VANDJØRD

SG, VSL, VSV PROLIFT APV VDS, VDW VSL-T

НАСОСЫ И УСТАНОВКИ ДЛЯ ДРЕНАЖА И КАНАЛИЗАЦИИ

SG, VSL, VSV

_	, - , -			
1.	Канализационные насосы SG, VSL, VSV. Общая информация	2	6. Монтаж Монтаж на автоматической	79
2	Типовое обозначение	3	трубной муфте	79
			Насосы SG	79
	Исполнения	4	Насосы VSV 2,2-5,5 кВт	80
4.	Конструкция	5	Насосы VSV 5,5-11,0 кВт Насосы VSL 0,75-1,5 кВт 2-х полюсные	81 82
	Чертежи – насосы SG 0,75-1,1 кВт (однофазные):	5	Насосы VSL 0,73-1,3 кВт 2-х полюсные Насосы VSL 2,2-5,5 кВт 2-х полюсные	83
	Чертежи – насосы SG 0,75-1,1 кВт	3	Насосы VSL 7,5-11,0 кВт 2-х полюсные	84
	(трехфазные):	6	Hacocы VSL 2,2-7,5 кВт 4-х полюсные	85
	Чертежи – насосы SG 1,5-2,2 кВт		Hacocы VSL 11,0-22,0 кВт 4-х полюсные	86
	(трехфазные):	7	Насосы VSL 30,0-45,0 кВт 4-х полюсные	87
	Чертежи – насосы SG 3,7-5,5 кВт		Насосы VSL 45,0-90,0 кВт Свободная установка	88 89
	(трехфазные):	8	Насосы SG	89
	Чертежи – насосы VSV 2,2-3,0 кВт 2-х полюсные (трехфазные):	9	Насосы VSV 2,2-5,5 кВт	90
	Чертежи – насосы VSV 4,0-5,5 кВт	,	Насосы VSV 5,5-11,0 кВт	91
	2-х полюсные (трехфазные):	10	Hacocы VSL 0,75-1,5 кВт 2-х полюсные	92
	Чертежи – насосы VSV 5,5-7,5 кВт		Насосы VSL 2,2-5,5 кВт 2-х полюсные	93
	4-х полюсные (трехфазные):	11	Насосы VSL 7,5-11,0 кВт 2-х полюсные	94
	Чертежи – насос VSV 11,0 кВт	10	Hacocы VSL 2,2-7,5 кВт 4-х полюсные Hacocы VSL 11,0-22,0 кВт 4-х полюсные	95 96
	4-х полюсный (трехфазный):	12	Насосы VSL 11,0-22,0 кВт 4-х полюсные Насосы VSL 30,0-45,0 кВт 4-х полюсные	97
	Чертежи – насосы VSL 0,75-1,5 кВт 2-х полюсные (однофазные):	13	Насосы VSL 45,0-90,0 кВт	98
	Чертежи – насосы VSL 0,75-1,5 кВт	10	Macca	99
	2-х полюсные (трехфазные):	14	7. Принадлежности	100
	Чертежи – насосы VSL 2,2-3,0 кВт		Автоматическая трубная муфта	100
	2-х полюсные (трехфазные):	15		
	Чертежи – насосы VSL 4,0-5,5 кВт	1.0	APV	
	2-х полюсные (трехфазные): Чертежи – насосы VSL 7,5 кВт	16	Дренажные насосы APV.06	101
	2-х полюсные (трехфазные):	17	Дренажные насосы	
	Чертежи – насосы VSL 11,0 кВт			104
	2-х полюсные (трехфазные):	18	VCI T	
	Чертежи – насосы VSL 2,2-3,7 кВт		VSL-T	
	4-х полюсные (трехфазные):	19	Погружной насос VSL.50.11.2.5.0D.T	
	Чертежи – насосы VSL 5,5-7,5 кВт 4-х полюсные (трехфазные):	20	для высокотемпературных стоков	
	Чертежи – насосы VSL 11,0-22,0 кВт	20	VDS, VDW	
	4-х полюсные (трехфазные):	21	-	
	Чертежи – насосы VSL 30,0-45,0 кВт		Погружные насосы VDS	100
	4-х полюсные (трехфазные):	22		108
	Чертежи – насосы VSL 55,0-75,0 кВт	22	1. Общая информация	
	4-х полюсные (трехфазные): Чертежи – насос VSL 90,0 кВт	23	2. Типовое обозначение	
	4-х полюсные (трехфазные):	24	3. Исполнения	
	Чертежи – насосы VSL 45,0-55,0 кВт	- 1	4. Конструкция	
	6-ти полюсные (трехфазные):	25	Чертежи	
	Технические особенности	26	-	
	Схемы электрических соединений	27	Схемы электрических соединений	
	насосов SG и VSV	27	5. Технические характеристики	
	Схемы электрических соединений насосов VSL	28	6. Диаграммы рабочих характеристик и	
_		20	габаритыне размеры насосов	
Э.	Диаграммы рабочих характеристик и технические данные	30	Hacocы VDW для тяжелых условий	
	SG.40.	30	эксплуатации	109
	SG.50.	32	1. Общая информация	
	VSV.65.	33	2. Типовое обозначение	
	VSV.80. 2-х полюсные	34		
	VSV.80. 4-х полюсные	35	3. Исполнения	
	VSV.100. VSL.50.	36 38	PROLIFT	
	VSL.65.	38 42	1. Канализационные насосные установки	и
	VSL.80.	47		ก 110
	VSL.100.	52	2. Типовое обозначение	
	VSL.150.	59		
	VSL.200.	65		111
	VSL.250. VSL.300.	71 75		114
	VSL.300. VSL.400.	75 78	5. Серия PROLIFT PD.15450	117

1. Канализационные насосы SG, VSL, VSV. Общая информация.

В настоящем разделе содержится информация о погружных канализационных насосах компании ВАНДЙОРД следующих типов: SG, VSL и VSV.

Имеется три типа насосов:

- насосы VSL с двухканальным рабочим колесом;
- насосы VSV с вихревым рабочим колесом;
- насосы SG с режущим механизмом.

Рис. 1 Hacoc SG

Рис. 2 Hacoc VSV

Рис. 3 Hacoc VSL

Все три типа насосов могут применяться для перекачивания сточных вод в городских и промышленных канализационных сетях.

Детали погружных насосов выполнены из чугуна и нержавеющей стали. Модели насосов изготовлены как с 2-х полюсными двигателями, так и с 4-х и 6-ти полюсными двигателями. Мощность насосов от 0,75 кВт до 90 кВт.

Диапазон свободного прохода у насосов от 20 мм до 120 мм.

Для насосов SG, VSV и VSL возможны следующие варианты монтажа:

- свободная переносная установка;
- установка на автоматической трубной муфте.

Применение

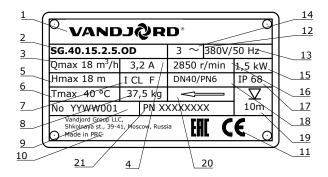
Hacocы SG, VSV и VSL могут перекачивать следующие стоки:

- городские сточные воды;
- дренажные и грунтовые воды;
- хозяйственно-бытовые сточные воды;
- технические стоки

Hacocы SG, VSV и VSL могут использоваться в следующих сооружениях:

- дождевые насосные станции;
- ливневые очистные сооружения;
- стоки после первичных и вторичных отстойников на очистных сооружениях;
- канализационные насосные станции;
- индивидуальные и многоквартирные жилые дома

2. Типовое обозначение


Hacocы VSL, VSV и SG можно определить по типовому обозначению. Типовое обозначение указано на табличке насоса.

Пример: VSL.65.11L.2.1.502

Пример	VSL	65	11		2	1		02	x
Тип насоса:				_			1	1	
VSL: Двухканальное рабочее колесо									
VSV: Вихревое рабочее колесо									
SG: Вихревое рабочее колесо с режущим механизмом									
Номинальный диаметр напорного патрубка насоса	Гмм1•								
40: (DN40, PN6, FOCT 33259-2015)	Liming.								
50: (DN50, PN6, FOCT 33259-2015)									
65: (DN65, PN6, FOCT 33259-2015)									
80: (DN80, PN, FOCT 33259-2015)									
100: (DN100, PN6, FOCT 33259-2015)									
150: (DN150, PN6, FOCT 33259-2015)									
150: (DN150, PN10, FOCT 33259-2015)									
200: (DN200, PN10, FOCT 33259-2015)									
250: (DN250, PN10, FOCT 33259-2015)									
300: (DN300, PN10, FOCT 33259-2015)									
400: (DN400, PN10, FOCT 33259-2015)									
Мощность на валу электродвигателя Р2 [кВт]:			1						
075=0,75 κBτ									
11=1,1 κΒτ									
15=1,5 κΒτ									
22=2,2 KBT									
30=3,0 KBT									
37=3,7 кВт									
40=4,0 KBT									
55=5,5 κBτ									
75=7,5 κBτ									
110=11,0 кВт									
150=15,0 кВт									
190=19,0 кВт									
220=22,0 кВт									
300=30,0 кВт									
370=37,0 кВт									
450=45,0 кВт									
550=55,0 кВт									
750=75,0 кВт									
900=90,0 кВт									
Исполнение насоса:				•					
[]: стандартное исполнение									
А: вариант с встроенным поплавком									
L: вариант с низконапорной кривой насоса									
Количество полюсов:					-				
2: Два полюса									
4: Четыре полюса									
6: Шесть полюсов]			
Количество фаз:									
[]: трехфазный двигатель									
1: однофазный двигатель]		
Частота:									
5=50 Гц							-]	
Напряжение и метод пуска:									
0D: 380 B, прямой пуск									
1D: 380 В, звезда/треугольник									
02: 220 В, прямой пуск									
X: Специсполнение									

Табличка насосов SG, VSV и VSL:

Поз.	Описание
1	Логотип
2	Модель насоса
3	Максимальный расход, м³/ч
4	Номинальный ток, А
5	Максимальный напор, м
6	Максимальная температура перекачиваемой жидкости, °C
7	Класс изоляции
8	Масса нетто, кг
9	Заводской номер, где YY – год изготовления; WW – неделя изготовления оборудования; 0001 – серийный номер
10	Импортер/Страна-производитель
11	Знаки соответствия/обращения на рынке (сертификационный символ)
12	Напряжение сети, В
13	Частота тока, Гц
14	Однофазное или трехфазное исполнение
15	Мощность Р2, кВт
16	Частота вращения, об/мин
17	Степень защиты
18	Номинальный диаметр фланца ГОСТ 33259-2015/ Номинальное давление, бар
19	Максимальная глубина погружения, м
20	Направление вращения
21	Номер продукта

3. Исполнения

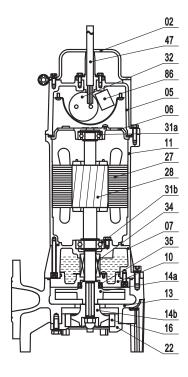
Hacocы VSL, VSV и SG могут быть изготовлены согласно индивидуальным требованиям заказчика, например, кабели различной длины.

Варианты исполнений по различным длинам кабеля указаны ниже.

По поводу других исполнений, пожалуйста, обращайтесь в ближайший офис компании ВАНДЙОРД.

Перечень исполнений

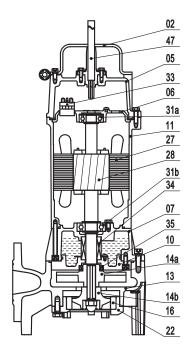
Возможны исполнения со стандартным кабелем различной длины:


- 8 м (минимальная длина)
- 15 м
- 25 м
- 40 м

Длина кабеля зависит от мощности двигателя и напряжения в сети.

4. Конструкция

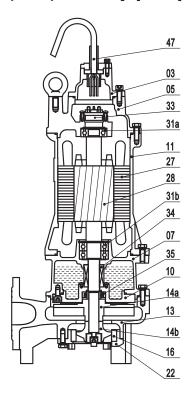
Чертежи – насосы SG 0,75-1,1 кВт (однофазные):



Спецификация материалов насосов SG 0,75-1,1 кВт (однофазные):

Позиция	Наименование	Материал
02	Подъемная скоба	Сталь
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14a	Рабочее колесо	Серый чугун
14b	Подвижная часть режущего механизма	Высокохромистый сплав
16	Неподвижная часть режущего механизма	Высокохромистый сплав
22	Нижняя крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
32	Конденсатор	-
34	Уплотнение вала	Sic-Sic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-
86	Центробежный выключатель	-

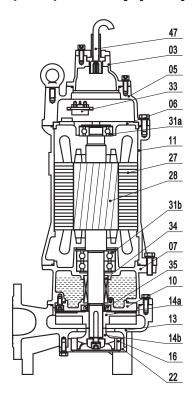
Чертежи – насосы SG 0,75-1,1 кВт (трехфазные):



Спецификация материалов насосов SG 0,75-1,1 кВт (трехфазные):

Позиция	Наименование	Материал
02	Подъемная скоба	Сталь
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14a	Рабочее колесо	Серый чугун
14b	Подвижная часть режущего механизма	Высокохромистый сплав
16	Неподвижная часть режущего механизма	Высокохромистый сплав
22	Нижняя крышка	Чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

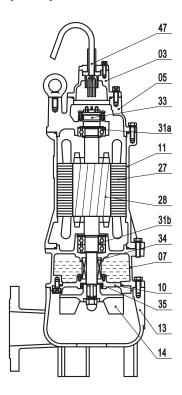
Чертежи – насосы SG 1,5-2,2 кВт (трехфазные):



Спецификация материалов насосов SG 1,5-2,2 кВт (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14a	Рабочее колесо	Серый чугун
14b	Подвижная часть режущего механизма	Высокохромистый сплав
16	Неподвижная часть режущего механизма	Высокохромистый сплав
22	Нижняя крышка	Чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	Sic-Sic/Carbon-Ceramic
34	Уплотнение вала	-
35	Уплотнительная манжета	-
47	Кабельный ввод	-

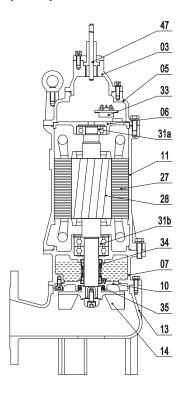
Чертежи – насосы SG 3,7-5,5 кВт (трехфазные):



Спецификация материалов насосов SG 3,7-5,5 кВт (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14a	Рабочее колесо	Серый чугун
14b	Подвижная часть режущего механизма	Высокохромистый сплав
16	Неподвижная часть режущего механизма	Высокохромистый сплав
22	Нижняя крышка	Чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

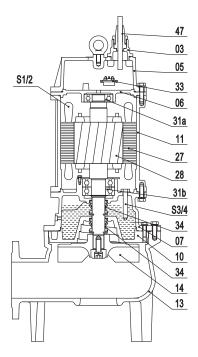
Чертежи – насосы VSV 2,2-3,0 кВт 2-х полюсные (трехфазные):



Спецификация материалов насосов VSV 2,2-3,0 кВт (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

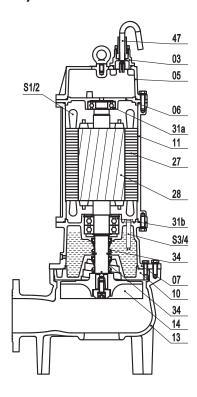
Чертежи – насосы VSV 4,0-5,5 кВт 2-х полюсные (трехфазные):



Спецификация материалов насосов VSV 4,0-5,5 кВт 2-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

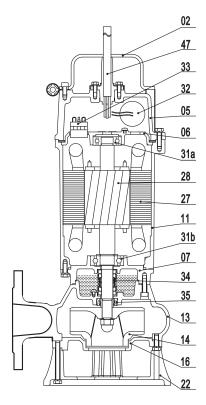
Чертежи – насосы VSV 5,5-7,5 кВт 4-х полюсные (трехфазные):



Спецификация материалов насосов VSV 5,5-7,5 кВт 4-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора (опционально)	-
S3/4	Датчик «вода-в-масле» (опционально)	-

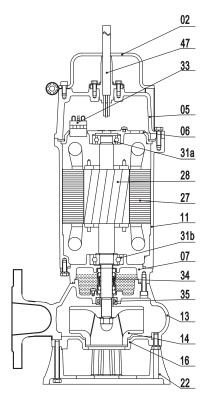
Чертежи – насос VSV 11,0 кВт 4-х полюсный (трехфазный):



Спецификация материалов насоса VSV 11,0 кВт 4-х полюсный (трехфазный):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34	Уплотнение вала	Sic-Sic
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора (опционально)	-
S3/4	Датчик «вода-в-масле» (опционально)	-

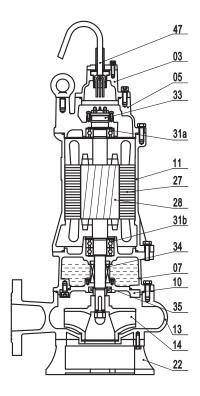
Чертежи – насосы VSL 0,75-1,5 кВт 2-х полюсные (однофазные):



Спецификация материалов насосов SG 0,75-1,1 кВт (однофазные):

Позиция	Наименование	Материал
02	Подъемная скоба	Сталь
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
16	Крышка корпуса улитки	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
32	Конденсатор	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Ceramic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

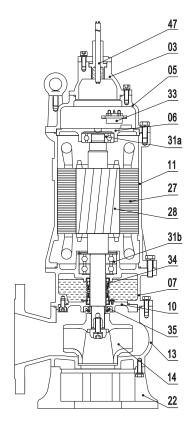
Чертежи – насосы VSL 0,75-1,5 кВт 2-х полюсные (трехфазные):



Спецификация материалов насосов VSL 0,75-1,5 кВт 2-полюсные (трехфазные):

Позиция	Наименование	Материал
02	Подъемная скоба	Сталь
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
16	Крышка корпуса улитки	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Ceramic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

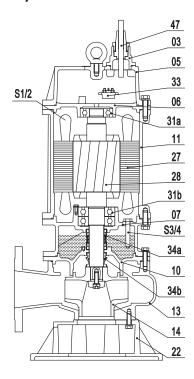
Чертежи – насосы VSL 2,2-3,0 кВт 2-х полюсные (трехфазные):



Спецификация материалов насосов VSL 2,2-3,0 кВт 2-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Ceramic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

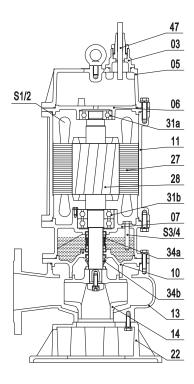
Чертежи – насосы VSL 4,0-5,5 кВт 2-х полюсные (трехфазные):



Спецификация материалов насосов VSL 4,0-5,5 кВт 2-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Ceramic/Carbon-Ceramic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

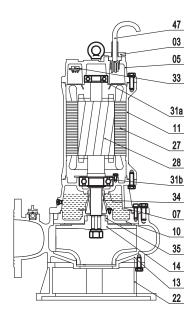
Чертежи – насосы VSL 7,5 кВт 2-х полюсные (трехфазные):



Спецификация материалов насосов VSL 7,5 кВт 2-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34a	Уплотнение вала	Sic-Ceramic/Carbon-Ceramic
34b	Уплотнение вала	Sic-Sic
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора (опционально)	-
S3/4	Датчик «вода-в-масле» (опционально)	-

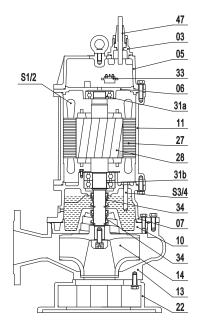
Чертежи – насосы VSL 11,0 кВт 2-х полюсные (трехфазные):



Спецификация материалов насосов VSL 11 кВт 2-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34a	Уплотнение вала	Sic-Ceramic/Carbon-Ceramic
34b	Уплотнение вала	Sic-Sic
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора (опционально)	-
S3/4	Датчик «вода-в-масле» (опционально)	-

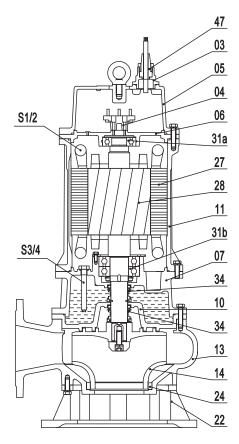
Чертежи – насосы VSL 2,2-3,7 кВт 4-х полюсные (трехфазные):



Спецификация материалов насосов VSL 2,2-3,7 кВт 4-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

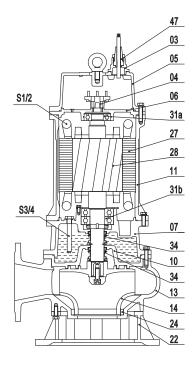
Чертежи – насосы VSL 5,5-7,5 кВт 4-х полюсные (трехфазные):



Спецификация материалов насосов VSL 5,5-7,5 кВт 4-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора (опционально)	-
S3/4	Датчик «вода-в-масле» (опционально)	-

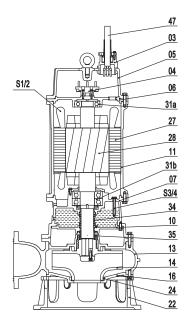
Чертежи – насосы VSL 11,0-22,0 кВт 4-х полюсные (трехфазные):



Спецификация материалов насосов VSL 11,0-22,0 кВт 4-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
04	Клеммы подключения	-
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
24	Кольцо щелевого уплотнения	Серый чугун
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора (опционально)	-
S3/4	Датчик «вода-в-масле» (опционально)	-

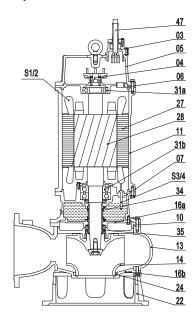
Чертежи – насосы VSL 30,0-45,0 кВт 4-х полюсные (трехфазные):



Спецификация материалов насосов VSL 30,0-45,0 кВт 4-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
04	Клеммы подключения	-
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
24	Кольцо щелевого уплотнения	Высокохромистый сплав
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора (опционально)	-
S3/4	Датчик «вода-в-масле» (опционально)	-

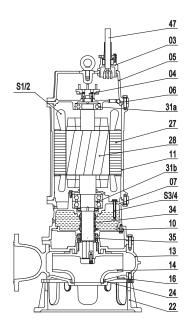
Чертежи – насосы VSL 55,0-75,0 кВт 4-х полюсные (трехфазные):



Спецификация материалов насосов VSL 55,0-75,0 кВт 4-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
04	Клеммы подключения	-
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
16	Крышка корпуса улитки	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
24	Кольцо щелевого уплотнения	Высокохромистый сплав
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
35	Уплотнительная манжета	
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора	-
S3/4	Датчик «вода-в-масле»	-

Чертежи – насос VSL 90,0 кВт 4-х полюсные (трехфазные):



Спецификация материалов насосов VSL 90,0 кВт 4-х полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
04	Клеммы подключения	-
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
16a	Крышка корпуса двигателя	Серый чугун
16b	Крышка корпуса улитки	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
24	Кольцо щелевого уплотнения	Высокохромистый сплав
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
35	Уплотнительная манжета	
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора	-
S3/4	Датчик «вода-в-масле»	-

Чертежи – насосы VSL 45,0-55,0 кВт 6-ти полюсные (трехфазные):

Спецификация материалов насосов VSL 45,0-55,0 кВт 6-ти полюсные (трехфазные):

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
04	Клеммы подключения	-
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Серый чугун
14	Рабочее колесо	Серый чугун
16	Крышка корпуса улитки	Серый чугун
22	Нижняя всасывающая крышка	Серый чугун
24	Кольцо щелевого уплотнения	Высокохромистый сплав
27	Статор	-
28	Ротор с валом	Нержавеющая сталь AISI304
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
35	Уплотнительная манжета	
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора	-
S3/4	Датчик «вода-в-масле»	-

Технические особенности

Шариковые подшипники

Все подшипники смазаны на весь срок эксплуатации.

Электродвигатель

Полностью герметичный двигатель

- Класс изоляции F (155°C)
- Степень защиты ІР68

Обработка поверхности

Поверхности насосов SG, VSV и VSL обработаны следующим образом:

- катафорезная обработка всех чугунных деталей
- Порошковая окраска: RAL9005 (черный), толщина 100 мкм.

Кабели

Стандартная длина кабеля составляет 8 м. Возможно изготовить другую длину кабеля по отдельному запросу. Сечение кабеля подбирается в зависимости от мощности насоса.

Кабельный ввод

Кабельный разъем заполняется герметизирующим материалом для исключения попадания воды в двигатель насоса через кабель.

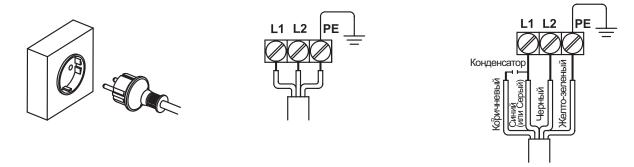
Датчики

Все насосы SG, VSV и VSL мощностью до 7,5 кВт оснащены встроенным в двигатель уникальным устройством тепловой защиты, которое определяет не только избыточное тепловыделение двигателя, но и избыточное потребление тока. Устройство защищает двигатель от следующих проблем, которые могут возникнуть во время работы:

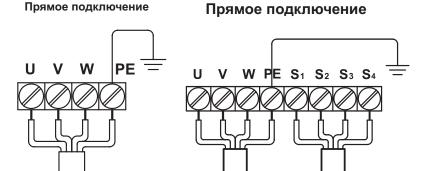
- блокировка рабочего колеса
- фазовый дисбаланс
- длительная работа насоса всухую
- пониженное напряжение
- потеря фазы в трехфазных двигателях

Начиная с 5,5 кВт и до 45 кВт двухполюсные и четырехполюсные трехфазные насосы VSV и VSL опционально могут быть укомплектованы биметаллическими термовыключателями. Начиная с 55 кВт и до 90 кВт у четырехполюсных трехфазных насосов VSL биметаллические термовыключатели входят в стандартную комплектацию, также как и у всех шестиполюсных трехфазных насосов VSL.

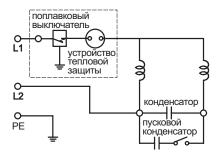
Биметаллические термовыключатели устанавливаются по одному в каждой обмотке и соединены последовательно. Если одна обмотка достигает температуры срабатывания, питание отключается для всех обмоток. Температура срабатывания термовыключателя $130\pm5^{\circ}$ C, температура перезапуска двигателя $90\pm15^{\circ}$ C.


Также, начиная с 5,5 кВт и до 45 кВт двухполюсные и четырехполюсные трехфазные насосы VSV и VSL опционально могут быть укомплектованы датчиком «вода-в-масле» электродного типа. Начиная с 55 кВт и до 90 кВт у четырехполюсных трехфазных насосов VSL датчик «вода-в-масле» электродного типа входит в стандартную комплектацию, также как и у всех шестиполюсных трехфазных насосов VSL.

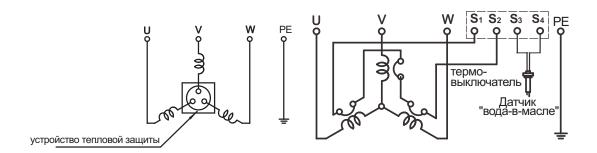
Датчик «вода-в-масле» распознает попадание воды в масляную камеру и останавливает насос подавая аварийный сигнал в панель управления. Датчик «вода-в-масле» осуществляет измерение омического сопротивления между двумя электродами. Как только расстояние между электродами заполнится водой, сопротивление резко уменьшиться, что и определит датчик «вода-в-масле». При отсутствии воды в масляной камере омическое сопротивление ≥10 кОм, при появлении воды в масляной камере сопротивление <10 кОм.


Схемы электрических соединений насосов SG и VSV

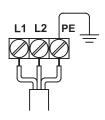
На рисунке ниже показано, как правильно соединять кабель однофазных насосов SG:

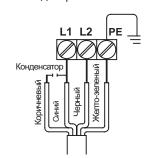


Тип насоса	Пусковой конденсатор	Рабочий конденсатор
(кВт)	(мкФ)	(мкФ)
0,75	150	20
1,1	150	30


На рисунке ниже показано, как правильно соединять кабели трехфазных насосов:

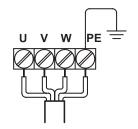
Схемы соединений с однофазными двигателями SG

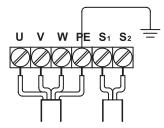

Схемы соединений с трехфазными двигателями



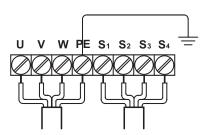
Схемы электрических соединений насосов VSL

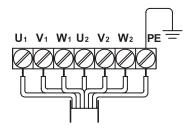
На рисунке ниже показано, как правильно соединять кабель однофазных насосов VSL:

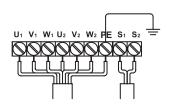


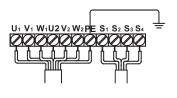

Тип насоса	Рабочий конденсатор
(кВт)	(мкФ)
0,75	20
1,1	30
1,5	35

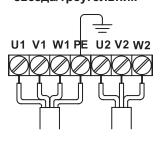
На рисунке ниже показано, как правильно соединять кабели трехфазных насосов:

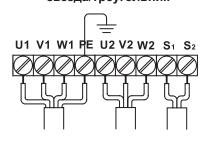

Прямое подключение

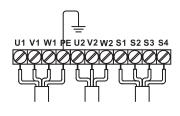

Прямое подключение


Прямое подключение

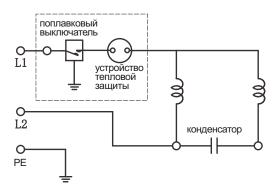

Подключение звезда/треугольник


Подключение звезда/треугольник

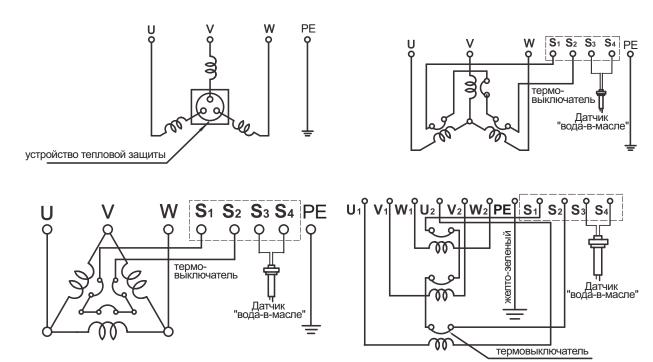

Подключение звезда/треугольник


Подключение звезда/треугольник

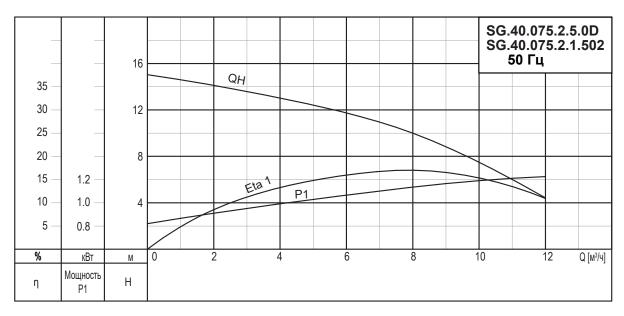
Подключение звезда/треугольник

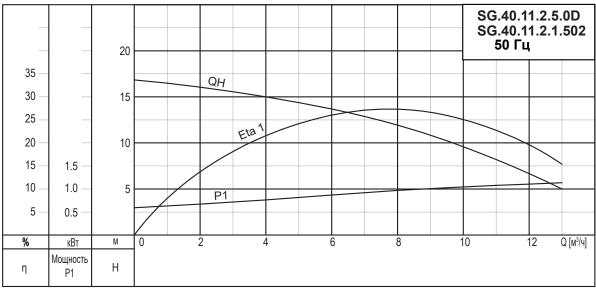


Подключение звезда/треугольник



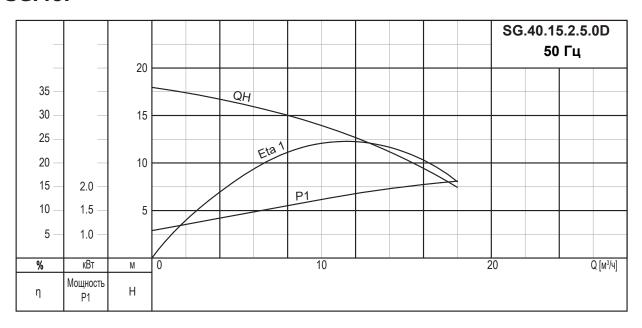
Схемы соединений с однофазными двигателями VSL

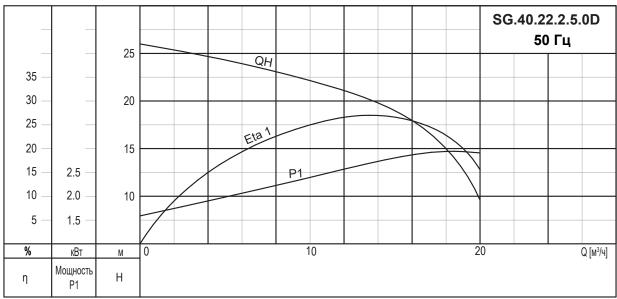

Схемы соединений с трехфазными двигателями VSL



5. Диаграммы рабочих характеристик и технические данные

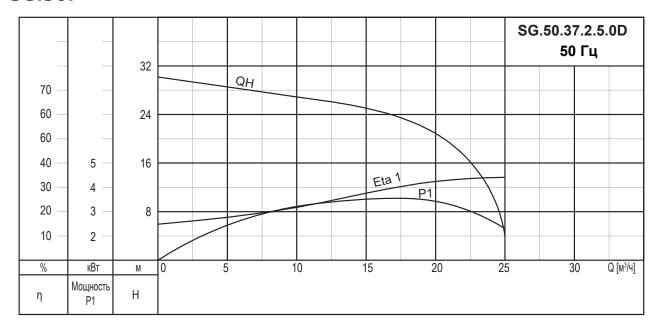
SG.40.

