТОН-1М	125	17	20,5	10	0,2	13	2,02	0,75	10	1/2 1/2 1/2	120	710/360/260	13	Пп/Дт/Ppt/Mr
ПРОТОН-1М-1	130	17	20,5	10	0,2	13	2,02	0,75	10	1/2 1/2 1/2	120	710/360/261	13	Пп/Дт/Ppt/Mr
ПРОТОН-2М	110	17	20,5	6	0,5	13	2,02	0,75	10	1/2 1/2 1/2	120	805/360/250	15	Пп/Дт/Ppt/Mr
ПРОТОН-3	130	17	20,5	6	0,3	13	2,02	0,75	10	1/2 1/2 1/2	120	805/360/251	15	Пп/Дт/Ppt/Mr
ПРОТОН-3-1	135	17	20,5	6	0,3	13	2,02	0,75	10	1/2 1/2 1/2	120	805/360/252	15	Пп/Дт/Ppt/Mr
ПРОТОН-4 NEW	135	17	20,5	10	0,3	13	2,02	0,75	10	1/2 1/2 1/2	120	710/360/260	13	Пп/Дт/Ppt/Mr

Отопительные котлы Газовые колонки

Со склада в Москве

КОМПАНИЯ ГИДРОСФЕРА Москва, ул. Вавилова 30, (095) 795 31 81 www.hydrosfera.ru

НАСТЕННЫЕ ГАЗОВЫЕ ОТОПИТЕЛЬНЫЕ КОТЛЫ

Принятые сокращения

РтахВ — максимальное давление воды, Pnom G — номинальное давление газа, 0/B/Г — отопление/вода/газ, Eт — естественная тяга, Пт — принудительная тяга, Зп — электронный поджиг, Пп — пьезоэлектрический поджиг, 1к — одноконтурный отопительный котел, 2к — двухконтурный отопительный котел, 60л — двухконтурный котел, 60л — дв

	Цена	Мощность	PmaxB	PnomG	Резьба	Диаметр	Размеры,	Bec	Особенности
Ariston (Италия)	(USD)	(кВт)	(бар)	(мбар)	0/В/Г	дымохода (мм)	В/Ш/Г (мм)	(кг)	
Genus 27 R	нд	27	НД	20	3/4" - 3/4"	130	880/465/385	НД	Ет/1к/Цн/Рб
Genus 27 RI	нд	27	НД	20	3/4" - 3/4"	130	880/465/385	нд	Ет/Эп/1к/Цн/Рб
Genus 27 RFFI	НД	27	нД	20	3/4" - 3/4"	60/100-80	880/465/385	нд	Пт/Эп/1к/Цн/Рб
Genus 27 M	НД	27,3	НД	20	3/4"1/2"3/4"	130	880/465/385	нд	Ет/2к/Цн/Рб
Genus 27 MI	НД	27,3	нд	20	3/4"1/2"3/4"	130	880/465/385	нД	Ет/Эп/2к/Цн/Рб
Genus 27 MFFI	нд	27	нд	20	3/4"1/2"3/4"	60/100-80	880/465/385	нд	Пт/Эп/2к/Цн/Рб
Genus 27 BI	нД	27	8	20	3/4"1/2"3/4"	60/100-80	900/600/465	нД	Ет/Эп/60л/Цн/Рб
Genus 27 BFFI	нд	27	8	20	3/4"1/2"3/4"	60/100-80	900/600/465	НД	Пт/Эп/60л/Цн/Рб
Genus 27 RI TANK	НД	27	НД	20	3/4" - 3/4"	140	880/465/385	нД	Ет/Эп/1к/Цн/Рб
Genus 27 RFFI TANK	НД	27	нд	20	3/4" - 3/4"	60/100-80	880/465/385	НД	Пт/Эп/1к/Цн/Рб
MicroGenus 23 MI	нд	23,3	8	20	3/4"1/2"3/4"	130	700/400/305	НД	Ет/Эп/2к/Цн/Рб/Ир
MicroGenus 23 MFFI	НД	23,8	8	20	3/4"1/2"3/4"	60/100-80	700/400/305	НД	Пт/Эп/2к/Цн/Рб/Ир
MicroGenus 27 MI	нд	27,2	8	20	3/4"1/2"3/4"	130	700/400/305	нд	Ет/Эп/2к/Цн/Рб/Ир
MicroGenus 27 MFFI	НД	27,8	8	20	3/4"1/2"3/4"	60/100-80	700/400/305	НД	Пт/Эп/2к/Цн/Рб/Ир
T2 23 MI	НД	23,4	6	20	3/4"1/2"3/4"	130	700/400/305	НД	Ет/Эп/2к/Цн/Рб/Ир
T2 23 MFFI	нд	23,7	6	20	3/4"1/2"3/4"	60/100-80	700/400/305	НД	Пт/Эп/2к/Цн/Рб/Ир
Buderus (Германия)	• •					В77, факс: (095) 933- 7			,,,
U002 - 24	1007	24	НД	20	3/4"1/2"1/2"	100/60	822/480/370	46	Пт/Эл/1к/Цн/Рб
J002 - 24K	1085	24	10	20	3/4"1/2"1/2"	100/60	822/480/370	49	Пт/Эл/2к/Цн/Рб
J004 - 24	901	24	НД	20	3/4"1/2"1/2"	130	850/480/370	42	Ет/Эл/1к/Цн/Рб
J004 - 24K	964	24	10	20	3/4"1/2"1/2"	130	850/480/370	45	Ет/Эл/2к/Цн/Рб
Ecoflam (Италия)					0/ 1 1/2 1/2	100	000/100/010		21,031,210 4111 0
Bluete CPR	2588	11,7–28,7	нд	нд	НД	нд	480/800/360	36	НД
Bluete CPR	2975	11,7–28,7	НД	нд	НД	нд	600/895/400	36	35 л
Bluete Colonna	3357	11,7–28,7	нД	нд	нд	нд	480/1980/490	45	35 л
Bluete+ CPR	2588	12–28	нд	нд	НД	нд	465/890/365	45	НД
Bluete+ SPIA	2277	12–28	нД	нд	нд	нд	465/890/365	30	нд
Bluete 104 CPR met	2294	8,8–26,1	НД	НД	НД	нд	465/890/365	33	нд
Bluete 104 CPR gpl	2294	8,8–26,1	НД	нд	НД	нд	465/890/365	39	нд
Bluete 107 CPR	3208	6,1–28	нд	нд	НД	нд	465/890/365	49	нд
Bluete 107 SPIA	2867	6,1–28	НД	НД	НД	нд	465/890/365	49	НД
Dakon (Чехия)	2007	0,1-20	'''A	''A	11A	''A	400/030/000	70	"A
IPSE 24 CK	нд	24	6	18	3/4"1/2"3/4"	130	863/450/361	46	Ет/2к/Цн/Рб
IPSE 24 CT	НД	24	6	18	3/4"1/2"3/4"	60/100-80	863/450/361	48	Пт/2к/Цн/Рб
DUA 24 CK	НД	24	6	18	3/4"1/2"3/4"	130	880/450/345	42	Ет/2к/Цн/Рб
DUA 24 CT	НД	24	6	18	3/4"1/2"3/4"	60/100-80	880/450/345	47	Пт/2к/Цн/Рб
DUA 30 CK	НД	30	6	18	3/4"1/2"3/4"	140	880/520/385	50	Ет/2к/Цн/Рб
DUA 30 CT	НД	30	6	18	3/4"1/2"3/4"	60/100-80	880/520/385	55	Пт/2к/Цн/Рб
DUA 28 BK	НД	28	6	18	3/4"1/2"3/4"	140	880/600/475	82	ТП/2к/цп/Р 0 Ет/60л/Цн/Рб
DUA 28 BT	НД	28	6	18	3/4"1/2"3/4"	60/100-80	880/600/475	90	Пт/60л/Цн/Рб
KOMPAKT 24 CK	НД	24	6	18	3/4"1/2"3/4"	130	750/450/285	46	Ет/2к/Цн/Рб
KOMPAKT 24 CK	нд НД	24	6	18	3/4"1/2"3/4"	60/100-80	750/450/285	48	•
BEA 24 BK	нд НД	24	6	18	3/4 1/2 3/4	130	855/600/476	75	Пт/2к/Цн/Рб Ет/60л/Цн/Рб
BEA 24 BT	НД	24	6	18	3/4"1/2"3/4"	60/100-80	855/600/476	81	Пт/60л/Цн/Рб
MT 6	НД	6		18	3/4"-/-"3/4"	60/100	595/650/245	36	Пт/1к/Цн/Рб
MT 8	нд НД	8	нет		3/4 -/- 3/4	60/100	595/650/245	36	Пт/1к/Цн/Рб
MT 10	нд НД	9,5	нет	18 18	3/4 -/- 3/4	60/100	595/650/245	36	Пт/1к/Цн/Рб
	пд	9,5	нет	10	3/4 -/- 3/4	00/100	393/030/243	30	ПП/ТК/ЦН/РО
Demrad (Турция) BK 523 CE	EEO	22.0	10	10	2/4"1/0"2/4"	100	000/410/270	41	0=/0*/[-
	550	23,9	10	13	3/4"1/2"3/4"	130	802/410/378	41	Эп/2к/Ет
HK 523 FE BK 523 CE 15	630	23,3	10	13	3/4"1/2"3/4"	60/100	802/410/378	43	Эп/2к/Пт
	450	17,4	10	13	3/4"1/2"3/4"	130	780/400/365	38	Эп/2к/Ет
HK 523 FE 15	500	17,4	10	13	3/4"1/2"3/4"	60/100	780/400/365	46	Эп/2к/П1
Fondital (Италия)	шп	0.4	0	10.0	0 /4#4 /0#0 /4#	100	750/450/005	20	0=/U/F=/D6/DD/M=/0.
CTN 24 II 2H3+	НД	24	6	12,8	3/4"1/2"3/4"	130	750/450/285	30	Эп/Цн/Ет/Рб/РуР/Ир/2н
RTN 24 II 2H3+	НД	24	6	12,8	3/4" 3/4"	130	750/450/285	28	Эп/Цн/Ет/Рб/РуР/Ир
CTFS 24 II 2H3+	НД	24,3	6	12,6	3/4"1/2"3/4"	60/100–80	750/450/285	34	Эп/Цн/Пт/Рб/РуР/Ир/2н
RTFS 24 II 2H3+	НД	24,3	6	12,6	3/4" 3/4"	60/100–80	750/450/285	32	Эп/Цн/Пт/Рб/РуР/И
CTFS 28 II 2H3+	НД	28,5	6	13,1	3/4"1/2"3/4"	60/100–80	750/450/285	34,5	Эп/Цн/Пт/Рб/РуР/Ир/2
RTFS 28 II 2H3+	НД	28,5	6	13,1	3/4" 3/4"	60/100–80	750/450/285	32,5	Эп/Цн/Пт/Рб/РуР/Ир
BTN 24 II 2H3+	НД	23,8	7	12,3	3/4"1/2"3/4"	139	855/600/476		Эл/Цн/Ет/Рб/РуР/Ир/60л/2к
BTFS 24 II 2H3+	нд	24	7	13,2	3/4"1/2"3/4"	60/100–80	855/600/476		Эп/Цн/Пт/Рб/РуР/Ир/60л/2н
BTN 28 II 2H3+	НД	28,2	7	13,7	3/4"1/2"3/4"	139	855/600/476	72,5	Эл/Цн/Ет/Рб/РуР/Ир/60л/2к
D I I V Z O I I Z П Э +	нД	28,3	7		3/4"1/2"3/4"				

 $^{^{\}star}$ Данные, приведенные в таблице, постоянно обновляются и уточняются.

