

ООО «Данфосс»

ПАСПОРТ

Теплосчетчик SONOMETER 1000 (прибор учета)

Межповерочный интервал – 4 года

Содержание

Общие сведения	3
Функция тарификации	4
Внутренняя память	4
Коды ошибок	6
Внешнее программное обеспечение	6
Технические данные	7
Инструкция по установке	8
Установка прибора учета	8
Подключение термопреобразователей сопротивления	8
Установка термопреобразователей сопротивления	9
Напряжение электропитания	9
Интерфейсы вычислительного блока	10
Модуль связи M-Bus	10
Модуль радиосвязи (реальные данные)	. 11
Модуль связи RS-232	. 11
Модуль импульсного входа	. 11
Модуль импульсного выхода	. 11
Подключение модулей связи	. 12
Подключение функциональных модулей	. 12
Размеры	. 17
Основные отображения на дисплее	19
Стандартные настройки вычислителя (заводские настройки)	20
Настройки циклов	. 21

Данный паспорт предназначен для ознакомления пользователя с техническими характеристиками и приемами работы с теплосчетчиком SONOMETER 1000 (далее — прибор учета SM 1000).

Общие сведения

Прибор учета типа SM 1000 выпускается в трех версиях:

- теплосчетчик (heating),
- холодосчетчик (cooling),
- теплосчетчик/ Холодосчетчик (heating/ cooling) объединенная модель.

Данный тип приборов предназначен в первую очередь для измерения, обработки и предоставления текущей и архивной информации о количестве потребленной тепловой энергии, температуре, расходе теплоносителя и сопутствующих данных в закрытых системах водяного отопления индивидуальных потребителей (поквартирный учет, лучевая разводка) при температуре теплоносителя от 5 до 150 °C.

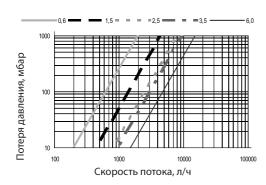
Конструктивно SM 1000 состоит из следующих компонентов:

- ультразвукового датчика расхода воды,
- электронного вычислительного блока,
- согласованной пары датчиков температуры типа Pt500.

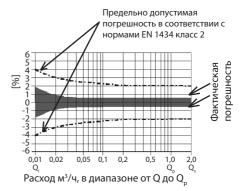
Контроль измеряемых параметров может осуществляться визуально с 7-разрядного дисплея, причем поиск необходимой информации производится путем перемещения по информационному меню с помощью кнопки. Также имеется возможность подключения к компьютеру для локального считывания данных и конфигурирования через оптический порт. Имеются возможности дистанционной передачи импульсного сигнала о значении выбранного параметра и подключения к распределенной сети сбора учетных данных через интерфейсы M-Bus и RS-232.

- Первый прибор учета ультразвукового принципа измерения расхода жидкости с динамическим диапазоном Q₂/Q₂ 1: 250 класса 2 (Q₂ 0,6/1,5/2,5 м³/ч).
- Новая конструкция расходомерной части позволяет значительно уменьшить потерю давления по сравнению с предыдущими типами прибора.
- Прочный рефлектор из нержавеющей стали.
- Точность измерений соответствует EN1434, классы 2 и 3.
- На входе и/или выходе не требуются элементы для гидродинамической стабилизации потока (прямые участки).
- Полный динамический диапазон: > 1:1500.

Максимальная температура теплоносителя в расходомере: $130\,^{\circ}$ C (кратковременно, до 4-х часов в сутки возможное увеличение температуры до $150\,^{\circ}$ C).


Номинальные расходы по типоразмерам: $Q_{_{D}}$ 0,6; 1/1,5; 2,5; 3,5; 6 м³/ч.

Питание от встроенной литиевой батареи, срок службы 12 лет (со специальной батареей – 16 лет), или от сети 220 B/24 B переменного тока.


Дополнительные устройства: модули интерфейса сети M-Bus и RS-232 для подключения к сети или выноса точки считывания за пределы квартиры и модули импульсных выходов и выходов, программируемые на заданные параметры.

Потеря давления

Метрологические характеристики

Функция тарификации

С помощью дополнительного внешнего программного обеспечения имеется возможность построения систем сбора данных и чтения архива и текущих данных прибора учета.

Внутренняя память

Память событий

Такие события, как отказы и изменения условий работы, фиксируются в энергонезависимой памяти с вместимостью 31 событие. К фиксируемым событиям относятся:

- ошибки контрольной суммы,
- ошибки измерения температуры,
- ошибки измерения времен ультразвукового расходомера,
- пуск/останов режима тестирования.

Память месячных данных

Вычислительный блок имеет историческую память (архив) глубиной 24 месяца. При каждой смене месяца в энергонезависимой памяти записываются следующие параметры:

- дата,
- энергия,
- тариф энергии 1,
- тариф энергии 2,
- определение тарифа 1,
- определение тарифа 2,
- объем теплоносителя,
- счетчик дней с ошибками,
- максимальный расход за месяц,
- максимальная мощность за месяц,
- дата максимального расхода за месяц,
- дата максимальной мошности за месяц.

Журнал

Журнал используется для записи величин, характеризующих потребление. Интервал записи в журнал может быть назначен равным одному из следующих значений (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 минут или установка по умолчанию 24 часа). Данные, сохраненные в журнале, можно использовать для последующего анализа, например:

• Считывание прибора по определенным дням *Пример*: Если день для считывания 01.10, то отсчет прибора отображается за период от 01.10 предыдущего года до 30.09 текущего года.