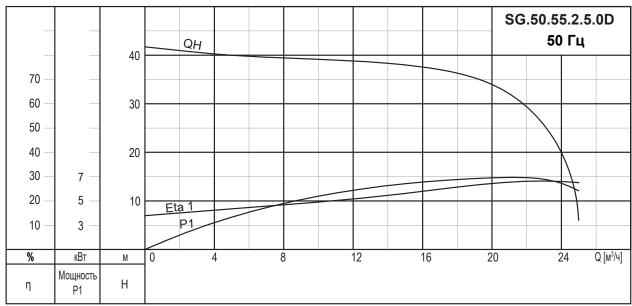

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
SG.40.075.2.5.0D	3x380B	1,3	0,75	2	2850	DOL	2	10,8
SG.40.075.2.1.502	1x220B	1,3	0,75	2	2850	DOL	5,2	16,2
SG.40.11.2.5.0D	3x380B	1,7	1,1	2	2850	DOL	2,8	11
SG.40.11.2.1.502	1x220B	1,7	1,1	2	2850	DOL	7,2	24,8

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
SG.40.075	Режущий	6	20	ID 60	_	^	40	6 10
SG.40.11	механизм	6	30	IP 68	F	A	40	6-10

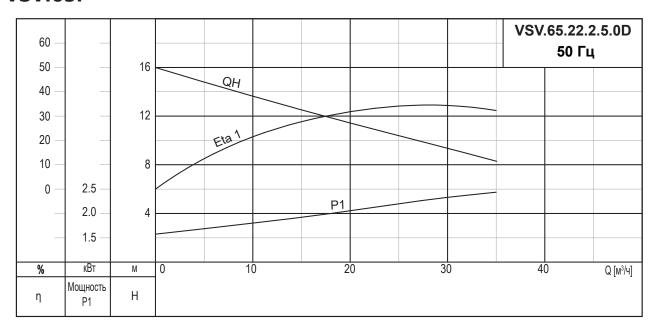
SG.40.

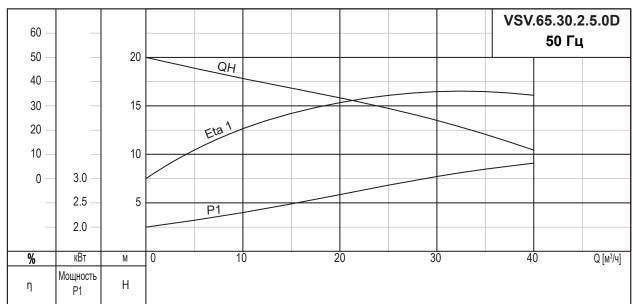

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
SG.40.15.2.5.0D	3x380B	2,1	1,5	2	2850	DOL	3,2	20
SG.40.22.2.5.0D	3x380B	3,1	2,2	2	2850	DOL	5,0	27,2

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
SG.40.15	Режущий	6	30	TD CO	_		40	C 10
SG.40.22	механизм	6	30	IP 68		A	40	6-10

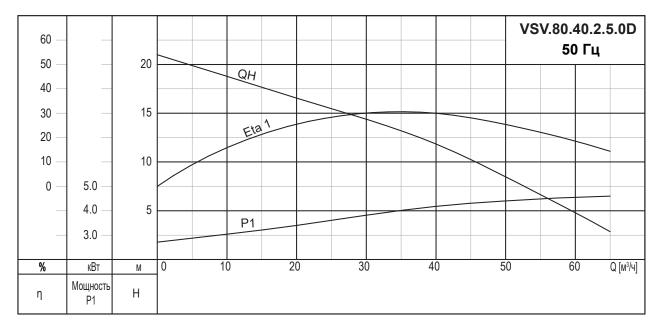
SG.50.

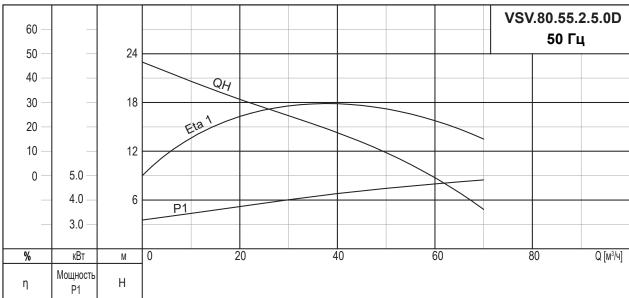

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
SG.50.37.2.5.0D	3x380B	4,9	3,7	2	2850	DOL	8,5	52,4
SG.50.55.2.5.0D	3x380B	6,9	5,5	2	2850	DOL	11,7	65,2

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
SG.50.37	Режущий	6	20	IP 68	_	^	40	6-10
SG.50.55	механизм	0	20	15 00		A	40	0-10

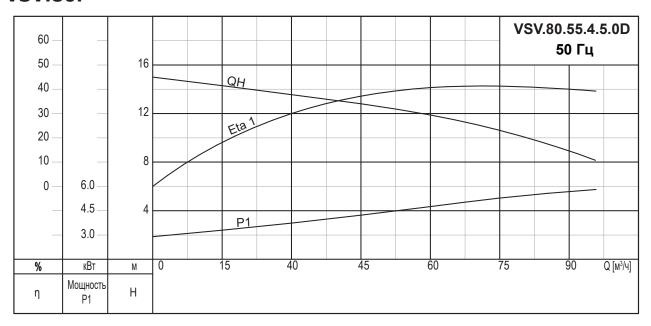
VSV.65.

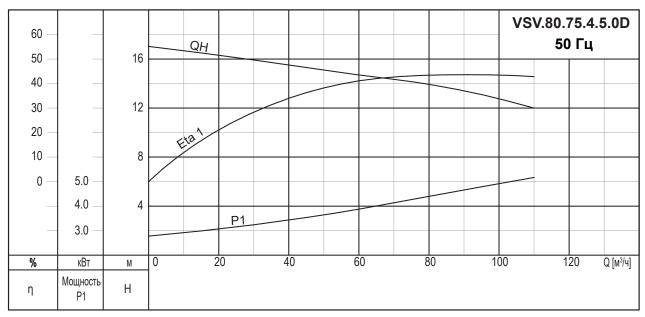

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSV.65.22.2.5.0D	3x380B	3,1	2,2	2	2850	DOL	5,0	27,4
VSV.65.30.2.5.0D	3x380B	3,9	3,0	2	2850	DOL	6,5	35,2

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSV.65.22	E.C.	6	20	ID 60	_	^	40	6 10
VSV.65.30	56	б	30	IP 68	r	A	40	6-10

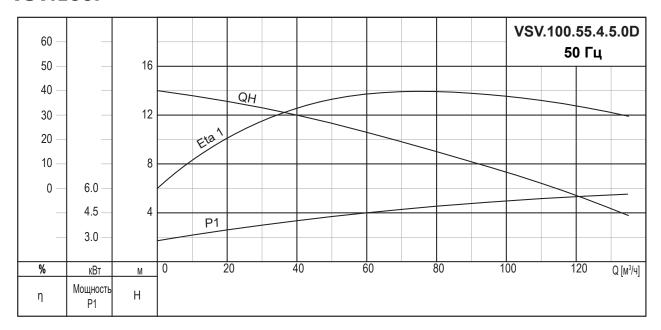
VSV.80.

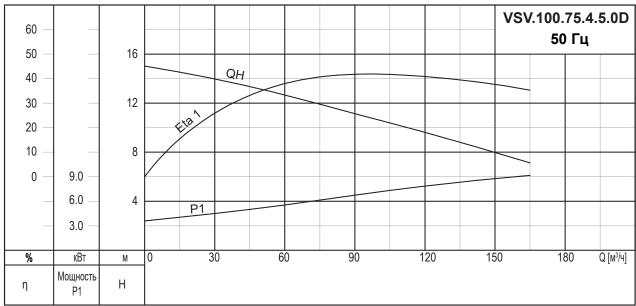

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSV.80.40.2.5.0D	3x380B	5,1	4,0	2	2850	DOL	8,9	52,4
VSV.80.55.2.5.0D	3x380B	6,9	5,5	2	2850	DOL	11,7	65,2

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSV.80.40	- 56	6	20	IP 68	F	А	40	6-10
VSV.80.55								

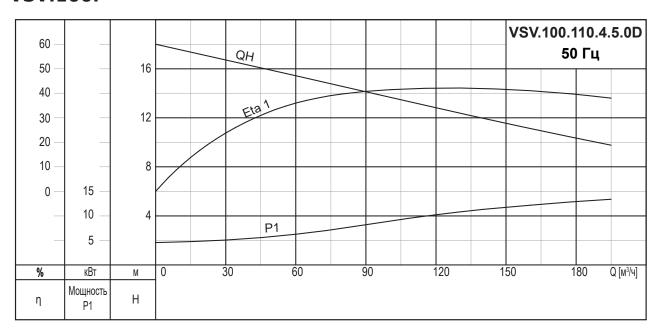
VSV.80.


Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSV.80.55.4.5.0D	3x380B	6,9	5,5	4	1450	DOL	11,7	56,4
VSV.80.75.4.5.0D	3x380B	9,4	7,5	4	1450	DOL	15,7	88

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSV.80.55	FC		20	TD CO	_		40	C 10
VSV.80.75	56	0	20	IP 68	[A	40	6-10

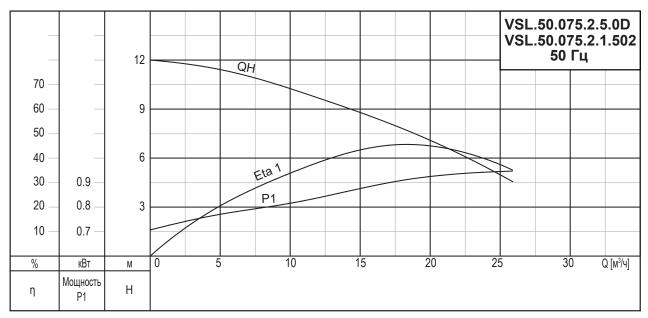
VSV.100.

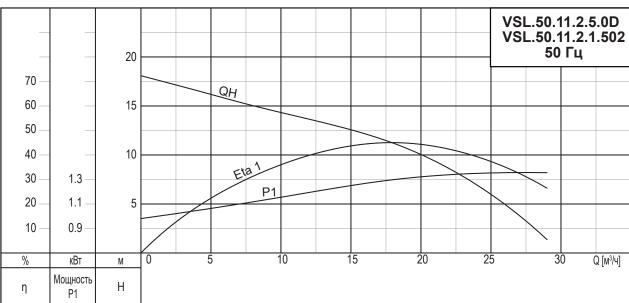

Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSV.100.55.4.5.0D	3x380B	6,9	5,5	4	1450	DOL	11,7	56,4
VSV.100.75.4.5.0D	3x380B	9,4	7,5	4	1450	DOL	15,7	88

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты		Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSV.100.55	100	6	20	TD 60	_	_	40	6-10
VSV.100.75	100	O	20	20 IP 68 F A		40	0-10	

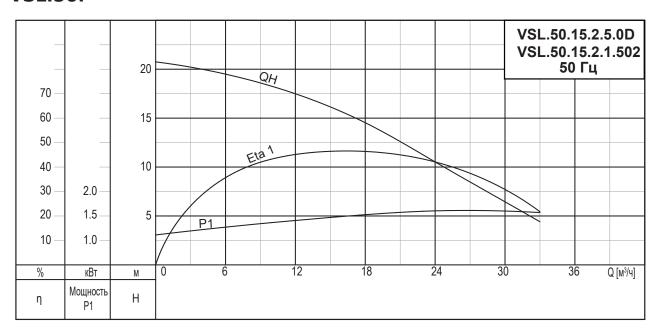
VSV.100.

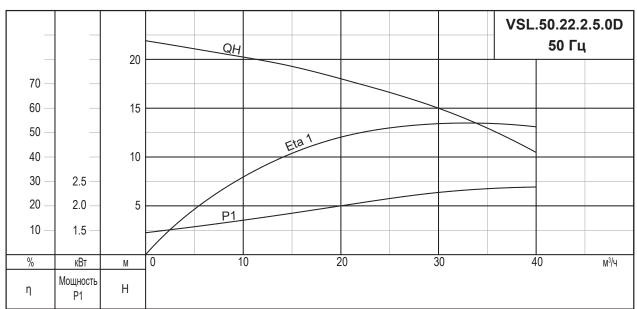



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSV.100.110.4.5.0D	3x380B	13,7	11,0	4	1450	DOL	22	138,6

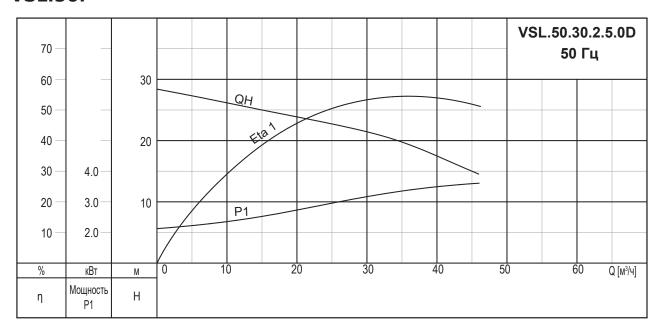
Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты		Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSV.100.110	100	6	15	IP68	F	A	40	6-10

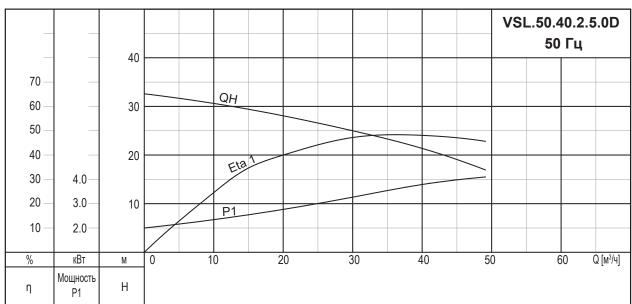



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [A]
VSL.50.075.2.5.0D	3x380B	1,3	0,75	2	2850	DOL	2,0	10,8
VSL.50.075.2.1.502	1x220B	1,3	0,75	2	2850	DOL	5,2	14,8
VSL.50.11.2.5.0D	3x380B	1,7	1,1	2	2850	DOL	2,8	11,2
VSL.50.11.2.1.502	1x220B	1,7	1,1	2	2850	DOL	7,2	23,8

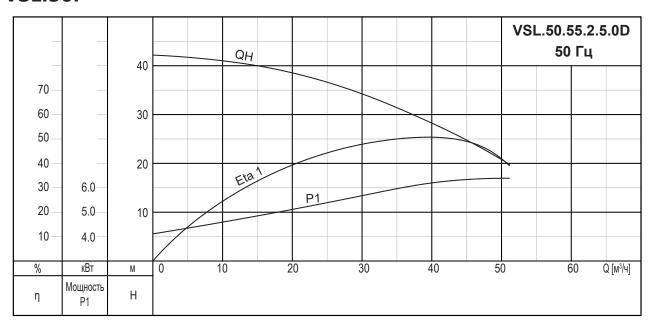
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.50.075	25	<u>د</u>	30	IP68	_	^	40	6-10
VSL.50.11	23	0	30	1700		A	40	0-10

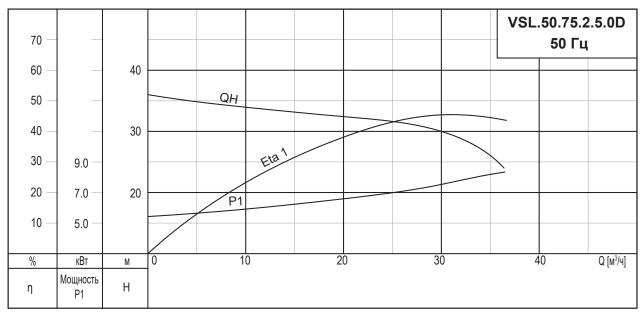



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.50.15.2.5.0D	3x380B	2,1	1,5	2	2850	DOL	3,2	15,6
VSL.50.15.2.1.502	1x220B	2,1	1,5	2	2850	DOL	10	34,8
VSL.50.22.2.5.0D	3x380B	3,1	2,2	2	2850	DOL	5,0	27,4

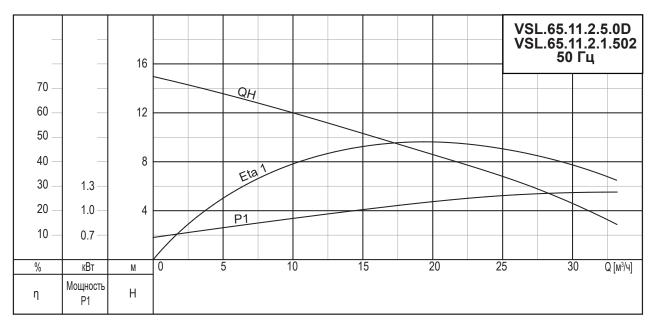
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.50.15	- 20	6	30	IP68	_	^	40	6-10
VSL.50.22	20	O	30	1100		A	40	0-10

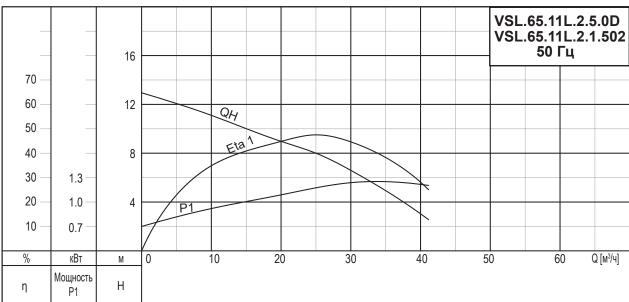



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.50.30.2.5.0D	3x380B	3,9	3	2	2850	DOL	6,5	35,2
VSL.50.40.2.5.0D	3x380B	5,1	4,0	2	2850	DOL	8,9	52,4

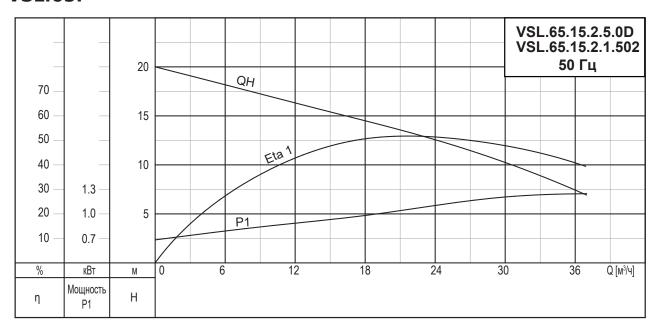
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.50.30	20	6	20	IDC 0	_	Δ.	40	6-10
VSL.50.40	20	0	30	IP68		A	40	0-10

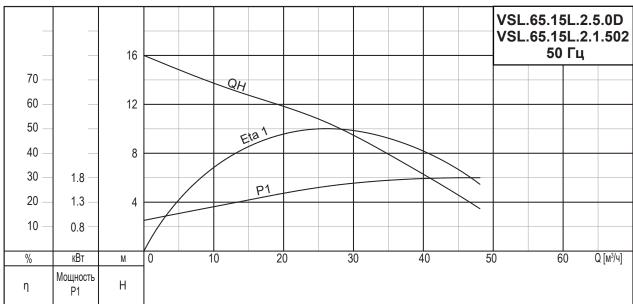



Данные электрооборудования

Модель насоса	Напряжение [В]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.50.55.2.5.0D	3x380B	6,9	5,5	2	2850	DOL	11,7	65,2
VSL.50.75.2.5.0D	3x380B	9,4	7,5	2	2850	DOL	15,7	87,6

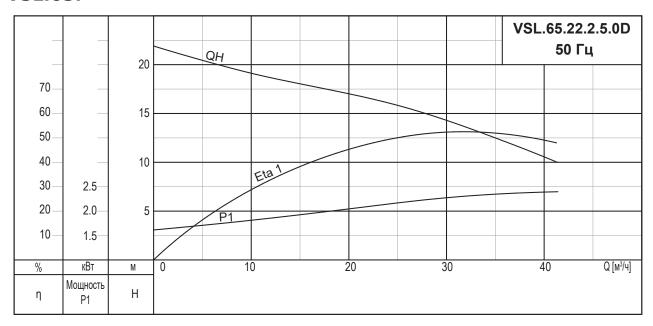
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.50.55	20	6	20	IP68	F	А	40	6-10
VSL.50.75	25	6	20	IP68	F	А	40	6-10

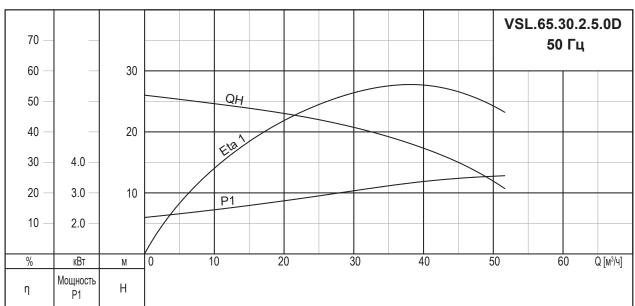



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [A]
VSL.65.11.2.5.0D	3x380B	1,7	1,1	2	2850	DOL	2,8	11,2
VSL.65.11.2.1.502	1x220B	1,7	1,1	2	2850	DOL	7,2	23,8
VSL.65.11L.2.5.0D	3x380B	1,7	1,1	2	2850	DOL	2,8	11,2
VSL.65.11L.2.1.502	1x220B	1,7	1,1	2	2850	DOL	7,2	23,8

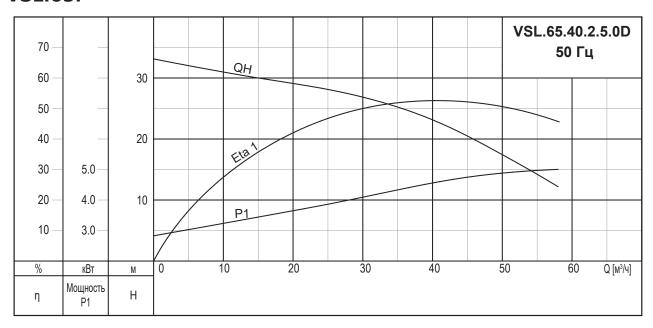
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.65.11	25	6	30	IP68	F	А	40	6-10

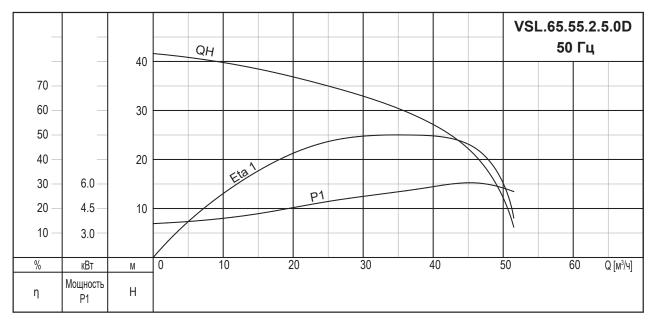



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.65.15.2.5.0D	3x380B	2,1	1,5	2	2850	DOL	3,2	15,6
VSL.65.15.2.1.502	1x220B	2,1	1,5	2	2850	DOL	10	34,8
VSL.65.15L.2.5.0D	3x380B	2,1	1,5	2	2850	DOL	3,2	15,6
VSL.65.15L.2.1.502	1x220B	2,1	1,5	2	2850	DOL	10	34,8

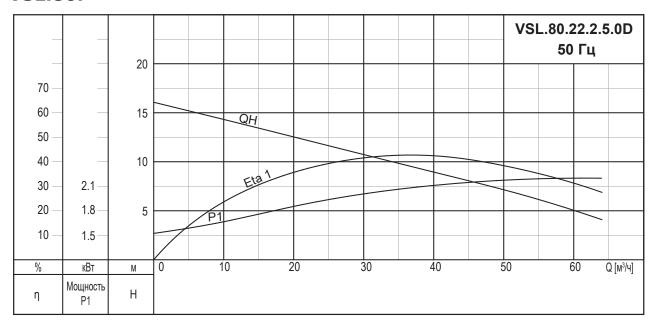
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.65.15	25	6	30	IP68	F	А	40	6-10

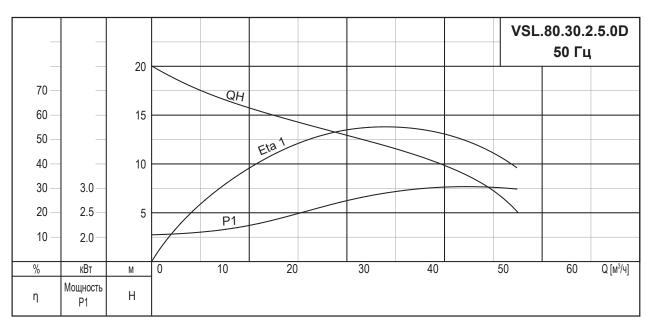



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.65.22.2.5.0D	3x380B	3,1	2,2	2	2850	DOL	5,0	27,4
VSL.65.30.2.5.0D	3x380B	3,9	3,0	2	2850	DOL	6,5	35,2

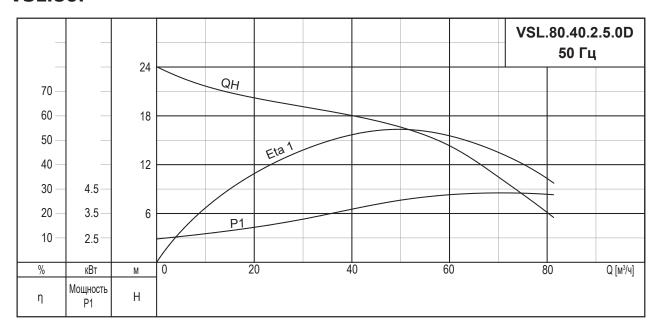
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.65.22	20	6	30	IP68	_	^	40	6-10
VSL.65.30	20	0	30	1100	"	A	40	0-10




Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [A]
VSL.65.40.2.5.0D	3x380B	5,1	4,0	2	2850	DOL	8,9	52,4
VSL.65.55.2.5.0D	3x380B	6,9	5,5	2	2850	DOL	11,7	65,2

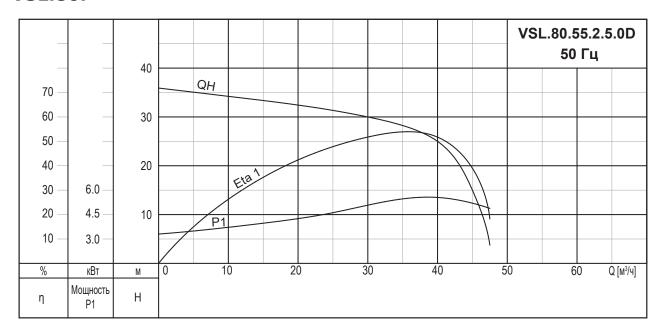
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	
VSL.65.40	20	6	20	IP68	_	^	40	6-10
VSL.65.55] 20	6	30	1268		A	40	0-10

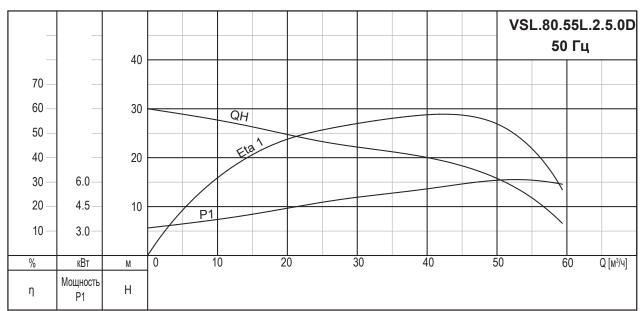


Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.80.22.2.5.0D	3x380B	3,1	2,2	2	2850	DOL	5,0	27,4
VSL.80.30.2.5.0D	3x380B	3,9	3,0	2	2850	DOL	6,5	35,2

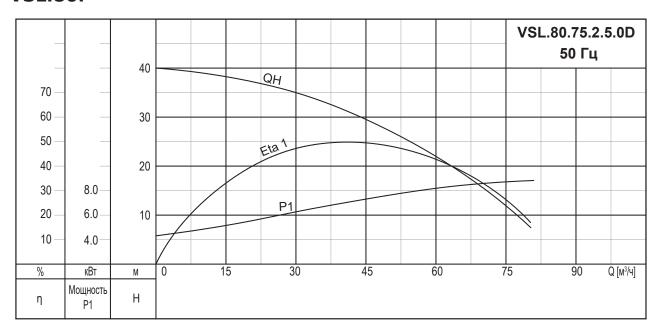
Модель насоса	Такс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.80.22 VSL.80.30	30	6	30	IP68	F	A	40	6-10

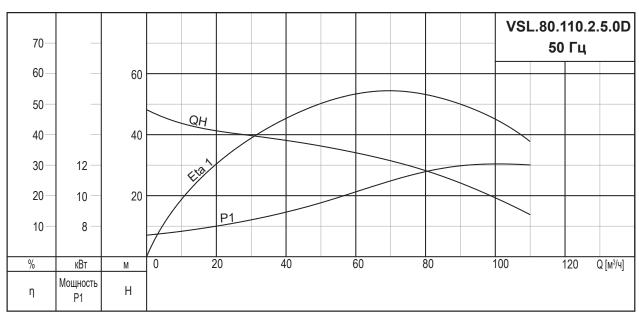



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.80.40.2.5.0D	3x380B	5,1	4,0	2	2850	DOL	8,9	52,4

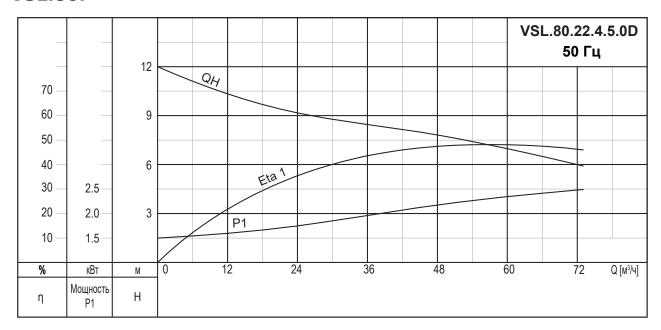
	Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	
1	VSL.80.40	30	6	20	IP68	F	A	40	6-10