Модель	Цена (USD)	Мощность (кВт)	PmaxB (бар)	PnomG	Резьба О/В/Г	Диаметр дымохода	Размеры, мм ВхШхГ	Bec (кг)	Особеннос
RISQUET (Франция)							08, e-mail: alfia@mai		
IYDROMOTRIX	23	-	10	11–20	1"/1/2"/3/4"	130	795/495/410	82	Ет/Эп/1к/2к/Цн/Рб/Вб/Л
IYDROMOTRIX	23	-	10	11–20	1"/1/2"/3/4"	100	982/480/445	95	Пт/Эп/1к/2к/Цн/Рб/Вб/
IYDROMOTRIX	32	-	10	11–20	1"/1/2"/3/4"	150	810/550/440	102	Ет/Эп/1к/2к/Цн/Рб/Вб/Л
IYDROMOTRIX	32	-	10	11–20	1"/1/2"/3/4"	100	982/550/465	111	Пт/Эп/1к/2к/Цн/Рб/Вб/
IYDROMOTRIX	45	-	10	11–20	1"/1/2"/3/4"	180	865/710/480	140	Ет/Эп/1к/2к/Цн/Рб/Вб/I
nmergas (Италия)									ŀ
Avio 21 Maior	нд	24,4	8	НД	1/2"3/4"1/2"	нд	нд	НД	H
Avio 24 Maior	НД	27,9	8	НД	нд	нд	нд	НД	H
Zeus 21 Maior	нд	24,4	8	НД	НД	нд	нд	НД	H
Zeus 24 Maior	НД	27,9	8	НД	НД	НД	нд	НД	H
Nike Mini	НД	23,3	10	НД	1/2"3/4"1/2"	130	770/450/250	НД	Эп/
ladiant (Италия)									
Midy RBC 20E	620	23,7	6	4–20	3/4"1/2"1/2"	130	790/450/320	40	Ет/Эп/2к/Ир/Цн/Р
Midy RBS 20E	760	24	6	4-20	3/4"1/2"1/2"	60/100-80	790/450/320	44	Пт/Эп/2к/Ир/Цн/Р
omfort Slim RCM 20E	720	23,9	6	4-20	3/4"1/2"1/2"	130	860/450/345	44	Ет/Эп/2к/Ир/Цн/Р
omfort Slim RCM 24E	850	26,8	6	4–20	3/4"1/2"1/2"	130	860/450/345	44	Ет/Эп/2к/Ир/Цн/Г
omfort Slim RSF 20E	950	24,3	6	4–20	3/4"1/2"1/2"	60/100-80	860/450/345	49	Пт/Эп/2к/Ир/Цн/Р
comfort Slim RSF 24E	1080	26,8	6	4–20	3/4"1/2"1/2"	60/100-80	860/450/345	49	Пт/Эп/2к/Ир/Цн/Р
Maxicomfort RMA 24E	995	26,8	6	4–20	3/4"1/2"1/2"	130	900/490/450	60	Ет/Эп/2к/Ир/Цн/Р
Maxicomfort RMAS 24E	1230	26,8	6	4–20	3/4 1/2 1/2	60/100-80	900/490/450	63	Пт/Эп/2к/Ир/Цн/І
	1230	20,0						US	тт/эп/гк/ир/цн/
отлы Roca (Италия)	700	0.00.0				218-02-08, 218-15-		00.5	OD/D=/D=/U/DC/O_/U_/D
ictoria 20	702	8-23,3	НД	НД	НД	127	680/335/450		СД/Дт/Пп/Цн/Рб/Ст/Ир/Р
ictoria 20/20	910	8-23,3	НД	НД	нд	127	680/335/450		к/СД/Дт/Пп/Цн/Рб/Ст/Ир/Р
ictoria 20/20T	1060	8-23,3	НД	НД	нд	80	680/335/450	342ĸ	/СД/Дт/Пп/Цн/Рб/Ст/Ир/Р
lympia (Южная Корея)									
LB-130WG-R	830	9,3-15,1	10	13	3/4"1/2"1/2"	70/70	656/492/357	31	Пт/Эп/2к/Ир/Цн/Рб/Мг/,
LB-160WG-R	886	9,3-18,6	10	13	3/4"1/2"1/2"	70/70	656/492/357	31	Пт/Эп/2к/Ир/Цн/Рб/Мг/,
LB-200WG-R	942	9,3-23,3	10	13	3/4"1/2"1/2"	75/75	656/492/357	31	Пт/Эп/2к/Ир/Цн/Рб/Мг/,
LB-250WG-R	1009	15,1-29,1	10	13	3/4"1/2"3/4"	75/75	656/492/357	33	Пт/Эп/2к/Ир/Цн/Рб/Мг/,
LB-300WG-R	1170	15,4-34,9	10	13	3/4"1/2"3/4"	75/75	656/492/357	33	Пт/Эп/2к/Ир/Цн/Рб/Мг/Д
rotherm (Словакия)									
12K00	760	12	НД	18	нд	110	880/450/370	35	1ĸ/3
12K0Z	1229	12	НД	18	нд	110	900/440/560	75	2к/Нт/45л/3
12KT0	892	12		18		60/100	880/450/370	35	2K/11/45//K
			НД		НД				
12KTZ	1271	12	НД	18	нд	60/100	900/440/560	75	2к/Нт/45л/3
24K00	791	24	НД	18	нд	135	880/450/370	35	1ĸ/3
24KOV	889	24	НД	18	нд	135	880/450/370	35	2к/Пт/
24KTV	1016	24	НД	18	нд	60/100	880/450/370	35	2к/Пт/3
24KTZ	1399	24	НД	18	нд	60/100	900/440/560	75	2к/Нт/45л/
24KT0	912	24	НД	18	нд	60/100	880/450/370	35	1ĸ/6
24K0Z	1267	24	НД	18	НД	135	900/440/560	75	2к/Нт/45л/3
28KOV	940	27	НД	18	НД	60/100	880/450/370	42	2к/Нт/3
28KTV	1067	27	НД	18	НД	60/100	880/450/370	42	2ĸ/Hт/3
50800	1332	48	НД		НД	60/100	1150/440/485	60	
aillant (Германия)									
VUW 200-5 Atmomax Plus	859	20	НД	13-20	3/4"3/4"1/2"	110	800/440/338	33	2к/Ет/Эл/Цн/Рб/I
VUW 240-5 Atmomax Plus	982	24	НД	13-20	3/4"3/4"1/2"	130	800/440/338	35	2к/Ет/Эл/Цн/Рб/І
VUW 280-5 Atmomax Plus	1055	28	НД	13-20	3/4"3/4"1/2"	130	800/440/338	37	2к/Ет/Эл/Цн/Рб/I
VU 120-5 Atmomax Plus	690	12	нд НД		3/4 3/4 1/2	110	800/440/338	31	2к/ЕТ/ЭЛ/ЦН/Рб/I
				13-20					·
VU 200-5 Atmomax Plus	785	20	НД	13-20	3/4"-/-1/2"	110	800/440/338	31	Ет/Эл/Цн/Рб/
VU 240-5 Atmomax Plus	841	24	НД	13-20	3/4"-/-1/2"	130	800/440/338	33	Ет/Эл/Цн/Рб/
VU 280-5 Atmomax Plus	988	28	НД	13-20	3/4"-/-1/2"	130	800/440/338	35	Ет/Эл/Цн/Рб/
VUW 202-5 Turbomax Plus	973	20	НД	13-20	3/4"3/4"1/2"	60/100	800/440/338	41	2к/Пт/Эл/Цн/Рб/
VUW 242-5 Turbomax Plus	1100	24	НД	13-20	3/4"3/4"1/2"	60/100	800/440/338	43	2к/Пт/Эл/Цн/Рб/
VUW 282-5 Turbomax Plus	1192	28	НД	13-20	3/4"3/4"1/2"	60/100	800/440/338	45	2к/Пт/Эл/Цн/Рб/
VU 122-5 Turbomax Plus	776	12	НД	13-20	3/4"-/-1/2"	60/100	800/440/338	38	Пт/Эл/Цн/Рб/
VU 202-5 Turbomax Plus	877	20	НД	13-20	3/4"-/-1/2"	60/100	800/440/338	39	Пт/Эл/Цн/Рб/
VU 242-5 Turbomax Plus	936	24	НД	13-20	3/4"-/-1/2"	60/100	800/440/338	41	Пт/Эл/Цн/Рб/
VU 282-5 Turbomax Plus	991	28	нд	13-20	3/4"-/-1/2"	60/100	800/440/338	43	Пт/Эл/Цн/Рб/
VUW 240-3 Atmomax Pro	753	24	НД	13-20	3/4"3/4"1/2"	130	800/440/338	34	2к/Ет/Эл/Цн/Рб/
VU 240-3 Atmomax Pro	662	24	НД	13-20	3/4"-/-1/2"	130	800/440/338	32	Ет/Эл/Цн/Рб/
	790	24	НД	13-20	3/4"3/4"1/2"	60/100	800/440/338	43	2к/Пт/Эл/Цн/Рб/
VIIW 242-3 Turhomay Pro	730	24	ΠA	10-20	3/7 3/7 1/2	00/100	000/0770/000	70	ZN/111/031/ЦП/F0/
			НД	10.00	UB	100	000/500/400	E4	F=/0=/U/DC/
VUW 242-3 Turbomax Pro iessmann (Германия)	040	0.4	HII	13-20	НД	130	900/500/406	51	Ет/Эл/Цн/Рб/
iessmann (Германия) Vitopend 100 WHE 0105	910	24							
iessmann (Германия) Vitopend 100 WHE 0105 Vitopend 100 WHE 2105	1005	24	НД	13-20	НД	70/110	900/500/406	55	
iessmann (Германия) Vitopend 100 WHE 0105 Vitopend 100 WHE 2105 Vitopend 100 WHE 4105	1005 1095	24 24	н <u>д</u> нд	13-20 13-20	НД	130	900/500/406	55	Пт/Эл/Цн/Рб/ 2к/Ет/Эл/Цн/Рб/
vitopend 100 WHE 0105 Vitopend 100 WHE 2105 Vitopend 100 WHE 2105 Vitopend 100 WHE 4105	1005	24	НД	13-20					2к/Ет/Эл/Цн/Рб/
Vitopend 100 WHE 2105 Vitopend 100 WHE 2105 Vitopend 100 WHE 4105 Vitopend 100 WHE 4105 Vitopend 100 WHE 6105	1005 1095	24 24	н <u>д</u> нд	13-20 13-20	НД	130	900/500/406	55	2к/Ет/Эл/Цн/Рб/ 2к/Пт/Эл/Цн/Рб/
iessmann (Германия) Vitopend 100 WHE 0105 Vitopend 100 WHE 2105	1005 1095 1195	24 24 24	НД НД НД	13-20 13-20 13-20	нд нд	130 70/110	900/500/406 900/500/406	55 59	
essmann (Германия) Vitopend 100 WHE 0105 Vitopend 100 WHE 2105 Vitopend 100 WHE 4105 Vitopend 100 WHE 6105 Vitodens 200 WB24247	1005 1095 1195 2760	24 24 24 24	НД НД НД НД	13-20 13-20 13-20 20	нд нд нд	130 70/110 80/125	900/500/406 900/500/406 900/500/406	55 59 72	2к/Ет/Эл/Цн/Рб/ 2к/Пт/Эл/Цн/Рб/ Эп/Пт/Цн/Рб/2к/Ко

^{*} По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

КОНДИЦИОНЕРЫ

Принятые сокращения

СС — сплит-система, МСС — мульти-сплит-система, Кас — кассетный тип, Кан — канальный тип, Наст — настенный тип, Комб — комбинированный тип, Нап — напольный тип, Пот — потолочный тип, Угл — угловой тип, Кол — колонный тип, ТН — тепловой насос, ОК — оконный кондиционер, МобНапКонд — мобильный напольный кондиционер, воНБ — водяное охлаждение наружного блока, НБ — наружный блок, ВБ — внутренний блок, х/т — холод/тепло, ЦСС — центральная сплит система, 1к — один контур, рвс — реверс, инв — инвертер, НД — нет данных