Сравнение последнего заданного периода потребления с предыдущим периодом.

Количество записей в журнале 468. Запись журнала содержит: состояние ошибки, температуру во время перегрузки (до 150 °C), расход во время перегрузки, температуры прямая и обратная, дату и время, энергию, тариф 1, тариф 2, определение тарифа 1, определение тарифа 2, объем теплоносителя, счетчик дней с ошибками.

Фра	агмент возможных настроек регистрационного запомина	ющего устрой	тва
Интервал сохранения	Параметры	Количество записей данных	Период записи
5 минут	Состояние ошибки, длительность температурной	440	36,6 часа
15 минут	перегрузки, длительность перегрузки по скорости потока, температура прямого потока, температура обратного	440	110 часов
1 час	потока, дата и время, энергия, тариф энергии 1, тариф энергии 2, определение тарифа энергии 1, определение	440	18,3 дня
24 часа	тарифа энергии 2, объем, количество ошибок в день	440	440 дней

Определение максимальных величин

Вычислительный блок формирует значения максимальных величин для энергии и расхода для сохранения в энергонезависимой памяти. В счетчике задается интервал интегрирования — 6, 15, 30, 60 минут, за который происходит усреднение текущих показаний для нахождения максимальных значений. По умолчанию этот интервал устанавливается равным 60 минут.

Тарифная функция

Вычислительный блок имеет два раздела памяти для контроля состояния нагрузки в предельных условиях. Фиксирование превышения тарифных пределов позволяет лучшим образом настроиться на индивидуальные особенности потребителя.

В таблице приведены диапазоны тарифных пределов и дискретность их установки.

Тип	ПРЕДЕЛЫ	Разрешение ПРЕДЕЛОВ
ΔΤ	1 190 °C	1 °C
T_{R}	1 190 °C	1 °C
Р	1 255 кВт	1 кВт
Q	100 25 500 л/ч	100 л/ч

В приложении даны виды окон шести циклов.

Кнопка, расположенная на передней панели вычислителя, обеспечивает перемещение между окнами дисплея. Кратковременное нажатие на кнопку (менее 3 секунд) выводит очередное окно внутри цикла. Длительное нажатие (более 3 секунд) выводит очередной цикл. Окно «Энергия» (номер 1.1 в последовательности) является базовым, которое выводится автоматически, если нажимается кнопка, когда вычислитель находится в режиме экономии. Режим экономии наступает, если кнопка не нажимается в течение 4 минут.

Коды ошибок

Если появилась ошибка, то код ошибки отображается в основном цикле. Знак ошибки присутствует постоянно в соответствующем окне (например, ошибка температуры не показывается в окне данных расхода). В режиме отображения базового окна при наличии ошибки попеременно выводится базовое окно и все коды присутствующих ошибок (ошибка "C-1" отображается во всех окнах).

Ошибка	Приоритет отображения	Описание ошибки
C - 1	1	Базовый параметр во Flash- или RAM-памяти разрушен.
Err1	2	Ошибка в измерении температуры 1) Вне температурного диапазона [-9,9190 °C] 2) Датчик закорочен 3) Датчик неисправен
Err3	4	Входной и обратный датчики перепутаны.
Err4	3	Погрешность аппаратного обеспечения в ультразвуковых измерениях 4) Дефектный преобразователь 5) В преобразователе короткое замыкание
Err5	6	Логический конденсатор разряжен
Err6	5	Неверное направление потока в измерительной части
Err7	7	Полезный ультразвуковой сигнал отсутствует б) Воздух в расходомере
Err8	8	Питание идет от резервной батареи

Внешнее программное обеспечение

Отдельно поставляемое программное обеспечение дает возможность:

- строить распределенные системы сбора информации,
- локально снимать информацию, конфигурировать прибор, задавая необходимые значения сервисных параметров, проводить метрологическую калибровку.