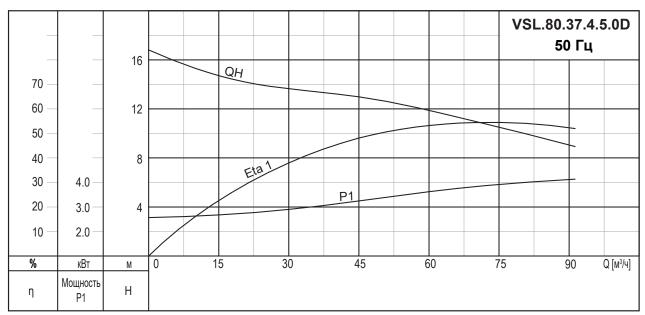



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.80.55.2.5.0D	3x380B	6,9	5,5	2	2850	DOL	11,7	65,2
VSL.80.55L.2.5.0D	3x380B	6,9	5,5	2	2850	DOL	11,7	65,2

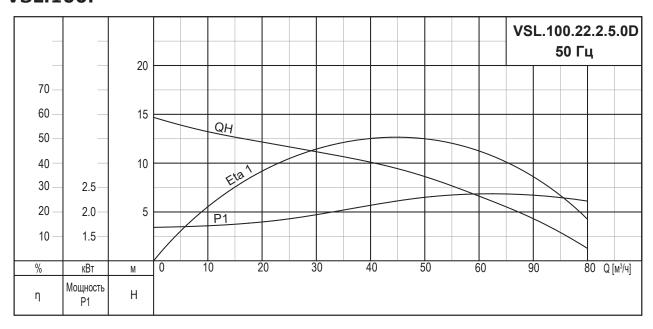
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.80.55	25	6	20	IP68	F	А	40	6-10
VSL.80.55L	35	6	20	IP68	F	А	40	6-10

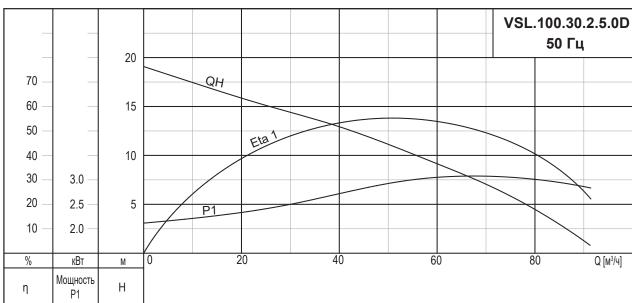



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.80.75.2.5.0D	3x380B	9,4	7,5	2	2850	DOL	15,7	87,6
VSL.80.110.2.5.0D	3x380B	13,7	11	2	2850	DOL	22	140

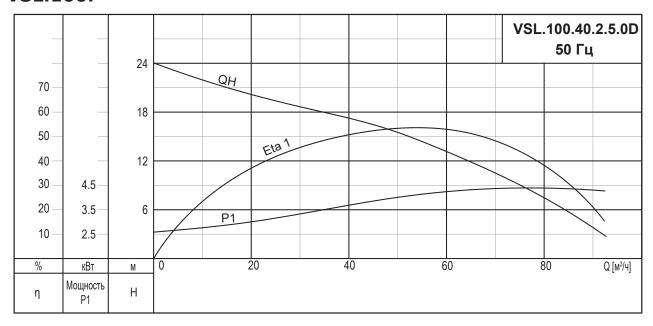
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рH
VSL.80.75	30	6	20	IP68	F	Α	40	6-10
VSL.80.110	35	6	15	IP68	F	А	40	6-10

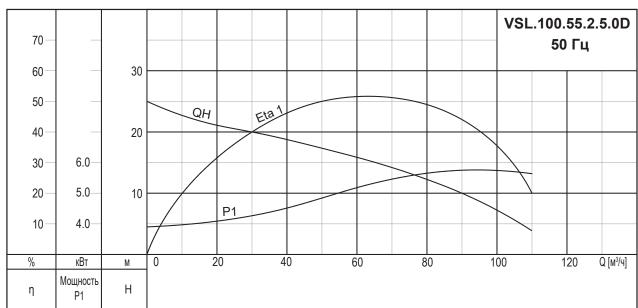



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.80.22.4.5.0D	3x380B	3,1	2,2	4	1450	DOL	5,0	27,2
VSL.80.37.4.5.0D	3x380B	5	3,7	4	1450	DOL	8,5	48,6

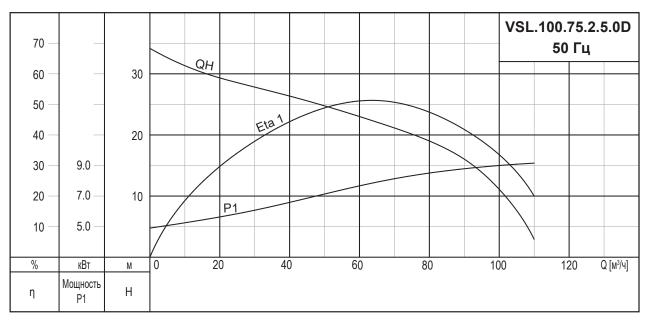
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.80.22	50	6	30	IP68	F	Α	40	6-10
VSL.80.37	50	6	20	IP68	F	А	40	6-10

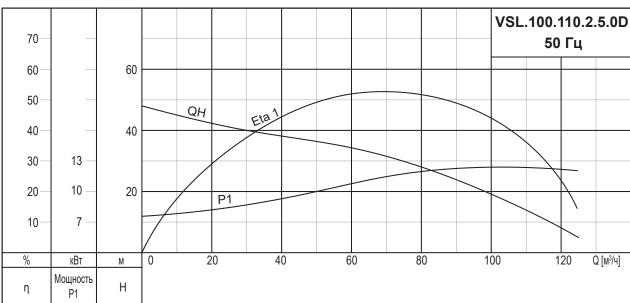



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.100.22.2.5.0D	3x380B	3,1	2,2	2	2850	DOL	5,0	27,4
VSL.100.30.2.5.0D	3x380B	3,9	3,0	2	2850	DOL	6,5	35,2

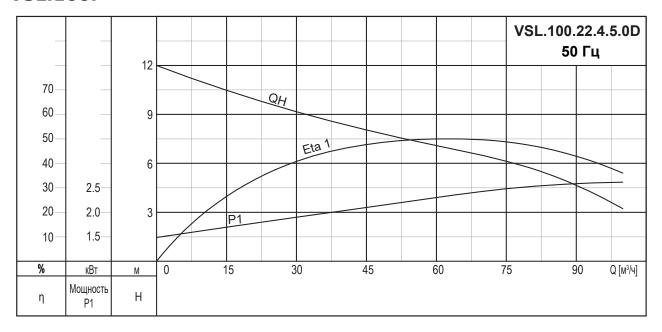
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.100.22	30	6	20	IP68	F	Α	40	6-10
VSL.100.30	30	6	30	IP68	F	A	40	6-10

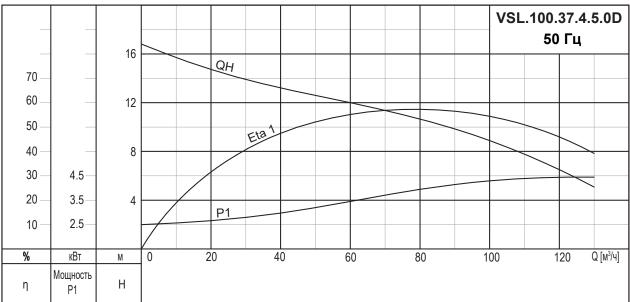



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.100.40.2.5.0D	3x380B	5,1	4,0	2	2850	DOL	8,9	52,4
VSL.100.55.2.5.0D	3x380B	6,9	5,5	2	2850	DOL	11,7	65,2

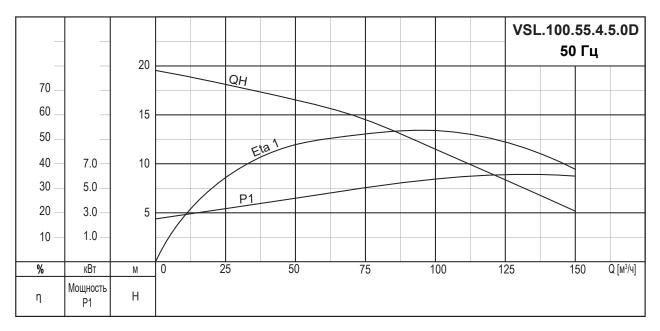
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.100.40	30	6	20	IP68	_	_	40	6-10
VSL.100.55	30	0	20	1700		_ ^	40	0-10

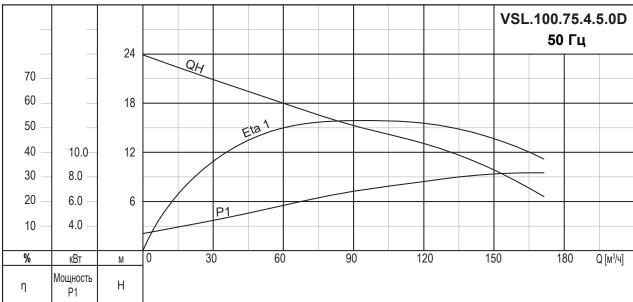



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.100.75.2.5.0D	3x380B	9,4	7,5	2	2850	DOL	15,7	87,6
VSL.100.110.2.5.0D	3x380B	13,7	11,0	2	2850	DOL	22	140

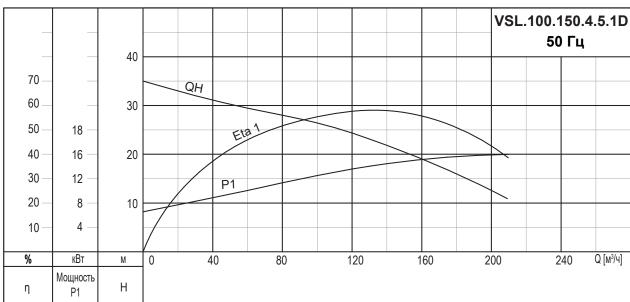
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	
VSL.100.75	35	6	20	IP68	F	Α	40	6-10
VSL.100.110	35	6	15	IP68	F	A	40	6-10




Данные электрооборудования

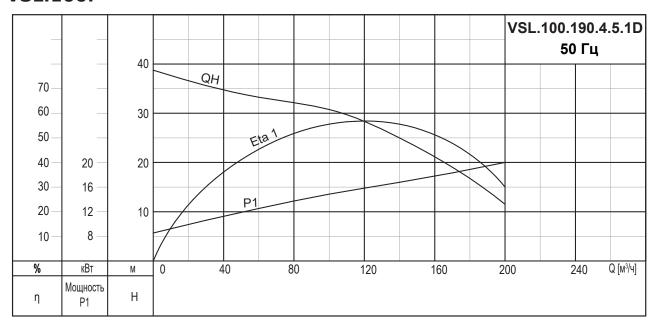
Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.100.22.4.5.0D	3x380B	3,1	2,2	4	1450	DOL	5,0	27,2
VSL.100.37.4.5.0D	3x380B	5,0	3,7	4	1450	DOL	8,5	48,6

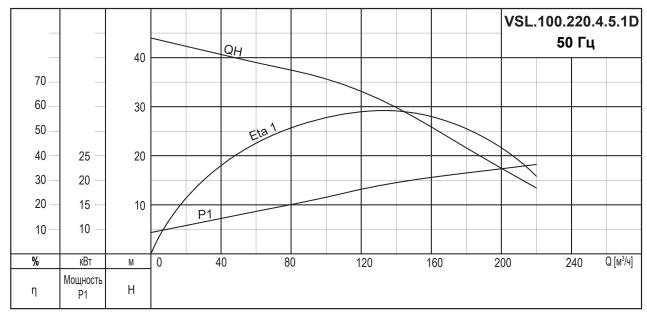
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.100.22	50	6	30	IP68	F	А	40	6-10
VSL.100.37	50	6	20	IP68	F	А	40	6-10


Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.100.55.4.5.0D	3x380B	6,9	5,5	4	1450	DOL	11,7	56,4
VSL.100.75.4.5.0D	3x380B	9,4	7,5	4	1450	DOL	15,7	88,0

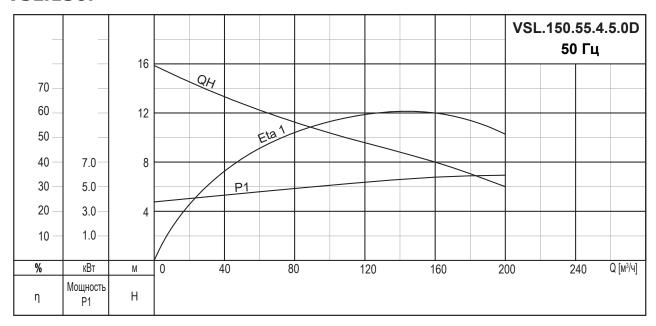
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.100.55	FO	6	20	IP68	_	Δ.	40	6-10
VSL.100.75	50	0	20	1700		A	40	0-10

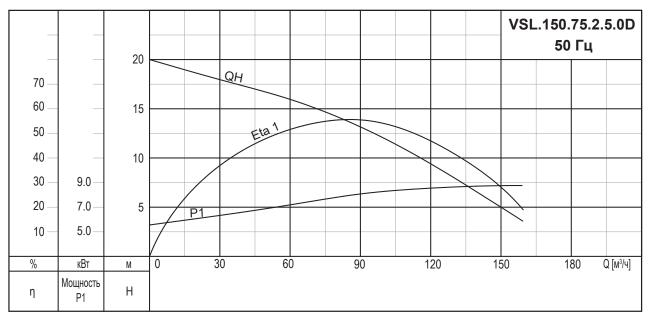



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.100.110.4.5.1D	3x380B	13,7	11,0	4	1450	SD	22,0	109,4
VSL.100.150.4.5.1D	3x380B	18,0	15,0	4	1450	SD	30,1	148,0

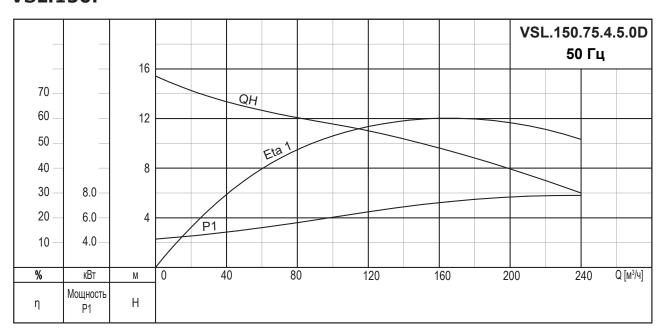
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН	
VSL.100.110	FO	6	15	IP68	_	_	40	6-10	
VSL.100.150	50	50	0	15	1500	[[A	40	0-10

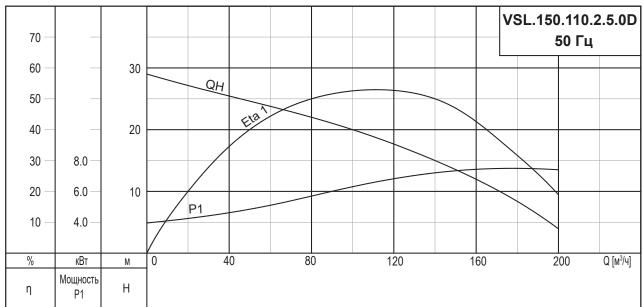



Данные электрооборудования

Модель насоса	Напряжение [В]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.100.190.4.5.1D	3x380B	22,0	19,0	4	1450	SD	38,0	222,6
VSL.100.220.4.5.1D	3x380B	25,8	22,0	4	1450	SD	45,0	262,0

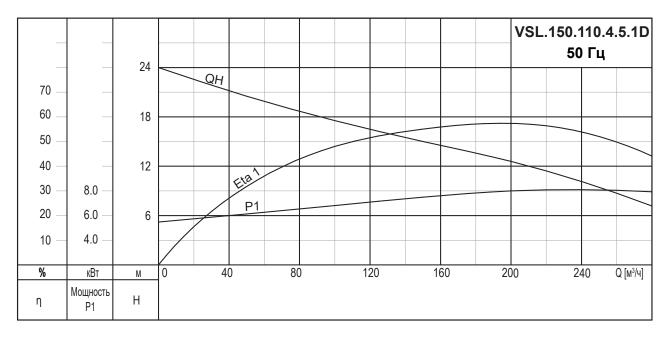
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.100.190	F0		15	IDCO	_	Δ.	40	C 10
VSL.100.220	50	0	15	IP68		A	40	6-10

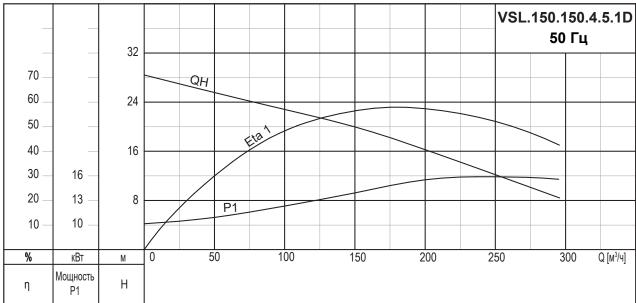



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.150.55.4.5.0D	3x380B	6,9	5,5	4	1450	DOL	11,7	56,4
VSL.150.75.2.5.0D	3x380B	9,4	7,5	2	2850	DOL	15,7	87,6

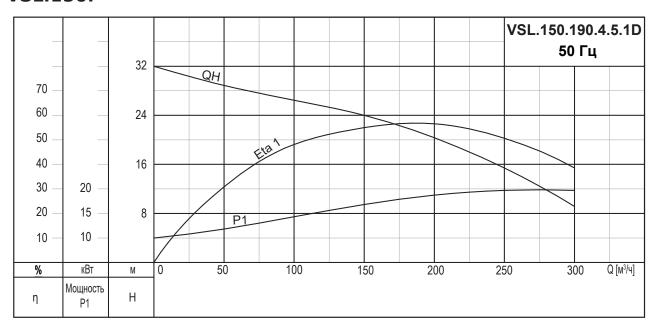
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.150.55	55	6	20	IP68	F	A	40	6-10
VSL.150.75	40	6	20	IP68	F	A	40	6-10

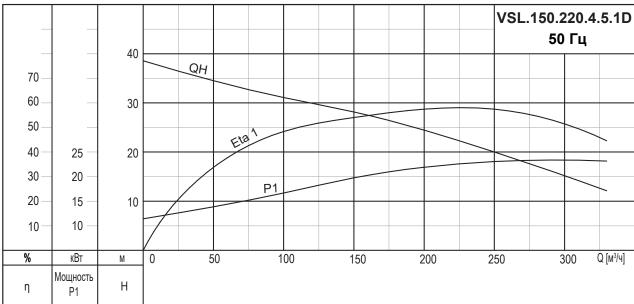



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.150.75.4.5.0D	3x380B	9,4	7,5	4	1450	DOL	15,7	88,0
VSL.150.110.2.5.0D	3x380B	13,7	11,0	2	2850	DOL	22,0	140,0

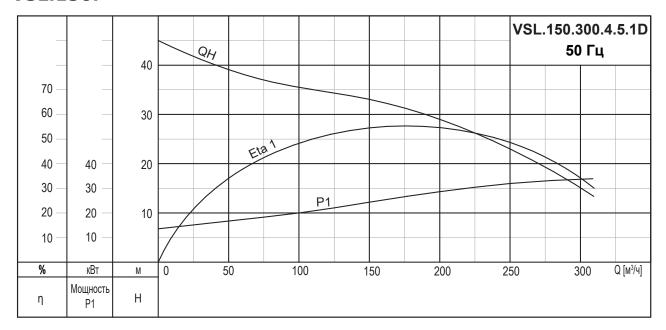
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.150.75	75	6	20	IP68	F	Α	40	6-10
VSL.150.110	50	6	15	IP68	F	A	40	6-10

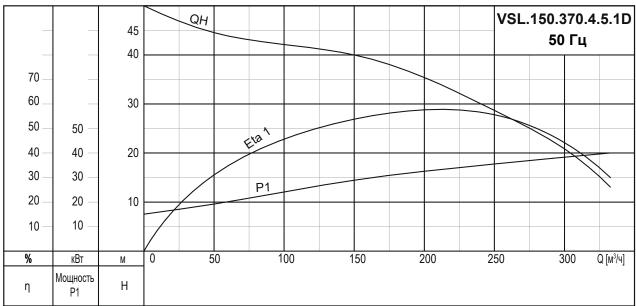



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.150.110.4.5.1D	3x380B	13,7	11,0	4	1450	SD	22,0	36,5
VSL.150.150.4.5.1D	3x380B	18,0	15,0	4	1450	SD	30,1	49,3

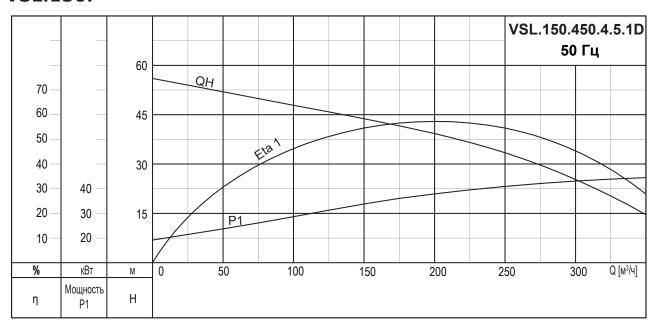
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	
VSL.150.110	65	6	15	IP68	_	^	40	6-10
VSL.150.150	0.5	0	13	1700	Г	A	40	0-10




Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.150.190.4.5.1D	3x380B	22,0	19,0	4	1450	SD	38,0	74,2
VSL.150.220.4.5.1D	3x380B	25,8	22,0	4	1450	SD	45,0	87,3

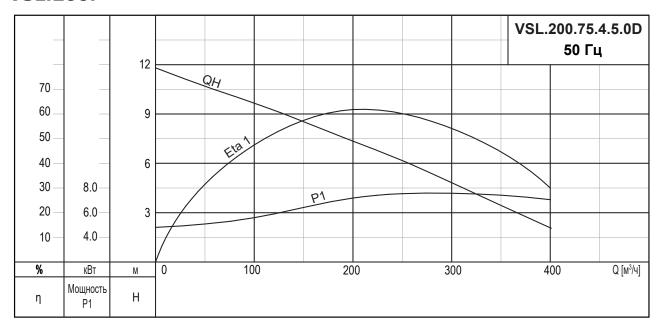
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.150.190	60	6	15	IDC 0	_	_	40	6-10
VSL.150,220	00	6 15		IP68		A	40	

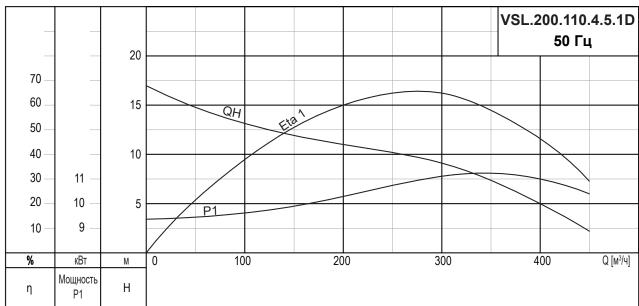


Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.150.300.4.5.1D	3x380B	34,9	30,0	4	1450	SD	57,6	103,3
VSL.150.370.4.5.1D	3x380B	41,7	37,0	4	1450	SD	69,8	117,3

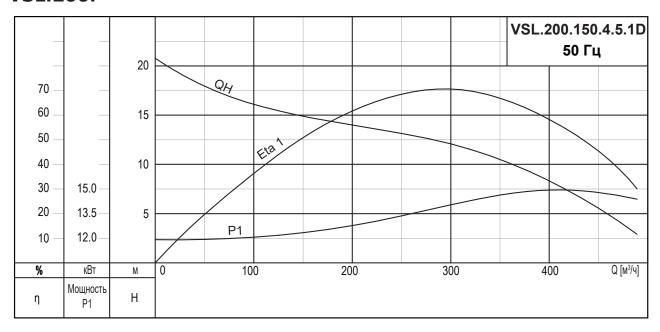
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.150.300	FF	10	10	TDCO	_		40	6-10
VSL.150.370	55	55 10	10	IP68		A	40	0-10

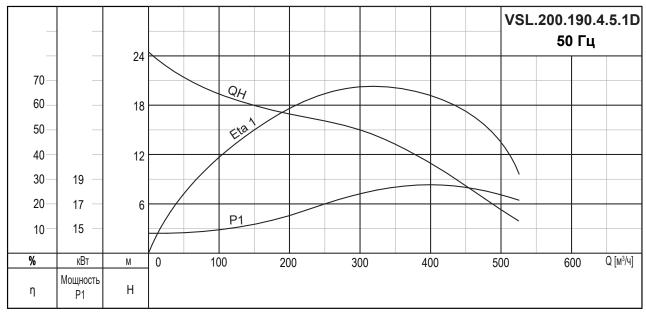



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.150.450.4.5.1D	3x380B	50,4	45,0	4	1450	SD	84,5	142,9

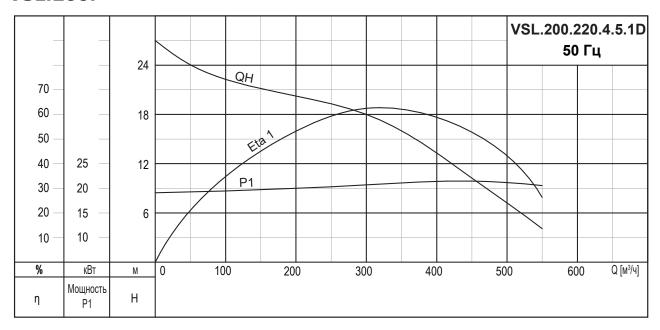
Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.150.450	55	10	6	IP68	F	Α	40	6-10

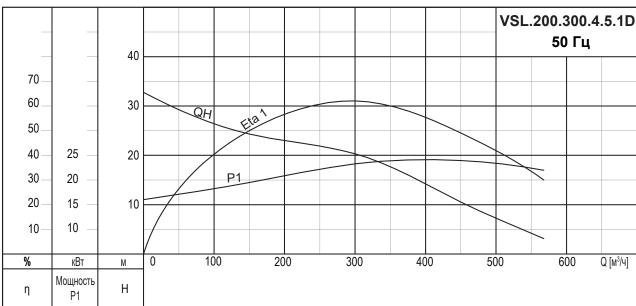



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.200.75.4.5.0D	3x380B	9,4	7,5	4	1450	DOL	15,7	88,0
VSL.200.110.4.5.1D	3x380B	13,7	11,0	4	1450	SD	22,0	36,5

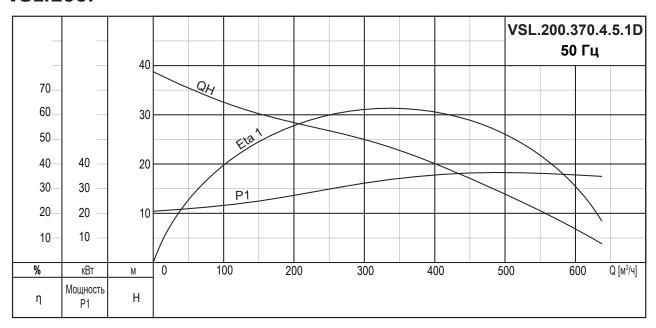
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.200.75	80	10	20	IP68	F	Α	40	6-10
VSL.200.110	70	10	15	IP68	F	Α	40	6-10

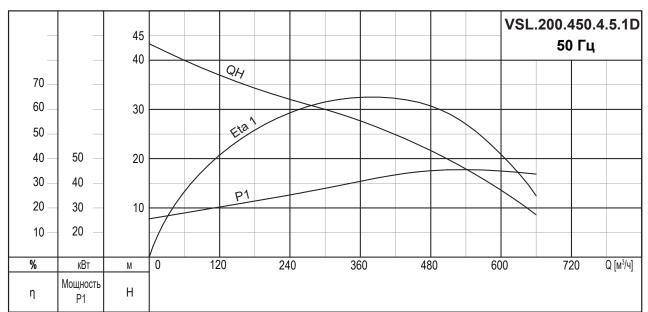



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.200.150.4.5.1D	3x380B	18,0	15,0	4	1450	SD	30,1	49,3
VSL.200.190.4.5.1D	3x380B	22,0	19,0	4	1450	SD	38,0	74,2

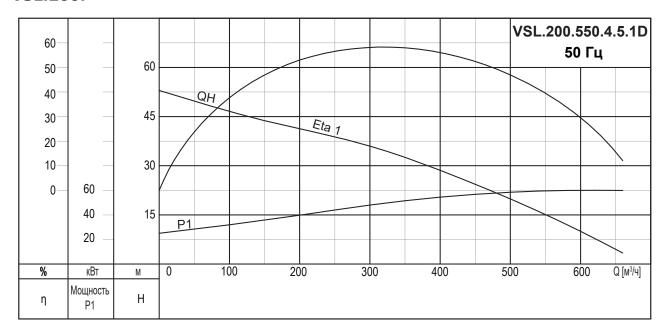
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.200.150	70	10	15	IP68	_	Δ.	40	6-10
VSL.200.190	70	10	12	1100	「	A	40	0-10

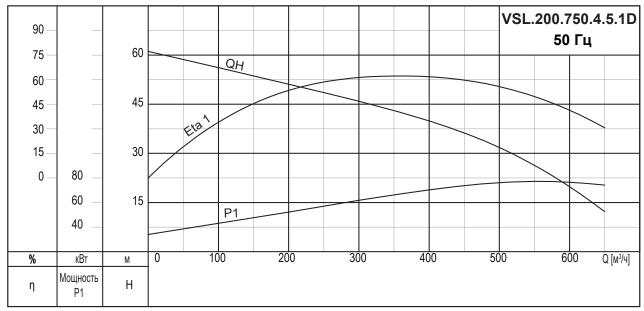



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.200.220.4.5.1D	3x380B	25,8	22,0	4	1450	SD	45,0	87,3
VSL.200.300.4.5.1D	3x380B	34,9	30,0	4	1450	SD	57,6	103,3

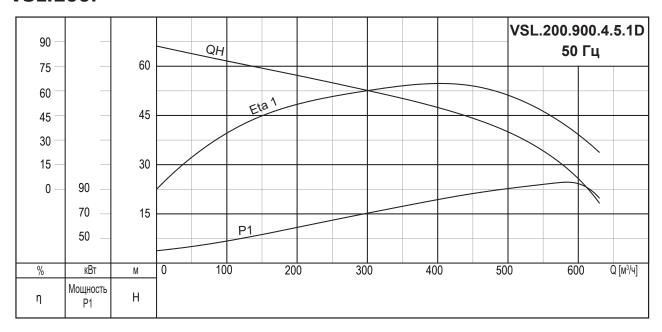
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.200.220	70	10	15	IP68	F	A	40	6-10
VSL.200.300	80	10	10	IP68	F	A	40	6-10




Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.200.370.4.5.1D	3x380B	41,7	37,0	4	1450	SD	69,8	117,3
VSL.200.450.4.5.1D	3x380B	50,4	45,0	4	1450	SD	84,5	142,9

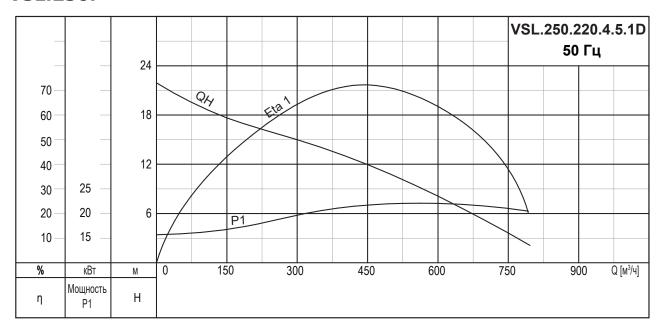
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.200.370	90	10	10	IP68	F	Α	40	6-10
VSL.200.450	90	10	6	IP68	F	A	40	6-10

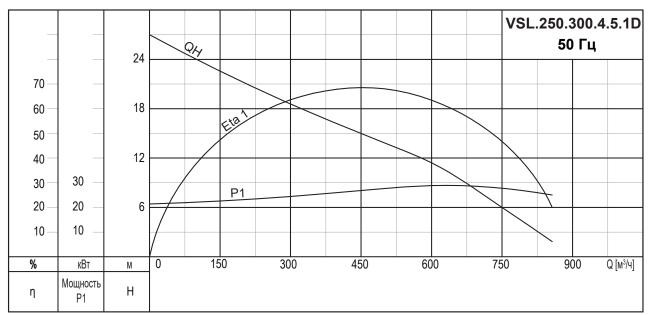


Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.200.550.4.5.1D	3x380B	61,4	55,0	4	1450	SD	105,5	157,3
VSL.200.750.4.5.1D	3x380B	83,7	75,0	4	1450	SD	141	222,7

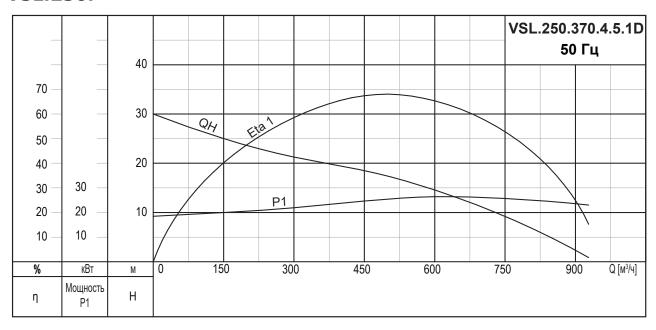
Модель насоса	Макс. размер твердых частиц [мм]	nafouee	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.200.550	80	10	-	ID60	_	Δ.	40	6-10
VSL.200.750	80	10 5 IP68 F	A	40	0-10			

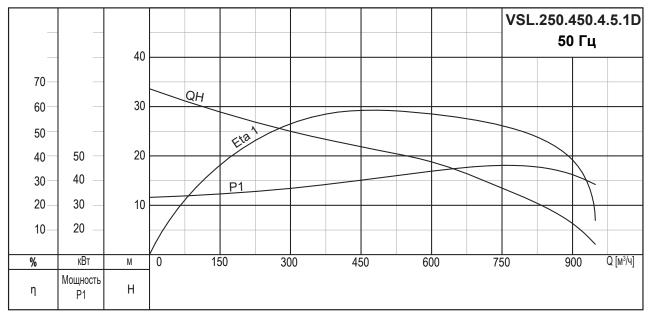



Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.200.900.4.5.1D	3x380B	99,4	90,0	4	1450	SD	166,9	334,0

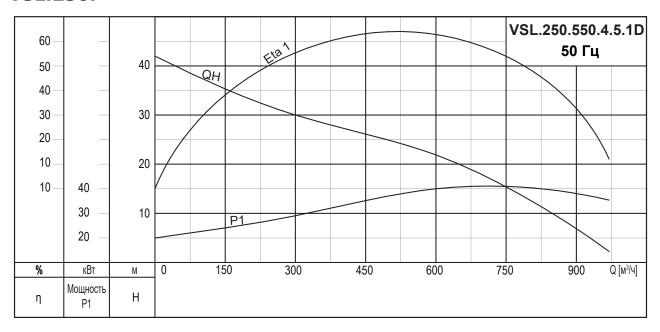
Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	
VSL.200.900	80	10	4	IP68	F	А	40	6-10

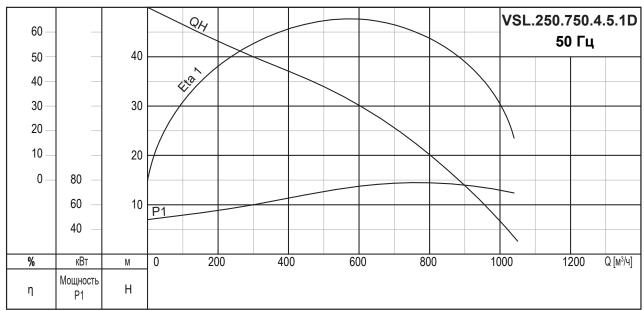

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.250.220.4.5.1D	3x380B	25,8	22,0	4	1450	SD	5,0	87,3
VSL.250.300.4.5.1D	3x380B	34,9	30,0	4	1450	SD	57,6	103,3

Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.250.220	90	10	15	IP68	_	_	40	6-10
VSL.250.300	90	10	10	1700	F	A	40	0-10

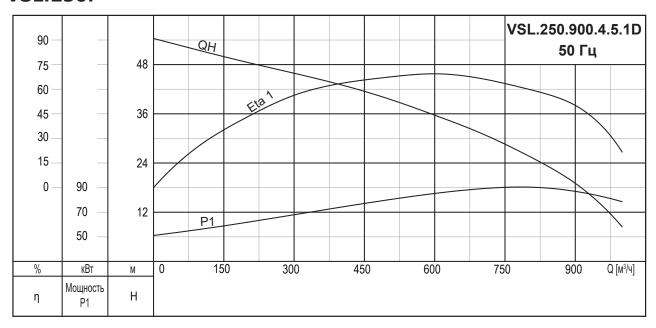
VSL.250.


Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.250.370.4.5.1D	3x380B	41,7	37,0	4	1450	SD	69,8	117,3
VSL.250.450.4.5.1D	3x380B	50,4	45,0	4	1450	SD	84,5	142,9

Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.250.370	90	10	10	IP68	F	Α	40	6-10
VSL.250.450	90	10	6	IP68	F	Α	40	6-10

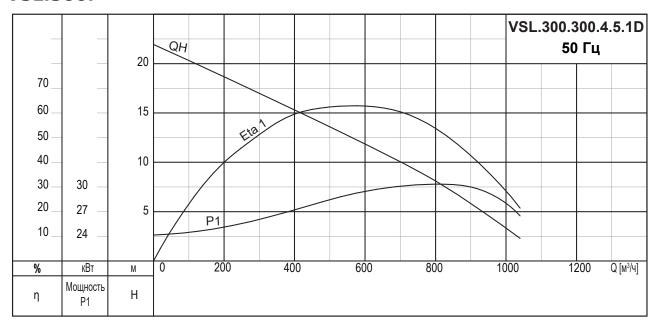
VSL.250.

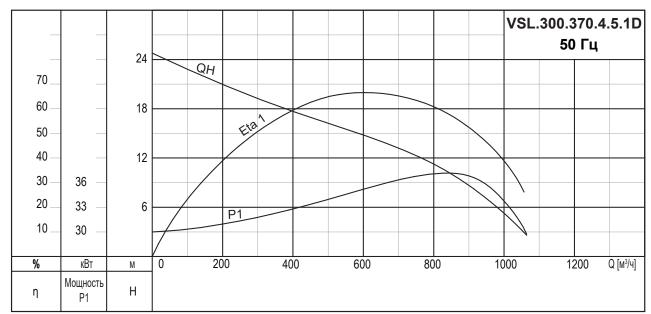

Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.250.550.4.5.1D	3x380B	61,4	55,0	4	1450	SD	105,0	157,3
VSL.250.750.4.5.1D	3x380B	83,7	75,0	4	1450	SD	141	222,7

Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.250.550	00	10	_	IDCO	_	_	40	6-10
VSL.250.750	90	90 10	5	IP68	F	A	40	0-10

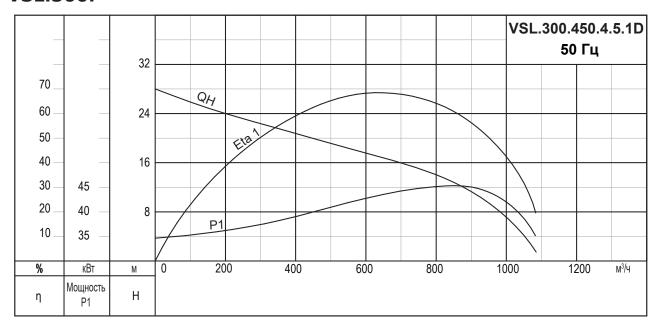
VSL.250.

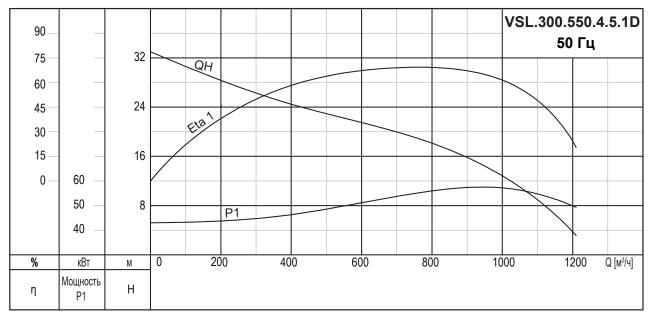

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.250.900.4.5.1D	3x380B	99,4	90,0	4	1450	SD	166,9	334,0

Модель насоса	Макс. размер твердых частиц [мм]	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.250.900	90	10	4	IP68	F	Α	40	6-10

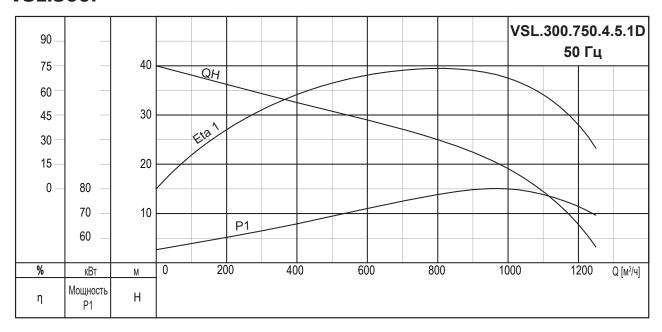
VSL.300.

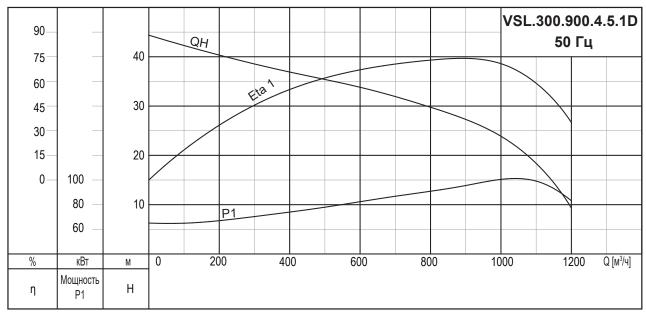

Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [A]
VSL.300.300.4.5.1D	3x380B	34,9	30,0	4	1450	SD	57,6	103,3
VSL.300.370.4.5.1D	3x380B	41,7	37,0	4	1450	SD	69,8	117,3

Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.300.300	90	10	10	IP68	_	_	40	6 10
VSL.300.370	90	10	10	1700		A	40	6-10

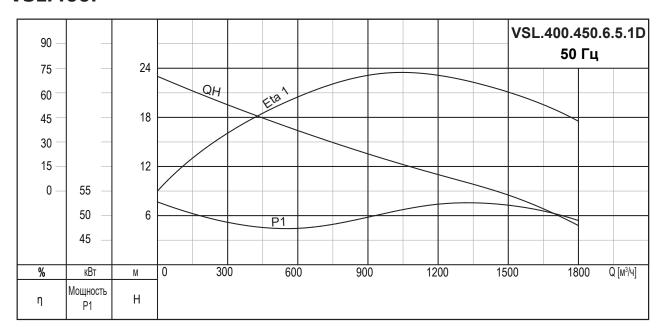
VSL.300.


Данные электрооборудования


Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.300.450.4.5.1D	3x380B	50,4	45,0	4	1450	SD	84,5	142,9
VSL.300.550.4.5.1D	3x380B	61,4	55,0	4	1450	SD	105,0	157,3

Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	рН
VSL.300.450	90	10	6	IP68	F	A	40	6-10
VSL.300.550	90	10	5	IP68	F	А	40	6-10

VSL.300.


Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск} [А]
VSL.300.750.4.5.1D	3x380B	83,7	75,0	4	1450	SD	141	222,7
VSL.300.900.4.5.1D	3x380B	99,4	90,0	4	1450	SD	166,9	334,0

Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции		Макс. температура жидкости [°C]	
VSL.300.750	90	10	5	IP68	F	Α	40	6-10
VSL.300.900	90	10	4	IP68	F	Α	40	6-10

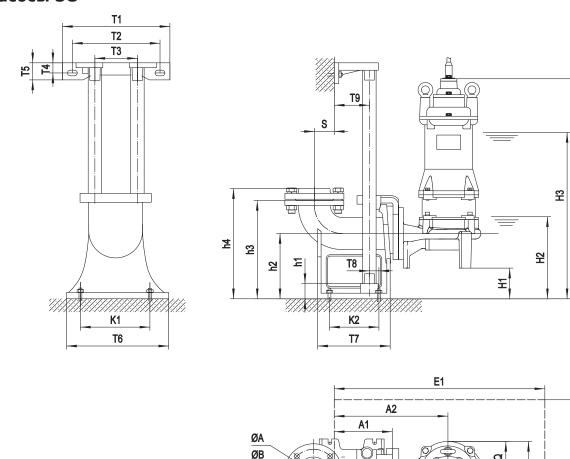
VSL.400.

Данные электрооборудования

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	Метод пуска	I _N [A]	I _{пуск}
VSL.400.450.6.5.1D	3x380B	50,9	45,0	6	980	SD	85,0	200,0
VSL.400.550.6.5.1D	3x380B	61,8	55,0	6	980	SD	105,0	260,0

Модель насоса	Макс. размер твердых частиц [мм]	рабочее	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагревостойкости	Макс. температура жидкости [°C]	
VSL.400.450	120	10	6	IP68	F	Α	40	6-10
VSL.400.550	120	10	5	IP68	F	А	40	6-10

7


囧

6. Монтаж

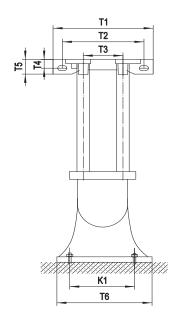
Монтаж на автоматической трубной муфте

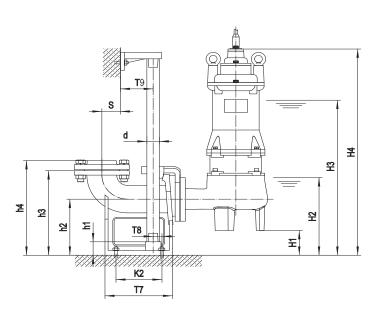
Насосы SG

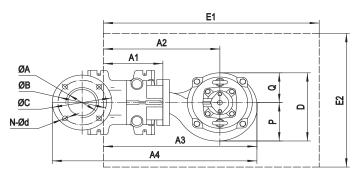
ØC N-Ød

Размеры в мм

Муфта	øΑ	øΒ	øC	N-ød	T1	T2	Т3	T4	T5	T6	T7	Т8	Т9	К1	К2	S	h1	h2	h3	h4
40-40 (PN6)	ø40/G1 1/2"	100	130	4-Ø14	225	185	70	18	35	110	140	4	65	65	70	60	145	115	195	219
50-50 (PN6)	ø50/G2"	110	140	4-Ø14	265	215	105	25	42	200	215	13	67	165	135	63	25	160	250	276

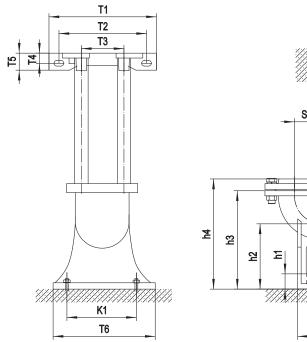

A4

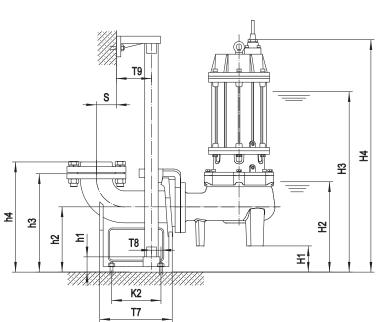

Модель	Муфта	H1	H2	Н3	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
SG.40.075.2.5.0D	40-40 (PN6)	28	153	348	509	147	277	358	483	87	81	168	650x550
SG.40.075.2.1.502	40-40 (PN6)	28	153	363	528	147	277	358	483	87	81	168	650x550
SG.40.11.2.5.0D	40-40 (PN6)	28	153	363	509	147	277	358	483	87	81	168	650x550
SG.40.11.2.1.502	40-40 (PN6)	28	153	363	528	147	277	358	483	87	81	168	650x550
SG.40.15.2.5.0D	40-40 (PN6)	25	150	380	546	147	295	388	513	100	101	201	650x550
SG.40.22.2.5.0D	40-40 (PN6)	25	150	400	566	147	295	388	513	100	101	201	650x550
SG.50.37.2.5.0D	50-50 (PN6)	62	187	467	639	147	312	414	547	104	103	207	650x550
SG.50.55.2.5.0D	50-50 (PN6)	65	190	505	694	147	312	426	559	117	112	229	650x550

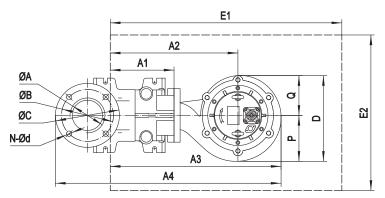

^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут) Н3 - Минимальный уровень жидкости при остановке насоса

Насосы VSV 2,2-5,5 кВт

^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут) Н3 - Минимальный уровень жидкости при остановке насоса

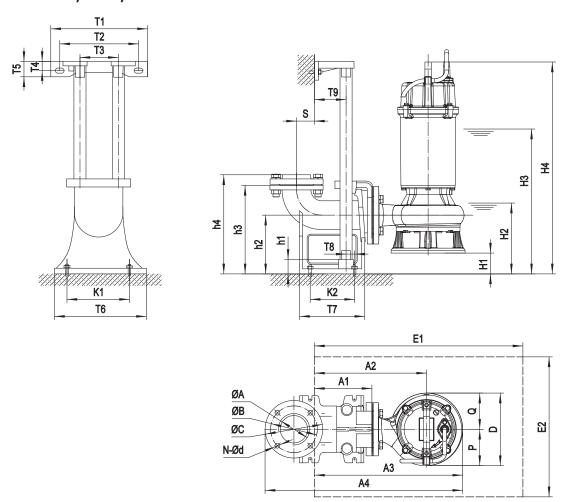

Размеры в мм


Муфта	øΑ	øΒ	øС	N-ød	T1	T2	ТЗ	T4	T5	Т6	T7	Т8	Т9	K1	K2	S	h1	h2	h3	h4
ø65/G2 1/2"	130	160	4-ø14	280	235	125	30	50	230	235	19	70	190	155	90	25	170	265	291	291
ø80/G3''	150	190	4-ø18	315	265	145	27	50	255	225	36	78	215	155	77	25	190	305	335	335


Модель	Муфта	H1	H2	Н3	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSV.65.22.2.5.0D	65-65 (PN 6)	80	245	500	667	157	312	408	578	100	91	191	650x550
VSV.65.30.2.5.0D	65-65 (PN 6)	80	245	515	694	157	312	408	578	100	91	191	650x550
VSV.80.40.2.5.0D	80-80 (PN 6)	90	260	545	705	178	353	458	630	108	103	211	650x550
VSV.80.55.2.5.0D	80-80 (PN 6)	90	260	570	756	178	353	465	637	114	111	225	650x550

Насосы VSV 5,5-11,0 кВт

- * Н2 Аварийный уровень жидкости при работе насоса (не более 30 минут) Н3 Минимальный уровень жидкости при остановке насоса


Размеры в мм

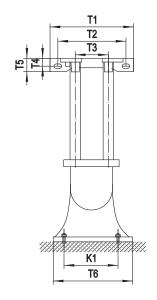
Муфта	øΑ	øΒ	øC	N-ød	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	K1	К2	s	h1	h2	h3	h4
80-80 (PN 6)	ø80/G3''	150	190	4-ø18	315	265	145	27	50	255	225	36	78	215	155	77	25	190	305	335
100-100 (PN 6)	ø100/G4"	170	210	4-ø18	365	305	170	32	55	295	260	33	95	265	175	100	25	230	350	381

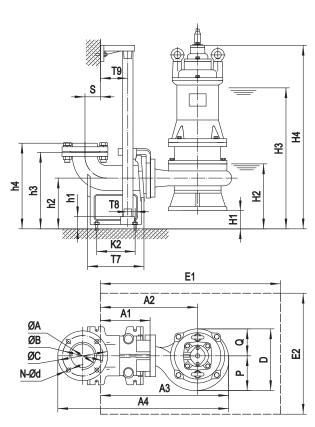
Модель	Муфта	H1	H2	Н3	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSV.80.55.4.5.0D	80-80 (PN 6)	50	305	640	859	178	408	561	733	173	173	346	750x550
VSV.100.55.4.5.0D	100-100 (PN 6)	60	360	690	911	202	462	618	823	173	173	346	850x550
VSV.80.75.4.5.0D	80-80 (PN 6)	50	305	685	904	178	408	561	733	173	173	346	750x550
VSV.100.75.4.5.0D	100-100 (PN 6)	60	360	735	956	202	462	618	823	173	173	346	850x550
VSV.100.110.4.5.0D	100-100 (PN 6)	60	360	795	1018	202	462	618	823	173	173	346	850x550

Hacocы VSL 0,75-1,5 кВт 2-х полюсные

^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

Размеры в мм

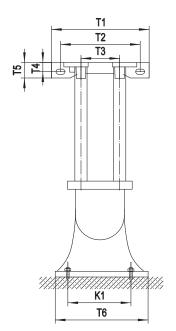

Муфта	øΑ	øΒ	øС	N-ød	T1	T2	ТЗ	T4	T5	Т6	T7	Т8	Т9	К1	К2	S	h1	h2	h3	h4
50-50 (PN 6)	ø50/G2	110	140	4-ø14	265	215	105	25	42	200	215	13	67	165	135	63	25	160	250	281
65-65 (PN 6)	ø65/G2 1/2"	130	160	4-ø14	280	235	125	30	50	230	235	19	70	190	155	90	25	170	265	291

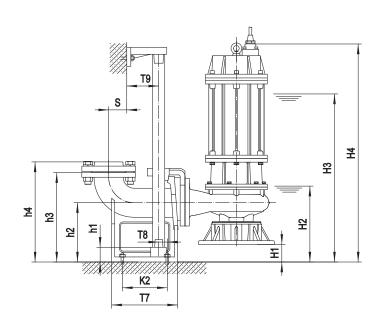

Модель	Муфта	H1	Н2	НЗ	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSL.50.075.2.5.0D	50-50 (PN 6)	65	185	365	515	157	286	379	512	100	90	190	650x550
VSL.50.075.2.1.502	50-50 (PN 6)	65	185	380	515	157	286	379	512	100	90	190	650x550
VSL.50.11.2.5.0D	50-50 (PN 6)	68	188	393	532	157	291	381	514	90	90	180	650x550
VSL.50.11.2.1.502	50-50 (PN 6)	68	188	393	532	157	291	381	514	90	90	180	650x550
VSL.65.11.2.5.0D	65-65 (PN 6)	68	188	393	532	157	291	381	514	90	90	180	650x550
VSL.65.11.2.1.502	65-65 (PN 6)	68	188	393	532	157	291	381	514	90	90	180	650x550
VSL.65.11L.2.5.0D	65-65 (PN 6)	76	200	405	546	157	292	385	555	99	90	189	650x550
VSL.65.11L.2.1.502	65-65 (PN 6)	76	200	405	546	157	292	385	555	99	90	189	650x550
VSL.50.15.2.5.0D	50-50 (PN 6)	68	188	413	552	157	291	381	514	90	90	180	650x550
VSL.50.15.2.1.502	50-50 (PN 6)	68	188	413	552	157	291	381	514	90	90	180	650x550
VSL.65.15.2.5.0D	65-65 (PN 6)	68	188	413	552	157	291	381	514	90	90	180	650x550
VSL.65.15.2.1.502	65-65 (PN 6)	68	188	413	552	157	291	381	514	90	90	180	650x550
VSL.65.15L.2.5.0D	65-65 (PN 6)	76	200	425	566	157	292	385	555	99	90	189	650x550
VSL.65.15L.2.1.502	65-65 (PN 6)	76	200	425	566	157	292	385	555	99	90	189	650x550

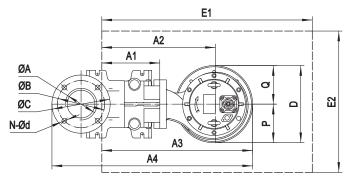
НЗ - Минимальный уровень жидкости при остановке насоса

Hacocы VSL 2,2-5,5 кВт 2-х полюсные

- * Н2 Аварийный уровень жидкости при работе насоса (не более 30 минут)
 - НЗ Минимальный уровень жидкости при остановке насоса

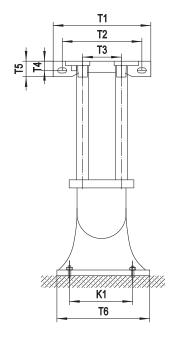

Размеры в мм

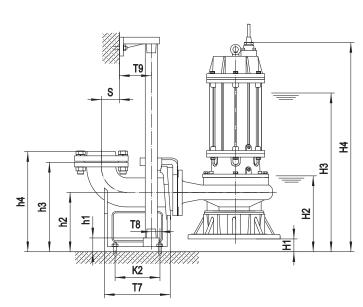

Муфта	øΑ	øΒ	øС	N-ød	T1	T2	Т3	T4	T5	T6	T7	Т8	Т9	K1	К2	s	h1	h2	h3	h4
50-50 (PN 6)	ø50/G2	110	140	4-ø14	265	215	105	25	42	200	215	15	67	165	135	63	25	160	250	280
65-65 (PN 6)	ø65/G2 1/2"	130	160	4-ø14	280	230	125	30	50	230	235	20	70	190	155	90	25	165	265	295
80-80 (PN 6)	ø80/G3''	150	190	4-ø18	315	265	145	27	50	255	225	30	78	215	155	77	25	190	305	335
100-100 (PN 6)	ø100/G4''	170	210	4-ø18	365	305	170	32	55	295	260	35	95	265	175	100	25	230	350	380

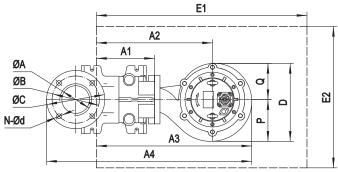

Модель	Муфта	H1	H2	НЗ	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSL.50.22.2.5.0D	50-50 (PN 6)	54	199	464	627	157	321	427	560	113	100	213	650x550
VSL.65.22.2.5.0D	65-65 (PN 6)	65	210	475	638	157	321	429	599	115	100	215	650x550
VSL.80.22.2.5.0D	80-80 (PN 6)	78	228	493	658	178	338	446	618	116	100	216	650x550
VSL.100.22.2.5.0D	100-100 (PN 6)	108	268	533	696	200	366	473	678	116	100	216	650x550
VSL.50.30.2.5.0D	50-50 (PN 6)	55	200	480	654	157	321	427	560	113	100	213	650x550
VSL.65.30.2.5.0D	65-65 (PN 6)	65	210	490	664	157	321	429	599	115	100	215	650x550
VSL.80.30.2.5.0D	80-80 (PN 6)	66	236	516	693	178	332	440	612	116	100	216	650x550
VSL.100.30.2.5.0D	100-100 (PN 6)	108	278	558	731	202	366	473	678	116	100	216	700x550
VSL.50.40.2.5.0D	50-50 (PN 6)	39	200	495	656	157	336	451	584	166	115	231	650x550
VSL.65.40.2.5.0D	65-65 (PN 6)	49	209	504	666	157	336	451	621	116	115	231	650x550
VSL.80.40.2.5.0D	80-80 (PN 6)	57	242	537	700	178	338	453	625	115	115	230	650x550
VSL.100.40.2.5.0D	100-100 (PN 6)	97	282	577	740	202	377	492	697	115	115	230	700x550
VSL.50.55.2.5.0D	50-50 (PN 6)	32	192	507	699	157	332	457	590	128	125	253	650x550
VSL.65.55.2.5.0D	65-65 (PN 6)	42	200	520	709	157	332	457	627	128	125	253	650x550
VSL.80.55.2.5.0D	80-80 (PN 6)	61	235	555	744	178	353	478	650	125	125	250	700x550
VSL.80.55L.2.5.0D	80-80 (PN 6)	58	235	555	745	178	358	483	655	128	125	253	700x550
VSL.100.55.2.5.0D	100-100 (PN 6)	95	285	600	793	202	383	512	717	140	125	265	700x550

Hacocы VSL 7,5-11,0 кВт 2-х полюсные

^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут) Н3 - Минимальный уровень жидкости при остановке насоса

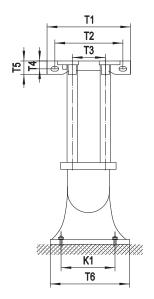

Размеры в мм

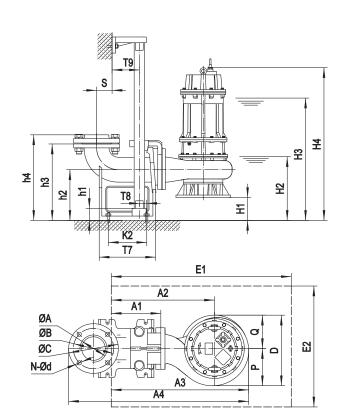

Муфта	øΑ	øΒ	øС	N-ød	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	K1	K2	s	h1	h2	h3	h4
80-80 (PN 6)	ø80/G3"	150	190	4-ø18	315	265	145	27	50	255	225	36	78	215	155	77	25	190	305	335
100-100 (PN 6)	ø100/G4"	170	210	4-ø18	365	305	170	32	55	295	260	33	95	265	175	100	25	230	350	381
150-150 (PN 6)	ø150	225	280	8-ø18	400	260	280	24	48	400	410	87	95	280	300	192	390	300	480	-


Модель	Муфта	H1	H2	НЗ	H4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSL.50.75.2.5.0D	-	-	-	-	-	-	-	-	-	-	-	-	-
VSL.80.75.2.5.0D	80-80 (PN 6)	32	242	572	794	178	378	538	713	162	162	324	750x550
VSL.100.75.2.5.0D	100-100 (PN 6)	56	286	616	840	202	404	562	772	162	162	324	750x550
VSL.150.75.2.5.0D	150-150 (PN 6)	121	366	696	920	287	497	659	992	162	162	324	850x550
VSL.80.110.2.5.0D	80-80 (PN 6)	16	246	616	845	178	380	543	715	162	162	324	750x550
VSL.100.110.2.5.0D	100-100 (PN 6)	56	286	656	885	202	404	567	772	162	162	324	750x550
VSL.150.110.2.5.0D	150-150 (PN 6)	121	366	736	965	287	497	659	992	162	162	324	750x550

Насосы VSL 2,2-7,5 кВт 4-х полюсные

- * Н2 Аварийный уровень жидкости при работе насоса (не более 30 минут)
- НЗ Минимальный уровень жидкости при остановке насоса

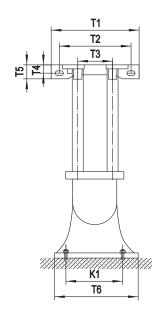

Размеры в мм

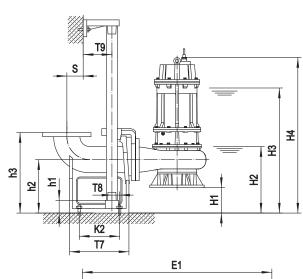

Муфта	øΑ	øΒ	øС	N-ød	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	K1	K2	S	h1	h2	h3	h4
80-80 (PN 6)	ø80/G3"	150	190	4-ø18	315	265	145	27	50	255	225	36	78	215	155	77	25	190	305	335
100-100 (PN 6)	ø100/G4"	170	210	4-ø18	365	305	170	32	55	295	260	33	95	265	175	100	25	230	350	381
150-150 (PN 6)	ø150	225	280	8-ø18	400	260	280	24	48	400	410	87	95	280	300	192	390	300	480	-
200-200 (PN 10)	ø200	295	330	8-ø22	400	260	280	24	48	400	445	110	95	300	355	230	440	325	550	-