Тип	Модель	Цена (USD)	Охлаждение (кВт)	Нагрев (кВт)	Расход воздуха (м ³ /ч)	Потребляемая мощность (кВт)	Габариты ВБ (мм)	Габариты НБ (мм)	Вес (кг)
\irwell									
МобНапКонд (х)	ODISSEY 7CD	940	2,1	нд	340	0,85	800/470/340	нд	46
	ODISSEY10CD	1360	3,1	НД	370	1,1	603/470/341	490/440/188	40/10
	ODISSEY14CD	1720	4,1	НД	500	1,6	800/470/340	540/440/320	40/17
МобКонд (т/х)	ODISSEY 7IR CH	1030	2,1	1,5	340	0,85	800/470/340	НД	46
	ODISSEY10IR VM	1470	3,1	2,5	370	1,1	603/470/341	490/440/188	40/10
01/ ()	ODISSEY14IR RC	1900	4,1	4,2	500	1,6	800/470/340	540/440/320	40/17
OK (x)	MAY 70	450	2	НД	265	0,8	347/520/560	нд	35
	MAY 90	470	2,5	НД	310	1,02	347/520/560	нд	35,5
	MAY 110	590	3,2	НД	500	1,3	375/558/610	нд	47
	MAY 150	940	4,4	НД	850	1,85	400/660/700	НД	59
СС/Наст (х)	XLM 7	750	2,14	НД	260-340	0,69	270/815/160	545/770/250	8,0/41
	XLM 9	820	2,5	НД	310-390	1	270/815/160	545/770/250	8,0/43
	XLM 12	970	3,4	НД	340-450	1,41	270/815/160	545/770/250	9,5/45
	XLM 14	1120	4,1	НД	490-590	1,63	300/938/190	545/770/250	12,0/36
	XLM 18	1420	5,28	НД	635-750	1,85	330/1115/195	580/900/430	14,0/63
	XLM 24	1580	6,74	НД	720-850	2,55	330/1115/195	580/900/430	14,0/67
	XLM 30	1860	8,8	нд	955-1360	3,3	376/1445/204	680/900/340	25,0/80
00#1	XLM 36	2530	10,55	НД	1500-1800	3,8	376/1445/204	680/900/340	
СС/Наст (х/т)	XLM 7 RC	800	2,14	2,18	260-340	0,76	270/815/160	545/770/250	8,0/41
	XLM 9 RC	900	2,5	2,78	310-390	1,02	270/815/160	545/770/250	8,0/43
	XLM 12 RC	1030	3,4	3,6	340-450	1,32	270/815/160	545/770/250	9,5/45
	XLM 14 RC	1160	4,1	4,85	490-590	1,63	300/938/190	545/770/250	12,0/ 36
	XLM 18 RC	1480	5,28	5,57	635-750	1,85	330/1115/195	580/900/430	14,0/63
	XLM 24 RC	1680	6,74	6,99	720-850	2,55	330/1115/195	580/900/430	14/67
	XLM 30 RC	2130	8,8	9,08	955-1360	3,3	376/1445/204	680/900/340	25/80
	XLM 36 RC	2780	10,55	10,9	1500-1800	3,8	376/1445/204	680/900/340	НД
	ML9 CERC	1190	2,5	2,69	285-470	0,97	368/808/164	545/770/250	10,0/41
	ML12 CERC	1310	3,4	3,81	325-510	1,4	368/808/164	545/770/250	10,0/43
СС/НапПот (рвс)	S11RCF	1330	3,2	3,2	380-500	0,95	600/920/195	545/770/250	25/35
	S15RCF	1390	4,23	4,38	400-550	1,55	600/920/195	545/770/250	27/38
	S18 RCF	1620	5,23	5,96	550-640	2	600/920/226	595/900/370	30/68
	S24 RCF	1790	7	6,99	740-900	2,47	600/1280/226	595/900/370	40/72
	S30 RCF	2270	8,5	9,01	900-1200	2,94	600/1280/226	695/900/370	47/80
СС/Кан	CD 17	1410	5	4	1000	2,23	240/900/675	600/900/340	33/63
	CD 22	2580	6,23	4	1000	2,74	240/900/675	600/900/340	33/63
	CD 26	1770	7,55	4	1350	3,46	285/900/675	600/900/340	39/67
	CD 35	2180	10,1	6	2200	4,23	340/900/675	695/900/340	50/87
	CD 43	3050	12,5	6,0/8,1	2600	5,1	340/1150/740	1255/900/340	58/92
	CD 50	3430	14,5	6,0/8,1	2800	5,76	340/1350/740	1255/900/340	65/120
	CD 60	3920	18,25		3500	6,5	400/1350/745	1255/900/340	68/124
СС/Кан (рвс)	CD 17 RC	1530	5	5,05	1000	1,96	240/900/675	600/900/340	33/63
()	CD 22 RC	1670	6,23	6,35	1000	2,37	240/900/675	600/900/340	33/63
	CD 26 RC	1850	7,55	7,71	1350	2,98	285/900/675	600/900/340	39/67
	CD 35 RC	2310	10,1	9,5	2200	3,4	340/900/675	695/900/340	50/87
	CD 43 RC	3260	12,5	12,2	2600	4,55	340/1150/740	1255/900/340	58/92
	CD 50 RC	3710	14,5	14,3	2800	5,33	340/1350/740	1255/900/340	65/120
	CD 60 RC	4230	18,25	18,25	3500	6,1	400/1350/745	1255/900/340	68/124
СС/Кан	GTW 11F	1480	3,2	1,6	420-520	1,05	260/860/675	545/770/250	39/35
oo, nan	GTW 111	1530	4,23	1,0	530-610	1,74	260/860/675	545/770/250	39/38
	GTW 18F	1700	5,23	1,9	570-680	2,25	260/860/675	595/900/370	39/68
	GTW 24F	1920	5,23 7	1,9	760-920	2,25	285/1190/675	595/900/370	66/72
	GTW 30F	2160	8,5		1140-1360	3,5		695/900/370	66/80
CC/Kan (ppo)				4	420-520		285/1190/675		
СС/Кан (рвс)	GTW 11 RCF	1560	3,2	3,2		0,96	260/860/675	545/770/250	39/35
	GTW 15 RCF	1570	4,23	4,38	530-610	1,54	260/860/675	545/770/250	39/38
	GTW 18 RCF	1810	5,23	5,96	570-680	2,07	260/860/675	595/900/370	39/68
	GTW 24 RCF	2000	7	6,99	760-920	2,49	285/1190/675	595/900/370	66/72
2011 5	GTW 30 RCF	2490	8,5	9,01	1140-1360	3,49	285/1190/675	695/900/370	66/80
СС/НапПот (воНБ)	S11 A0		2,25-3,55	НД	380-500	0,99	600/920/195	435/437/401	25/31
	S15 A0		3,40-5,10	НД	400-550	1,6	600/920/195	435/437/401	27/37
	S18 A0		4,07-6,30	НД	550-640	2,15	600/920/226	535/522/421	30/52
	S24 A0	2300	5,45-8,25	нд	740-900	2,87	600/1280/226	535/522/421	40/62
	S30 A0		6,50-10,0	нд	900-1200	3,22	600/1280/226	535/522/421	
СС/Кан (воНБ)		2650				3,22 0,99 1,6		535/522/421 435/437/401	47/67 39/31

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Тип	Модель	Цена (USD)	Охлаждение (кВт)	Нагрев (кВт)	Расход воздуха (м ³ /ч)	Потребляемая мощность (кВт)	Габариты ВБ (мм)	Габариты НБ (мм)	Вес (кг)
	GTW 18 AO	2350	4,07-6,30	1,9	570-680	2,15	260/860/675	535/522/421	39/52
	GTW 24 A0	2610	5,45-8,25	4	760-920	2,87	285/1190/675	535/522/421	66/62
00///- /	GTW 44 AO	2870	6,5-10,0	4	1140-1360	3,22	285/1190/675	535/522/421	66/67
СС/Кан (рвс, воНБ)	GTW 11 A0 GTW 15 A0	2000 2190	3,27 4,35	3,2 4,38	420-520 530-610	0,99 1,6	260/860/675 260/860/675	435/437/401 435/437/401	39/31 39/37
	GTW 13 AO	2350	5,23	5,96	570-680	2,15	260/860/675	535/522/421	39/52
	GTW 24 A0	2610	7	6,99	760-920	2,87	285/1190/675	535/522/421	66/62
	GTW 30 AO	2870	8,5	9,01	1140-1360	3,22	285/1190/675	535/522/421	66/67
CC/Kac	K 11 A0	2220	2,25-3,55	1,65	475-600	0,99	287/571/571	435/437/401	27/31
	K 15 A0	2450	3,40-5,10	2,25	485-770	1,6	287/571/571	435/437/401	27/37
	K 18 AO	2670		2,6	530-840	2,15	287/571/571	535/522/421	28/52
	K 24 A0	2940	5,45-8,25	2,6	560-910	2,87	287/571/571	535/522/421	29/62
ЦСС/	K 30 A0 S1270P	3280 3290	6,50-10,0 11,8	4,3 НД	1100-1680 1600-2400	3,22 4,95	287/1171/571 890/1050/350	535/522/421 1176/950/345	53/67 69/110
цоол	S1670A	3990	13,15	НД	1510-1820	5,66	590/1641/256	1451/950/345	77/128
	S1670P	4110	16	НД	2100-3100	6,72	890/1250/350	1451/950/345	77/128
	S2370P	5310	23,3	нд	2600-3800	9,9	1087/1310/403	965/855/1035	110/160
	S3170P	7420	31	нд	4500-6300	13,2	1301/1552/482	965/885/1035	160/175
	S4370P	11940	43,6	НД	7600-11400	18,55	870/2350/890	965/885/1035	300/160
	S5670P	14060	56,7	НД	8600-1300	24	870/2350/890	965/885/1035	310/175
ЦСС/ (рвс)	S1270P	3290	11,8	НД	1600-2400	4,95	890/1050/350	1176/950/345	69/110
	S1670A RC	4180	13,15	14,3	1510-1820	5,66	590/1641/256	1451/950/345	58/128
	S1670P RC	4300	16	16	2100-2850	6,72	890/1250/350	1451/950/345	77/128
	S2370P RC S3170P RC	6140 8420	23,3 31	23,3 31,9	2600-3800 4500-6300	7,69 10,53	1087/1310/403 1301/1552/482	965/855/1035 965/885/1035	110/160 160/175
	S4370P RC	13590	43,6	48,5	7600-11400	16,5	870/2350/890	965/885/1035	300/160
	S5670P RC	16070	56,7	67,8	8600-1300	21,2	870/2350/890	965/885/1035	310/175
Carrier	555757 115	10070	00,1	0.,0	0000 1000	21,2	0.0,2000,000	000,000,1000	010/110
СС/Наст (ТН)	42HWX008/38YL008	970	2,1	2,1	310	1	800/290/145	нд	10
	42HWX009/38YL009	1 160	2,7	3	428	1,5	800/337/170	НД	10
	42HWX012/38YL012	1 280	3,2	3,4	470	1,5	800/337/170	нд	10
	42HWX018/38YL018	1 740	4,5	4,9	720	1,8	1150/355/180	нд	15
	42HWX024/38YL024	1 880	5,5	6,7	1010	2,5	1150/355/180	НД	15
СС/Комб (ТН)	42HWX108/38YL008	1 260	2,1	2,1	310	1	нд	800/290/145	10
	42HWX110/38YL010 42HWX112/38YL012	1 320	2,7 3,2	3 3,4	428 470	1,5 1,5	НД НД	800/337/170 800/337/170	10 10
CC/Kac	40GKX018/38YL018	3 330	4,9	5	700	1,87	нд НД	298/575/575	19/47
00/100	40GKX024/38YL024	3 440	6,4	6,6	900	2,42	нд	298/575/575	19/54
	40GKX028/38YL028	3 760	7,6	7,8	900	2,42	нд	298/825/825	19/54
	40GKX036/38YL036	4 190	8,8	8,2	1260	2,75	нд	298/825/825	38/67
	40GKX048/38YL048	4 800	12,2	12,4	1650	3,87	нд	298/825/825	38/95
	40GKX060/38YL060	5 100	13,3	13,7	1650	4,84	нд	298/825/825	38/95
СС/Кан	40JX036/38YL036	3 550	7,9	8,8	1480	3,53	НД	285/925/660	38/67
	40JX048/38YL048	4 310	11,2	12	2160	4,05	нд	310/1250/750	64/95
00/0	40JX060/38YL060	4 720	13,8	14,5	2470	5,2	НД	310/1250/750	64/97
СС/Птл	42QR036/38QRT036 42QR048/38QRT048	4 100 4 500	10,5 13,1	10,9 13,4	41/46 42/48	3,39 4,3	НД	235/1362/675 235/1362/675	38/67 45/95
	42QR060/38QRT060	5 390	16,3	16,4	42/48	5,9	НД НД	235/1796/675	52/97
Daewoo Electronic's	42Q11000/00Q111000	0 000	10,0	10,4	72/40	5,5	ייא	200/17 30/07 0	0L/31
OK	DWB - 052 C	316	1,5	-	270	0,52	нд	440/313/385	21
	DWB - 070C	403	2,1	-	276	0,71	нД	470/358/480	28,5
	DWB - 091 C	566	2,5	-	300	0,9	НД	470/358/480	29,5
	DWB - 122 C	624	3,5	-	510	1,15	нд	600/380/535	39,8
	DWB - 122 CH	634	3,5	3,4	510	1,15/1,23	нд	600/380/535	40
	DWB - 180 C	748	5,3	-	750	2,32	НД	660/430/705	52,5
	DWB-180CH-R	835	5,3	5,3	750	2,24/1,88	нд	660/430/705	65
СС/Наст	DWB-240CH-R DSB - 070L	893 691	7 2,1	7	810 420	2,75/2,35 0,68	НД 750/245/174	660/430/705 654/549/256	66 7,0/34
55/11u01	DSB - 070LH	710	2,1	2,1	420	0,676/0,693	750/245/174	654/549/256	7,0/34
	DSB - 091L	826	2,6		600	0,92	750/245/174	654/549/256	7,0/34
	DSB - 091LH	883	2,6	2,6	600	0,91/0,94	750/245/174	654/549/256	7,0/34
	DSB - 122L	941	3,5		606	1,25	925/285/194	666/552/264	9,7/34
	DSB - 122LH	970	3,5	4	624	1,5/1,41	925/285/194	666/552/264	9,7/34
	DSB - 182L	1320	5,1	-	780	2,134	1035/322/205	800/615/277	11,7/52
	DSB - 182LH	1411	5,3	5,4	780	2,15/2,235	1035/322/205	800/615/277	11,7/52
	DSB - 240L-R	1452	7	-	840	2,4	1080/298/200	772/675/325	14,7/51,1
MOO/Us ==	DSB - 240LH-R	1517	7	7,2	840	2,4/2,235	1080/298/200	772/675/325	14,7/51,1
MCC/Hact DAIKIN	DMB - 180LH	1776	2x2,6	2x2,9	600	1,50/1,9	750/245/174	800/615/277	9,2x2/59
MCC/Hact	FTY22GV1B/RY22DA7V19	1 400	2,6	3,2	390	1,1	250/750/180	540/750/270	НД
IVIOU/11401	FTY35GV1B/RY35D7V1	1 750	3,5	3,2 4,1	460	1,5	250/750/180	660/880/350	нд
	FTY45GV1B/RY45DA7V1	2 390	4,9	5,6	850	2,1	298/1050/190	660/880/350	НД
			6	-,-		2,4			