Счетчик энергии		Q _p , M ³ /4	۰,	9'0		1,0/1,5		2,5	3,5	6,0	
	Экологический класс					Ē	N 1434	EN 1434 класса С/A			
Основные	Класс защиты					IP 54 (нагрев)/IP 64 (охлаждение/климат))/IP 64	(охлаждени	е/климат)		
характеристики	Тип				Статич	эский прибор, сс	оответ	ствующий т	Статический прибор, соответствующий требованиям EN 1434	434	
	Способ измерения				Ул	Ультразвуковой способ измерения объема (расхода)	особ и	змерения о	бъема (расхода)		
	Дисплей					Жидкокристаллический дисплей, 7-разрядный	ическі	ий дисплей,	7-разрядный		
	Единицы измерения			2	1Вт•ч – кВ	т•ч – ГДж – Гкал	– Mbtı	ı (10 ⁶ британ	МВт•ч – кВт•ч – ГДж – Гкал – Mbtu (10⁶ британских тепловых единиц)	(пинит)	
Индикация на дисплее	Максимальные значения					666′666 6 – 66′666 66 – 6′666 666 – 666 666	5′666 6	66'666 66 – 1	666'666 6 –		
	Отображаемые параметры				Mo	щность – энерги	19 – CKG	орость потон	Мощность – энергия – скорость потока – температура		
	Максимальная	ď	h/₅W	1,2		2/3		5	7	12	
Диапазон скорости	Номинальная	ď	M³/4	9'0		1/1,5		2,5	3,5	9	
потока	Минимальная	ō	Һ∕и	9		10/6		10	35	24	
	Начальная		л/ч	1		2,5		4	12	12	
Температурный диапазон	Измеритель объема		Ç			5130			5	5150	
Потеря давления	При О,	ΔР	мбар	85		36/75		100	44	128	
Рабочее давление	Максимальное	۵×	бар	16 (25)	25	16 (25)	25 1	16 (25) 25	25	25	
Номинальный диаметр		NO	MM	15 20 2	20 FL20	15 20 20 F	FL20 2	20 20 FL20	25 FL25 FL32	25 FL25 FL32	L32
Общая длина			MM	110 130	190	110 130 190		130 190	260	260	
	Температурные датчики	ТиП				Pt500 сдв	зухпро	Pt 500 с двухпроводными выводами	водами		
	Ток датчика		МА			Pt 100 п	лк. < 2 ₂	Pt 100 пик. < 2; среднеквадр. < 0,012	tp. < 0,012		
	Цикл измерения	⊢	U			Питание от сети: 1 с; Питание от батареи: 16 с	:1c;	Питание от	батареи: 16 с		
	Макс. разность температур	t макс.	ᅩ					177			
Вход	Мин. разность температур	t мин.	ㅈ					8			
	Начальная разность температур	t.	\times					0,25			
	Абсолютный диапазон измерения температур	t	Ç				6'6-	-9,9 189,9			
Напряжение электропитания	Рабочее напряжение	٦	В	3,0 B/3,6 E	В пост. то	ка (литиевая бат	гарея)/ т	//230 В перем тока	3,0 В/3,6 В пост. тока (литиевая батарея)/230 В переменного тока/24 В переменного тока	переменного	
Разное	Bec	в сборе	_	750 760 780 2850 750 760	30 2850		850 7	50 780 2850	780 2850 760 780 2850 1500 3500 4800 1500 3500 4800	1500 3500 48	300
Коэффициент со- противления потоку	Зета			21,3 67,5 67,5 67,5	,5 67,5	4,3 13,6 13,6 1	13,6 4	4,0 4,0 4,0	2,8 2,8 7,4	2,8 2,8	7,4

Инструкция по установке

Инструкция предназначена для монтажников, имеющих необходимый уровень базовых знаний и опыт, поэтому мы не описываем элементарные подробности процесса.

Важное указание!

Не допускайте повреждений пломбировочного шильдика на теплосчетчике (рис. С)! Повреждение шильдика делает недействительными заводскую гарантию и калибровку. Не допускается укорачивать или каким-либо иным образом изменять кабели, поставляемые в комплекте с теплосчетчиком.

Примечание.

- Необходимо соблюдать правила применения прибора!
- Необходимо соблюдать правила работы с электроустановками!
- Необходимо выполнять все указания, приведенные в техническом описании прибора учета.
- Не допускается повреждать или удалять калибровочные метки прибора учета. Их удаление делает недействительными заводскую гарантию и калибровку прибора учета. Пломбировочный шильдик может снимать только уполномоченный персонал для проведения технического обслуживания с последующей установкой шильдика.
- Для настройки считывания показаний / конфигурирования теплосчетчик существует программное обеспечение HYDRO-SET, которое поставляется по отдельному заказу.

Установка прибора учета

В зависимости от конструкции прибора, его устанавливают либо на подающий, либо на обратный трубопровод, как указано на шильдике прибора. Расходомерная часть должна быть установлена в направлении потока, указанном стрелкой (рис. A).

После окончания установки расходомер должен быть постоянно заполнен жидкостью. Установки элементов для гидродинамической стабилизации потока до и после расходомера не требуется. Теплосчетчик можно устанавливать на вертикальных (рис. Е-1) или горизонтальных (рис. Е-2) участках трубопроводов, однако при этом воздушные пузырьки не должны скапливаться в расходомере (рис. Е-3).

Прибор учета должен быть установлен на достаточном расстоянии от возможных источников электромагнитных помех (выключатели, электродвигатели, флуоресцентные лампы и т.п.). Поставляются модели прибора с Qp 0,6/1,5/2,5. При температуре теплоносителя 90 °С или более вычислительный блок должен быть установлен на стене на достаточном расстоянии от источников тепла с помощью держателя, поставляемого в комплекте прибора (рис. F). Чтобы упростить демонтаж прибора учета, рекомендуется устанавливать запорную арматуру до и после расходомерной части. Прибор учета должен быть установлен в месте, обеспечивающем удобный доступ для эксплуатации и технического обслуживания.

Подключение термопреобразователей сопротивления

Необходимо осторожно обращаться с термопреобразователями сопротивления (далее датчики)! Кабели датчиков имеют цветные бирки: красную – датчик температуры прямого потока и синюю – датчик температуры обратного потока.

При установке температурных датчиков кабели следует пропустить в кабельные вводы, как показано на рис. D, и подключить к клеммам (рис. B) согласно следующей таблице (стр. 9):

Тип прибора учета	Цвет датчика	Выход	Установочная позиция
Для централизованного отопления, расходомер монтируется на	красный	5 TH 6	подающий Т/П
обратном Т/П (WZR)	синий	7 Tc 8	в расходомере
Для централизованного отопления, расходомер монтируется на	красный	5 TH 6	в расходомере
подающем Т/П (WZV)	синий	7 Tc 8	обратный Т/П
Для холодоснабжения расходомерная часть монтируется на	красный	5 TH 6	в расходомере
обратном Т/П (WZVK)	синий	7 Tc 8	подающий Т/П
Для холодоснабжения расходомерная часть монтируется на	красный	5 Тн б	обратный Т/П
подающем Т/П (WZRK)	синий	7 Tc 8	в расходомере
Для комбинированного охлаждения/отопления, расходомерная	красный	5 TH 6	подающий Т/П
часть монтируется в обратный Т/П (WZRWK)	синий	7 Tc 8	в расходомере
Для комбинированного охлаждения/отопления, расходомерная	красный	5 Тн б	в расходомере
часть монтируется в обратный Т/П (WZVWK)	синий	7 Tc 8	обратный Т/П

Затем нажатием на кабель датчика следует закрепить его в зажиме. Свободная длина кабеля (около 100 мм) должна быть оставлена для повторного соединения верхней части с нижней частью прибора.