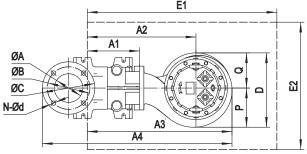
Модель	Муфта	H1	H2	НЗ	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSL.80.22.4.5.0D	80-80 (PN 6)	25	260	500	617	178	403	566	738	176	160	336	800x600
VSL.100.22.4.5.0D	100-100 (PN 6)	65	297	540	657	202	427	590	795	176	160	336	800x600
VSL.80.37.4.5.0D	80-80 (PN 6)	25	260	560	682	178	403	566	738	176	160	336	800x600
VSL.100.37.4.5.0D	100-100 (PN 6)	65	297	605	722	202	427	590	795	176	160	336	800x600
VSL.100.55.4.5.0D	100-100 (PN 6)	42	297	627	848	202	482	667	872	197	175	372	900x600
VSL.150.55.4.5.0D	150-150 (PN 6)	93	378	708	931	287	587	780	1113	214	175	389	1000x600
VSL.100.75.4.5.0D	100-100 (PN 6)	42	297	672	893	202	482	667	872	197	175	372	900x600
VSL.150.75.4.5.0D	150-150 (PN 6)	93	378	753	976	287	587	780	1113	214	175	389	1000x600
VSL.200.75.4.5.0D	200-200 (PN 10)	96	416	791	1013	292	642	867	1262	257	192	449	1050x650

Насосы VSL 11,0-22,0 кВт 4-х полюсные

- * Н2 Аварийный уровень жидкости при работе насоса (не более 30 минут)
 - Н3 Минимальный уровень жидкости при остановке насоса

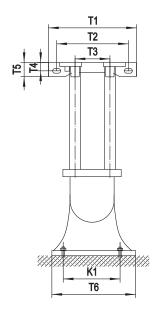

Размеры в мм

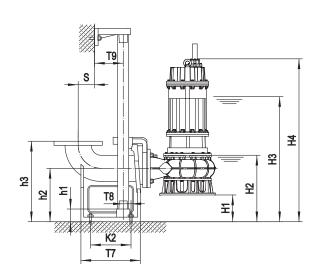

Муфта	øΑ	øΒ	øC	N-ød	T1	T2	Т3	T4	Т5	T6	T7	Т8	Т9	K1	K2	S	h1	h2	h3	h4
100-100 (PN 6)	ø100/G4»	170	210	4-ø18	365	305	170	32	55	295	260	33	95	265	175	100	25	230	350	381
150-150 (PN 6)	ø150	225	280	8-ø18	400	260	280	24	48	400	410	87	95	280	300	192	390	300	480	-
200-200 (PN 10)	ø200	295	330	8-ø22	400	260	280	24	48	400	445	110	95	300	355	230	440	325	550	-
250-250 (PN 10)	ø250	350	395	12-ø22	400	260	280	24	48	460	560	94	95	360	430	301	460	315	630	-

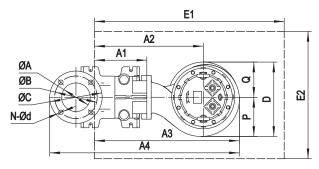

Модель	Муфта	H1	H2	НЗ	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSL.100.110.4.5.1D	100-100 (PN 6)	26	281	676	960	202	512	723	928	217	211	428	900x600
VSL.150.110.4.5.1D	150-150 (PN 6)	76	361	756	1029	287	607	817	1150	225	211	436	1050x650
VSL.200.110.4.5.1D	200-200 (PN 10)	91	416	811	1054	293	633	855	1250	251	211	462	1050x650
VSL.100.150.4.5.1D	100-100 (PN 6)	26	281	721	1005	202	512	723	928	217	211	428	900x600
VSL.150.150.4.5.1D	150-150 (PN 6)	76	361	801	1074	287	607	817	1150	225	211	436	1050x650
VSL.200.150.4.5.1D	200-200 (PN 10)	91	416	830	1099	293	633	855	1250	251	211	462	1050x650
VSL.100.190.4.5.1D	100-100 (PN 6)	36	291	751	1054	202	527	745	950	227	211	438	900x600
VSL.150.190.4.5.1D	150-150 (PN 6)	86	371	826	1120	287	622	843	1176	236	211	447	1050x650
VSL.200.190.4.5.1D	200-200 (PN 10)	91	416	846	1142	292	642	876	1271	260	211	471	1050x650
VSL.100.220.4.5.1D	100-100 (PN 6)	36	291	772	1074	202	527	745	950	227	211	438	900x600
VSL.150.220.4.5.1D	150-150 (PN 6)	86	371	846	1140	287	622	843	1176	236	211	447	1050x650
VSL.200.220.4.5.1D	200-200 (PN 10)	91	416	870	1162	292.	642	876	1271	260	211	471	1050x650
VSL.250.220.4.5.1D	250-250 (PN 10)	38	440	870	1169	311	711	990	1489	313	272	583	1100x850

Hacocы VSL 30,0-45,0 кВт 4-х полюсные

- * Н2 Аварийный уровень жидкости при работе насоса (не более 30 минут) Н3 Минимальный уровень жидкости при остановке насоса


Размеры в мм

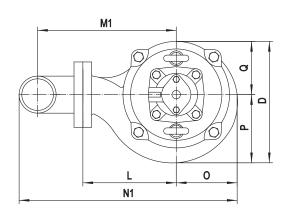

Муфта	øΑ	øΒ	øС	N-ød	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	K1	К2	s	h1	h2	h3
150-150 (PN 10)	ø150	240	280	8-ø22	400	260	280	24	48	400	410	87	95	280	300	192	390	300	480
200-200 (PN 10)	ø200	295	330	8-ø22	400	260	280	24	48	400	445	110	95	300	355	230	440	325	550
250-250 (PN 10)	ø250	350	395	12-ø22	400	260	280	24	48	460	560	94	95	360	430	301	460	315	630
300-300 (PN 10)	ø300	400	445	12-ø22	480	295	340	31	62	550	570	75	115	410	415	280	570	400	730

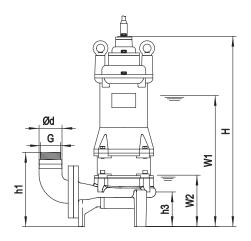

Модель	Муфта	H1	H2	Н3	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSL.150.300.4.5.1D	150-150 (PN 10)	48	388	903	1249	287	667	940	1273	284	272	556	1150x700
VSL.200.300.4.5.1D	200-200 (PN 10)	53	433	948	1294	293	683	971	1366	310	272	582	1150x800
VSL.250.300.4.5.1D	250-250 (PN 10)	38	440	920	1254	311	721	1022	1521	333	272	605	1250x800
VSL.300.300.4.5.1D	300-300 (PN 10)	88	538	1018	1353	338	818	1158	1661	387	292	679	1400x800
VSL.150.370.4.5.1D	150-150 (PN 10)	48	388	898	1300	287	667	940	1273	284	272	556	1150x750
VSL.200.370.4.5.1D	200-200 (PN 10)	53	433	943	1345	293	683	971	1366	310	272	582	1150×800
VSL.250.370.4.5.1D	250-250 (PN 10)	38	440	910	1305	311	721	1022	1521	333	272	605	1250x800
VSL.300.370.4.5.1D	300-300 (PN 10)	88	540	1010	1404	338	818	1158	1661	387	292	679	1400x800
VSL.150.450.4.5.1D	150-150 (PN 10)	48	388	938	1294	287	667	940	1273	284	272	556	1150x750
VSL.200.450.4.5.1D	200-200 (PN 10)	53	433	983	1339	293	683	971	1366	310	272	582	1150x800
VSL.250.450.4.5.1D	250-250 (PN 10)	38	440	950	1299	311	721	1022	1521	333	272	605	1250x800
VSL.300.450.4.5.1D	300-300 (PN 10)	88	540	1050	1398	338	818	1158	1661	387	292	679	1400x800

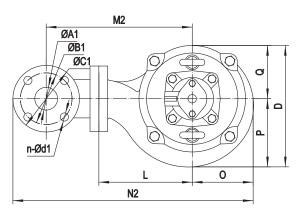
Монтаж на автоматической трубной муфте Насосы VSL 45,0-90,0 кВт

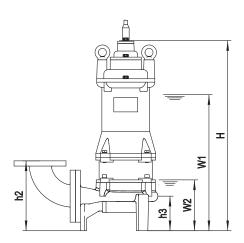
- * Н2 Аварийный уровень жидкости при работе насоса (не более 30 минут) Н3 Минимальный уровень жидкости при остановке насоса

Размеры в мм

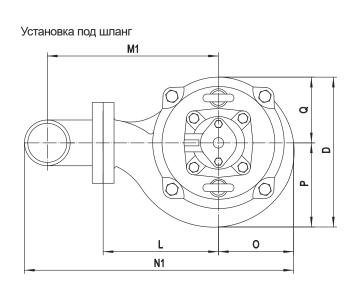

Муфта	øΑ	øΒ	øС	N-ød	T1	T2	ТЗ	T4	T5	T6	T7	Т8	Т9	K1	К2	S	h1	h2	h3
200-200 (PN 10)	ø200	295	330	8-ø22	400	260	280	24	48	400	445	110	95	300	355	230	440	325	550
250-250 (PN 10)	ø250	350	395	12-ø22	400	260	280	24	48	460	560	94	95	360	430	301	460	315	630
300-300 (PN 10)	ø300	400	445	12-ø22	480	295	340	31	62	550	570	75	115	410	415	280	570	400	730
400-400 (PN 10)	ø400	515	570	16-ø27	500	325	360	31	62	620	660	80	115	490	510	365	770	560	960

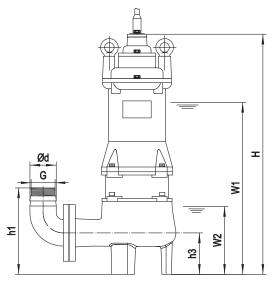

Модель	Муфта	H1	H2	Н3	Н4	A1	A2	А3	A4	Р	Q	D	E1xE2
VSL.200.550.4.5.1D	200-200 (PN 10)	31	431	1081	1570	293	733	1053	1448	323	321	644	1300x800
VSL.250.550.4.5.1D	250-250 (PN 10)	3	443	1083	1578	311	771	1095	1594	349	321	670	1300x800
VSL.300.550.4.5.1D	300-300 (PN 10)	71	541	1181	1681	338	828	1187	1690	398	321	719	1400x900
VSL.200.750.4.5.1D	200-200 (PN 10)	31	431	1141	1570	293	733	1053	1448	323	321	644	1300x800
VSL.250.750.4.5.1D	250-250 (PN 10)	3	443	1143	1578	311	771	1095	1594	349	321	670	1300x800
VSL.300.750.4.5.1D	300-300 (PN 10)	71	541	1241	1681	338	828	1187	1690	398	321	719	1400x900
VSL.200.900.4.5.1D	200-200 (PN 10)	31	431	1141	1558	293	733	1053	1448	323	321	644	1300x800
VSL.250.900.4.5.1D	250-250 (PN 10)	3	443	1143	1566	311	771	1095	1594	349	321	670	1300x800
VSL.300.900.4.5.1D	300-300 (PN 10)	71	541	1170	1669	338	828	1187	1690	398	321	719	1400x900
VSL.400.450.6.5.1D	400-400 (PN 10)	196	736	1386	1870	351	951	1379	2029	488	366	854	1600×1000
VSL.400.550.6.5.1D	400-400 (PN 10)	196	736	1426	1870	351	951	1379	2029	488	366	854	1600x1000


Насосы SG

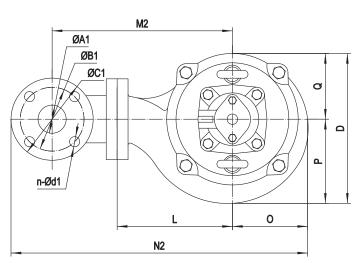

Установка под шланг

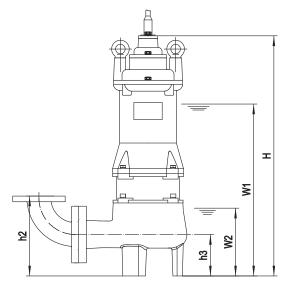
Фланцевое соединение с коленом

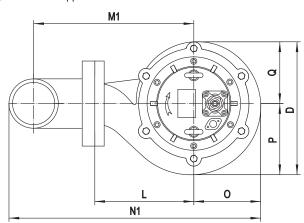


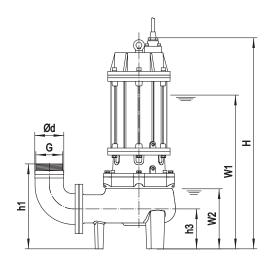

* W1 - Минимальный уровень жидкости при остановке насоса W2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

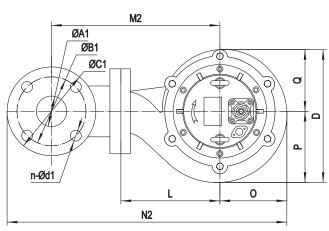
M				D4	04		1.4	1.0	1.0	14/4	14/2		_	_	_			244	142	N14	NO
Модель	ød	G	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	Н	0	Р	Q	L	D	M1	М2	N1	N2
SG.40.075.2.5.0D	40	-	40	100	100	4-ø14	167	187	87	320	125	481	81	87	81	130	168	193	232	294	378
SG.40.075.2.1.502	40	-	40	100	100	4-ø14	167	187	87	335	125	500	81	87	81	130	168	193	232	294	378
SG.40.11.2.5.0D	40	-	40	100	100	4-ø14	167	187	87	335	125	481	81	87	81	130	168	193	232	294	378
SG.40.11.2.1.502	40	-	40	100	100	4-ø14	167	187	87	335	125	500	81	87	81	130	168	193	232	294	378
SG.40.15.2.5.0D	40	-	40	100	100	4-ø14	170	190	90	355	125	521	93	100	101	148	201	211	250	324	408
SG.40.22.2.5.0D	40	-	40	100	100	4-ø14	170	190	90	375	125	541	93	100	101	148	201	211	250	324	408
SG.50.37.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	203	198	98	405	125	577	103	104	103	155	207	221	257	349	429
SG.50.55.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	200	196	95	440	125	629	112	117	112	157	229	223	259	360	441

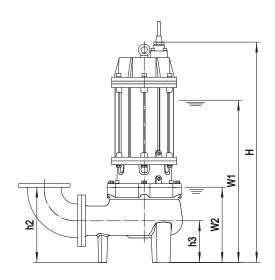



Насосы VSV 2,2-5,5 кВт

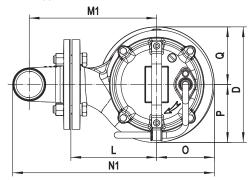

- * W1 Минимальный уровень жидкости при остановке насоса
 - W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)


Модель	ød	G	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	Н	0	Р	Q	L	D	М1	М2	N1	N2
VSV.65.22.2.5.0D	65	G2	65	130	160	4-ø14	210	210	90	425	170	587	96	100	91	155	191	227	277	355	453
VSV.65.30.2.5.0D	65	G2	65	130	160	4-ø14	210	210	90	440	170	614	96	100	95	155	195	227	267	355	453
VSV.80.40.2.5.0D	80	G2 1/2"	80	150	190	4-ø18	245	240	90	455	170	615	105	108	103	175	211	267	317	410	517
VSV.80.55.2.5.0D	80	G2 1/2"	80	150	190	4-ø18	245	240	90	480	170	666	112	114	111	175	225	267	317	416	524

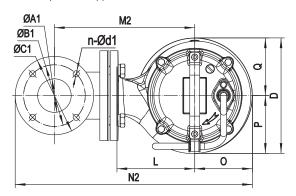

Насосы VSV 5,5-11,0 кВт

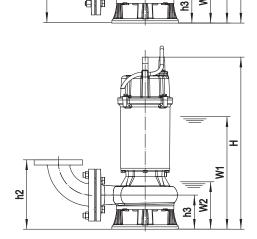

Установка под шланг

Фланцевое соединение с коленом


- * W1 Минимальный уровень жидкости при остановке насоса W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)

Модель	ød	G	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	Н	0	Р	Q	L	D	М1	М2	N1	N2
VSV.80.55.4.5.0D	80	G2 1/2"	80	150	190	4-ø18	285	280	140	590	255	809	153	173	173	230	346	322	372	512	620
VSV.100.55.4.5.0D	100	-	100	170	210	4-ø18	340	320	170	630	300	851	156	173	173	260	346	362	412	568	673
VSV.80.75.4.5.0D	80	G2 1/2"	80	150	190	4-ø18	285	280	140	635	255	854	153	173	173	230	346	322	372	512	620
VSV.100.75.4.5.0D	100	-	100	170	210	4-ø18	340	320	170	675	300	896	156	173	173	260	346	362	412	568	673
VSV.100.110.4.5.0D	100	-	100	170	210	4-ø18	340	320	170	735	300	958	156	173	173	260	346	362	412	568	673

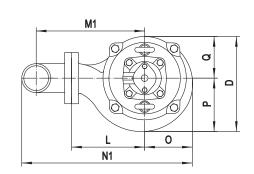



Hacocы VSL 0,75-1,5 кВт 2-х полюсные

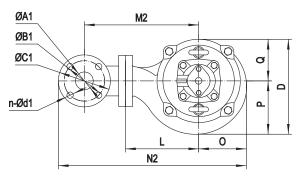
Установка под шланг

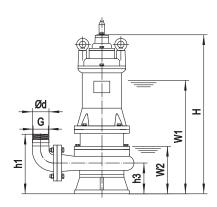
Фланцевое соединение с коленом

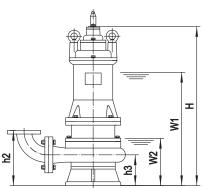
Ød G

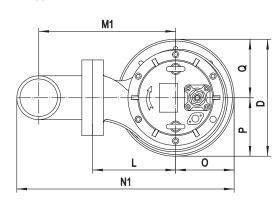

- * W1 Минимальный уровень жидкости при остановке насоса W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)

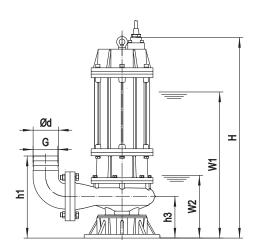
Модель	ød	G	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	Н	0	Р	Q	L	D	М1	М2	N1	N2
VSL.50.075.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	200	195	95	300	120	450	93	100	90	129	190	195	231	314	394
VSL.50.075.2.1.502	50	G1 1/2"	50	110	140	4-ø14	200	195	95	315	120	450	93	100	90	129	190	195	231	314	394
VSL.50.11.2.5.0D	50	G2 1/2"	50	110	140	4-ø14	197	192	92	325	120	464	90	90	90	134	180	200	236	316	396
VSL.50.11.2.1.502	50	G2 1/2"	50	110	140	4-ø14	197	192	92	325	120	464	90	90	90	134	180	200	236	316	396
VSL.65.11.2.5.0D	65	G2"	65	130	160	4-ø14	212	192	92	325	120	464	90	90	90	134	180	200	236	323	406
VSL.65.11.2.1.502	65	G2"	65	130	160	4-ø14	212	192	92	325	120	464	90	90	90	134	180	200	236	323	406
VSL.65.11L.2.5.0D	65	G2"	65	130	160	4-ø14	214	214	94	325	120	470	93	99	90	135	192	207	257	332	430
VSL.65.11L.2.1.502	65	G2"	65	130	160	4-ø14	214	214	94	325	120	470	93	99	90	135	192	207	257	332	430
VSL.50.15.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	197	192	92	345	120	484	90	90	90	134	180	200	236	316	396
VSL.50.15.2.1.502	50	G1 1/2"	50	110	140	4-ø14	197	192	92	345	120	484	90	90	90	134	180	200	236	316	396
VSL.65.15.2.5.0D	65	G2"	65	130	160	4-ø14	212	192	92	345	120	484	90	90	90	134	180	200	236	323	406
VSL.65.15.2.1.502	65	G2"	65	130	160	4-ø14	212	192	92	345	120	484	90	90	90	134	180	200	236	323	406
VSL.65.15L.2.5.0D	65	G2"	65	130	160	4-ø14	214	214	94	345	120	490	93	99	90	135	192	207	257	332	430
VSL.65.15L.2.1.502	65	G2"	65	130	160	4-ø14	214	214	94	345	120	490	93	99	90	135	192	207	257	332	430

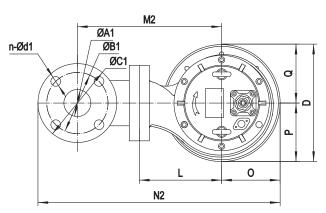


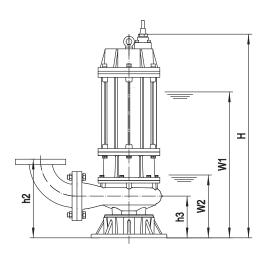

Насосы VSL 2,2-5,5 кВт 2-х полюсные


Установка под шланг

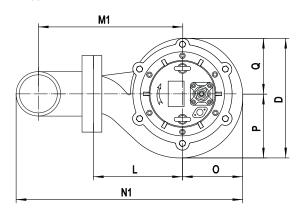

* W1 - Минимальный уровень жидкости при остановке насоса W2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

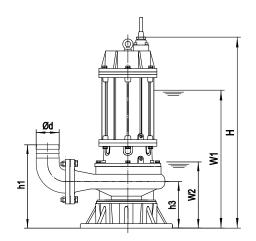

Модель	ød	G	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	Н	0	Р	Q	L	D	M1	M2	N1	N2
VSL.50.22.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	211	205	106	410	145	573	106	113	100	164	213	230	266	363	438
VSL.65.22.2.5.0D	65	G2"	65	130	160	4-ø14	226	226	106	410	145	573	106	115	100	164	215	236	286	375	463
VSL.80.22.2.5.0D	80	G2 1/2"	80	150	190	4-ø18	257	252	112	415	150	580	108	116	100	160	216	252	302	395	502
VSL.100.22.2.5.0D	100	-	100	170	210	4-ø18	293	252	122	425	160	589	107	116	100	164	216	266	316	422	528
VSL.50.30.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	211	205	105	425	145	600	106	113	100	164	213	230	266	363	438
VSL.65.30.2.5.0D	65	G2"	65	130	160	4-ø14	226	226	105	425	145	600	108	115	100	164	215	236	286	375	463
VSL.80.30.2.5.0D	80	G2 1/2"	80	150	190	4-ø18	268	263	124	450	170	626	108	116	100	154	216	246	296	390	497
VSL.100.30.2.5.0D	100	-	100	170	210	4-ø18	293	272	122	450	170	624	107	116	100	164	216	266	316	425	528
VSL.50.40.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	225	220	121	455	160	616	115	116	115	179	231	245	281	386	466
VSL.65.40.2.5.0D	65	G2"	65	130	160	4-ø14	240	240	121	455	160	616	115	116	115	179	231	251	301	397	486
VSL.80.40.2.5.0D	80	G2 1/2"	80	150	190	4-ø18	278	273	133	480	185	643	115	115	115	160	230	252	302	410	517
VSL.100.40.2.5.0D	100	-	100	170	210	4-ø18	303	283	133	480	185	643	115	115	115	175	230	277	327	443	547
VSL.50.55.2.5.0D	50	G1 1/2"	50	110	140	4-ø14	233	228	128	475	160	667	125	128	125	175	253	241	277	390	467
VSL.65.55.2.5.0D	65	G2"	65	130	160	4-ø14	248	248	128	475	160	667	125	128	125	175	253	247	297	404	502
VSL.80.55.2.5.0D	80	G2 1/2"	80	150	190	4-ø18	274	269	129	495	175	683	125	125	125	175	250	267	317	430	537
VSL.80.55L.2.5.0D	80	G2 1/2"	80	150	190	4-ø18	277	272	132	495	175	687	125	128	125	180	253	272	322	429	537
VSL.100.55.2.5.0D	100	-	100	170	210	4-ø18	305	285	135	505	190	697	129	140	125	181	265	283	333	465	570

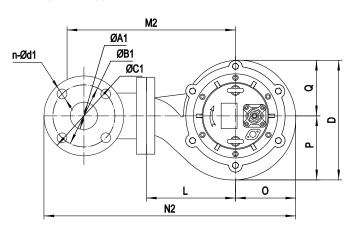

Hacocы VSL 7,5-11,0 кВт 2-х полюсные

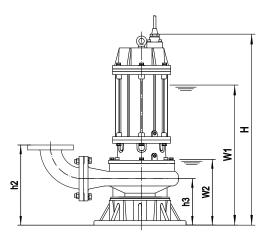

Установка под шланг

Фланцевое соединение с коленом

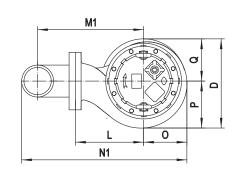

- * W1 Минимальный уровень жидкости при остановке насоса
 - W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)

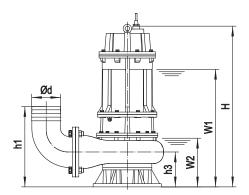

Модель	ød	G	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	Н	0	Р	Q	L	D	М1	М2	N1	N2
VSL.50.75.2.5.0D	50	G1 1/2"	50	110	140	4-ø18	264	259	159	540	210	763	162	162	162	200	324	266	302	454	534
VSL.80.75.2.5.0D	80	G1 1/2"	80	150	190	4-ø18	303	299	159	540	210	763	162	162	162	200	324	292	342	492	599
VSL.100.75.2.5.0D	100	-	100	170	210	4-ø18	344	324	174	560	230	784	162	162	162	202	324	304	354	516	621
VSL.150.75.2.5.0D	150	-	150	225	265	8-ø18	404	379	179	575	245	799	162	162	162	210	324	364	414	600	708
VSL.80.110.2.5.0D	80	G1 1/2"	80	150	190	4-ø18	319	314	174	600	230	829	162	162	162	202	324	294	344	494	601
VSL.100.110.2.5.0D	100	-	100	170	210	4-ø18	344	324	174	600	230	829	162	162	162	202	324	304	354	516	621
VSL.150.110.2.5.0D	150	-	150	225	265	8-ø18	404	379	179	615	245	844	162	162	162	210	324	364	414	600	708

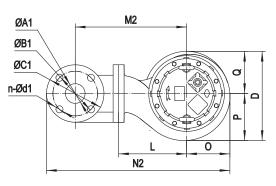

Насосы VSL 2,2-7,5 кВт 4-х полюсные

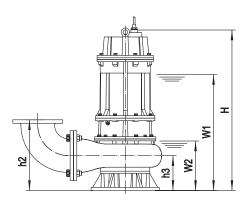

Установка под шланг

Фланцевое соединение с коленом

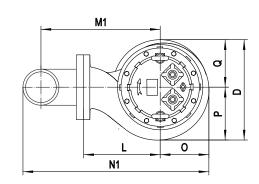

- * W1 Минимальный уровень жидкости при остановке насоса
 - W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)

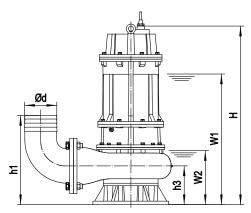

Модель	ød	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	н	0	Р	Q	L	D	М1	М2	N1	N2
VSL.80.22.4.5.0D	80	80	150	190	4-ø18	310	305	165	475	232	592	163	176	160	225	336	317	367	518	625
VSL.100.22.4.5.0D	100	100	170	210	4-ø18	335	315	165	475	232	592	163	176	160	225	336	328	378	540	646
VSL.80.37.4.5.0D	80	80	150	190	4-ø18	310	305	165	540	232	657	163	176	160	225	336	317	367	518	625
VSL.100.37.4.5.0D	100	100	170	210	4-ø18	335	315	165	540	232	657	163	176	160	225	336	328	377	540	646
VSL.100.55.4.5.0D	100	100	170	210	4-ø18	358	338	188	585	255	806	185	197	175	280	372	383	433	617	722
VSL.150.55.4.5.0D	150	150	225	265	8-ø18	432	407	207	615	285	838	194	214	175	300	389	454	504	722	832
VSL.100.75.4.5.0D	100	100	170	210	4-ø18	358	338	188	630	255	851	185	197	175	280	372	382	432	616	722
VSL.150.75.4.5.0D	150	150	225	265	8-ø18	432	407	207	660	285	883	194	214	175	300	389	453	504	722	830
VSL.200.75.4.5.0D	200	200	295	340	8-ø22	539	459	229	695	320	917	225	257	192	350	449	553	583	878	978

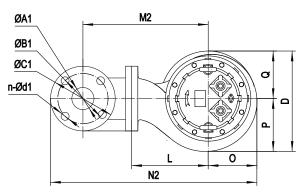

Насосы VSL 11,0-22,0 кВт 4-х полюсные

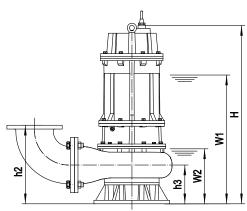

Установка под шланг

Фланцевое соединение с коленом

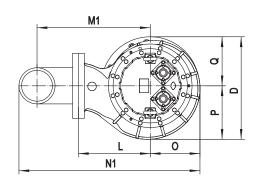

- * W1 Минимальный уровень жидкости при остановке насоса
- W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)

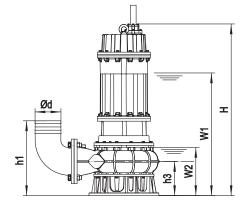

Модель	ød	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	н	0	Р	0	L	D	M1	M2	N1	N2
VSL.100.110.4.5.1D	100	100	170	210	4-ø18	374	354	204	650	255	934	211	217	211	310	428	413	463	673	778
VSL.150.110.4.5.1D	150	150	225	265	8-ø18	449	424	224	680	285	953	211	225	211	320	436	474	524	759	867
VSL.200.110.4.5.1D	200	200	295	340	8-ø22	544	464	234	700	325	963	222	251	211	340	462	544	574	866	966
VSL.100.150.4.5.1D	100	100	170	210	4-ø18	374	354	204	695	255	979	211	217	211	310	428	412	463	673	778
VSL.150.150.4.5.1D	150	150	225	265	8-ø18	449	424	224	725	285	998	211	225	211	320	436	474	524	759	867
VSL.200.150.4.5.1D	200	200	295	340	8-ø22	544	464	234	740	325	1008	222	251	211	340	462	544	574	866	966
VSL.100.190.4.5.1D	100	100	170	210	4-ø18	364	344	194	715	255	1018	218	227	211	325	438	428	478	694	800
VSL.150.190.4.5.1D	150	150	225	265	8-ø18	439	414	214	740	285	1034	222	236	211	335	447	489	539	785	893
VSL.200.190.4.5.1D	200	200	295	340	8-ø22	544	464	234	760	325	1051	233	260	211	350	471	553	583	887	987
VSL.100.220.4.5.1D	100	100	170	210	4-ø18	364	344	194	736	255	1038	218	227	211	325	438	428	478	694	800
VSL.150.220.4.5.1D	150	150	225	265	8-ø18	439	414	214	760	285	1054	222	236	211	335	447	489	539	785	899
VSL.200.220.4.5.1D	200	200	295	340	8-ø22	544	464	234	780	325	1071	233	260	211	350	471	553	583	887	987
VSL.250.220.4.5.1D	-	250	350	395	12-ø22	-	660	277	830	400	1131	279	311	272	400	583	-	788	-	1265

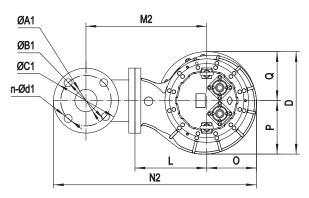

Hacocы VSL 30,0-45,0 кВт 4-х полюсные

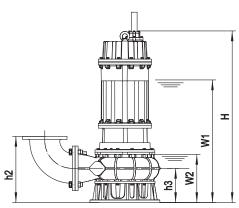

Установка под шланг

Фланцевое соединение с коленом


- * W1 Минимальный уровень жидкости при остановке насоса
 - W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)