 $^{^{\}star}$ По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

Тип	Модель	Цена (USD)	Охлажден (кВт)	ие Нагрев (кВт)	Расход воздуха (м ³ /ч)	Потребляемая мощность (кВт)	Габариты ВБ (мм)	Габариты НБ (мм)	Вес (кг)
	FAY71FJV1/RY71FJ7V1	4 070	7,3	8,3	1140	3	360/1570/200	860/830/320	НД
СС/Птл	FAY100FJV1/RY100FJ7V1 FHY35FJ7V1/RY35D7V1	4 570 2 620	10,3 4,1	12 4,4	1440 780	4,1 1,6	360/1690/200 188/1100/600	1215/830/320 660/880/350	НД НД
00/1101	FHY45FJ7V1/RY45DA7V1	2 970	4,1	5,8	780	2,1	188/1100/600	660/880/350	НД
	FHY60FJ7V1/RY60F7V1	3 550	6,2	7,2	1080	2,5	188/1300/600	660/880/350	НД
	FHY71FK7V11/RY71FJ7V1	4 070	7,2	8,6	1140	3,2	300/1000/800	860/830/320	НД
	FHYB100FK7V11/RY100FJ7V	14 670	10	11,6	1620	4,1	300/1400/800	1215/830/320	НД
	FHY125FJ7V1/RY125FJ7W1	5 070	12,4	15,2	1980	4,7	238/1590/695	1215/880/320	НД
КанКонд	FHYB35FK7V11/RY35D7V1	2 970	3,8	4,2	690	1,6	300/700/800	660/880/350	НД
	FHYB45FK7V11/RY45DA7V1		4,5	5,6	840	2,2	300/700/800	660/880/350	НД
	FHYB60FK7V11/RY60F7V1	4 000	6,2	7,2	1020	2,5	300/1000/800	660/880/350	НД
	FHYB71FV1/RY71FV1 FHYB100FV1/R100FY1	4 520 5 220	7,7 10,4	7,9 11,2	1140 1620	2,2 3	355/1100/800 355/1500/800	860/830/320 1215/830/320	НД НД
	FHYB125FV1/R125FY1	5 720	12,8	14,2	2100	3,75	355/1500/800	1215/880/320	нд НД
СС/КасПот	FHYC35FJ7V1/RY35D7V1	3 110	3,6	4,7	840	1,6	240/840/840	660/880/350	НД
00/1001101	FHYC45FJ7V1/RY45DA7V1	3 500	4,8	5,8	840	2,1	240/840/840	660/880/350	НД
	FHYC60FJ7V1/RY60F7V1	3 950	6,2	7,2	1140	2,5	240/840/840	660/880/350	нд
	FHYC71FJ7V1/RY71FJ7V1	4 450	7,3	8,7	1140	3	240/840/840	860/830/320	нд
	FHYC100FJ7V1/RY100FJ7V1	5 050	10,3	12,2	1680	3,8	280/1230/840	1215/830/320	НД
	FHYC125FJ7V1/RY125FJ7W1	5 400	12,8	15,3	1980	4,7	280/1230/840	1215/880/320	НД
СС/Кас/Угл	FHYK35FGV1/RY35D7V1	3 320	4,1	4,4	720	1,5	215/1110/710	660/880/350	нд
	FHYK45FJ7V1/RY45DA7V1	3 730	4,8	5,8	720	2,1	215/1110/710	660/880/350	нд
	FHYK60FJ7V1/RY60F7V1	4 350	6,2	7,1	1020	2,5	215/1310/710	660/880/350	НД
	FHYK71FJ7V1/RY71FJ7V1	4 870	7,3	8,7	1020	3,1	215/1310/710	860/830/320	нд
СС/Нап	FVY223D7V1/RY22DA7V19	1 800	2,4	3,1	620	1,3	600/750/210	535/750/230	НД
	FVY353D7V1/RY35D7V1	2 250	3,5	4,1	620	1,5	600/750/210	685/800/300	НД
MACO/III	FVY453D7V1/RY45DA7V1	2 670	4,9	5,6	800	2	600/870/205	660/880/350	НД
МСС/Наст	FCTY22GV1B	600	2,6	3,2	390	1,1	250/750/180	НД	НД
	FCTY35GV1B FCTY45GV1B	700 850	3,5	4,1 5,6	460 850	1,5	250/750/180 298/1050/190	НД	НД
МСС/Нап	FVCY223D7V1	810	4,9 2,4	3,2	620	2,1 1,2	600/750/205	НД НД	нд нд
WIGG/TIAIT	FVCY353D7V1	920	3,6	4,1	620	1,5	600/750/205	НД	нд
	FVCY453D7V1	980	4,9	5,6	800	2	600/870/205	НД	НД
НБ-МСС	MY56D7V1	2 300	5,6	5,9	НД	нд	НД	660/880/350	нд
	MY90CJV1	3 400	9	9,6	нд	нд	нд	865/880/350	нд
	MY90CJW1	3 400	9	9,6	нд	нд	нД	865/880/350	нд
DELONGHI									
СС/Наст	CF10	930	1,9	НД	НД	0,65	750/270/175	нд	НД
	CF20	1 050	2,4	НД	НД	0,85	750/270/175	НД	HID
			,					''A	НД
	CF30	1 280	3,7	нд	нд	1,24	810/300/195	нд	НД
	CF30 CF40	1 280 1 650	3,7 5	н <u>д</u> нд	нд нд	1,6	967/300/195	нд нд	нд нд
	CF30 CF40 CP10-2000	1 280 1 650 1 160	3,7 5 2,1	НД НД 2,2	нд нд нд	1,6 0,79	967/300/195 750/270/175	нд нд нд	НД НД НД
	CF30 CF40 CP10-2000 CP20-2000	1 280 1 650 1 160 1 220	3,7 5 2,1 2,4	НД НД 2,2 2,5	НД НД НД НД	1,6 0,79 0,85	967/300/195 750/270/175 750/270/175	НД НД НД НД	НД НД НД НД
	CF30 CF40 CP10-2000 CP20-2000 CP25	1 280 1 650 1 160 1 220 1 290	3,7 5 2,1 2,4 3	НД НД 2,2 2,5 3,1	НД НД НД НД НД	1,6 0,79 0,85 0,99	967/300/195 750/270/175 750/270/175 810/300/195	НД НД НД НД НД	НД НД НД НД НД
	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30	1 280 1 650 1 160 1 220 1 290 1 450	3,7 5 2,1 2,4 3 3,5	НД НД 2,2 2,5 3,1 3,5	НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195	НД НД НД НД НД	НД НД НД НД НД
DE MCC (2.2)	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40	1 280 1 650 1 160 1 220 1 290 1 450 1 900	3,7 5 2,1 2,4 3 3,5 5	НД НД 2,2 2,5 3,1 3,5 5,4	НД НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24 1,6	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195	НД НД НД НД НД НД	НД НД НД НД НД НД
B5-MCC (2-3)	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480	3,7 5 2,1 2,4 3 3,5 5 2x2,4	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5	НД НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175	НД НД НД НД НД НД НД	НД НД НД НД НД НД НД
	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4	НД НД НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152	НД НД НД НД НД НД НД	НД НД НД НД НД НД НД
СС/Нап	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480	3,7 5 2,1 2,4 3 3,5 5 2x2,4	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5	НД НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175	НД НД НД НД НД НД НД	НД НД НД НД НД НД
	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4	НД НД НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152	НД НД НД НД НД НД НД	НД НД НД НД НД НД НД НД
СС/Нап ELECTRA	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 НД	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6	НД НД НД НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175	НД НД НД НД НД НД НД НД	НД НД НД НД НД НД НД
СС/Нап ELECTRA	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 НД	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6	НД НД НД НД НД НД НД НД НД	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175	НД НД НД НД НД НД НД НД НД	НД НД НД НД НД НД НД НД НД
СС/Нап ELECTRA	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 09 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 НД	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6	НД НД НД НД НД НД НД НД НД НД 340	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160	НД НД НД НД НД НД НД НД НД НД 540/760/220	нд нд нд нд нд нд нд нд нд нд нд
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 09 RC WMN 12 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 НД 870 920 1 040	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6	НД НД НД НД НД НД НД НД НД 340 390 450	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160	НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220	нд нд нд нд нд нд нд нд нд нд нд
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 09 RC WMN 12 RC WMN 16 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 НД 870 920 1 040 1 250	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9	НД НД НД НД НД НД НД НД НД 340 390 450 590	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190	НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/240	нд нд нд нд нд нд нд нд нд нд нд нд нд н
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 09 RC WMN 12 RC WMN 16 RC WMN 18 RC -R	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 НД 870 920 1 040 1 250 1 540	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1	НД НД НД НД НД НД НД НД НД 340 390 450 590 750	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195	НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/240 580/900/340	
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 09 RC WMN 12 RC WMN 16 RC WMN 18 RC -R WMN 18 RC WMN 24 RC -R WMN 24 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 600 1 770 1 820	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8	НД НД НД НД НД НД НД НД НД 340 390 450 590 750	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/196	НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341	НД НД НД НД НД НД НД НД НД НД НД НД
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 09 RC WMN 12 RC WMN 16 RC WMN 18 RC -R WMN 18 RC WMN 24 RC -R WMN 24 RC WMN 30 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 600 1 770 1 820 2 240	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8	НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 330/1115/196 382/1445/204	НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 580/900/340	НД НД НД НД НД НД НД НД НД НД НД НД НД Н
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 09 RC WMN 12 RC WMN 16 RC WMN 18 RC -R WMN 18 RC WMN 24 RC -R WMN 24 RC WMN 30 RC WMN 30 RC WMN 36 RC (3-)	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 600 1 770 1 820 2 240 2 650	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1	НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 750	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3 4,2	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 382/1445/204 382/1850/204	НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 680/900/340	HД HД HД HД HД HД HД HД HД HД HД HД HД H
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 16 RC WMN 18 RC -R WMN 18 RC WMN 24 RC -R WMN 24 RC WMN 30 RC WMN 30 RC WMN 36 RC (3-) WMN 0707 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 600 1 770 1 820 2 240 2 650 1 730	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9	НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 750 2x340	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3 4,2 1,6	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160	НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 680/900/340 580/900/340	
CC/Han LECTRA	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 18 RC -R WMN 18 RC WMN 18 RC WMN 24 RC -R WMN 24 RC WMN 30 RC WMN 30 RC WMN 36 RC (3-) WMN 0707 RC WMN 0909 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 1540 1 600 1 770 1 820 2 240 2 2650 1 730 1 830	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4	НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 750 2×340 2×390	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3 4,2 1,6 2,2	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160	НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 580/900/341 680/900/340 680/900/340 580/900/340 580/900/340 580/900/340	
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 18 RC -R WMN 18 RC -R WMN 18 RC WMN 24 RC -R WMN 24 RC WMN 30 RC WMN 30 RC WMN 36 RC (3~) WMN 0909 RC WMN 0909 RC WMN 0912 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 540 1 540 1 540 1 770 1 820 2 240 2 650 1 730 1 830 1 950	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1	НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 750 2×340 2×390 390/450	1,6 0,79 0,85 0,99 1,24 1,6 2×0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 330/1115/196 382/1445/204 382/1850/204 270/815/160 270/815/160	НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 680/900/340 580/900/340 580/900/340 580/900/340 580/900/340	
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 18 RC -R WMN 18 RC -R WMN 24 RC -R WMN 24 RC WMN 30 RC WMN 30 RC WMN 36 RC (3~) WMN 0909 RC WMN 0912 RC WMN 0912 RC WMN 0912 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 540 1 540 2 240 2 240 2 240 2 240 2 250 1 730 1 830 1 950 2 070	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,4 2x3,4	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1	НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 850 850 850 1 360 1 750 2 x 340 2 x 390 390/450 2 x 450	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160 270/815/160	НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340	
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 18 RC -R WMN 18 RC -R WMN 24 RC -R WMN 24 RC WMN 30 RC WMN 36 RC (3~) WMN 0909 RC WMN 0912 RC WMN 0909 RC WMN 0912 RC WMN 1212 RC WMN 1212 RC WMN 1212 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 540 1 540 1 770 1 820 2 240 2 240 2 250 1 730 1 830 1 950 2 2 490	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,4 2x3,4 2x3,4 2x3,4	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1 2x4,1	НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 750 2 x340 2 x390 390/450 2 x450 2 x590	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6 3,4	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160 270/815/160 270/815/160 270/815/160 300/938/190	НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 680/900/340 680/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 900/370/695	
CC/Han	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 18 RC -R WMN 18 RC -R WMN 24 RC -R WMN 24 RC -R WMN 30 RC WMN 36 RC (3) WMN 0909 RC WMN 1912 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 770 1 820 2 240 2 240 2 250 1 730 1 830 1 950 2 2490 3 430	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1 2x4,1 2x3,1/2,6	НД НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 750 2 x340 2 x390 3 90/450 2 x450 2 x450 2 x590 2 x340/390	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6 3,4 3,3	967/300/195 750/270/175 750/270/175 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160 270/815/160 270/815/160 270/815/160	НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 680/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340	
CC/Han ELECTRA CC	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 18 RC -R WMN 18 RC -R WMN 24 RC -R WMN 24 RC -R WMN 30 RC WMN 36 RC (3-) WMN 0909 RC WMN 0912 RC WMN 1212 RC WMN 1912 RC WMN 190912 RC WMN 0909121 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 600 1 770 1 820 2 240 2 250 1 730 1 830 1 950 2 490 3 430 4 250 3 430 4 250 3 430	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,4 2x4,1 2x2,7/3,4 2x2,7/2x3,4	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1 2x3,1 2x4,1 2x3,2/3,6 2x3,2/2x3,6	НД НД НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 750 850 850 850 1 360 1 1750 2 2 3 4 0 2 2 3 9 0 3 9 0 4 5 0 2 2 3 9 0 2 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6 3,4 3,3 4,6	967/300/195 750/270/175 810/300/195 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 330/115/196 382/1445/204 382/1850/204 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160	НД НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/341 680/900/340 680/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340	
CC/Han ELECTRA CC	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 18 RC -R WMN 18 RC -R WMN 24 RC -R WMN 24 RC WMN 36 RC (3-) WMN 36 RC (3-) WMN 0909 RC WMN 121 RC WMN 121 RC WMN 18	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 540 1 770 1 820 2 240 2 250 1 730 1 830 1 950 2 249 2 490 3 430 4 250 8 800	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,4 2x4,1 2x2,7/3,4 2x2,7/2x3,4 2,1	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1 2x3,1 2x3,1 2x3,1 2x3,2/3,6 2x3,2/2x3,6 HД	НД НД НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 750 850 850 850 1 360 1 1750 2 2 3 4 0 2 2 3 9 0 2 2 3 4 0 2 2 4 5 0 2 2 3 9 0 2 2 3 4 0 3 9 0 3 9 0 3 9 0 4 5 0 2 2 4 5 0 2 2 5 9 0 2 2 3 4 0 3 9 0 2 2 3 4 0 3 9 0 3 0 3 0 3 0	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6 3,4 3,3 4,6 0,8	967/300/195 750/270/175 810/300/195 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 300/938/190 330/1115/195 330/1115/196 330/115/196 322/1445/204 382/1850/204 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160	НД НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 680/900/340 580/900/340	
CC/Han ELECTRA CC	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 16 RC WMN 18 RC -R WMN 24 RC -R WMN 24 RC WMN 36 RC (3-) WMN 36 RC (3-) WMN 09912 RC WMN 1212 RC WMN 1912 RC WMN 1912 RC WMN 090912 RC WMN 090912 RC WMN 09091212 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 770 1 820 2 240 2 650 1 730 1 830 1 950 2 970 2 490 3 430 4 250 8 800 1 410	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,4 2x4,1 2x2,7/2x3,4 2x1,5 5	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1 2x3,1 2x3,1 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	НД НД НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 1750 2 2 3 4 0 2 2 3 9 0 2 2 3 4 0 2 2 4 5 0 2 2 3 4 0 2 2 3 9 0 2 2 3 4 0 2 3 9 0 2 3 4 0 3 9 0 3	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6 3,4 3,3 4,6 0,8 1,9	967/300/195 750/270/175 810/300/195 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 300/938/190 270/815/160 370/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 330/1115/195	НД НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340	
СС/Нап ELECTRA	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 16 RC WMN 18 RC -R WMN 24 RC -R WMN 36 RC (3-) WMN 36 RC (3-) WMN 099 RC WMN 1212 RC WMN 1099 RC WMN 1212 RC WMN 16 RC WMN 36 RC (3-) WMN 36 RC (3-) WMN 0909 RC WMN 1212 RC WMN 1212 RC WMN 1616 RC WMN 1090912 RC WMN 090912 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 770 2 240 2 650 1 730 1 830 2 070 2 490 3 430 4 2502 800 1 410 1 640	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,4 2x4,1 2x2,7/3,4 2x2,7/2x3,4 2,1 5 6,3	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1 2x3,1 2x4,1 4,4 4,6 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	НД НД НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 1750 2 x340 2 x390 3 90/450 2 x450 2	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6 3,4 3,3 4,6 0,8 1,9 2,5	967/300/195 750/270/175 810/300/195 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 300/938/190 270/815/160 270/815/160 370/815/160 270/815/160 270/815/160 330/1115/195 330/1115/195	НД НД НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 580/900/340 580/900/341 680/900/340 580/900/340	
CC/Han LECTRA CC	CF30 CF40 CP10-2000 CP20-2000 CP25 CP30 CP40 CDP2 TLH300 C28 GHP WMN 07 RC WMN 12 RC WMN 16 RC WMN 18 RC -R WMN 24 RC -R WMN 24 RC WMN 36 RC (3-) WMN 36 RC (3-) WMN 09912 RC WMN 1212 RC WMN 1912 RC WMN 1912 RC WMN 090912 RC WMN 090912 RC WMN 09091212 RC	1 280 1 650 1 160 1 220 1 290 1 450 1 900 2 480 3 780 HД 870 920 1 040 1 250 1 540 1 770 1 820 2 240 2 650 1 730 1 830 1 950 2 970 2 490 3 430 4 250 8 800 1 410	3,7 5 2,1 2,4 3 3,5 5 2x2,4 2x2,6+3,5 8,2 2,1 2,6 3,4 4,1 5 5,3 6,3 6,7 8,8 10,3 2x2,1 2x2,6 2,6/3,4 2x3,4 2x4,1 2x2,7/2x3,4 2x1,5 5	НД НД 2,2 2,5 3,1 3,5 5,4 2x2,5 2x2,5+3,4 8,6 2,2 2,8 3,6 4,9 5,1 5,6 6,6 6,8 9,1 10,6 2x1,9 2x2,4 2,4/3,1 2x3,1 2x3,1 2x3,1 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	НД НД НД НД НД НД НД НД НД НД НД НД 340 390 450 590 750 750 750 850 850 850 1 360 1 1750 2 2 3 4 0 2 2 3 9 0 2 2 3 4 0 2 2 4 5 0 2 2 3 4 0 2 2 3 9 0 2 2 3 4 0 2 3 9 0 2 3 4 0 3 9 0 3	1,6 0,79 0,85 0,99 1,24 1,6 2x0,85 2,85 НД 0,8 1,1 1,3 1,7 1,9 2,5 2,6 3,3 4,2 1,6 2,2 2,3 2,6 3,4 3,3 4,6 0,8 1,9	967/300/195 750/270/175 810/300/195 810/300/195 810/300/195 967/300/195 750/270/175 810/220/152 500/1750/175 270/815/160 270/815/160 330/1115/195 330/1115/196 382/1445/204 382/1850/204 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 300/938/190 270/815/160 370/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 270/815/160 330/1115/195	НД НД НД НД НД НД НД НД НД НД НД НД 540/760/220 540/760/220 540/760/220 540/760/220 540/760/220 540/760/240 580/900/340 580/900/341 680/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340 580/900/340	