Установка термопреобразователей сопротивления

Свободный температурный датчик можно установить в шаровом кране или с использованием стальной гильзы.

Для установки в шаровом кране прилагается переходное устройство (комплект из 5 элементов в отдельном пакете). Порядок установки:

- закрыть шаровой кран;
- отвинтить резьбовую пробку шарового крана;
- поместить уплотнительное кольцо из прилагаемого комплекта на монтажный штифт, как по-казано на рис. М (2). Второе уплотнительное кольцо является запасным;
- вращательными движениями вставить уплотнительное кольцо с монтажным штифтом в отверстие для датчика в шаровом кране;
- уплотнительное кольцо должно быть вставлено до упора и закреплено монтажным штифтом рис. М (4);
- установить крепежный винт в температурный датчик:
- поместить температурный датчик во втулку монтажного штифта и задвинуть его до упора. При этом температурный датчик будет закреплен в соединении;
- вставить рифленый штифт в переходное соединение с помощью плоскогубцев рис. М (5а);
- вынуть монтажный штифт из температурного датчика рис. М (5b);
- вставить температурный датчик с переходным соединением в шаровой кран и плотно завинтить рис. М (6).

Напряжение электропитания

Литиевая батарея напряжением 3,0 В (рис. L-1) обеспечивает электропитание в стандартном исполнении при эксплуатации в течение до 12 месяцев (в зависимости от конфигурации прибора). Литиевая батарея напряжением 3,6 В с регулятором (рис. L-2) обычно обеспечивает эксплуатацию более 16 лет. Блоки питания от сети напряжением 24 В или 230 В переменного тока (рис. К-3) также можно использовать.

Технические характеристики сетевого электропитания

Модуль 230 В переменного тока / модуль 24 В переменного тока (рис. L-3):

- клеммы рассчитаны на провода сечением до 2,5 мм²;
- электрическая изоляция;
- частота 50 Гц;
- потребляемая мощность 0,35 BA ±10 %;
- впаянный плавкий предохранитель.

При отсутствии сетевого питания резервная батарея блока электропитания обеспечивает подачу питания. Актуальность даты и времени сохраняется, однако измерительные функции, включая измерение скорости потока, не выполняются.

Примечание. Блок питания сообщает модулю о подаче напряжения сети и автоматически переключается на экономичный режим питания. При этом дисплей отключается, однако он может быть включен нажатием кнопки. Связь, в частности, посредством шины M-Bus или оптического интерфейса сохраняется. Непроизводите подключения кдвумфазам, поскольку это повредит блок питания! Использованные батареи подлежат сдаче в соответствующие сборные пункты!

Интерфейсы вычислительного блока

Прибор учета имеет два слота для подключения дополнительных модулей. Слот 1 (рис. H) предназначен для модулей связи M-Bus или RS-232 или модуля импульсного входа.

Слот 2 (рис. Н) предназначен для подключения функционального модуля импульсного входа (например, два дополнительных измерителя объема) или функционального модуля импульсного выхода (например, для импульса объема и энергии).

Важное примечание. Не допускается перепутывать слоты! Всегда необходимо контролировать правильное подключение модулей к слотам.

Эти модули не оказывают влияния на результаты потребления тепла и могут быть подключены без нарушения калибровочной отметки.

Модуль связи M-Bus

Модуль связи M-Bus представляет собой последовательный интерфейс, предназначенный для связи с внешними устройствами (повторитель M-Bus), например, с помощью HYDRO-CENTER. С центром управления может быть связано несколько приборов.

Плата содержит 2-полюсную клеммную колодку с выводами, имеющими маркировку 24 и 25 (рис. J-1), которые подключаются к ведущему устройству M-Bus.

- Модуль M-Bus соответствует стандарту EN 1434-3.
- Подключение проводов 2 x 2,5 мм².
- Электрическая изоляция.
- Максимальное напряжение: 50 В постоянного тока.
- Отводимый ток: одинарная нагрузка M-Bus.
- Первичная или вторичная адресация.

Модуль радиосвязи (реальные данные)

Модуль радиосвязи представляет собой интерфейс для связи посредством предварительно определенных радиопротоколов. Для осуществления приема имеются различные приемные системы HYD. Протокол передачи можно редактировать, например, с помощью программы Hydro-Set.

Характеристики модуля связи:

- однонаправленный,
- вывод считываемой информации через каждые 3 минуты,
- отправка протокола через каждые 8 ...19 секунд (изменяется в зависимости от длины протокола).

Модуль связи RS-232

Модуль связи RS-232 представляет собой последовательный интерфейс, предназначенный для связи с внешними устройствами, например, с персональным компьютером. Плата содержит трехполюсную клеммную колодку с выводами, имеющими маркировку 62 (Dat), 63 (Req) и 64 (GND) (рис. J-2).