Модель	ød	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	н	0	Р	Q	L	D	М1	М2	N1	N2
VSL.150.300.4.5.1D	150	150	240	280	8-ø22	477	452	252	855	340	1201	273	284	272	380	556	533	583	881	997
VSL.200.300.4.5.1D	200	200	295	340	8-ø22	582	502	272	895	380	1241	288	310	272	390	582	594	624	982	1078
VSL.250.300.4.5.1D	-	250	350	395	12-ø22	-	667	277	880	400	1216	301	333	272	410	605	-	798	-	1181
VSL.300.300.4.5.1D	-	300	400	445	12-ø22	-	772	312	930	450	1265	340	387	292	480	679	-	943	-	1365
VSL.150.370.4.5.1D	150	150	240	280	8-ø22	477	452	252	850	340	1252	273	284	272	380	556	533	583	881	997
VSL.200.370.4.5.1D	200	200	295	340	8-ø22	582	502	272	890	380	1292	288	310	272	390	582	594	624	982	1078
VSL.250.370.4.5.1D	-	250	350	395	12-ø22	-	662	277	870	400	1267	301	333	272	410	605	-	798	-	1181
VSL.300.370.4.5.1D	-	300	400	445	12-ø22	-	772	312	920	450	1316	340	387	292	480	679	-	943	-	1365
VSL.150.450.4.5.1D	150	150	240	280	8-ø22	477	452	252	890	340	1246	273	284	272	380	556	533	583	881	997
VSL.200.450.4.5.1D	200	200	295	340	8-ø22	582	502	272	930	380	1286	288	310	272	390	582	594	624	982	1078
VSL.250.450.4.5.1D	-	250	350	395	12-ø22	-	662	277	910	400	1261	301	333	272	410	605	-	798	-	1181
VSL.300.450.4.5.1D	-	300	400	445	12-ø22	-	772	312	960	450	1310	340	387	292	480	679	-	943	-	1365


Свободная установка Насосы VSL 45,0-90,0 кВт


Установка под шланг

Фланцевое соединение с коленом

- * W1 Минимальный уровень жидкости при остановке насоса
 - W2 Аварийный уровень жидкости при работе насоса (не более 30 минут)

Модель	ød	øA1	øB1	øC1	n-ød1	h1	h2	h3	W1	W2	н	0	Р	Q	L	D	М1	М2	N1	N2
VSL.200.550.4.5.1D	200	200	295	340	8-ø22	605	524	294	1050	400	1539	321	323	321	440	644	644	674	1064	1164
VSL.250.550.4.5.1D	250	250	350	395	12-ø22	-	697	312	1080	440	1575	324	349	321	460	670	-	848	-	1370
VSL.300.550.4.5.1D	300	300	400	445	12-ø22	-	789	329	1110	470	1610	358	398	321	490	719	-	953	-	1534
VSL.200.750.4.5.1D	200	200	295	340	8-ø22	604	524	294	1110	400	1539	321	323	321	440	644	644	674	1064	1164
VSL.250.750.4.5.1D	250	250	350	395	12-ø22	-	697	312	1140	440	1575	324	349	321	460	670	-	848	-	1370
VSL.300.750.4.5.1D	300	300	400	445	12-ø22	-	789	329	1170	470	1610	358	398	321	490	719	-	953	-	1534
VSL.200.900.4.5.1D	200	200	295	340	8-ø22	604	524	294	1110	400	1527	321	323	321	440	644	644	674	1064	1164
VSL.250.900.4.5.1D	250	250	350	395	12-ø22	-	697	312	1140	440	1563	324	349	321	460	670	-	848	-	1370
VSL.300.900.4.5.1D	300	300	400	445	12-ø22	-	789	329	1170	470	1598	358	398	321	490	719	-	953	-	1534
VSL.400.450.6.5.1D	400	400	515	565	16-ø27	-	974	364	1190	540	1674	428	488	366	600	854	-	1213	-	1924
VSL.400.550.6.5.1D	400	400	515	565	16-ø27	-	974	364	1230	540	1674	428	488	366	600	854	-	1213	-	1924

Macca

Насосы SG

Тип	Насос	Масса нетто [кг]
	SG.40.075.2.5.0D	25
	SG.40.075.2.1.502	26
	SG.40.075.A.2.1.502	27
SG.40.	SG.40.11.2.5.0D	26
156.40.	SG.40.11.2.1.502	27
	SG.40.11.A.2.1.502	28
	SG.40.15.2.5.0D	38
	SG.40.22.2.5.0D	41
SG.50.	SG.50.37.2.5.0D	54
30.30.	SG.50.55.2.5.0D	67

Hacoсы VSV

Тип	Насос	Масса нетто [кг]
VSV.65.	VSV.65.22.2.5.0D	39
V5V.05.	VSV.65.30.2.5.0D	48
	VSV.80.40.2.5.0D	59
VSV.80.	VSV.80.55.2.5.0D	73
V5V.6U.	VSV.80.55.4.5.0D	132
	VSV.80.75.4.5.0D	147
	VSV.100.55.4.5.0D	136
VSV.100.	VSV.100.75.4.5.0D	151
	VSV.100.110.4.5.0D	170

Hacoсы VSL

Тип	Насос	Масса нетто [кг]
	VSL.250.220.4.5.1D	360
	VSL.250.300.4.5.1D	512
	VSL.250.370.4.5.1D	570
VSL.250.	VSL.250.450.4.5.1D	606
	VSL.250.550.4.5.1D	802
	VSL.250.750.4.5.1D	872
	VSL.250.900.4.5.1D	930
	VSL.300.300.4.5.1D	557
	VSL.300.370.4.5.1D	614
VSL.300.	VSL.300.450.4.5.1D	650
VSL.300.	VSL.300.550.4.5.1D	829
	VSL.300.750.4.5.1D	903
	VSL.300.900.4.5.1D	970
VSL.400.	VSL.400.450.6.5.1D	930
V3L.400.	VSL.400.550.6.5.1D	978

Hacoсы VSL

Тип	Насос	Масса нетто [кг]
	VSL.50.075.2.5.0D	22
	VSL.50.075.2.1.502	23
	VSL.50.11.2.5.0D	24
	VSL.50.11.2.1.502	26
	VSL.50.15.2.5.0D	27
VSL.50.	VSL.50.15.2.1.502	29
	VSL.50.22.2.5.0D	42
	VSL.50.30.2.5.0D	50
	VSL.50.40.2.5.0D	59
	VSL.50.55.2.5.0D	74
1	VSL.50.75.2.5.0D	114

Тип	Насос	Масса нетто [кг]
	VSL.65.11.2.5.0D	24
	VSL.65.11.2.1.502	25
	VSL.65.11L.2.5.0D	26
	VSL.65.11L.2.1.502	26
	VSL.65.15.2.5.0D	26
VSL.65.	VSL.65.15.2.1.502	29
	VSL.65.15L.2.5.0D	27
	VSL.65.15L.2.1.502	30
	VSL.65.22.2.5.0D	44
	VSL.65.30.2.5.0D	51
	VSL.65.40.2.5.0D	61
	VSL.65.55.2.5.0D	76
	VSL.80.22.2.5.0D	47
	VSL.80.30.2.5.0D	55
	VSL.80.40.2.5.0D	65
	VSL.80.55.2.5.0D	77
VSL.80.	VSL.80.55L.2.5.0D	77
	VSL.80.75.2.5.0D	118
	VSL.80.110.2.5.0D	131
	VSL.80.22.4.5.0D	78
	VSL.80.37.4.5.0D	88
	VSL.100.22.2.5.0D	48
	VSL.100.30.2.5.0D	57
	VSL.100.40.2.5.0D	67
	VSL.100.55.2.5.0D	81
	VSL.100.75.2.5.0D	122
	VSL.100.110.2.5.0D	133
	VSL.100.22.4.5.0D	80
VSL.100.	VSL.100.37.4.5.0D	90
	VSL.100.55.4.5.0D	143
	VSL.100.75.4.5.0D	159
	VSL.100.110.4.5.1D	253
	VSL.100.150.4.5.1D	275
	VSL.100.190.4.5.1D	326
	VSL.100.220.4.5.1D	346
	VSL.150.75.2.5.0D	134
	VSL.150.110.2.5.0D	145
	VSL.150.55.4.5.0D	154
	VSL.150.75.4.5.0D	172
	VSL.150.110.4.5.1D	256
VSL.150.	VSL.150.150.4.5.1D	277
	VSL.150.190.4.5.1D	327
	VSL.150.220.4.5.1D	347
	VSL.150.300.4.5.1D	497
	VSL.150.370.4.5.1D	557
	VSL.150.450.4.5.1D	593
	VSL.200.75.4.5.0D	203
	VSL.200.110.4.5.1D	280
	VSL.200.150.4.5.1D	302
	VSL.200.190.4.5.1D	354
	VSL.200.220.4.5.1D	374
VSL.200.	VSL.200.300.4.5.1D	519
100.200.	VSL.200.370.4.5.1D	576
	VSL.150.450.4.5.1D	612
	VSL.200.550.4.5.1D	809
	VSL.200.750.4.5.1D	884
	VSL.200.750.4.5.1D VSL.200.900.4.5.1D	940
	VJL,200,300,4,J,1D	1 340

7. Принадлежности

Автоматическая трубная муфта (АТМ)

Внешний вид	Описание	Размеры	SG.40.	SG.50.	VSV.65.	VSV.80.	VSV.100.	VSL.50.	VSL.65.	VSL.80.	VSL.100.	VSL.150.	VSL.200.	VSL.250.	VSL.300.	VSL.400.
	Система автоматической	DN40	•													
	трубной муфты в сборе,	DN50		•				•								
	включая фланец с направляющими клыками,	DN65			•				•							
		DN80				•				•						
		DN100					•				•					
	Чугун с эпоксидным покрытием. Включая болты,	DN150										•				
	гайки.	DN200											•			
		DN250												•		
		DN300													•	
		DN400														•

Характеристики автоматической трубной муфты (АТМ)

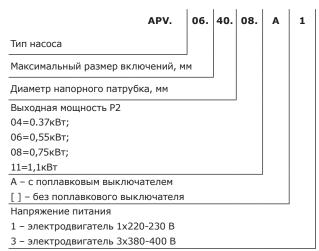
	Размер АТМ/		р анкерных болтов	Размер	
Насос	допустимое давление, бар	Масса нетто АТМ, кг	для основания	для верхнего кронштейна	направляющих труб (наружный диаметр х толщина стенки)
SG.40.	DN40 PN6	11	4/M12x220	2/M10x135	ø32x3 мм
SG.50.	DN50 PN6	17	4/M16x220	2/M12v140	ø32x3 мм
VSL.50.	DINOU PING	1/	4/M10X22U	2/M12x140	Ø32X3 MM
VSV.65.	DN65 PN6	24	4/M16v220	2/M12v140	ø32x3 мм
VSL.65.	DINOS PINO	24	4/M16x220	2/M12x140	Ø32X3 MM
VSV.80.	DN80 PN6	31	4/M16v220	2/M12v140	649v2
VSL.80.	DINOU PING	31	4/M16x220	2/M12x140	ø48х3 мм
VSV.100.	DN100 PN6	45	4/M20220	2/M12::140	~492
VSL.100.	DIVIOU SING	45	4/M20x220	2/M12x140	ø48х3 мм
VSL.150. до 22 кВт	DN150 PN6	96	4/M20200	2/M12::140	~402
VSL.150. 30-45 кВт	DN150 PN10	95	4/M20x300	3/M12x140	ø48х3 мм
VSL.200.	DN200 PN10	125	4/M24x300	3/M12x140	ø48x3 мм
VSL.250.	DN250 PN10	195	4/M24x300	3/M12x140	ø48x3 мм
VSL.300.	DN300 PN10	285	4/M24x300	3/M12x140	ø60x3 мм
VSL.400.	DN400 PN10	450	4/M24x300	3/M12x140	ø60x3 мм

Дренажные насосы APV.06

Рис. 4 APV.06.40

Технические характеристики

Подача	до 21 м³/ч
Напор	до 16 м
Свободный проход	6 мм
Температура перекачиваемой среды	0-40 °C
кратковременно (до 3 минут)	0-70 °C
Глубина погружения	до 5 м


Назначение

Дренажный насос APV.06 с открытым рабочим колесом предназначен для перекачивания чистой и загрязненной воды без волокнистых включений с твердыми частицами до 6 мм.

Основные области применения

- Отведение воды из затапливаемых помещений.
- Откачивание воды из рек и прудов, обеспечение циркуляции и аэрации прудов.
- Строительство и промышленность.
- Небольшие очистные сооружения.
- Дренаж.

Расшифровка типового обозначения

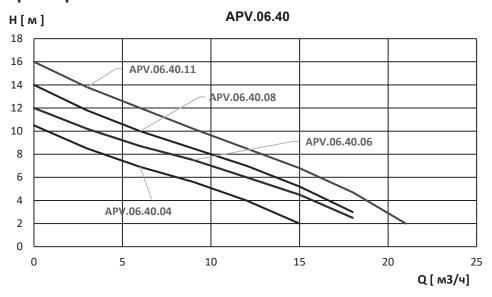
Конструкция

Одноступенчатый погружной насос с вертикальным напорным патрубком и сетчатым фильтром в основании. Все детали, соприкасающиеся с рабочей жидкостью, выполнены из нержавеющей стали AISI 304.

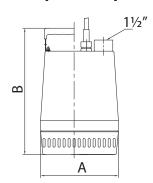
Поставляется в комплекте с кабелем длиной 10 м. Насос может быть оснащен однофазным (1х220-230 В) или трехфазным (3х380-400 В) асинхронным электродвигателем.

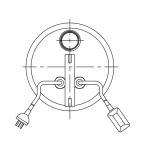
Однофазные электродвигатели оснащены встроенным тепловыключателем в обмотке и не требуют дополнительной защиты. Насосы с трёхфазными электродвигателями не оборудованы встроенным тепловым реле и требуют дополнительную защиту.

Класс защиты IP 68, класс изоляции В (130 °C). Максимальное количество пусков в час – 30. Двойное торцевое механическое уплотнение со стороны электродвигателя изготовлены из графит/карбид кремния (Carbon/Sic); со стороны насоса – карбид кремния/карбид кремния (Sic/Sic).


Вал из нержавеющей стали вращается на шарикоподшипниках, не требующих обслуживания.

Материалы


Деталь	Материал	№ материала
Корпус насоса	Нержавеющая сталь	1.4301
Корпус электродвигателя	Нержавеющая сталь	1.4301
Всасывающая сетка	Нержавеющая сталь	1.4301
Рабочее колесо	Нержавеющая сталь	1.4301
Винт	Нержавеющая сталь	1.4301
Вал	Нержавеющая сталь	1.4301
Кабель APV1	H07RN - F 3 G1 (неопрен)	_
APV3	H07RN - F 4 G1 (неопрен)	
Детали из эластомеров	Бутадиен-нитрильный каучук	_
Поплавковый выключатель	Полипропилен	_

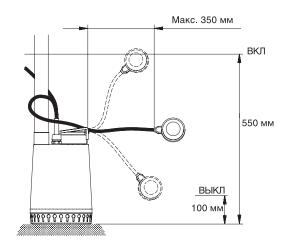


Кривые характеристик

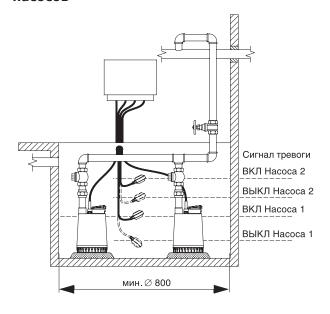
Габаритные размеры, электротехнические параметры и масса

Тип насоса	Α	В	С
APV.06.40.04	220	360	Rp 11/2"
APV.06.40.06	220	360	Rp 11/2"
APV.06.40.08	220	380	Rp 11/2"
APV.06.40.11	220	380	Rp 11/2"

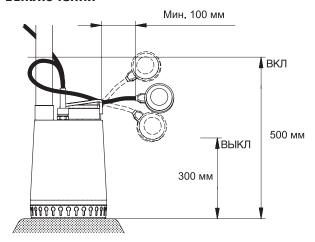
Рис. 5 Габаритные размеры


п-2900 мин-1

Тип продукта	Напряжение (50 Гц)	Мощность Р1/ Р2, кВт	Номинальный ток In, A	Максимальный расход, м³/ч	Максимальный напор, м	Напорный патрубок	Тип штекера	Поплавок	Свободный проход, мм	Масса нетто, кг	Кабель, м
APV.06.40.04.1	1x220-230 B	0,65/0,37	3,5	15,0	10,5	Rp 1½"	Schuko	_	6	13,5	10
APV.06.40.04.A1	1x220-230 B	0,65/0,37	3,5	15,0	10,5	Rp 1½"	Schuko	Х	6	13,9	10
APV.06.40.04.3	3x380-400 B	0,7/0,37	1,8	15,0	10,5	Rp 11/2"	_	-	6	13,9	10
APV.06.40.06.1	1x220-230 B	0,9/0,55	4,8	17,0	12,0	Rp 1½"	Schuko	-	6	14,3	10
APV.06.40.06.A1	1x220-230 B	0,9/0,55	4,8	17,0	12,0	Rp 1½"	Schuko	Х	6	14,7	10
APV.06.40.06.3	3x380-400 B	0,8/0,55	1,8	17,0	12,0	Rp 11/2"	_	-	6	14,7	10
APV.06.40.08.1	1x220-230 B	1,0/0,75	6,2	19,0	14,0	Rp 1½"	Schuko	_	6	15,3	10
APV.06.40.08.A1	1x220-230 B	1,0/0,75	6,2	19,0	14,0	Rp 1½"	Schuko	Х	6	15,7	10
APV.06.40.08.3	3x380-400 B	0,9/0,75	2,0	19,0	14,0	Rp 1½"	-	-	6	15,7	10
APV.06.40.11.1	1x220-230 B	1,2/1,1	7,2	21,0	16,0	Rp 1½"	Schuko	_	6	16,0	10
APV.06.40.11.A1	1x220-230 B	1,2/1,1	7,2	21,0	16,0	Rp 1½"	Schuko	Х	6	16,4	10
APV.06.40.11.3	3x380-400 B	1,2/1,1	2,5	21,0	16,0	Rp 1½"	-	-	6	16,4	10

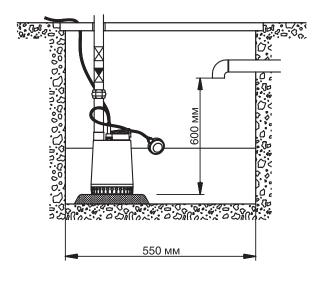

Уровни включения и размеры приямка

Максимальный уровень включения/ выключения



Рекомендуется установка насоса на 30-40 мм выше дна колодца.

Минимальные размеры приямка для двух насосов



Минимальный уровень включения/ выключения

Примечание. Насос может эксплуатироваться как в вертикальном, так и горизонтальном или наклонном положении. При таком способе монтажа напорный патрубок должен располагаться в верхней точке, а уровень воды - всегда выше всасывающей сетки насоса.

Минимальные размеры приямка для одного насоса

Дренажные насосы APV.09 / APV.12 / APV.20

Рис. 6 APV.09

Технические характеристики

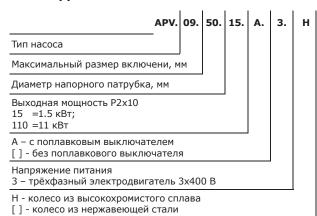
Подача до 150 м³/ч Напор до 48,5 м

Свободный проход 9 мм (АРV.09 1,5-5,5 кВт),

12 мм (APV.12 7,5-15 кВт), 20 мм (APV.20 7,5-15 кВт)

Температура перекачиваемой

жидкости от 0 до 40 °C Глубина погружения до 25 м


Назначение

Насос APV.09/12/20 предназначен для перекачивания чистой и загрязненной воды с твердыми частицами до 9, 12, 20 мм (в зависмости от типоразмера).

Основные области применения:

- отведение воды их затапливаемых помещений
- опорожнение шахт, карьеров
- строительство и общепромышленное применение
- небольшие очистные сооружения
- дренажные стоки.

Расшифровка типового обозначения

Конструкция

Одноступенчатый погружной насос с полуоткрытым рабочим колесом, вертикальным напорным патрубком и сетчатым фильтром в основании.

Все детали, соприкасающиеся с перекачиваемой жидкостью, выполнены из нержавеющей стали AISI 304 (1.4301).

Поставляется в комплекте с кабелем длиной 15 м со свободным концом.

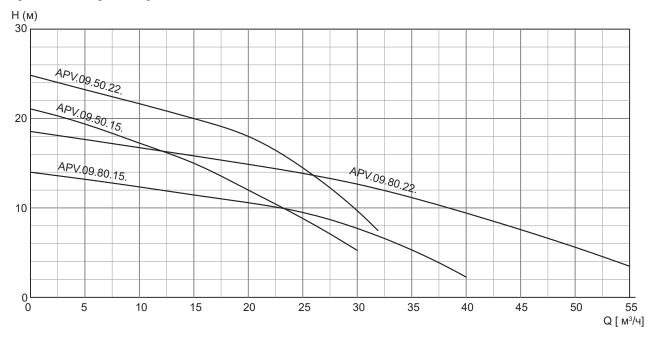
Насос оснащен трехфазным (3х400 B) асинхронным двигателем и оборудован встроенным тепловым реле, поэтому дополнительная защита не требуется.

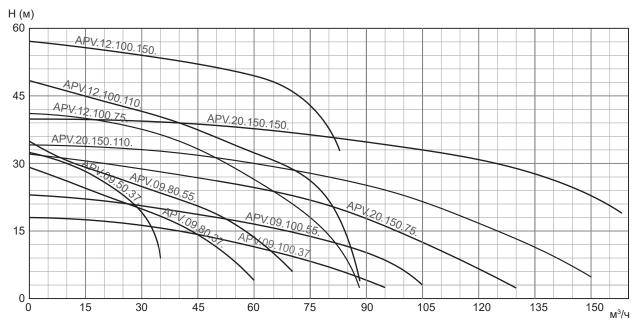
Класс защиты IP68, класс изоляции F (155 °C). Максимальное количество пусков в час - 30.

Двойное торцевое механическое уплотнение со стороны электродвигателя изготовлено из графита/карбид кремния;

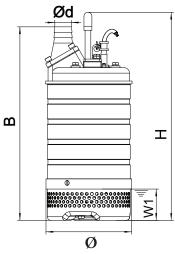
со стороны насоса - карбид кремния/карбид кремния.

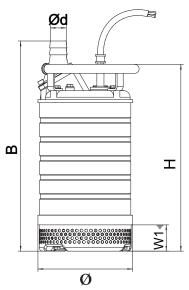
Вал из нержавеющей стали вращается на шарикоподшипниках, не требующих обслуживания.

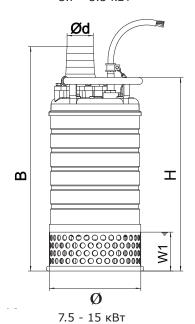

Материалы


Деталь	Материал					
-						
Ручка	Чугун/Нержавеющая сталь*					
Корпус насоса	Нержавеющая сталь					
Корпус электродвигателя	Нержавеющая сталь					
Всасывающая сетка	Нержавеющая сталь					
Рабочее колесо	Высокохромистый сплав/Нержавеющая сталь*					
Вал	Нержавеющая сталь					
Торцевое	карбид кремния/карбон SiC/Carbon (до 2,2 кВт)					
уплотнение вала	карбид кремния/карбид кремния SiC/SiC (3,7-15 кВт)					
Кабель	H07RN - F (неопрен)					
Детали из эластомеров	Бутадиен-нитрильный каучук					
Поплавковый выключатель	Полипропилен					

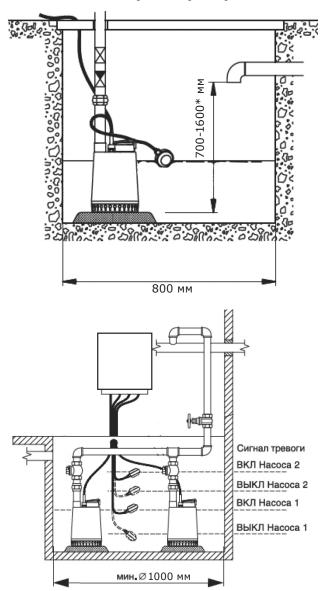
^{* -} для насосов в версии из нержавеющей стали.


Кривые характеристик




Габаритные размеры

3.7 - 5.5 кВт



	Н,	В,	Ø,	W1,	Ød,	Масса,
Наименование	ММ	ММ	ММ	ММ	ММ	кг
APV.09.50.15.3.H	563	540	240	87	50	37
APV.09.50.15.(A).3	613	590	240	87	50	39
APV.09.80.15.3.H	563	547	240	87	80	37
APV.09.80.15.(A).3	613	597	240	87	80	39
APV.09.50.22.3.H	563	540	240	87	50	40
APV.09.50.22.(A).3	613	590	240	87	50	42
APV.09.80.22.3.H	563	547	240	87	80	40
APV.09.80.22.(A).3	613	597	240	87	80	42
APV.09.50.37.3.H	515	591	300	76	50	58
APV.09.50.37.(A).3	565	641	300	76	50	60
APV.09.80.37.3.H	515	591	300	76	80	58
APV.09.80.37.(A).3	565	641	300	76	80	60
APV.09.100.37.3.H	515	616	300	76	100	59
APV.09.100.37.(A).3	565	666	300	76	100	61
APV.09.80.55.3.H	555	631	300	76	80	66
APV.09.80.55.(A).3	605	681	300	76	80	68
APV.09.100.55.3.H	555	656	300	76	100	67
APV.09.100.55.(A).3	605	706	300	76	100	69
APV.12.100.75.3.H	700	810	355	142	100	108
APV.20.150.75.3.H	700	810	355	142	150	110
APV.12.100.110.3.H	745	855	355	142	100	123
APV.20.150.110.3.H	745	855	355	142	150	125
APV.12.100.150.3.H	768	882	355	142	100	145
APV.20.150.150.3.H	768	882	355	142	150	146

* W1 - минимальный уровень жидкости при останове насоса

Минимальные размера приямка

*- высота указана ориентировочная и определяется, исходя из габаритных размеров насоса

Примечание.

Даны рекомендованные размеры приямка (круглого сечения).

Точные размеры приямка рассчитываются исходя из следующих требований:

- минимальный уровень выключения (уровень защиты от сухого хода) при котором воздух гарантированно не попадет в корпус насоса;
- минимальный уровень включения при котором количество пусков насоса не более допустимого количества пусков в час.

Погружной насос VSL.50.11.2.5.0D.Т для высокотемпературных стоков

Технические характеристики

Подача	до 26 м³/час
Напор	до 16 м
Свободный проход	12 мм
Температура перекачиваемой жидкости	от 5 до 95 °C
Глубина погружения	до 10 м
Масса нетто	25 кг

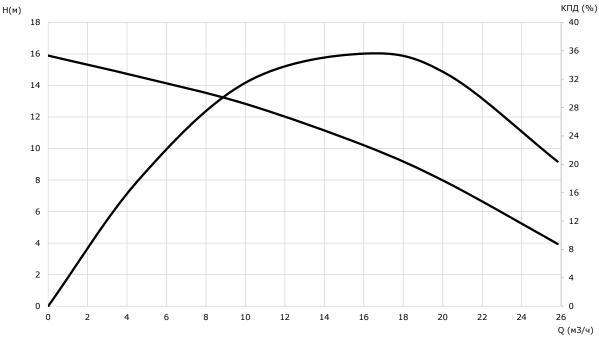
Назначение

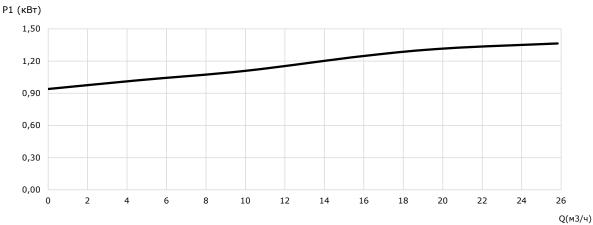
Перекачивание горячей воды с примесями на промышленных предприятиях, при аварийном затоплении в котельных, прачечных и тепловых пунктах, а также при авариях в городских сетях отопления и теплоснабжения.

Основные области применения

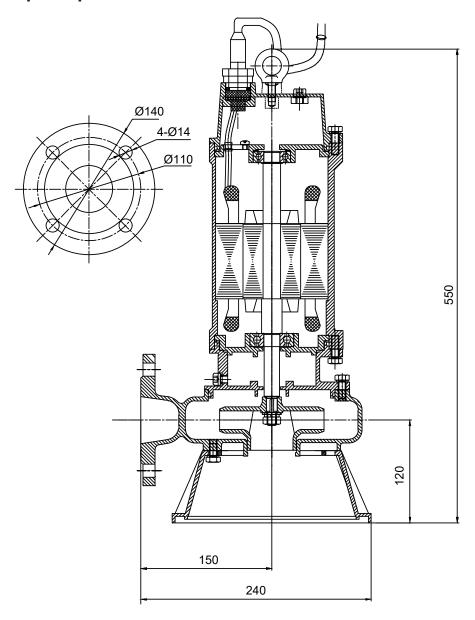
- перекачка горячих стоков после котлов
- отвод горячих стоков после прачечных в гостиницах
- отвод горячих стоков на энергетических предприятиях
- перекачка горячих стоков на металлургических заводах.

Расшифровка типового обозначения:




Конструкция

Погружной насос с закрытым рабочим колесом, кольцевым основанием для свободной установки, напорным патрубком DN50, поставляется в комплекте с кабелем длиной 10 метров со свободным концом. Насос оснащен трехфазным (3х380 В) асинхронным двигателем, класс защиты IP68, класс изоляции F (155 0C), максимальное количество пусков в час – 20. Погружной насос для горячей воды VSL-Т укомплектован высококачественным кабелем, механическим уплотнением, уплотнительными кольцами, подшипниками NSK, которые могут выдерживать высокие температуры до 95 °C.


Кривая характеристики

Габаритные размеры

Артикул	Наименование	Макс. размер примесей,	Напорный патрубок			юсть, Вт	Напряжение,	Номинальный ток In,	Масса брутто,
		ММ	ММ	бар	ap P2 P1		В	Α	КГ
76321701	VSL.50.11.2.5.0D.T	12	DN50	PN6	1,1	1,36	3x380	2,5	29

Погружные насосы VDS со взмучивающим устройством

1. Общая информация

Рис. 42 Hacoc VDS

Общие сведения

Погружные насосы VDS со взмучивающим механизмом разработаны для перекачивания дренажных стоков с большим содержанием абразивных частиц, поверхностных и грунтовых вод. Серия VDS отличается высокой надежностью и простотой эксплуатации благодаря прочной чугунной конструкции, встроенной защите электродвигателя и рабочему колесу с высоким КПД.

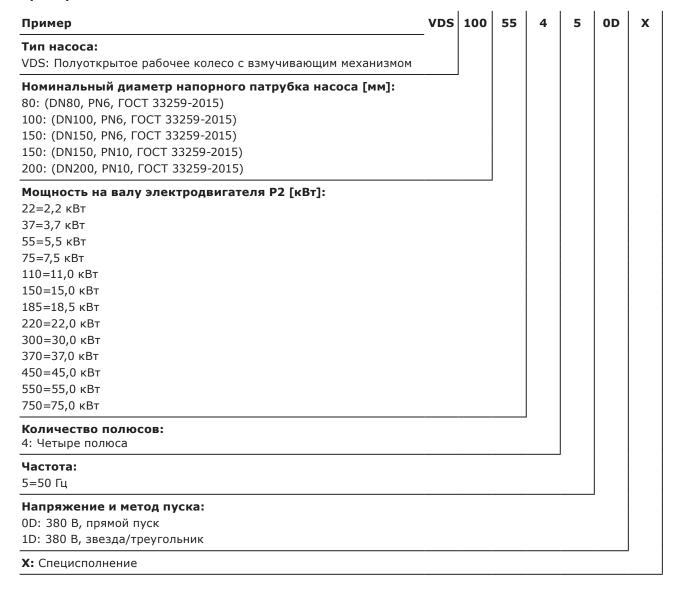
Все насосы VDS поставляются с кольцевым основанием независимо от мощности.