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Гип	Модель	Цена (USD)	Охлаждение (кВт)	Нагрев (кВт)	Расход воздуха (м ³ /ч)	Потребляемая мощность (кВт)	Габариты ВБ (мм)	Габариты НБ (мм)	Вес (кг
	WMF 12 RC	1 190	3,4	3,6	490	1,3	570/570/140	540/760/220	H,
СС/НапПот	PRX 300 RC	1 490	3,9	4,1	595	1,5	600/850/190	530/740/300	H,
	PRX 400 RC	1 540	4,3	4,5	680	1,8	600/850/190	530/740/300	H,
	PRX 500 RC	1 760	5,9	6,2	880	2,3	600/850/190	580/900/340	H,
	PRX 600 RC	1 920	7,2	7,4	1000	2,9	600/1200/190	580/900/340	H,
	PRX 800 RC	2 030	8	8,3	1310	3,3	600/1200/190	680/900/340	H,
	PRX 900 RC	2 200	8,9	9	1310	3,4	600/1200/190	680/900/340	H,
	PRX 500 RC-SH	1 830	5,9	6,2	880	2,3	600/850/190	580/900/340	H,
	PRX 600 RC-SH	2 000	7,2	7,4	1 000	2,9	600/1200/190	580/900/340	H,
	PRX 800 RC-SH	2 100	8	8,3	1 310	3,3	600/1200/190	680/900/340	H,
	PRX 900 RC-SH	2 300	8,9	9	1 310	3,4	600/1200/190	680/900/340	H,
	PXD 15 RC	1 770	4,4	4,3	450	1,8	630/820/190	540/760/220	H,
	PXD 18 RC	2 010	5,5	5,4	550	2,3	630/820/190	580/900/340	Н
	PXD 24 RC	2 200	7	6,6	840	2,6	630/1200/190	580/900/340	Н
	PXD 28 RC	2 310	8	7,8	895	3,3	630/1200/190	580/900/340	Н
	PXD 32 RC	2 510	8,8	8,4	1020	3,7	630/1200/190	680/900/340	Н
	PXD 18 RC-SH	2 090	5,5	5,4	550	2,3	630/820/190	580/900/340	Н
	PXD 24 RC-SH	2 270	7	6,6	840	2,6	630/1200/190	580/900/340	Н
	PXD 28 RC-SH	2 380	8	7,8	895	3,3	630/1200/190	580/900/340	Н
	PXD 32 RC-SH	2 580	8,8	8,4	1020	3,7	630/1200/190	680/900/340	H,
	PXH 1500 RC (3~)	3 840	11,7	12	1695	3,9	670/1714/249	850/1029/400	Н
	PXH 2000 RC (3~)	4 140	14,1	14,1	1695	5,4	670/1714/249	850/1029/400	Н
анКонд	EBS 50	1 930	5	5,1	1000	2,1	230/900/650	580/900/340	Н
П	EBS 60	2 020	6,2	6,4	1000	2,6	230/900/650	580/900/340	H
	EBS 80	2 110	7,6	7,7	1350	3,1	280/900/650	580/900/340	Н
	EBS 101 RC	2 640	10,1	9,5	2200	3,5	340/900/720	680/900/340	Н
	EBS 103 RC (3~)	2 720	10,1	9,5	2200	3,5	340/900/720	680/900/340	Н
	EMD 1100 RC	2 760	11	11,1	2200	4,2	400/770/580	680/900/340	H
	EMD 1200 RC (3~)	3 120	12,3	12,5	2720	4,6	400/1030/605	895/900/340	Н
	EMD 1400 RC (3~)	3 330	13,1	13,2	2 465	4,7	400/1030/605	895/900/340	Н
	EMD 1800 RC (3~)	4 020	15,5	15,5	2 720	4,7	400/1030/003	1250/900/340	Н
	EMD 1100 RC-SH	2 850	11	11,1	2200	4,2	400/770/580	680/900/340	H
	EMD 1200 RC-SH (3~)	3 210	12,3	12,5	2720	4,6	400/1030/605	895/900/340	Н
	EMD 1800 RC-SH 3~)	4 120	15,5	15,5	2 720	4,7	400/1130/686	1250/900/340	Н
стрМодели	ELX 925 RC	2 700	9,7	9,8	1 870	3,5	300/1060/700	680/900/340	H
	ELX 1100 RC	2 850	11,1	11,3	2 040	4,2	300/1060/700	900/900/340	H
	ELX 1200 RC	3 260	12,1	12,3	2 210	4,4	300/1220/700	900/900/340	H
	EBW 11 RCF	1 930	3,2	13,9	520	1,1	260/860/675	540/760/220	Н
	EBW 15 RCF	2 080	4,2	3,2	610	1,7	260/860/675	540/760/220	Н
	EBW 18 RCF	2 360	5,2	4,4	680	2,3	260/860/675	580/900/340	Н
	EBW 24 RCF	2 640	7	7	920	2,8	285/1190/675	580/900/340	Н
	EBW 30 RCF	2 760	8,5	9	1 360	3,5	285/1190/675	680/900/340	Н
С/КасПот	ECF 15	2 080	4,2	5	770	2,2	571/571/287	770/250/545	Н
	ECF 18 (3~)	2 520	5,2	5,2	840	2,6	571/571/287	900/370/595	Н
	ECF 24 (3~)	2 710	6,7	7,5	910	2,8	571/571/287	900/370/595	H
	ECF 30 (3~)	3 190	8,3	9,1	1 680	3,1	1171/571/287	900/370/695	H
	ECF 45 (3~)	3 480	13,1	14,3	1 820	5,2	1171/571/287	950/345/1451	H
обНапКонд	M 2000 ST-M	800	2,1	нд	270	1	800/470/374	НД	H
	M 2000 ST-SH-E	880	2,1	2	270	2,1	800/470/374	нд	H
<	WIN 7.5-EN-US;M	290	2,1	нд	360	0,9	580/490/335	нд	ŀ
	WIN 7.5 ST-E	330	2,1	нд	360	0,9	580/490/335	нд	ŀ
	KC 15 ST-M	320	1,5	нд	230	0,5	470/480/320	нд	ŀ
	KC 20 ST-M	400	2	НД	265	0,8	560/520/350	нд	ŀ
	KC 25 ST-M	430	2,5	НД	310	1	560/520/350	НД	· -
	KC 25 ST-W	530	2,5	нд НД	310	1	560/520/350	нд	ŀ
	KC 25 ST-E KC 25 RC-E	590	2,5	лд 2,3	310	1	560/520/350	нд НД	-
	KC 32 ST-M	590	3,2	2,3 НД	500	1,3	610/565/380	п <u>д</u> НД	ŀ
	KC 32 RC-M	660	3,2	2,9	500	1,3	610/565/380	НД	ŀ
	KC 51 ST-M	860	5	НД	700	2,1	670/455/705	НД	ŀ
	KC 51 RC-M	920	5	5	700	2,1	670/455/705	НД	ŀ
	KC 65 ST-M	930	6,4	НД	820	2,7	670/455/705	НД	ŀ
	KC 65 RC-M	990	6,2	6,2	820	2,7	670/455/705	нд	ŀ
ACHI									
(RA-08 CF1	490	2,05	нд	нд	нд	35/47/52	нд	H
	RA-10 CF1	560	2,55	НД	НД	нд	35/47/52	нд	H
	RA-08BDF (с пультом ДУ)	590	2,05	НД	НД	нд	35/47/52	НД	ŀ
	RA-10BDF (с пультом ДУ)	650	2,55	НД	НД	нд	35/47/57	нд	H
	RA-3147CL	890	3,5	нд	нд	нд	35/47/57	нд	ŀ
	RA-3107CLH	850	2,6	2,6	нд	НД	38/56/65	нд	ŀ
	RA-3147CLH	1010	3,55	3,75	нд	НД	38/56/65	нд	H
С	RAC-05CV1/RAS-05C1	860	1,6	3,73 НД	нд	НД	НД	НД	
•		880	2,2	нд НД	пд НД	нд НД	нд НД	нд НД	,
	RAC-07CV1/RAS-07C1								