Для подключения поставляется специальный кабель.

Подключение проводов: 62 – коричневый, 63 – белый и 64 – зеленый.

Модуль импульсного входа

- Устройство сбора данных для двух импульсных водомеров с передачей посредством интеграторных интерфейсов (рис. К-1).
- Программируемая скорость импульсов: 1, 2,5, 10, 25, 100, 250, 1000 или 2500 на импульс.
- В измерителе возможны любые единицы энергии, м³ или отсутствие единиц.
- Диапазон входных частот 0-8 Гц, длина импульса 10 мс.
- Выбираемые единицы: объем, энергия или отсутствие единиц.
- Входная частота определяется в пределах 0 ... 8 Гц.
- Длительность импульса > 10 мс.
- Входное сопротивление 2,2 МОм.
- Напряжение на зажимах: 3 В пост. тока.
- Данные отдельно аккумулируются в различных регистрах. Для обоих входов можно установить отчетные даты.
- Длина кабеля менее 10 м.

Модуль импульсного выхода

Измеритель обеспечивает уровни для двух опционных импульсных выходов (рис. К-2), которые можно свободно программировать с помощью программного обеспечения HYDRO-SET. Стандартная маркировка для импульсного выхода энергии – А на клеммной колодке и Out1 на дисплее. Выход объема имеет маркировку В на клеммной колодке и Out2 на дисплее.

- Внешнее напряжение электропитания V_{cc} : 3–30 В постоянного тока.
- Выходной ток: 20 мА при остаточном напряжении 0,5 В.
- Открытый коллектор (сток).
- Выходная частота 4 Гц.
- Длительность импульса 100-150 мс.
- Потенциальное разделение.

Возможные комбинации выходных импульсов

Импульсный выход энергии

• Значение импульса: в зависимости от последнего знака единицы измерения энергии, отображаемого на дисплее.

Пример.

Дисплей	Значение импульса
ГДж с 3 знаками после запятой	1 МДж/импульс
кВт-ч с 0 знаков после запятой	1 кВт•ч/импульс

- Длительность импульса: 125 мс + 10 %.
- Интервал между импульсами: > 125 мс 10 %.

Импульсный выход объема

- Значение импульса: в зависимости от последнего знака единицы измерения объема, отображаемого на дисплее.
- Длительность импульса: 125 мс + 10 %.
- Интервал между импульсами: > 125 мс 10%.

Тариф энергии 1 и тариф энергии 2

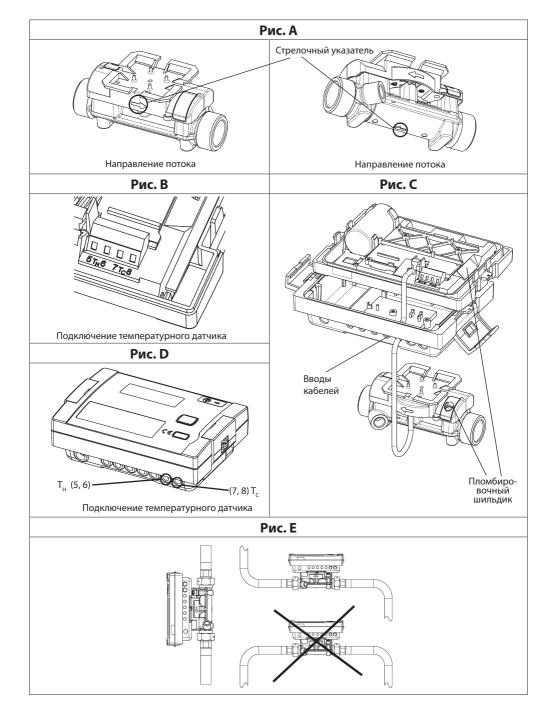
- Значение импульса: в зависимости от последнего знака единицы измерения, отображаемого на дисплее.
- Длительность импульса: 125 мс + 10%
- Интервал между импульсами: > 125 мс 10%

Режим тарифа 1 и/или режим тарифа 2 (предельный выключатель)

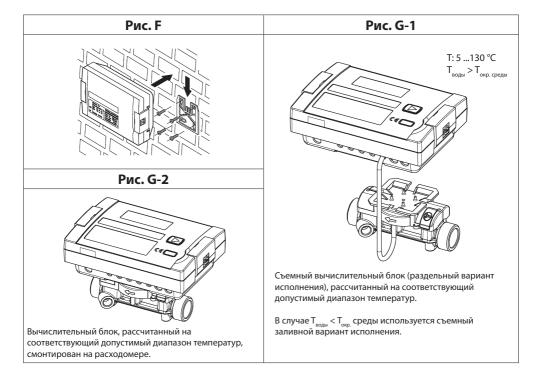
- Вывод в форме статического состояния для каждого нового определения режима тарифа, например, скорость потока: > 300 л/ч или разность температур: < 50 °C.
- Вывод аварийного сигнала.