Основные области применения:

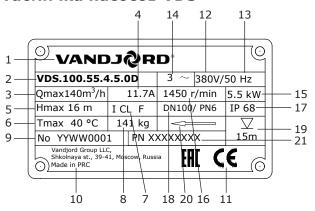
- Коммерческие здания
- Дренажные системы зданий и дорожной инфраструктуры
- Сельско-хозяйственные объекты
- промышленные предприятия
- подземные паркинги и многоуровневые гаражные комплексы

Технические данные:

- подача до 590 м³/ч
- напор до 55 м
- мощность до 75 кВт
- класс изоляции F
- степень защиты ІР68
- температура перекачиваемой жидкости от 0 до 40° C


Наименование	Мощность		Номинальный ток In		Скорость вращения	Ном. Расход	Ном. Напор	Напорный патрубок	Масса нетто
	P2, kW	P1, kW	Α	В	об/мин	м³/час	М	мм	кг
VDS.80.22.4.5.0D	2,2	3,1	5,0		1450	50	10	80	79
VDS.80.37.4.5.0D	3,7	5,0	8,5		1450	60	12	80	89
VDS.100.55.4.5.0D	5,5	6,9	11,7		1450	65	13	100	141
VDS.100.75.4.5.0D	7,5	9,4	15,7		1450	100	14	100	156
VDS.150.110.4.5.0D	11	13,7	22,0		1450	100	20	150	245
VDS.150.150.4.5.0D	15	18,0	30,1		1450	100	25	150	269
VDS.150.185.4.5.0D	18,5	22,0	38,0	3x380 B	1450	150	24	150	342
VDS.150.220.4.5.0D	22	25,8	45,0		1450	150	28	150	355
VDS.150.300.4.5.0D	30	34,9	57,6		1450	150	30	150	444
VDS.150.370.4.5.0D	37	41,7	69,8		1450	150	36	150	534
VDS.150.450.4.5.1D	45	50,4	84,5		1450	200	36	150	562
VDS.200.550.4.5.1D	55	61,4	105,0		1450	300	36	200	812
VDS.200.750.4.5.1D	75	83,7	141,0		1450	300	46	200	880

2. Типовое обозначение:


Насосы VDS можно определить по типовому обозначению. Типовое обозначение указано на табличке насоса.

Пример: VDS.100.55.4.5.0D

Табличка насосов VDS

	a
Поз.	Описание
1	Логотип
2	Модель насоса
3	Максимальный расход, м³/ч
4	Номинальный ток, А
5	Максимальный напор, м
6	Максимальная температура, °С
7	Класс изоляции
8	Масса нетто, кг
9	Заводской номер, где ҮҮ-год производства,
	WW- неделя производства
10	Поставщик/Страна-производитель
11	Знак одобрения (сертификационный
	символ)
12	Напряжение сети, В
13	Частота тока, Гц
14	Однофазное или трехфазное исполнение
15	Мощность Р2, кВт
16	Частота вращения, об/мин
17	Степень защиты
18	Номинальный диаметр фланца
	ГОСТ 33259-2015/ Номинальное давление, бар
19	Максимальная глубина погружения, м
20	Направление вращения
21	Номер продукта

3. Исполнения

Насосы VDS могут быть изготовлены, согласно индивидуальным требованиям заказчика, например, кабели различной длины.

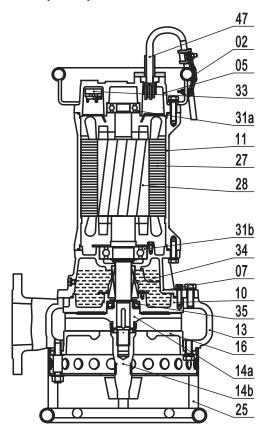
Варианты исполнений по различным длинам кабеля указаны в таблице ниже.

По поводу других исполнений, не указанных в таблице, пожалуйста, обращайтесь в ближайший офис компании ВАНДЙОРД.

Перечень исполнений

Электродвигатель

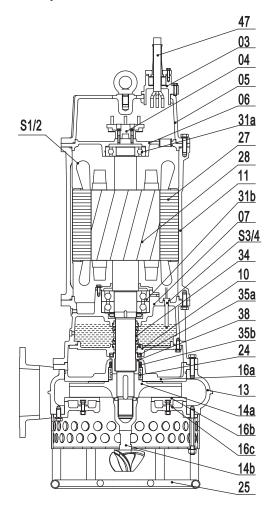
Стандартные кабели различной длины


Длина кабеля зависит от мощности двигателя и напряжения в сети

- 8 м (минимальная длина)
- 15 м
- 25 м
- 40 м

4. Конструкция

Чертежи – насос VDS 2,2-3,7 кВт:



Спецификация материалов насосов VDS 2,2-3,7 кВт:

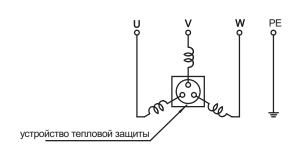
Позиция	Наименование	Материал
02	Подъемная скоба	Сталь
05	Верхняя крышка	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Ковкий чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Ковкий чугун
14a	Рабочее колесо	Высокохромистый сплав
14b	Взмучивающий механизм	Высокохромистый сплав
16	Всасывающий патрубок	Серый чугун
25	Сетчатый фильтр/кольцевое основание	-
27	Статор	-
28	Ротор с валом	Вал: Нержавеющая сталь AISI420
31a	Верхний подшипник	-
31b	Нижний подшипник	-
33	Устройство тепловой защиты	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
35	Уплотнительная манжета	-
47	Кабельный ввод	-

Чертежи – насос VDS 5,5-75 кВт:

Спецификация материалов насосов VDS 5,5-75 кВт:

Позиция	Наименование	Материал
03	Клеммная коробка	Серый чугун
04	Клемма проводки	-
05	Верхняя крышка	Серый чугун
06	Крышка верхнего подшипника	Серый чугун
07	Крышка нижнего подшипника	Серый чугун
10	Крышка корпуса уплотнения	Серый чугун
11	Корпус двигателя	Серый чугун
13	Корпус улитки	Ковкий чугун
14a	Рабочее колесо	Высокохромистый сплав
14b	Взмучивающий механизм	Высокохромистый сплав
16a	Всасывающий патрубок	Ковкий чугун
16b	Всасывающий патрубок	Высокохромистый сплав
16c	Всасывающий патрубок	Серый чугун
24	Кольцо	Нержавеющая сталь AISI420
25	Сетчатый фильтр/кольцевое основание	-
27	Статор	-
28	Ротор с валом	Вал: Нержавеющая сталь AISI420
31a	Верхний подшипник	-
31b	Нижний подшипник	-
34	Уплотнение вала	Sic-Sic/Sic-Sic
35a	Уплотнительная манжета	-
35b	Уплотнительная манжета	-
38	Втулка вала	Нержавеющая сталь AISI420
47	Кабельный ввод	-
S1/2	Термовыключатели в обмотке статора	-
S3/4	Датчик «вода-в-масле»	-

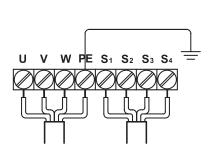
5. Схемы электрических соединений насосов VDS:

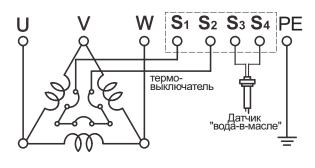

Насосы мощностью 2,2-3,7 кВт:

На рисунке ниже показано, как правильно соединять кабели насосов 2,2-3,7 кВт:

Прямое включение

Схемы соединений с трехфазными двигателями

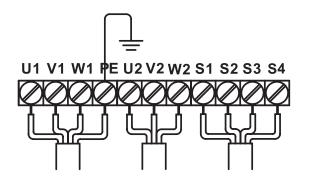


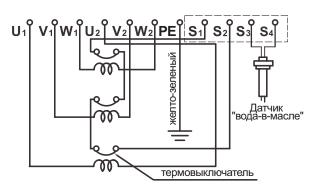

Насосы мощностью 5,5-37,0 кВт:

На рисунке ниже показано, как правильно соединять кабели насосов 5,5-37,0 кВт:

Прямое включение

Схемы соединений с трехфазными двигателями




Насосы мощностью 45,0-75,0 кВт:

На рисунке ниже показано, как правильно соединять кабели насосов 45,0-75,0 кВт:

Подключение звезда/треугольник

Схемы соединений с трехфазными двигателями

6. Технические характеристики насосов VDS

Данные электрооборудования:

Модель насоса	Напряжение [B]	Р1 [кВт]	Р2 [кВт]	Число полюсов	об/мин	метод пуска	I n [A]	I пуск [A]
VDS.80.22.4.5.0D		3,1	2,2				5	30
VDS.80.37.4.5.0D		5,0	3,7				8,5	46,8
VDS.100.55.4.5.0D]	6,9	5,5				11,7	56,4
VDS.100.75.4.5.0D]	9,4	7,5	4			15,7	88,0
VDS.150.110.4.5.0D		13,7	11,0			DOL	22,0	109,4
VDS.150.150.4.5.0D]	18,0	15,0			DOL	30,1	153,0
VDS.150.185.4.5.0D	380	22,0	18,5		1450		38,0	198,0
VDS.150.220.4.5.0D		25,8	22,0				45,0	228,0
VDS.150.300.4.5.0D]	34,9	30,0				57,6	310,0
VDS.150.370.4.5.0D		41,7	37,0				69,8	352,0
VDS.150.450.4.5.1D		50,4	45,0				84,5	142,9
VDS.200.550.4.5.1D		61,4	55,0			SD	105,0	157,3
VDS.200.750.4.5.1D		83,7	75,0				141,0	222,7

Данные насоса:

Модель насоса	Макс. размер твердых	Макс. рабочее давление PN	Макс. кол-во пусков в час	Степень защиты	Класс изоляции	Класс нагрево- стойкости	Макс. температура жидкости	рН			
VDS.80.22.4.5.0D	20		30								
VDS.80.37.4.5.0D	20										
VDS.100.55.4.5.0D	30	6	20								
VDS.100.75.4.5.0D	30										
VDS.150.110.4.5.0D			0	0	O						
VDS.150.150.4.5.0D	35		15	IP68	F	А	40	6-10			
VDS.150.185.4.5.0D	35										
VDS.150.220.4.5.0D											
VDS.150.300.4.5.0D			10								
VDS.150.370.4.5.0D	30		10								
VDS.150.450.4.5.1D		10	6]				ĺ			
VDS.200.550.4.5.1D	40	40									
VDS.200.750.4.5.1D	7 40		5								

Технические особенности

Шариковые подшипники

Все подшипники смазаны на весь срок эксплуатации.

Электродвигатель

Полностью герметичный двигатель

- Класс изоляции F (155 °C)
- Степень защиты ІР68
- Максимальная глубина погружения 15 м

Обработка поверхности

Поверхности насосов VDS обработаны следующим образом:

- катафорезная обработка всех Серый чугунных деталей
- Порошковая окраска: RAL9005 (черный), толщина 100 мкм.

Кабели

Стандартная длина кабеля составляет 8 м. Возможно изготовить другую длину кабеля по отдельному запросу. Сечение кабеля подбирается в зависимости от мощности насоса.

Кабельный ввод

Кабельный разъем заполняется герметизирующим материалом для исключения попадания воды в двигатель насоса через кабель.

Датчики

Все насосы VDS мощностью от 2,2 до 3,7 кВт оснащены встроенным в двигатель уникальным устройством тепловой защиты, которое определяет не только избыточное тепловыделение двигателя, но и избыточное потребление тока. Устройство защищает двигатель от следующих проблем, которые могут возникнуть во время работы:

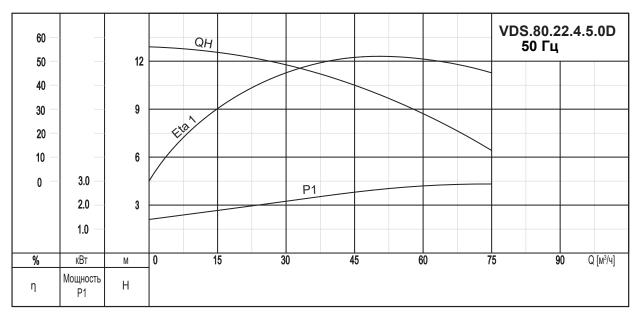
- блокировка рабочего колеса
- фазовый дисбаланс
- длительная работа насоса всухую
- пониженное напряжение
- потеря фазы в трехфазных двигателях

Начиная с 5,5 кВт и до 75 кВт, четырехполюсные трехфазные насосы VDS укомплектованы биметаллическими термовыключателями.

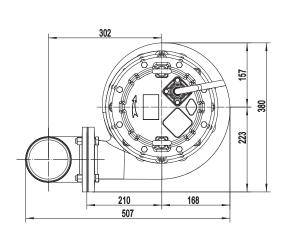
Биметаллические термовыключатели устанавливаются по одному в каждой обмотке и соединены последовательно. Если одна обмотка достигает температуры срабатывания, питание отключается для всех обмоток. Температура

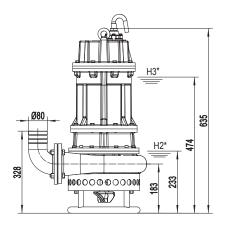
срабатывания термовыключателя 130 ± 5 °C, температура перезапуска двигателя 90 ± 15 °C. Также, начиная с 5,5 кВт и до 75 кВт, четырехполюсные трехфазные насосы VDS укомплектованы датчиком «вода-в-масле» электродного типа.

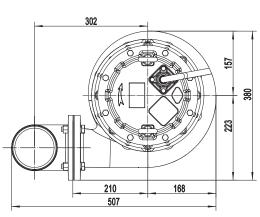
Датчик «вода-в-масле» распознает попадание воды в масляную камеру и останавливает насос, подавая аварийный сигнал в панель управления. Датчик «вода-в-масле» осуществляет измерение омического сопротивления между двумя электродами. Как только расстояние между электродами заполнится водой, сопротивление резко уменьшится, что и определит датчик «водав-масле». При отсутствии воды в масляной камере омическое сопротивление ≥10 кОм, при появлении воды в масляной камере сопротивление <10 кОм.

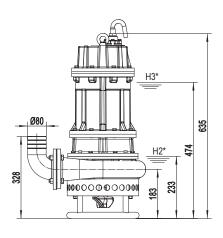

Технические характеристики кабеля

	Силовой каб	ель (H07RN-F)	Контрольный кабель (H07RN-F)				
Мощность насоса VDS (кВт)	Сечение, мм²	Внешний диаметр, мм	Сечение, мм²	Внешний диаметр, мм			
2,2	4G1,5	12,5	-	-			
3,7	4G1,5	12,5	-	-			
5,5	4G2,5	14,8	4x1,0	10,3			
7,5	4G4,0	16,8	4x1,0	10,3			
11,0	4G6,0	19,7	4x1,0	10,3			
15,0	4G6,0	19,7	4x1,0	10,3			
18,5	4G10,0	24,5	4x1,0	10,3			
22,0	4G10,0	24,5	4x1,0	10,3			
30,0	4G16,0	27,5	4x1,0	10,3			
37,0	4G16,0	27,5	4x1,0	10,3			
45,0	4G10x2	24,5	4x1,0	10,3			
55,0	4G16x2	27,5	4x1,0	10,3			
75,0	4G25x2	33,5	4x1,0	10,3			

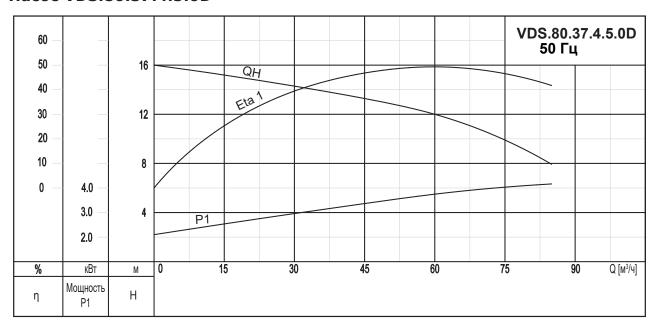

7. Диаграммы рабочих характеристик и габаритные размеры насосов VDS


Hacoc VDS.80.22.4.5.0D


Монтаж:

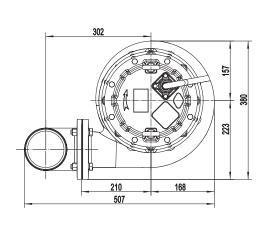

Переносная версия установки

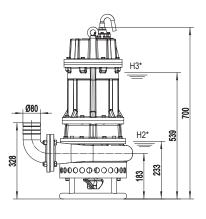
Стационарная версия установки

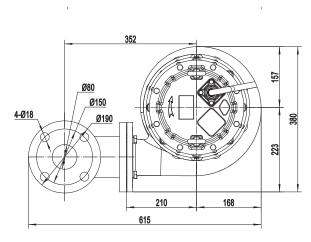


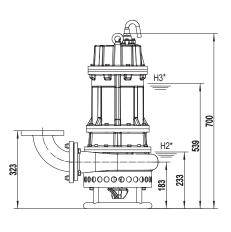
^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

НЗ - Минимальный уровень жидкости при остановке насоса

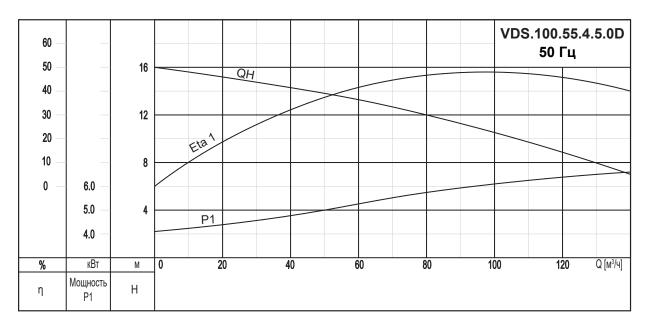



Hacoc VDS.80.37.4.5.0D



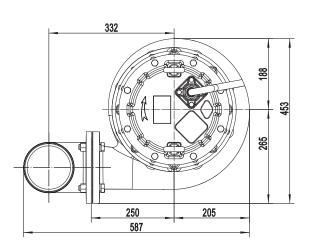

Монтаж:

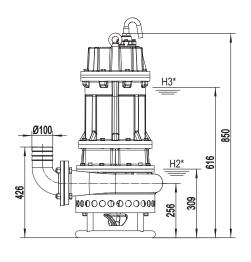
Переносная версия установки

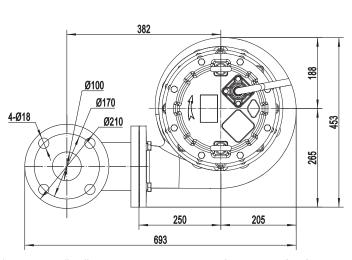


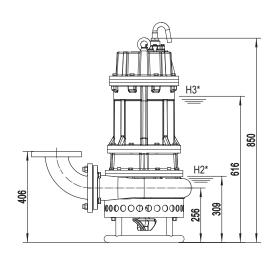
^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

НЗ - Минимальный уровень жидкости при остановке насоса

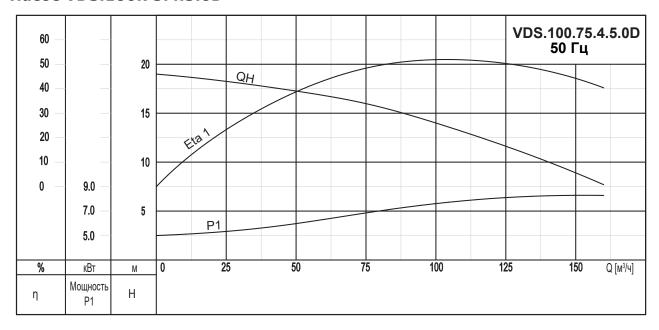



Hacoc VDS.100.55.4.5.0D


Монтаж

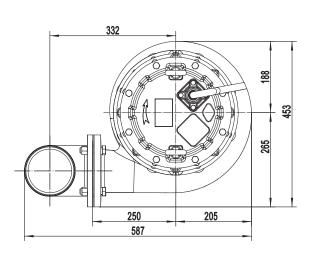

Переносная версия установки

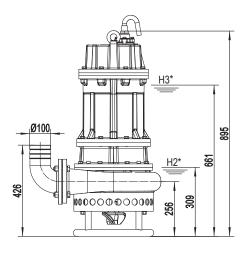
Стационарная версия установки

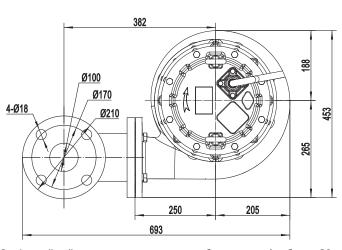


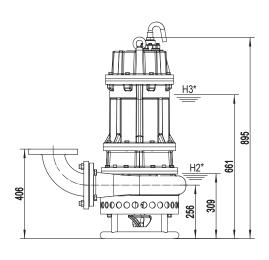
st H2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

Н3 - Минимальный уровень жидкости при остановке насоса

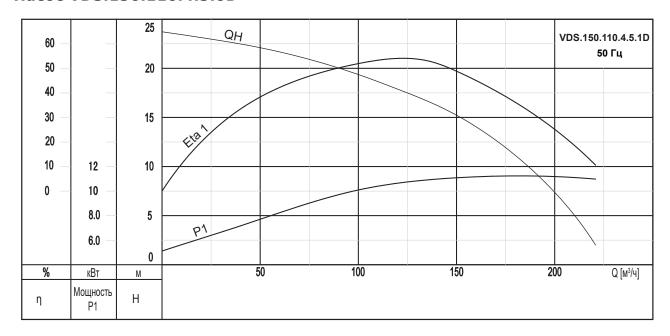



Hacoc VDS.100.75.4.5.0D

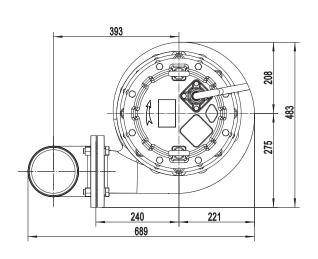


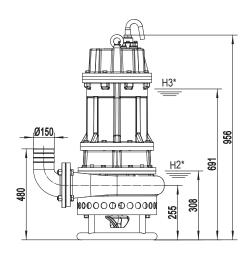

Монтаж

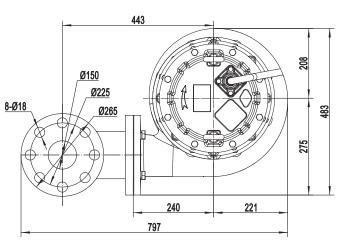
Переносная версия установки

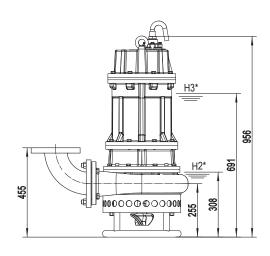


- * Н2 Аварийный уровень жидкости при работе насоса (не более 30 минут)
 - НЗ Минимальный уровень жидкости при остановке насоса

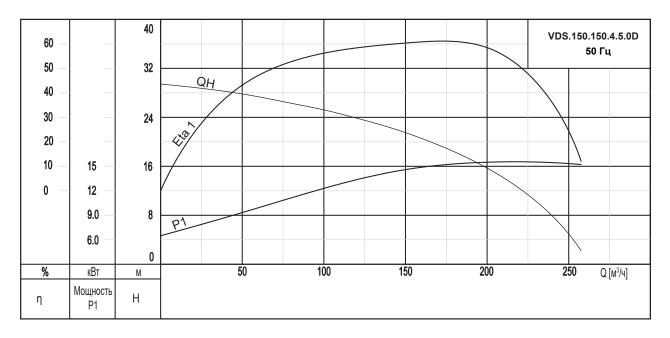



Hacoc VDS.150.110.4.5.0D

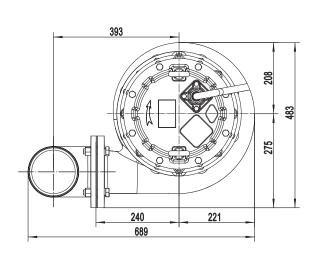


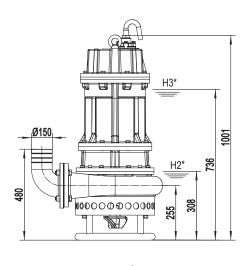

Монтаж

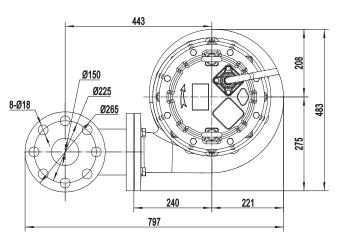
Переносная версия установки

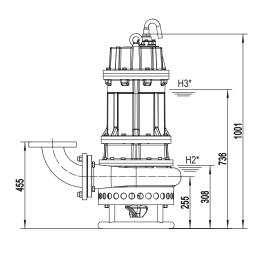


- * H2 Аварийный уровень жидкости при работе насоса (не более 30 минут)
 - НЗ Минимальный уровень жидкости при остановке насоса

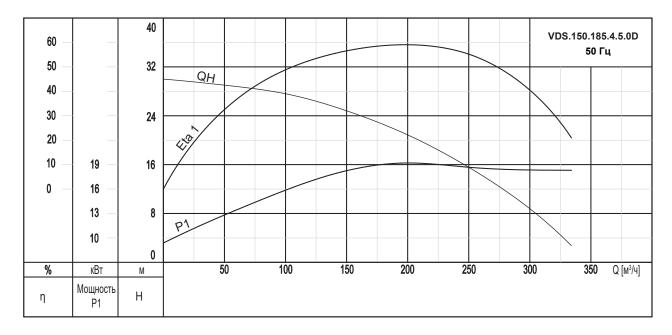



Hacoc VDS.150.150.4.5.0D



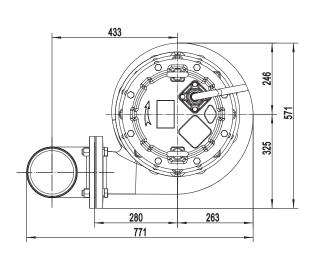

Монтаж

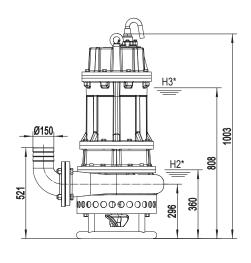
Переносная версия установки

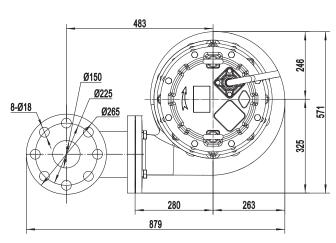


^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

НЗ - Минимальный уровень жидкости при остановке насоса

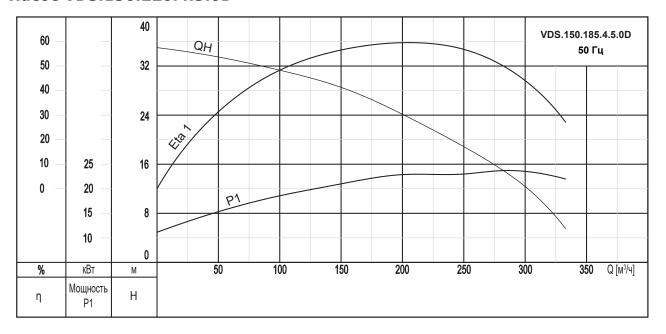



Hacoc VDS.150.185.4.5.0D


Монтаж

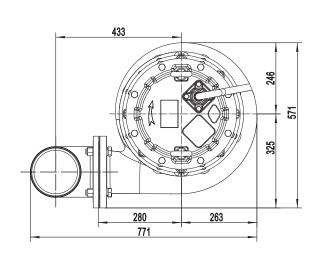
Переносная версия установки

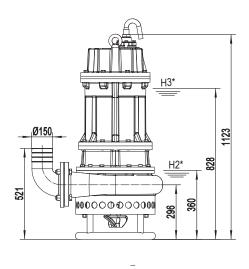
Стационарная версия установки

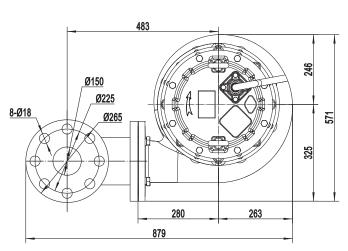


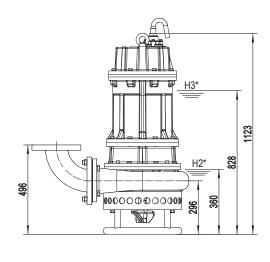
^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

Н3 - Минимальный уровень жидкости при остановке насоса

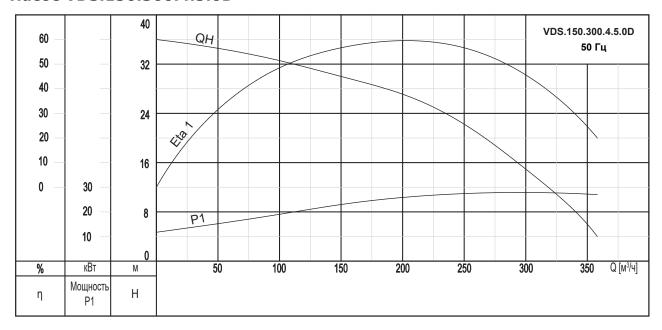



Hacoc VDS.150.220.4.5.0D



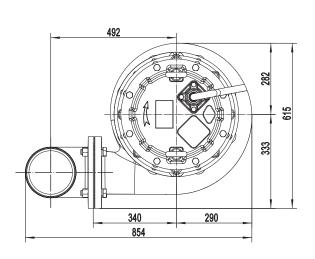

Монтаж

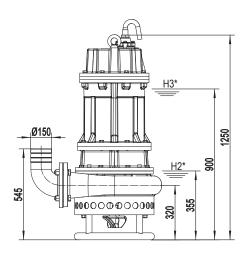
Переносная версия установки

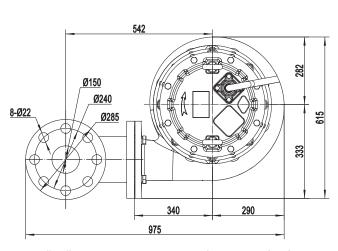


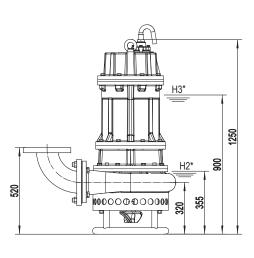
^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

НЗ - Минимальный уровень жидкости при остановке насоса

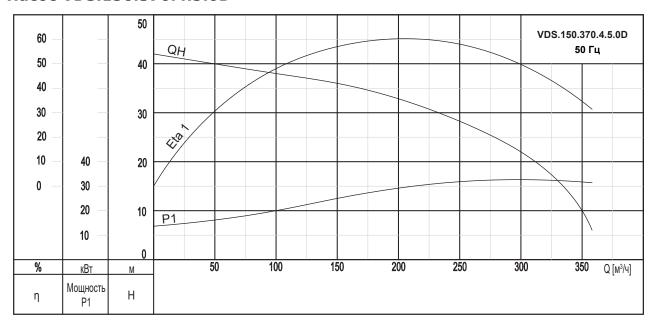



Hacoc VDS.150.300.4.5.0D


Монтаж

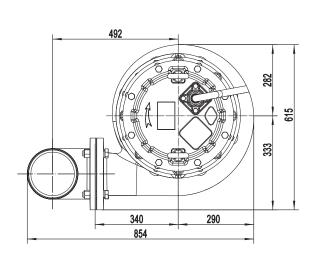

Переносная версия установки

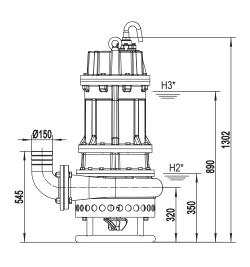
Стационарная версия установки

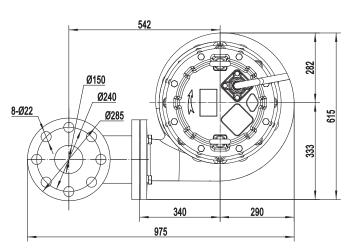


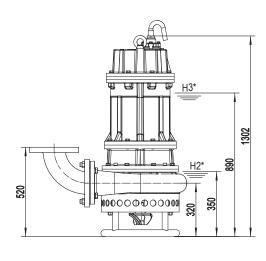
st H2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