^{*} По вопросам размеціения технических дачных оборудования образцаться по телефону: (095)135-9857.

Тип	Модель	Цена (USD)	Охлаждение (кВт)	Нагрев (кВт)	Расход воздуха (м ³ /ч)	Потребляем мощность (к		Габариты НБ (мм)	Вес (кг
	RAC-5144CV/RAS-5144C	1160	3,7	нд	нд	нд	нд	нд	H,
	RAC-5182CV/RAS-5182C	1500	4,8	НД	НД	нд	нд	нд	H,
CC	RAC-07CHV1/RAS-07CH1	1000	2,1	2,3	НД	НД	265/785/168	нд	H,
	RAC-09CHV1/RAS-09CH1	1120	2,6	3	нд	НД	265/785/168	нд	H,
	RAC-5142CHV/RAS-5142CH	1340	3,6	4,7	НД	НД	298/815/179	нд	Н,
	RAC-5182CHV/RAS-5182CH	1880	4,6	5,3	НД	НД	295/1090/167	НД	H,
	RAC-24CHV1/RAS-24CH1	2240	6,5	7,2	НД	НД	295/1090/185	НД	H,
	RAC-30CHV1/RAS-30CH1	2530	7,7	8,6	НД	НД	360/1390/225	НД	H,
lo Over	RAM-22CZ1/RAS-09CZ1+RAS-1	3621252	202,5+3,55	нд	нд	нд	нд	нд	H,
lcQuay	MANA/MOZED/MALCOZDD	000	0.1	0.0	ш	0.74	705/160/007	ш	
СС/Наст	MWM07ER/MLC07BR	990	2,1	2,3	НД	0,74	785/169/297	НД	Н
	MWM10FR/MLC10BR MWM15FR/MLC15BR	1 030	2,8	3,8	НД	0,89	785/169/297 815/179/290	НД	H
	MWM20CR/MLC20BR	1 600	3,6 5,3	5,0 5,9	НД НД	1,32 2,05	1043/189/372	НД	H H
	MWM25CR/MLC25BR	1 750	5,3 7			2,05	1043/189/372	НД	
	MWM07E/MLC07B	850	2,1	7,3	НД НД	0,79	785/169/297	НД НД	Н
				НД					Н
	MWM10F/MLC10B	950	2,6	НД	НД	1,02	785/169/297	НД	Н
	MWM15F/MLC15B	1 050	3,7	НД	НД	1,3	815/179/290	НД	Н
	MWM20C/MLC20B	1 460	5,2	НД	НД	2,07	1043/189/372	НД	Н
MCC/II	MWM25C/MLC25B	1 610	7	НД	НД	2,74	1043/189/372	НД	Н
MCC/Hact	2xMWMS20C/MMSD2020A	2 840	2x5,27	нд	нд	4,15	1043/189/372	НД	Н
itsubishi Electric	MCC 07DV/MU C7DV	005	0.0	U.C.	47.4	0.00	050/404/070	700/055/540	0.11
сс/Наст	MSC-07RV/MU-07RV	995	2,2	НД	474	0,68	850/191/278	780/255/540	9/3
	MSC-09RV/MU-09RV	1150	2,5	НД	474	0,78	850/191/278	780/255/540	9/3
	MSC-12RV/MU-12RV	1350	3,5	НД	588	1,31	850/191/278	780/255/540	10/3
	MS-18RV/MU-18RV	1700	5,1	НД	756	1,91	1015/190/320	850/290/605	14/5
	MS-24RV/MU-24RV	2150	6,4	НД	816	2,78	1015/190/320	850/290/605	14/6
	MS-30RV/MU-30RV	2385	8,4	НД	960	3,38	1100/227/325	870/295/850	16/7
	MSC-07RV/MUH-07RV	1250	2,2	2,5	474	0,71	850/191/278	780/255/540	9/3
	MSC-09RV/MUH-09RV	1290	2,5	3,1	474	0,88	850/191/278	780/255/540	9/3
	MSC-12RV/MUH-12RV	1520	3,4	4	588	1,22	850/191/278	780/255/540	10/3
	MSH-18RV/MUH-18RV	1910	5,1	5,4	756	2,03	1015/190/320	850/290/605	14/5
	MSH-24RV/MUH-24RV	2395	6	6,2	816	2,72	1015/190/320	870/295/850	14/7
	MSH-30RV/MUH-30RV	2620	8,3	9,6	960	3,3	1100/227/325	870/295/850	16/7
инвертор	MSZ-G09SV/MUZ-G09SV	1470	2,6	3,6	474	0,94	850/191/278	710/255/540	9/2
инвертор	MSZ-G12SV/MUZ-G12SV	1920	3,5	4,8	588	1,29	850/191/278	710/255/540	10/3
	PK-1.6GKL/PU-1.6VLJA	1875	3,9	НД	720	1,71	990/235/340	870/362/650	16/4
	PK-2GKL/PU-2VJA	2155	5,6	НД	720	2,52	990/235/340	870/362/650	16/6
	PK-2.5FLA/PU-2.5VJA	2615	7	НД	1200	2,75	1400/235/340	870/362/850	24/7
	PK-3FLA/PU-3YJA	3225	7,2	НД	1200	3,18	1400/235/340	870/362/850	24/7
	PK-4FLA/PU-4YJA	3785	9,8	НД	1680	3,29	1680/235/340	870/362/1258	28/9
	PKH-1.6GKL/PUH-1.6VKA	2300	4,5	4,6	720	1,36	990/235/340	870/362/650	17/5
	PKH-2GKL/PUH-2VKA	2590	5,5	6,2	720	2,14	990/235/340	870/362/650	17/6
	PKH-2.5FKHA/PUH-2.5VKA	3015	6,5	7,2	1200	2,41	1400/235/340	870/362/850	26/6
	PKH-3FKHA/PUH-3YKA	3555	7,9	9,1	1200	3,13	1400/235/340	870/362/850	26/7
	PKH-4FKHSA/PUH-4YKSA	4035	9,5	10,7	1680	3,17	1680/235/340	870/362/1258	30/9
сс/НапПот	MCF-13NV/MUCF-13NV	1540	3,7	НД	678	1,31	1100/180/650	850/290/605	26/5
	MCF-18NV/MUCF-18NV	1870	5	НД	780	2,03	1100/180/650	850/290/605	26/
	MCF-24NV/MUCF-24NV	2200	6,4	НД	840	2,72	1100/180/650	870/295/850	26/
	MCFH-13NV/MUCFH-13NV	1850	3,7	4	780	1,31	1100/180/650	850/290/605	26/5
	MCFH-18NV/MUCFH-18NV	2190	5	5,4	840	1,91	1100/180/650	850/290/605	26/
	MCFH-24NV/MUCFH-24NV	2405	6	6,2	840	2,87	1100/180/650	850/290/605	26/
сс/Пот	PC-2GJA/PU-2VJA	1360	5,6	НД	780	2,52	1000/680/210	870/362/650	27/6
	PC-2.5GJA/PU-2.5VJA	2745	6,5	нд	1080	2,75	1310/680/210	870/362/850	34/
	PC-3GJA/PU-3YJA	3135	7,2	НД	1080	3,18	1310/680/210	870/362/850	34/
	PC-4GJSA/PU-4YJSA	3715	9,8	нд	1500	3,29	1310/680/210	870/362/1258	37/9
	PC-5GJSA/PU-5YJSA	4245	12,4	нд	2040	4,56	1620/680/270	950/390/1258	43/1
	PC-6GJSA/PU-6YJSA	4980	14,6	нд	2040	5,11	1620/680/270	950/390/1258	45/1
	PCH-2GKHA/PUH-2VKA	2875	5,6	6,2	780	2,52	1000/680/210	870/362/650	28/
	PCH-2.5GKHA/PUH-2.5VKA	3150	6,5	7,1	1080	2,75	1310/680/210	870/362/850	36/
	PCH-3GKHA/PUH-3YKA	3670	7,2	8,5	1080	3,18	1310/680/210	870/362/850	36/
	PCH-4GKHSA/PUH-4YKSA	4215	10	10,5	1500	3,10	1310/680/210	870/362/1258	39/9
	PCH-5GKHSA/PUH-5YKSA	4855	12,4	13,9	2040	4,56	1620/680/270	870/362/1258	46/1
	PCH-6GKSA/PUH-6YKSA	5420	14,6	15,9	2040	5,11	1620/680/270	870/362/1258	48/1
c/Kac	PL-1.6KJB/PU-1.6VLJA	2370	3,8	нд	960		60(760)/660(760)/253(30)		23/
UNAU	PL-1.0KJB/PU-1.0VLJA PL-2KJB/PU-2VJA	2705	5,6	нд НД	960		60(760)/660(760)/253(30)		23/
	PL-2KJB/PU-2VJA PL-2.5KJB/PU-2.5VJA	2990	6,5		1020		60(760)/660(760)/253(30)		24/
	PL-2.5KJB/PU-2.5VJA PL-3AK/PU-3YJA	3325	7,9	НД НП	1200		. , . , . ,		24/
		3930		НД	1680		40(950)/840(950)/258(30)		
	PL-4AK/PU-4YJSA		9,9	НД			40(950)/840(950)/298(30)		35/9
	PL-5AKS/PU-5YJSA	4490	12,4	НД	1800		40(950)/840(950)/298(30)		35/11
	PL-6AKS/PU-6YJSA PLH-1.6KKHB/PUH-1.6VKA	5160 2870	14,3 4,4	НД 4,6	1800 960		(40(950)/840(950)/298(30) (60(760)/660(760)/253(30)		37/11 24/5
								x / U/362/650	2/1/