Ошибка измерения энергии или объема

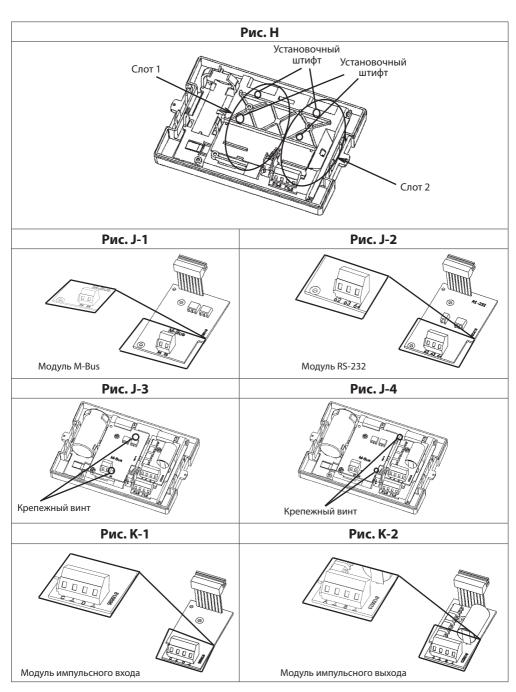
- Вывод в форме статического состояния, например, скорость потока: > 300 л/ч, или разность температур: < 50 °C.
- Вывод аварийного сигнала.

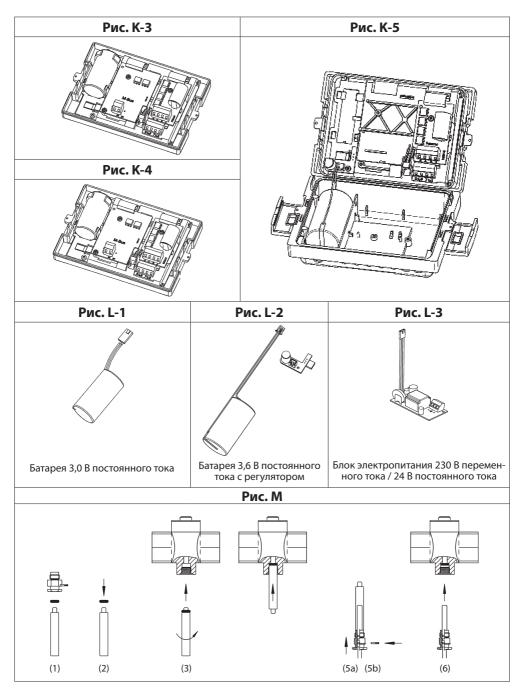

Подключение модулей связи

- 1. Снять пломбу с корпуса вычислительного блока и открыть крышку.
- 2. Подключить к слоту 1 (рис. H) модули связи (M-Bus, RS-232 или радио).
- 3. Осторожно установить заглушку на плату (рис. J-3). Поместить модуль (рис. J-1 и J-2) на верхний установочный штифт, задвинуть между нижними установочными штифтами до упора и плотно завинтить двумя винтами с крестообразным шлицем.
- 4. Закрыть крышку и проверить правильность работы прибора, нажав на кнопку. Установить пломбировочный шильдик на крышку корпуса, если прибор правильно функционирует.

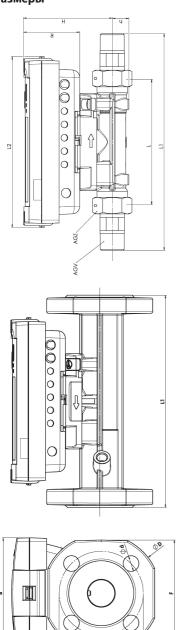

Подключение функциональных модулей

- 1. Функциональные модули импульсного входа или импульсного выхода подключаются к слоту 2 (рис. Н). Если модуль M-Bus или RS-232 не используется, модуль импульсного входа можно подключить к слоту 1.
- 2. Осторожно установить заглушку на плату (рис. К-3 и К-4). Поместить модуль (рис. К-1 и К-2) на верхний установочный штифт, задвинуть между нижними установочными штифтами до упора и плотно завинтить двумя винтами с крестообразным шлицем.
- 3. Закрыть крышку и проверить правильность работы прибора, нажав на кнопку. Установить пломбировочный шильдик на крышку корпуса, если прибор правильно функционирует.



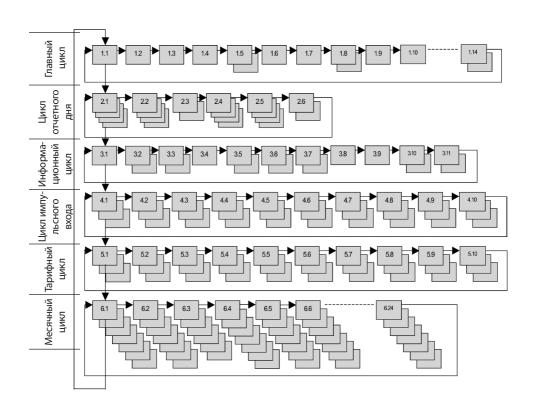

Общие примечания.

- Максимальная температура окружающей среды: 55 °C!
- Если температура воды меньше температуры окружающей среды, необходимо демонтировать вычислительный блок с расходомерной части (рис. G-1). Кроме того, необходимо использовать вариант заливного счетчика, поскольку в противном случае счетчик может быть поврежден в результате конденсации.