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

Тип	Модель	Цена (USD)	Охлаждение (кВт)	Нагрев (кВт)	Расход воздуха (м ³ /ч)	Потребляем мощность (к	The state of the s	Габариты НБ (мм)	Вес (кг)
	PLH-2.5KKHB/PUH-2.5VKA	3415	6,3	7,2	1020		660(760)/660(760)/253(30	·	25/68
	PLH-3AKH/PUH-3YKA	3910	7,7	8,4	1680		840(950)/840(950)/258(30	·	36/75
	PLH-4AKHS/PUH-4YKSA	4720	9,7	10,4	1800		840(950)/840(950)/298(30	·	55/94
	PLH-5AKHS/PUH-5YKSA	5150	12,4	14	1800		340(950)/840(950)/298(30	,	55/114
//	PLH-6AKHS/PUH-6YKSA	5825	14	16,1	1800		840(950)/840(950)/298(30	·	55/117
сс/Кан	SEH-1.6AR/SUH-1.6AR SEH-2AR/SUH-2AR	2075 2445	3 5,4	4,2 5,8	780 1020	1,35 2,05	270/1100/700 270/1100/700	850/290/605 850/290/605	35/50 35/52
	SEH-2.5AR/SUH-2.5AR	2810	6,7	5,6 7	1200	2,05	270/1100/700	870/295/850	35/5
	PED-2EJA/PU-2VJA	2445	5,4	нД	1020	2,52	830/640/295	870/362/650	33/6
	PED-2.5EJA/PU-2.5VJA	2675	6,3	НД	1260	2,75	1070/640/295	870/362/850	42/7
	PED-3EJA/PU-3YJA	2045	7,6	НД	1500	3,18	1070/680/325	870/362/850	49/7
	PED-4EJSA/PU-4YJSA	3625	9,7	НД	2040	3,10	1310/680/325	870/362/1258	62/9
	PED-5EJSA/PU-5YJSA	4060	12,4	НД	2520	4,56	1310/680/325	950/390/1258	65/11
	PED-6EJSA/PU-6YJSA	4735	14,8	НД	2760	5,11	1610/740/325	950/390/1258	70/11
	PEHD-1.6EKHA/PUH-1.6VKA		4,3	4,6	840	1,71	830/640/295	870/362/650	35/5
	PEHD-2EKHA/PUH-2VKA	2770	5,2	5,8	1020	2,52	830/640/295	870/362/650	35/6
	PEHD-2.5EKHA/PUH-2.5VKA		6,3	6,7	1260	2,75	1070/640/295	870/362/850	44/6
	PEHD-3EKHA/PUH-3YKA	3420	7,7	8,4	1500	3,18	1070/680/325	870/362/850	46/7
	PEHD-4EKHSA/PUH-4YKSA	3815	9,7	10,4	2040	3,10	1310/680/325	870/362/1258	65/9
	PEHD-5EKHSA/PUH-5YKSA	4480	12,1	13,4	2520	4,56	1310/680/325	870/362/1258	68/11
	PEHD-6EKHSA/PUH-6YKSA	5265	14,6	16	2760	5,11	1610/740/325	870/362/1258	73/11
	PE-7MYA/PU-7MYC	6465	17,9	НД	3600	э, гт НД	428/1415/650	980/1400/700	67/20
	PE-7MYA/PU-7MYC PE-8MYA/PU-8MYC	6620	17,9	нд НД	4200	нд НД	428/1415/650	980/1400/700	70/20
	PE-10MYA/PU-10MYC	7480	28,8	нд НД	5400	нд НД	428/1415/650	980/1400/700	84/23
	PE-15MYC/PU-15MYC	9850	28,8		8400				180/28
	PE-15MYC/PU-15MYC PE-20MYC/PU-20MYC	14495	57,6	НД	10800	НД		1200/1951/1080 1200/1951/1080	212/36
				НД 10 0		НД			
	PEH-7MYA/PUH-7MYC	7065	17,9	18,8	3600	НД	428/1415/650	980/1400/700	67/21
	PEH-8MYA/PUH-8MYC	7505	22	22	4200	НД	428/1415/650	980/1400/700	70/21
	PEH-10MYA/PUH-10MYC	8175	28,8	28,8	5400	НД	428/1615/650	980/1400/700	84/24
	PEH-15MYC/PUH-15MYC	15610	44	44	8400	НД		1200/1951/1080	180/43
	PEH-20MYC/PUH-20MYC	16835	57,6	57,6	10800	нд	706/1993/865	1200/1951/1080	212/47
anasonic									
OK	CW-C50LE	370	1,4	НД	НД	0,45	340/525/482	нд	H,
	CW-C70YE	500	1,9	НД	нд	0,76	346/450/530	нд	H,
	CW-C09TE	550	2,5	НД	НД	0,97	346/450/530	нд	H,
	CW-C120AE	600	3,5	НД	нд	1,35	375/560/610	нд	H,
	CW-C180BE	800	5,2	НД	НД	2,23	428/660/640	нд	H,
	CW-C241SE	950	6,6	НД	нд	2,95	428/660/730	нд	H,
0K	CW-A120AE	650	3,4	3,1	НД	1,29	375/560/610	нд	H,
	CW-A180BE	700	4,6	4,5	нд	1,8	346/450/530	нд	H,
СС/Наст	CS/CU-C75KE	1200	2	НД	нд	0,6	279/799/199	нд	H,
	CS/CU-C95KE	1250	2,7	НД	НД	0,8	279/799/199	НД	H,
	CS/CU-C125KE	1490	3,6	НД	НД	1,19	279/799/199	НД	H,
	CS/CU-C181KE	1790	5,3	НД	НД	2,08	290/980/199	нд	H,
	CS/CU-C241KE	1920	6,6	НД	НД	2,86	290/980/195	нд	H,
СС/наст (х/т)	CS/CU-A75KE	1270	2,2	2,4	нд	0,7	279/799/199	нд	H,
	CS/CU-A95KE	1350	2,8	3,4	НД	0,98	279/799/199	НД	H,
	CS/CU-A125KE	1650	3,5	4,2	нд	1,24	279/799/199	нд	H,
	CS/CU-A181KE	2200	5,2	6,1	НД	2,12	290/980/195	нд	Н
	CS/CU-A241KE	2600	6,4	7,6	нд	2,86	290/980/195	нд	H,
СС/Наст (инв)	CS/CU-G95KE	1600	2,6	3,6	НД	1,44	279/799/199	нд	Н
	CS/CU-G125KE	2080	3,5	4,8	нд	2,1	279/799/199	нд	Н
MCC/ (x/t)	CS-MC 95 KEx2 / CU-MC 145 KE	НД	2x2,6	нд	нд	1,76	290/799/175	нд	Н
	CS-MC 95 KEx2 / CU-MC 185 KE	НД	2x2,4	НД	нд	2,2	290/799/175	нд	Н
	CS-MC 76MC-126/CU-MC196 KE		2,0+3,45	нд	нд	1,82	290/799/175	нд	Н
	CS-MC 125 KEx2 / CU-MC 245KE		2x3,45	нд	нд	2,44	290/799/175	нд	Н
	CS-MC 95 KEx3 / CU-3MC 205KE		3x2,4	НД	НД	2,22	290/799/175	нд	H
	CS-MA75/VA125/CU-MA-195KE	2550	2,0+3,45	2,1+4,0	нд	1,82	290/799/175	нд	Н
	CS-MA95KEx2/CU-MA185KE	2500	2x2,6	2x3,0	нд	1,76	290/799/175	нд	Н
	CS-MA125KEx2/CU-MA245KE	3200	2x3,45	2x4,0	нд	2,44	290/799/175	нД	H
	CS-MVG103KEx2/CU-MVG153KE	3200	2x2,8	2x4,0	нд	2,88	290/799/175	нд	H
СС/Пот (х/т)	CS/CU-A120TE	НД	3,4	4	нд	1,27	165/1100/650	нД	Н
(** 1)	CS/CU-A180TE	НД	5,1	5,4	нд	2,08	165/1100/650	нд	Н
СС/Наст	CS-C73KE	нд	2	о, ч НД	402	0,55	799/279/190	нд	.,,
J J/ 1 14 U I	CS/CU-A73KE	950	2,1	2,4	402	0,59	799/279/190	НД	
	CS-C93KE		2,1	2,4 НД	504	0,59	799/279/190		
	CS/CU-A93KE	НД 980	2,7	нд	516	0,77		нд нл	
	CS/CU-A93KE CS/CU-G93KE Inverter	1 280			516		799/279/190	НД	
		1 280 НД	2,6	3,6		0,76	799/279/190	НД	- 1
		HII	3,5	НД	558	1,15	799/290/174	НД	1
	CS-C123KE				F70	4.00	700/070/400	110	
	CS/CU-A123KE	1 260	3,4	4	570	1,22	799/279/190	нд	
				4 4,8 НД	570 588 840	1,22 1,02 1,93	799/279/190 799/279/190 1020/315/179	НД НД НД	1 1 1

^{*} Данные, приведенные в таблице, постоянно обновляются и уточняются.

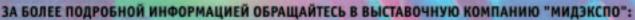
Тип	Модель	Цена (USD)	Охлаждение (кВт)	Нагрев (кВт)	Расход воздуха (м ³ /ч)	Потребляемая мощность (кВт)	Габариты ВБ (мм)	Габариты НБ (мм)	Вес (кг
	CS-C241KE	НД	6,4	нд	900	2,75	1020/315/179	нд	1
	CS/CU-A241KE	2 180	6,4	6,2	900	2,8	1020/315/180	нд	1:
МСС/Наст	CS-MC90(x3)	2 660	3x2,6	НД	2x516	1,76	799/290/175	НД	2x
	CS/CU-MA70+120/190KE	2 250	2,0+3,5	2,1+4,0	402+558	1,82	799/290/175	нд	2x
	CS/CU-M90KEx2/180	2 280	2x2,6	2x3,0	2x588	1,76	799/290/175	НД	2x
anyo	CS/CU-MA120KEx2/240	2 700	2x3,5	2x4,0	2x582	2,44	799/290/175	нд	2x1:
СС/Наст	SAP-K71 G	980	2,1	нд	370	0,6	250/790/174	530/680/225	НД
ИСС/Наст	SAP-K71 GH	1 090	2,1	2,6	400	0,7	250/790/174	530/680/225	HĮ
СС/Наст	SAP-K91 G	1 000	2,6	НД	450	0,8	250/790/174	530/680/225	H,
ИСС/Наст	SAP-K91 GH	1 130	2,6	3,3	430	0,9	250/790/174	530/680/225	H,
СС/Наст	SAP-K127 G	1 130	3,3	НД	450	1,2	265/805/145	530/680/225	Н
МСС/Наст	SAP-K127 GH	1 290	3,3	3,7	470	1,2	265/805/145	530/750/270	H
СС/Наст	SAP-K181 G	1 600	5,2	НД	760	2,2	285/995/196	630/810/275	H,
ИСС/Наст	SAP-K181 GH	1 850	5,1	5,8	760	2,2	285/995/196	630/810/275	Н
СС/Наст	SAP-K241 G	1 990	6,5	НД	830	2,8	285/995/196	630/810/275	H,
МСС/Наст	SAP-K241 GH	2 240	6,4	7,3	830	2,8	285/995/196	630/810/275	H,
СС/Наст	SAP-MC1827	2 400	2x2,7	2x3,3	2x450	2x2,2	250/790/174	630/830/305	Н
СС/Кан	SPW-UC253	3 470	7,3	8	1260	3,33	310/1050/665	735/940/340	H,
	SPW-UC363	4 500	10,6	11,4	1680	3,27	310/1480/665	1235/940/340	Н
	SPW-UC483	5 180	14	16	1920	5,32	310/1480/665	1235/940/340	Н
	SPW-DC253	3 700	7,3	8	1380	3,33	420/1065/620	735/940/340	Н
	SPW-DC363	4 410	10,6	11,4	1800	3,27	420/1065/620	1235/940/340	Н
00/5	SPW-DC483	5 290	14	16	2160	5,6	420/1065/620	1235/940/340	Н
СС/Пот	SPW-TC253	3 360	7,3	8	1140	3,2	185/1270/670	735/940/340	Н
	SPW-TC363	4 240	10,6	11,4	1680	3,23	250/1570/670	1235/940/340	Н
00///	SPW-TC483	4 880	14	16	1920	5,19	250/1570/670	1235/940/340	Н
CC/Kac	SPW-XC253	3 610	7,3	8	1140	НД	328/860/860	735/940/340	Н
	SPW-XC363 SPW-XC483	4 520 5 130	10,6 14	11,4	1680 1920	НД	385/1150/860	1235/940/340 1235/940/340	Н
OK	SPW-XC483 SA-79G	410	2,1	16 НД	360	НД 0,77	385/1150/860 345/440/605	1235/940/340 НД	H H
UN	SA-79G SA-99G		2,1			0,77			Н
	SA-99G SA-128S5	450 580	3,5	НД НД	360 560	1,3	345/440/605 375/530/620	НД НД	
	SA-12055 SA-168S5	770	4,8	нд НД	700	1,83	450/670/646	нд НД	H H
	SA-99GH5	610	2,4	2,6	360	0,86	345/440/605	нд	Н
	SA-930115 SA-128SH5	730	3,3	3,6	560	1,18	375/530/620	НД	Н
	SA-168SH5	880	4,5	4,9	700	1,77	450/670/646	нд	Н
ВБ-МСС/Кан	SPW-U93GH56	1 330	2,8	3,2	480	0,1	310/829/665	нд	Н
DD WOO/Raii	SPW-U123GH56	1 370	3,6	4,2	600	0,1	310/829/665	нд	Н
	SPW-U183GH56	1 550	5,6	6,3	840	0,1	310/829/665	нд	H
	SPW-U253GH56	1 710	7,3	8	1 260	0,2	310/1050/665	нд	Н
	SPW-U363GH56	2 130	10,6	11,4	1 920	0,3	310/1480/665	нд	Н
	SPW-U483GH56	2 280	14	16	1 920	0,3	310/1480/665	нд	Н
ВБ-МСС/Кан	SPW-D253GH56	1 530	7,3	8	1 380	0,5	420/1065/620	нд	Н
22 m 0 0, man	SPW-D363GH56	1 700	10,6	11,4	1 800	0,5	420/1065/620	нд	H
	SPW-D483GH56	1 900	14	16	2 160	0,6	450/1065/620	нд	Н
BE-MCC/Kac(1ĸ)	SPW-AS93GH56	1 690	2,8	3,2	480	0,1	370/810/620	нд	Н
	SPW-AS123GH56	1 770	3,6	4,2	580	0,1	370/810/620	нд	Н
BE-MCC/Kac(2ĸ)	SPW-S93GH56	1 610	2,8	3,2	540	0,1	398/1110/680	нд	Н
(=)	SPW-S123GH56	1 690	3,6	4,2	570	0,1	398/1110/680	нд	Н
	SPW-S183GH56	1 990	5,6	6,3	960	0,1	398/1390/680	нд	Н
	SPW-S253GH56	2 040	7,3	8	1 140	0,1	398/1390/680	нд	Н
BБ-MCC/Kac(4к)	SPW-X123GH56	1 540	3,6	4,2	900	0,1	328/860/860	нд	Н
, ,	SPW-X183GH56	1 620	5,6	6,3	900	0,1	328/860/860	нд	Н
	SPW-X253GH56	1 700	7,3	8	1 140	0,1	328/860/860	нд	Н
	SPW-X363GH56	1 970	10,6	11,4	1 920	0,2	358/1150/860	нд	Н
	SPW-X483GH56	2 110	14	16	1 920	0,2	358/1150/860	нд	Н
ВБ-МСС/Пот	SPW-T183GH56	1 330	5,6	6,3	900	0,1	185/1073/670	нд	Н
	SPW-T253GH56	1 490	7,3	8	1 140	0,1	185/1270/670	нд	Н
	SPW-T363GH56	1 670	10,6	11,4	1 680	0,2	250/1570/670	нд	Н
	SPW-T483GH56	1 800	14	16	1 920	0,2	250/1570/670	НД	Н
ВБ-МСС/Наст	SPW-K93GH56	930	2,8	3,2	450	0,1	360/1000/205	нд	Н
	SPW-K123GH56	980	3,6	4,2	630	0,1	360/1000/205	нд	Н
	SPW-K183GH56	1 090	5	6	800	0,1	360/1000/205	нд	Н
ВБ-МСС/Нап	SPW-F93GH56	1 430	2,8	3,2	420	0,1	615/1065/630	НД	H
	SPW-F123GH56	1 490	3,6	4,2	540	0,1	615/1065/630	нд	Н
	SPW-F183GH56	1 640	5,6	6,3	900	0,1	615/1380/630	нд	Н
	SPW-F253GH56	1 720	7,3	8	1020	0,2	615/1380/630	нд	Н
ВБ-МСС/Нап/скрыт	SPW-FM93GH56	1 350	2,8	3,2	420	0,1	616/904/229	нд	Н
	SPW-FM123GH56	1 390	3,6	4,2	540	0,1	616/904/229	нд	Н
	SPW-FM183GH56	1 420	5,6	6,3	900	0,1	616/1219/229	нд	Н
	SPW-FM253GH56	1 490	7,3	8	1 020	0,2	616/1219/229	нд	H,
			14	16	8 000	5,2			

 $^{^{\}star}$ По вопросам размещения технических данных оборудования обращаться по телефону: (095)135-9857.

МЕЖДУНАРОДНАЯ ВЫСТАВКА

HILTECH HOUSE-2002

первая специализированная выставка интегрированных систем электроники

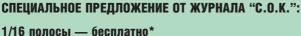

москва, суперсовременный высмаочный центр «триумф» на фрунвенской набережной, зо

24 - 27 эктибри 2002 года

COSSITUE FOILS

- Интегрированные системы управления
 - системы управления светом
 - системы климат контроля
 - отопительные системы
 - системы энергосбережения
 - системы безопасности, видеонаблюдения и противопожарной защиты
 - мультирумные аудио/ видео системы
 - презентационные системы для конференц-залов и ситуационных комнат
- Дизайнерские проекты инсталляций
- Annaparypa Hi-Fi, High-End, а также системы домашнего кинотеатра как неотъемлемая часть современного дома
- Спутниковое и кабельное TV, Интернет

В рамках выставки пройдут бизнес-семинары и обучающие курсы.



Тел.: (095) 737-74-79 (многоканальный) Факс: (095) 145-51-33 E-mail: midexpo@ropnet.ru, www.midexpo.ru

*При подписке на 12 номеров — одноразовая бесплатная публикация информационного блока 1/16 полосы A4 (для профильных предприятий).

Редакционная подписка на журнал "Сантехника, отопление, кондиционирование".

Условия подписки:

Редакционная подписка дает возможность гарантированного получения журнала почтой в индивидуальном

Подписка осуществляется на 12 номеров 2003 года. Стоимость подписки — 792 руб. (с НДС). Для получения счета на подписку необходимо направить заявку в ООО Издательский дом "Медиа Технолоджи" по телефону: (095) 138-9857, факсу: (095) 135-9982 или e-mail: media@mediatechnology.ru

В заявке необходимо указать номера подписанных журналов (с 1 по 12 2003 года), полное название предприятия, почтовый адрес, телефон и факс для связи, а также ФИО контакного лица.

Дополнительная информация на сайте www.c-o-k.ru

Фирмы и торговые марки в номере

Airelec - 5, 43, 45 Alfa Laval - 6 Ariston - 37 ArtCraft - 35 Bosh - 4 Capricorn - 13 Dakon - 27 Demir Dokum - 5 Devi - 47, 48 Ecotherm - 43 Erico - 13 Giersch - 6 Global - 27 Gree - 50, 51 Grundfos - 1, 5, 6, 27, 56 Honeywell - 32 Jaga - 4 Jnkers - 4

Kampmann - 27 Kermi - 27

Kima - 47

Merloni TermoSanitari SpA - 37 Oventrop - 6, 27 Reflex - 27 Rehau - 24, 25, 26, 27 Rosenberg - 6 Rothenberger -14, 15, 16 Saab - 47 Scania - 47 Shell - 9 Stiebel eltron - 4, 46 Thermo Студия - 39 Thermor - 43 Thorin&Thorin - 46 Vaillant - 41, 43 Viessmann - 4, 4 обл. Volvo - 47 Water King - 17 Wilo - 8, 62, 63, 64, 65, 1 обл. Wolf - 6 Yelcenciler - 6 Аист - 33

Акватория Тепла - 37

Аклуб - 34 Бир Пекс - 19, 20, 21, 23 Виватэкс - 53 Водная Техника - 33 Газпром - 54 Гидросфера - 4, 41, 3 обл. Госстрой России - 49, 57 Гравитон - 9 Гранд Отэкс Регион - 22 Даэлком - 7 Дитрон-Пласт - 6, 12, 13, 23 ИСВОДЦентр - 11, 32 Исток - 6 Казанская ярмарка - 7 Комбинат "Магнезит" - 6 КФ Центр - 29 Кыштымский машзавод - 6 Лекс - 27 Макслевел-Комплект - 2 обл. Мастер Ватт - 26, 27 Маэстро - 30, 40

Мембраны - 28 MMK - 1 Мосволоканал - 54, 55 Мосгортепло - 54, 55 Мостеплоэнерго - 54, 55 Мосэнерго - 54 ОВМ - 40 Ольмакс - 16 Роствертол - 7 Специальные Системы и технологии - 47 Тепловые системы - 6 Теплоремонтналадка - 54 Термафлекс Изоляция - 58, 59, 60, 61 Терморос - 4 Фриске - 5, 44 Хогарт - 40 Эгопласт - 4 Элтек Электроникс - 5, 46 Эст-Элек - 45 Южно-уральский арматурноизоляторный завод - 6

Конструктор сайтов «Сделай САМ!» от Alphalink.ru

Отличное решение для Вашего бизнеса!

Компания Alphalink.ru, один из лидеров на рынке профессиональных услуг в области электронной коммерции, начала предоставлять малым и средним компаниям услуги по созданию Web-сайтов и Интернет-магазинов с помощью разработанного компанией программного комплекса — КОНСТРУКТОРА сайтов «Сделай САМ!» — новейшей технологии создания Web-сайтов и Интернет-магазинов, управляемых через стандартный броузер любым сотрудником предприятия без специальных знаний и установки какихлибо программ на компьютере.

Программный комплекс КОНСТРУКТОР позволяет:

- создать различной степени сложности Web-сайты и Интернет-магазины;
- самостоятельно управлять их структурой, содержанием и дизайном с любого места, где имеется выход в сеть Интернет;
- самостоятельно управлять любыми видами рекламы на сайтах и магазинах;
- настраивать различные интерактивы форумы, гостевые книги, доски сообщений, новостные ленты, системы опроса, голосования ...

Программный комплекс КОНСТРУКТОР включает в себя предоставление:

- адреса в сети Интернет домена третьего уровня;
- программного обеспечения для создания сайта через обычный броузер, причем, устанавливать программное обеспечение на свой компьютер не надо!
- дискового пространства на сервере для хранения сайта (хостинг);
- круглосуточный доступ к административной части сайта (бэк-офису) из любой точки сети Интернет для добавления, изменения и удаления информации на сайте;
- инструкции и консультации по работе конструктора.

Получить дополнительную информацию о возможностях КОНСТРУКТОРА можно на сайте компании www.alphalink.ru или по телефону: (095) 204-19-31

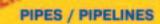
Седьмая Международная специализированная выставка

AQUA-THERM 2003

ВОДА И ТЕПЛО В ВАШЕМ ДОМЕ

В рамках выставки пройдет Третий Московский салон бассейнов

ОСНОВНЫЕ РАЗДЕЛЫ ВЫСТАВКИ


- автоматизация
- бурение
- вентиляция
- водоочистка
- водоподготовка
- водоснабжение и водоотведение
- газоснабжение
- канализация
- кондиционирование
- мебель и аксессуары для ванных комнат, бытовая техника, сантехника
- оборудование и материалы
- отопление
- теплоснабжение
- холодоснабжение
- экологический контроль

САЛОН БАССЕЙНОВ

- аквапарки
- аквариумы
- бани
- бассейны
- камины
- печи
- сауны
- солярии
- фонтаны

PUMP TECH SHOW

- насосы
- насосное оборудование
- насосные установки

ЭНЕРГОСБЕРЕЖЕНИЕ

Организаторы: фирма M.S.I. Госстрой России при содействии ЗАО «Экспоцентр»

Информационная поддержка

202 93 49 290 40 13 290 60 02 msi@msiexpo.ru www.msiexpo.ru

Газовые колонки **HydroPower**

Благодаря технологии **HydroPower** — новинке мирового масштаба, новые колонки фирмы Junkers перестали нуждаться в батарейках для розжига горелки.

Турбина колонки, приведенная в действие водяным потоком, производит электрический ток для зажигания горелки.

Благодаря отсутствию дежурного фитиля пламя их модулирующей горелки горит только тогда, когда это необходимо. Расход газа при этом на 25% меньше, чем у обычных газовых колонок!

Газовые колонки **HydroPower** адаптированы к эксплуатации в российских условиях (ном. давление газа 13 мбар).

WR 275-7 — 19,2 кВт (11 л/мин)* WR 350-7 — 24,4 кВт (14 л/мин)* * при ΔT 25°C

HydroPower — вода зажигает огонь

ОТОПИТЕЛЬНЫЕ КОТЛЫ | ОБОГРЕВАТЕЛИ | ВОДОНАГРЕВАТЕЛИ | ФИЛЬТРЫ | СУШИЛКИ ДЛЯ РУК

ГИДРО СФЕРАпроессиональные решения

119 991 **Москва**, ул. Вавилова 30 (095)795 31 81

195 027 **Санкт-Петербург**,
Большеохтинский пр. 10 (812)224 09 03

www.hydrosfera.ru

Технологии имеют границы, но при системном подходе они преодолимы.

Фирма Viessmann в своей программе котпов средней и большой мощности предлагает все:

- от неокотемпературных и конденсатных котлов мещностью до 6 600 КВт
- до водогрейных и паровыя котлов низкого и высокого давления мощностью до 15000 КВт

OOO «Виссманн» 129337, Россия, Москва, ул. Вешних вод, д. 14 Телефон (095) 775 82 83, телефакс (095) 775 82 84

Санкт-Петербург, (812) 326 78 70 Екатеринбург, (3432) 12 21 05 G1324/1 RUS

Отопление