Размеры

Номинальная величина		00 = 0.6 < 3/6	6 < 3/6			$On = 1.5 < ^3/G$	5 < 3/6		C	$On = 2.5 < ^{3}/G$	رو (C	$On = 3.5 < ^3/G$	ي	$On = 6 < \frac{3}{6}$	3/6
расхода		24				÷	,		y	21	,	ý		,	y y	,
Г, мм	110	130	190	190	110	130	190	190	130	190	190	260	760	260	260	260
L1, мм	190	230			190	230			230							
L2, мм								150								
В, мм (Ширина вычис- лительного блока)								100								
R, мм (Высота вычис- лительного блока)								50								
Н, мм	78	80	80	80	78	80	80	80	80	80	80	84,5	84,5	84,5	84,5	84,5
h, мм	14,5	18	18	47,5	14,5	18	18	47,5	18	18	47,5	23	20	62,5	23	20
204	Gs B	G1B	G1B	H.	Gs B	G1B	G1B	H.	Gs B	G1B	H.	0115	FI. DN	FI. DN	0:1:0	FI. DN
AGE	DN15	DN20	DN20	DN20	DN15	DN20	DN 20	DN20	DN15	DN20	DN20	م را ه	25	32	وراق	25
AGV	Rs	Rs	Rs		Rs	Rs	Rs		Rs	Rs						
Диаметр D, мм	_	_		105	_			105		_	105	1	114	139	1	114
Диаметр d, мм	ı	1	ı	14		I	ı	14	I		14	ı	14	18	ı	14
Размер фланца F, мм			I	92				86			95	1	100	125	1	100
Диаметр центров отверстий К, мм	ı			75	I			75			75	ı	85	100	I	85
Вес, кг	92'0	0,85	96'0	2,75	92'0	0,85	96'0	2,75	0,85	96'0	2,75	1,5	3,5	4,8	1,5	3,5


С целью индикации данных, полученных вычислителем, создаются различные окна, представляющие циклические функции, которые можно последовательно вызывать для отображения технической информации, связанной с каждым окном (например, количество энергии, количество часов эксплуатации, количество воды, текущие температуры, максимальные значения).

Прибор учета отображает шесть циклов: главный цикл, цикл показаний за день, информационный цикл, цикл импульсного входа, тарифный цикл и месячный цикл.

Некоторые окна содержат два показания (максимум семь показаний), которые отображаются последовательно с интервалом 2-4 секунды.

Некоторые фрагменты циклов или целые циклы можно отдельно дезактивировать. Это упрощает структуру окон.

Примечание. Для ускоренной визуальной ориентации циклы дисплея пронумерованы цифрами от 1 до 6. Главный цикл с текущими данными, в частности данными энергии, объема и скорости потока, запрограммирован как стандартная настройка. Возможно изменение содержания главного цикла.

Основные отображения на дисплее

Цикл	Последова- тельность	О	кно 1			Окно 2		Окн	ю 3		
	1.1	Накопленна	я энергия								
	1.2	Объем тепло	оносителя								
	1.3	Расход									
	1.4	Мощность									
Главный цикл	1.5	Температура	а прямая		Обрат	гная температу	ура				
	1.6	Разность тел	иператур								
	1.7	Часы работь	ı								
	1.8	Код ошибки									
	1.9	Тест дисплея	7								
	2.1	День 1 дата			День	1 энергия		'Accd 1'			
	2.2	День 1 дата	последний	год	День	1 энергия посл	педний год	'Accd 1'			
Цикл учетных	2.3	'Accd 1'			Следу	ющий день 1					
дат	2.4	День 2 дата			День:	2 энергия		'Accd 2'			
	2.5	День 2 дата	последний	год	День:	2 энергия посл	педний год	'Accd 2'			
	2.6	'Accd 2'			Следу	ющий день 2					
	3.1	Текущая дат	a								
	3.2	'ВТОР_Адр'			Втори	чный адрес					
	3.3	′ПЕРВ_Адр′			Перви	ичный адрес					
	3.4	'Pt 100' или 'l	Pt 500'								
	3.5	Макс. месяч	ный расход	1	Дата м	иакс. расхода					
Информацион-	3.6	Макс. месяч	ная мощно	сть	Дата и	лакс. мощност	И				
ный цикл	2.7	Макс. велич	ины интерв	зала							
1.5 4	3.7	интегрирова	вния								
	3.8	Число дней	с ошибкамі	И							
	3.9	'Out 1			Велич	ина и единица	a				
	3.7	out i			— .	ения выхода ′					
	3.10	Out 2				ина и единица					
					_	ения выхода 2		Вес импульса 1			
Цикл импульс-	4.1	In1				ленный объег		Вес импульса 1			
ных входов	4.2	ʻln2				ленный объег	и 2	Тарифный лимит 1			
	5.1	Текущая тарифная энергия 1 Текущая тарифная энергия 2				рифа 1 ('t 01')					
	5.2	 	ифная энер	огия 2		рифа 2 ('t 01')	1	Тарифный л 'Accd 1'	имит 2		
	5.3	День 1 дата				1 тарифная эн		'Accd 1'			
	5.4	День 1 дата				1 тарифная эн		'Accd 1'			
	5.5	День 1 дата	последний	год	День 1 тарифная энергия 1 последний год			'Accd 1'			
Тарифный цикл	5.6	День 1 дата	последний	год	День 1 тарифная энергия 2 последний год			'Accd 1'			
	5.7	День 2 дата			День:	2 тарифная эн	ергия 1	'Accd 2'			
	5.8	День 2 дата				2 тарифная эн		'Accd 2'			
	5.9	День 2 дата	последний	год		2 тарифная эн дний год	ергия 1	'Accd 2'			
	5.10	День 2 дата	последний	год		2 тарифная эн дний год	ергия 2	'Accd 2'			
		Окно 1	Окно 2	Ок	но 3	Окно 4	Окно 5	Окно б	Окно 7		
	6.1	Последний месяц	Энергия	Тари энер	гия 1	Тарифная энергия 2	Объем	Макс. расход	Макс. мощность		
	6.2	Месяц-1	Энергия	Тари	фная гия 1	Тарифная энергия 2	Объем	Макс. расход	Макс. мощность		
Месячный цикл	6.3	Месяц-2	Энергия	Тари	фная	Тарифная энергия 2	Объем	Макс. расход	Макс. мощность		
	:			1							
	6.24	Месяц-23	Энергия	Тари энер	фная гия 1	Тарифная энергия 2	Объем	Макс. расход	Макс. мощность		

Цикл	Последова- тельность	Окно 1	Окно 2	Окно 3	Окно 4	Окно 5	Окно 6	Окно 7
	6.1	Последний месяц	Энергия	Тариф энергии 1	Тариф энергии 2	Объем	Макс. скорость потока	Макс. мощность
"6"	6.2	Месяц-1	Энергия	Тариф энергии 1	Тариф энергии 2	Объем	Макс. скорость потока	Макс. мощность
цикл месячных значений	6.3	Месяц-2	Энергия	Тариф энергии 1	Тариф энергии 2	Объем	Макс. скорость потока	Макс. мощность
	i							
	6.24	Месяц-24	Энергия	Тариф энергии 1	Тариф энергии 2	Объем	Макс. скорость потока	Макс. мощность

Стандартные настройки вычислителя (заводские настройки)

Конфигурация вычислителя настраивается на заводе-изготовителе. Этот процесс включает получение показаний в стандартной считываемой форме и настройку окон индикации в вычислительном блоке. Программное обеспечение HYDRO-SET позволяет изменять стандартные настройки. Вы можете бесплатно загрузить это программное обеспечение с нашего сайта (www.danfoss.ru).

Настройки циклов

Главный цикл

После- дова- тельность	Окно 1		Окно 2	Окно 3	Описание
1.1	2356 k Wh				Накопленная энергия
	Кратковременное нажатие				
1.2	5,346 **				Объем
	Кратковременное нажатие				
1.3	(287 #				Расход
	Кратковременное нажатие				
1.4	1 1200 kW				Мощность
	Кратковременное нажатие				
1.5	684 °C	2 c	400 00		Температура прямого потока, температура обратного потока
	Кратковременное нажатие				
1.6	584 00				Разность температур
	Кратковременное нажатие				
1.7	468 h				Количество часов эксплуатации
	Кратковременное нажатие				
1.9	E				Код ошибки
	Кратковременное нажатие				
1.10	MBto KlWh B ±å △ □ ⊕ max I-I GJcal				Тест дисплея

Цикл отчетной даты

После- дова- тельность	Окно 1		Окно 2		Окно 4	Описание
2.1	à (1505	2 c	5 1 kWh	4 c	Reed 1	Отчетная дата 1 /энергия/ "Accd 1"
	Кратковременное нажатие					
2.2	3 1 120 1	2 c	25 k Wh		Reed 1	Отчетная дата 1 предыдущего года / энергия / "Accd 1"
	Кратковременное нажатие					
2.3	Reed 1	2 c	3 (1203			"Accd 1" Отчетная дата 1 в будущем
	Кратковременное нажатие					
2.4	\$00402	2 c	4 8 kWh	4 c	Reed 2	Отчетная дата 2 / энергия / "Accd 2"
	Кратковременное нажатие					
2.5	300401	2 c	13 k Wh	4 c	Reed 2	Отчетная дата 2 предыдущего года / энергия / "Accd 2"
	Кратковременное нажатие					
2.6	Reed 2	2 c	300403			"Accd 2" Отчетная дата 2 в будущем

Информационный цикл

После- дова- тельность	Окно 1		Окно 2	Окно 4	Описание
3.1	020403				Текущая дата
	Кратковременное нажатие				
3.2	SEC_Adr	2 c	2345678		"SEC_Adr" Вторичный адрес
	Кратковременное нажатие				
3.3	Pri_Adr	2 c	3 053		"Pri_Adr" Первичный адрес
	Кратковременное нажатие				

После- дова- тельность	Окно 1		Окно 2	Окно 4	Описание	
3.4	Pt 100 r			"Pt 100" или "Pt 500" факультативно: "Pt 100Ar" Место установки прибора учета (Н – горячая труба / С – холодная труба) Автоматическое определение датчиков		
	Кратковременное нажатие					
3.5	2529 mih	4 c	170602 3 max		Максимальный месячный расход Дата макси- мального расход	
	Кратковременное нажатие					
3.6	[J [Z] kW]	4 c	2 10602 3 max		Максимальная месячная мощность Дата потребления максимальной мощности	
	Кратковременное нажатие					
3.7	3 max h				Интервал интеграции (максимальное значение)	
	Кратковременное нажатие					
3.8	³ Ed-00				Количество ошибок в день	
	Кратковременное нажатие					
3.9	Out 1	2 c	k Wh		"Out 1" значение импульса и единица измере- ния импульсного выхода 1	
	Кратковременное нажатие					
3.10	3 OnFS	2 c	J OOD 1 mi		"Out 2" значение импульса и единица измере- ния импульсного выхода 2	

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss», являются торговыми марками компании ООО «Данфосс». Все права защищены.

Центральный офис • ООО «Данфосс» • Россия, 143581,

Московская обл., Истринский р-н, с. Павловская Слобода, д. Лешково, 217

Телефон: (495) 792-57-57 • Факс: (495) 792-57-59

Адрес в Internet: http://www.danfoss.ru