НЗ - Минимальный уровень жидкости при остановке насоса

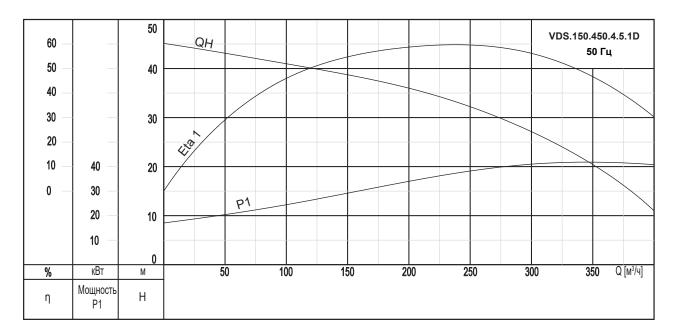



Hacoc VDS.150.370.4.5.0D



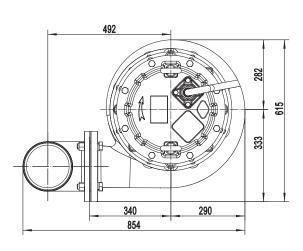

Монтаж

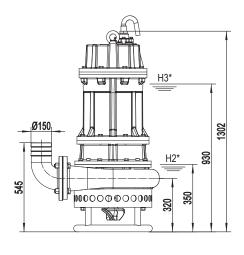
Переносная версия установки

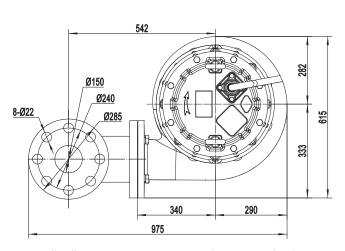


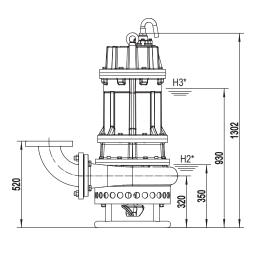
^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

НЗ - Минимальный уровень жидкости при остановке насоса

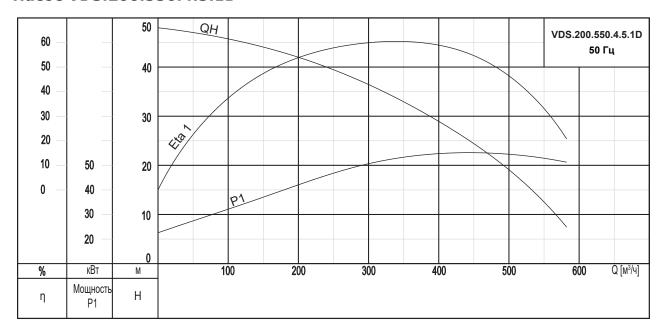



Hacoc VDS.150.450.4.5.1D


Монтаж

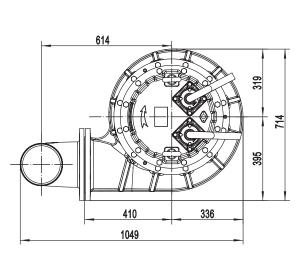

Переносная версия установки

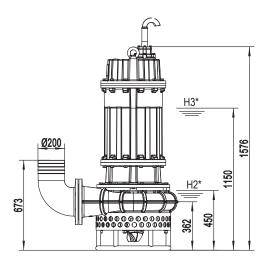
Стационарная версия установки

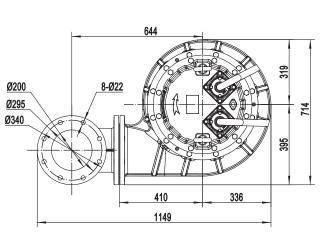


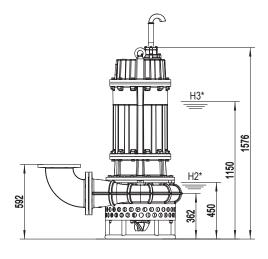
st H2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

Н3 - Минимальный уровень жидкости при остановке насоса

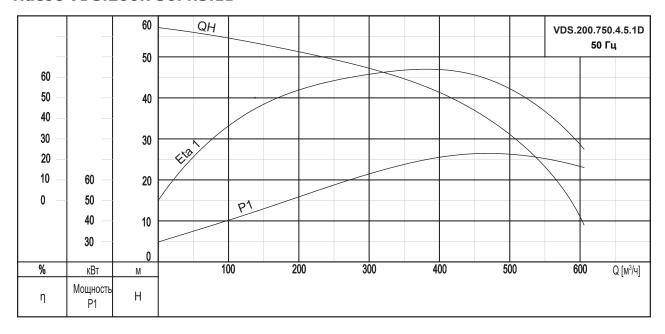



Hacoc VDS.200.550.4.5.1D



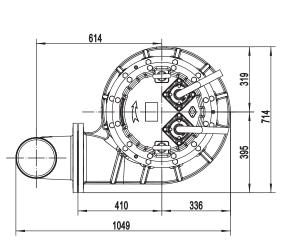

Монтаж

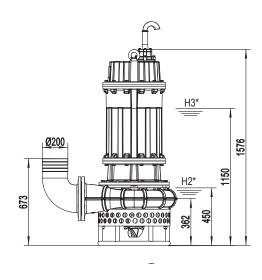
Переносная версия установки

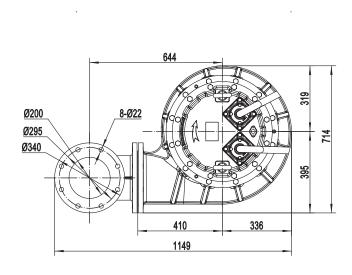


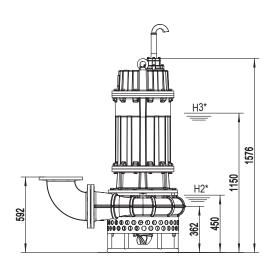
^{*} Н2 - Аварийный уровень жидкости при работе насоса (не более 30 минут)

НЗ - Минимальный уровень жидкости при остановке насоса




Hacoc VDS.200.750.4.5.1D




Монтаж

Переносная версия установки

Насосы VDW для тяжелых условий эксплуатации

Рис. 43 Hacoc VDW

1. Общая информация

Износостойкие и надежные насосы VDW для водоотведения сочетают в себе не только стабильные гидравлические характерситики, легкость и удобство монтажа,но и надежность, простоту в эксплуатации, а также быструю окупаемость.

Корпус насоса изготовлен из высокопрочного материала, позволяющего эксплуатировать агрегат долгое время в тяжелых условиях.

Рабочее колесо из высокохромистой нержавеющей стали отличается хорошей производительностью и гарантирует длительный срок службы. Надежное двойное механическое уплотнение вала обеспечивает непрерывную и продолжительную работу насоса и короткие периоды простоя. Встроенная тепловая защита предохраняет электродвигатель от перегрева. Так же насосы оборудованы встренным датчиком наличия воды в масляной камере.

Области применения насосов VDW:

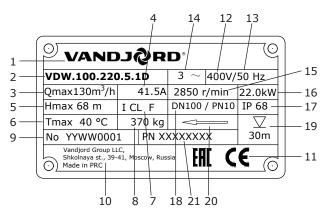
- строительные площадки
- туннели
- карьеры
- пруды для разведения рыбы
- подвалы
- резервуары для сбора сточной воды
- горно-добывающие предприятия

Технические характеристики:

- подача до 408 м³/ч
- напор до 140 м³/ч
- мощность до 110 кВт
- класс изоляции F
- степень защиты ІР68
- температура перекачиваемой жидкости от 0 до 40° С

Наименование	Мощность		Номинальный ток In	Напражение		Ном. Расход	Ном. Напор	Напорный патрубок	Масса нетто
	P2, kW	P1, kW	Α	В	об/мин	м³/час	М	мм	кг
VDW.100.220.5.1D	22	25,8	41,5		2850	66	60	DN100	370
VDW.150.220.5.1D	22	25,8	41,5		2850	120	37	DN150	385
VDW.100.300.5.1D	30	34,9	54,0		2850	72	70	DN100	375
VDW.150.300.5.1D	30	34,9	54,0		2850	140	45	DN150	390
VDW.100.370.5.1D	37	41,7	66,0		2850	60	105	DN100	500
VDW.150.370.5.1D	37	41,7	66,0		2850	60	80	DN150	570
VDW.200.370.5.1D	37	41,7	66,0	3x400 B	2850	216	35	DN200	575
VDW.150.450.5.1D	45	50,4	80,0		2850	84	80	DN150	575
VDW.200.450.5.1D	45	50,4	80,0		2850	270	35	DN200	580
VDW.150.550.5.1D	55	61,4	100,0		2850	90	90	DN150	830
VDW.200.550.5.1D	55	61,4	100,0] [2850	240	50	DN200	880
VDW.150.750.5.1D	75	83,7	134,0] [2850	90	120	DN150	830
VDW.200.750.5.1D	75	83,7	134,0		2850	270	60	DN200	880

2. Типовое обозначение:


Насосы VDW можно определить по типовому обозначению. Типовое обозначение указано на табличке насоса.

Пример: VDW.100.220.5.1D

Пример	VDW	100	220	5	1D	Х	
Тип насоса:							
VDW: Закрытое рабочее колесо из высокохромистого сплава							
Номинальный диаметр напорного патрубка насоса [мм]:		-					
100: (DN100, PN10, ΓΟCT 33259-2015)							
150: (DN150, PN10, ΓΟCT 33259-2015)							
200: (DN200, PN16, ΓΟCT 33259-2015)							
Мощность на валу электродвигателя Р2 [кВт]:							
220=22,0 кВт							
300=30,0 кВт							
370=37,0 кВт							
450=45,0 кВт							
550=55,0 кВт							
750=75,0 кВт							
900=90,0 кВт							
1100=110,0 кВт							
Частота:							
5=50 Гц							
Напряжение и метод пуска:							
1D: 400 B, звезда/треугольник							
X: Специсполнение							

Табличка насосов VDW:

Поз.	Описание
1	Логотип
2	Модель насоса
3	Максимальный расход, м ³ /ч
4	Номинальный ток, А
5	Максимальный напор, м
6	Максимальная температура, °С
7	Класс изоляции
8	Масса нетто, кг
9	Заводской номер, где ҮҮ-год производства, WW-неделя производства
10	Поставщик/Страна-производитель
11	Знак одобрения (сертификационный символ)
12	Напряжение сети, В
13	Частота тока, Гц
14	Однофазное или трехфазное исполнение
15	Мощность Р2, кВт
16	Частота вращения, об/мин
17	Степень защиты
18	Номинальный диаметр фланца ГОСТ 33259-2015/ Номинальное давление, бар
19	Максимальная глубина погружения, м
20	Направление вращения
21	Номер продукта

2. Исполнения

Насосы VDW могут быть изготовлены согласно индивидуальным требованиям заказчика, например, кабели различной длины.

Варианты исполнений по различным длинам кабеля указаны в таблице ниже.

По поводу других исполнений, не указанных в таблице, пожалуйста, обращайтесь в ближайший офис компании ВАНДЙОРД.

Перечень исполнений

Электродвигатель

Стандартные кабели различной длины

Длина кабеля зависит от мощности двигателя и напряжения в сети

- 20 м (минимальная длина)
- 25 м
- 30 м
- 40 м

Канализационные насосные установки Prolift

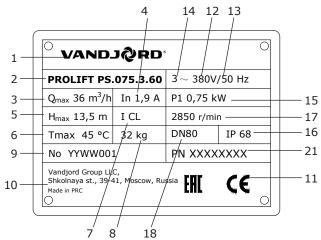
1. Общая информация

Канализационные насосные установки Prolift предназначены для сбора и перекачки бытовых стоков (включая фекальные) в зданиях различного типа – в частном доме, гостинице, ресторане, театре, торговом центре и т.д.

Установки поставляются полностью готовыми к подключению. Предназначены для размещения внутри здания, и обычно монтируются в подвале, который находится ниже уровня внешней канализационой системы.

Установка Prolift состоит из следующих основных компонентов:

- газо- и водонепроницаемый герметичный сборный резервуар с фитингами для присоединения вентиляционного, подводящих и напорных трубопроводов, с обратными клапанами;
- 1 или 2 канализационных насоса, проточная часть которого находится внутри бака, а электродвигатель снаружи;
- пневматический датчик контроля уровня;
- поплавковый выключатель контроля переполнения;
- шкаф управления.


2. Типовое обозначение

Типовое обозначение указано на заводской табличке

Пример: PROLIFT PD.15.3.150

Заводская табличка

Поз.	Название
1	Логотип
2	Модель насоса
3	Максимальный расход, м³/ч
4	Номинальный ток, А
5	Максимальный напор, м
6	Максимальная температура, °С
7	Класс изоляции
8	Масса нетто, кг
9	Заводской номер, где YY - год производства, WW - неделя производства
10	Импортер/Страна-производитель
11	Знак одобрения (сертификационный символ)
12	Напряжение сети, В
13	Частота тока, Гц
14	Однофазное или трехфазное исполнение
15	Мощность Р2, кВт
16	Частота вращения, об/мин
17	Степень защиты
18	Размер фланца напорного патрубка, мм
21	Номер продукта

3. Серия PROLIFT PS с баком 60 л

Описание продукта

PROLIFT PS с баком $60 \, \pi$ - полностью готовая для монтажа компактная установка с одним насосом, накопительным баком, встроенным обратным клапаном, шкафом управления, пневматическим реле уровня.

Предназначена для перекачки бытовых стоков в частном доме или небольшом административном здании, ресторане, офисе.

Технические данные

Перекачиваемая жидкость - бытовые стоки с температурой от 0 до $+45\,^{\circ}$ C, кратковременно (не более 3 мин) до 65 °C.

Значение рН - от 4 до 10.

Максимальный размер твердых включений – 50 мм. Температура окружающей среды от 0 до +45 °C Степень защиты установки - IP68 (кроме шкафа управления).

Уровень звукового давления – менее 58 дбА.

Hacoc

Рабочее колесо – полуоткрытое вихревое колесо, материал - нержавеющая сталь AISI304.

Условный проход рабочего колеса -50 мм. Уплотнение вала – двойное торцевое с парой трения Sic/Sic, с масляной камерой.

Степень защиты ІР68.

Встроенная защита от перегрева и перегрузки. При перегрузке электродвигателя происходит автоматический останов. После охлаждения до нормальной температуры электродвигатель автоматически включается снова, если в шкафу управления имеется заводская настройка автоматического сброса.

Класс изоляции электродвигателя – В. Напряжение питания 1 х 220В или 3 х 380 В Частота – 50 Гц.

Кабель для подключения к шкафу управления 10 м. Максимальное число пусков в час – 60.

Накопительный бак

Материал – полиэтилен.

Общий объем - 60 л.

Максимальный эффективный объем – 15...40 л. Напорный патрубок DN80, материал –

полипропилен - 1 шт.

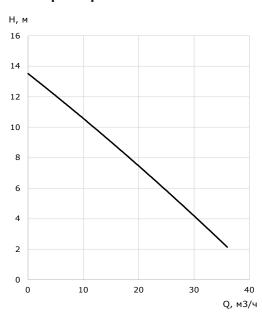
Встроенный обратный клапан с возможностью прочистки, полипропилен – 1 шт.

Трубка для отвода воздуха из насоса в бак, полиэтилен.

Вентиляционный патрубок DN40 (50 мм). Возможность подключения DN150 (160 мм), DN100 (110 мм), DN40 (50 мм).

Принадлежности, входящие в комплект поставки:

- Фланцевый патрубок с прокладкой и болтами, гибкий резиновый соединитель DN80 (90 мм) с двумя хомутами для напорного трубопровода – 1 шт.
- Поворотный диск для подключения подводящего трубопровода DN150 (160 мм)/ DN100 (110 мм)/ DN40 (50 мм)
- манжета DN40 (50 мм) мм 1 шт. для подводящего трубопровода или ручного насоса - 1 шт.
- гибкий резиновый соединитель DN40 (50 мм) с двумя хомутами для вентиляционного трубопровода – 1 шт.

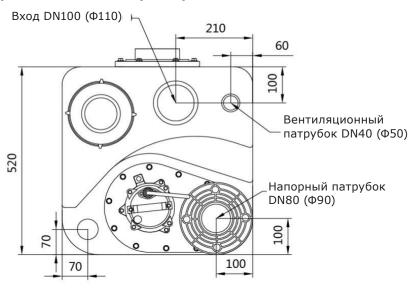

Примечание. Отверстия для вентиляционного и подводящих трубопроводов вырезаются по месту коронкой и уплотняются резиновой манжетой. Места монтажа отверстий см. габаритный чертеж.

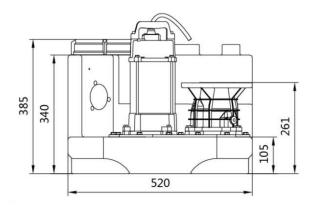
Реле уровня

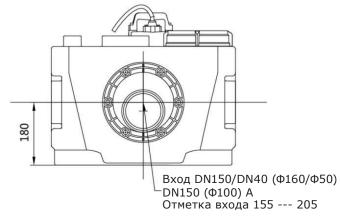
Пневматическая труба из полиэтилена, соединенная 10-м шлангом с пьезорезистивным датчиком в шкафу управления.

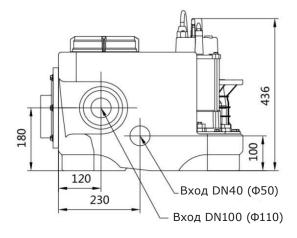
Дополнительный поплавковый выключатель для подачи сигнала аварийного переполнения.

Кривая характеристик

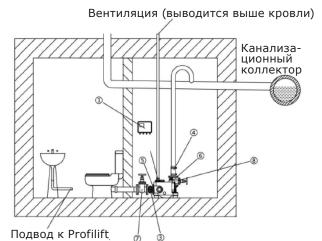


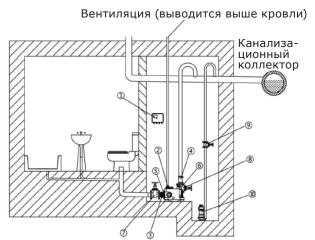



Данные электрооборудования


Наименование	Напряжение, В	Мощность Р2, кВт	Номинальный ток In, A	Тип кабеля электродвигателя	Масса установки, кг
PROLIFT PS.075.1.60	1 × 220	0,75	5,2	H07RN-F 3G.1.0 мм2	32
PROLIFT PS.075.3.60	3 × 380	0,75	1,9	H07RN-F 4G.1.0 мм2	32

Габаритные и присоединительные размеры





Примеры монтажа

Монтаж с прямым подключением

Монтаж в приямке

Номер	Наименование	Размер	Кол-во
0	Шкаф управления		1
0	Гибкий резиновый соединитель для вентиляционного трубопровода	DN40	1
€	Манжета	DN100	1
4	Гибкий резиновый соединитель	DN80	1
6	Поворотный диск для подключения подводящего трубопровода	DN100/DN150	1
6	Фланец напорного трубопровода	DN80	1
7	Задвижка на подводящем трубопроводе	DN100	1
8	Задвижка на напорном трубопроводе	DN80	1
9	Задвижка на напорном трубопроводе дренажного насоса	DN40	1
(10)	Дренажный насос		1

^{• –} входит в комплект поставки; О – принадлежность

4. Серия PROLIFT PD с баком 150 л

Описание продукта

PROLIFT PD с баком 150 л - полностью готовая для монтажа компактная установка с двумя насосами, накопительным баком, встроенным обратным клапаном, шкафом управления, пневматическим реле уровня.

Предназначена для перекачки бытовых стоков в административном здании, ресторане, офисе, гостинице, торговом центре.

Степень защиты установки ІР68 (кроме шкафа управления).

Технические данные

Перекачиваемая жидкость - бытовые стоки с температурой от 0 до +45 °C, кратковременно (не более 3 мин) до 65 °C.

Значение рН - от 4 до 10.

Максимальный размер твердых включений -50 мм. Температура окружающей среды от 0 до $+45^{\circ}$ С Степень защиты установки - IP68 (кроме шкафа управления).

Уровень звукового давления – менее 58 дбА

Hacoc

Рабочее колесо – полуоткрытое вихревое колесо, материал - нержавеющая сталь AISI304. Условный проход рабочего колеса -50 мм. Уплотнение вала – двойное торцевое с парой трения Sic/Sic, с масляной камерой. Степень защиты IP68.

Встроенная защита от перегрева и перегрузки. При перегрузке электродвигателя происходит автоматический останов. После охлаждения до нормальной температуры электродвигатель автоматически включается снова, если в шкафу управления имеется заводская настройка автоматического сброса.

Класс изоляции электродвигателя – В. Напряжение питания 3 x 380 В.

Кабель для подключения к шкафу управления 10 м. Максимальное число пусков в час – 60.

Накопительный бак

Материал – полиэтилен.

Общий объем - 150 л.

Максимальный эффективный объем – 60...120 л. Напорный патрубок DN80, материал –

полипропилен - 1 шт.

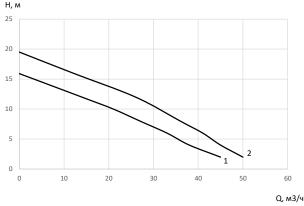
Встроенный обратный клапан с возможностью прочистки, полипропилен – 1 шт.

Трубка для отвода воздуха из насоса в бак, полиэтилен.

Вентиляционный патрубок DN40 (50 мм). Возможность подключения DN150 (160 мм), DN100 (110 мм), DN40 (50 мм).

Принадлежности, входящие в комплект поставки:

- Фланцевый патрубок с прокладкой и болтами, гибкий резиновый соединитель DN80 (90 мм) с двумя хомутами для напорного трубопровода – 1 шт.
- Поворотный диск для подключения подводящего трубопровода DN150 (160 мм)/ DN100 (110 мм)/ DN40 (50 мм)
- манжета DN40 (50 мм) мм 1 шт. для подводящего трубопровода или ручного насоса - 1 шт.
- гибкий резиновый соединитель DN40 (50 мм) с двумя хомутами для вентиляционного трубопровода – 1 шт.

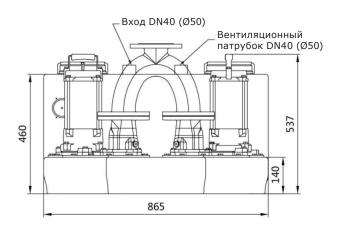

Примечание. Отверстия для вентиляционного и подводящих трубопроводов вырезаются по месту коронкой и уплотняются резиновой манжетой. Места монтажа отверстий см. габаритный чертеж.

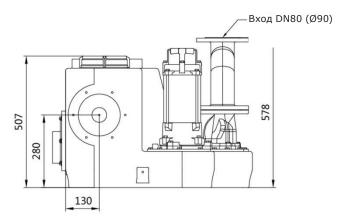
Реле уровня

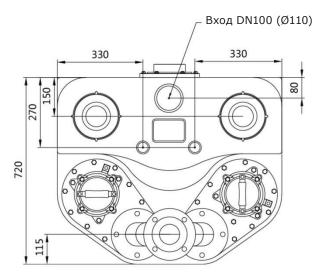
Пневматическая труба из полиэтилена, соединенная 10-м шлангом с пьезорезистивным датчиком в шкафу управления.

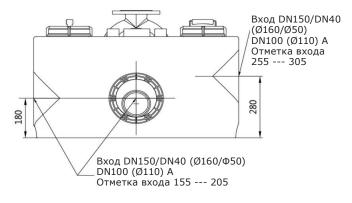
Дополнительный поплавковый выключатель для подачи сигнала аварийного переполнения.

Кривая характеристик

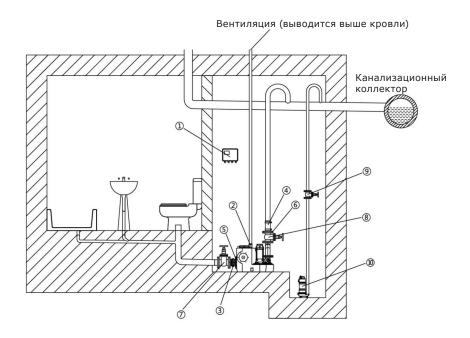

1 - 1,5 кВт 2- 2,2 кВт




Данные электрооборудования


Наименование	Напряжение, В	Мощность Р2, кВт	Номинальный ток In, А	Тип кабеля электродвигателя	Масса установки, кг
PROLIFT PD.15.3.150	3 × 380	1,5	3,2	H07RN-F 4G.1.0 mm ²	127
PROLIFT PD.22.3.150	3 × 380	2,2	5,8	H07RN-F 4G.1.0 mm ²	135

Габаритные и присоединительные размеры



Пример монтажа

Номер	Наименование	Размер	Кол-во
0	Шкаф управления		1
0	Гибкий резиновый соединитель для вентиляционного трубопровода	DN40	1
€	Манжета	DN100	1
4	Гибкий резиновый соединитель	DN80	1
6	Поворотный диск для подключения подводящего трубопровода	DN100/ DN150	1
6	Фланец напорного трубопровода	DN80	1
7	Задвижка на подводящем трубопроводе	DN100	1
8	Задвижка на напорном трубопроводе	DN80	1
9	Задвижка на напорном трубопроводе дренажного насоса	DN40	1
10	Дренажный насос		1

• - входит в комплект поставки; О - принадлежность

5. Серия PROLIFT PD с баком 450 л

Описание продукта

PROLIFT PD с баком 450 л - полностью готовая для монтажа компактная установка с двумя насосами, увеличенным накопительным баком, встроенными обратными клапанами, шкафом управления, пневматическим реле уровня.

Предназначена для перекачки бытовых стоков в административном здании, крупном ресторане, офисе, гостинице, торговом центре.

Степень защиты установки ІР68 (кроме шкафа управления).

Технические данные

Перекачиваемая жидкость - бытовые стоки с температурой от 0 до $+45\,^{\circ}\text{C}$, кратковременно (не более 3 мин) до $65\,^{\circ}\text{C}$.

Значение рН - от 4 до 10.

Максимальный размер твердых включений – 50 мм. Температура окружающей среды от 0 до $+45~^{\circ}$ С Степень защиты установки - IP68 (кроме шкафа управления).

Уровень звукового давления - менее 58 дбА.

Hacoc

Рабочее колесо – полуоткрытое вихревое колесо, материал - нержавеющая сталь AISI304. Условный проход рабочего колеса 50 мм. Уплотнение вала – двойное торцевое с парой трения Sic/Sic, с масляной камерой. Степень защиты IP68.

Встроенная защита от перегрева и перегрузки. При перегрузке электродвигателя происходит автоматический останов. После охлаждения до нормальной температуры электродвигатель автоматически включается снова, если в шкафу управления имеется заводская настройка автоматического сброса.

Класс изоляции электродвигателя – F. Напряжение питания $3 \times 380 \text{ B}$. Кабель для подключения к шкафу управления 10 м. Максимальное число пусков в час – 60.

Накопительный бак

Материал – полиэтилен.

Общий объем - 450 л.

Максимальный эффективный объем - 200...360 л.

Напорный патрубок DN80, материал -

полипропилен - 1 шт.

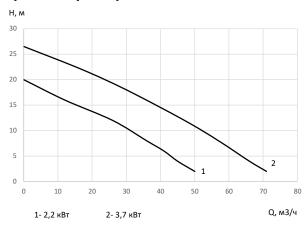
Встроенный обратный клапан с возможностью прочистки, полипропилен – $1\ \mathrm{mt}$.

Трубка для отвода воздуха из насоса в бак, полиэтилен.

Вентиляционный патрубок DN40 (50 мм). Возможность подключения DN150 (160 мм), DN100 (110 мм), DN40 (50 мм).

Принадлежности, входящие в комплект поставки:

- Фланцевый патрубок с прокладкой и болтами, гибкий резиновый соединитель DN80 (90 мм) с двумя хомутами для напорного трубопровода – 1 шт.
- Поворотный диск для подключения подводящего трубопровода DN150 (160 мм)/ DN100 (110 мм)/ DN40 (50 мм)
- манжета DN40 (50 мм) мм 1 шт. для подводящего трубопровода или ручного насоса - 1 шт.
- гибкий резиновый соединитель DN40 (50 мм) с двумя хомутами для вентиляционного трубопровода – 1 шт.

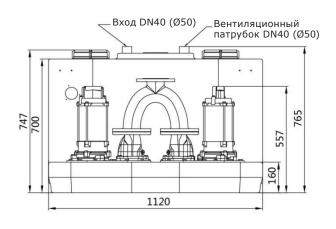

Примечание. Отверстия для вентиляционного и подводящих трубопроводов вырезаются по месту коронкой и уплотняются резиновой манжетой. Места монтажа отверстий см. габаритный чертеж.

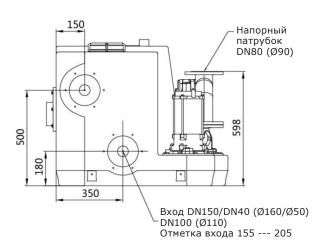
Реле уровня

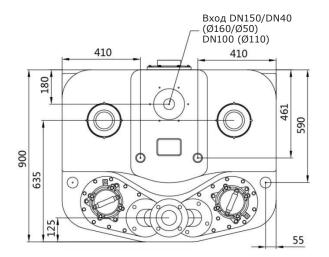
Пневматическая труба из полиэтилена, соединенная 10-м шлангом с пьезорезистивным датчиком в шкафу управления.

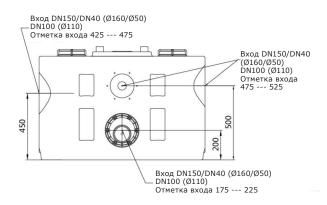
Дополнительный поплавковый выключатель для подачи сигнала аварийного переполнения.

Кривая характеристик

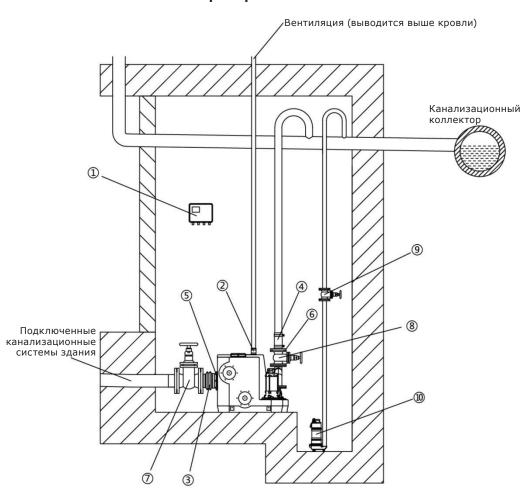





Данные электрооборудования


Наименование	Напряжение, В	Мощность Р2, кВт	Номинальный ток In, A	Тип кабеля электродвигателя	Масса установки, кг
PROLIFT PD.22.3.450	3 × 380	2,2	5,8	H07RN-F 4G.1.0 mm ²	155
PROLIFT PD.37.3.450	3 × 380	3,7	7,5	H07RN-F 4G.1.5 mm ²	162

Габаритные и присоединительные размеры



Пример монтажа

Номер	Наименование	Размер	Кол-во
0	Шкаф управления		1
0	Гибкий резиновый соединитель для вентиляционного трубопровода	DN40	1
€	Манжета	DN100	1
4	Гибкий резиновый соединитель	DN80	1
6	Поворотный диск для подключения подводящего трубопровода	DN100/ DN150	1
6	Фланец напорного трубопровода	DN80	1
7	Задвижка на подводящем трубопроводе	DN100	1
8	Задвижка на напорном трубопроводе	DN80	1
9	Задвижка на напорном трубопроводе дренажного насоса	DN40	1
(1)	Дренажный насос		1

• – входит в комплект поставки; О – принадлежность

6. Шкаф управления WLC 121

Технические данные

Температура окружающей среды -25 °C...+55 °C Влажность воздуха 20...90%

Степень защиты IP54

Габариты (длина x высота x глубина) 302 x 240 x 120 мм

Способ монтажа - настенный

Корпус из полипропилена. Контроллер с жидкокристаллическим дисплеем.

Пьезометрический датчик для преобразования сигнала от пневматического реле уровня в аналоговый электрический

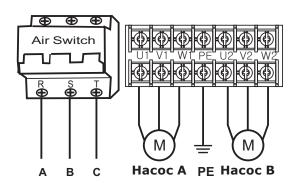
Наличие клемм для подключения дополнительного поплавкового выключателя, для подачи сигнала аварийного переполнения (резервирование пневматического реле уровня)

Функции шкафа

Автоматическое включение/ выключение насосов в зависимости от установленного уровня включения/выключения

Чередование рабочего и резервного насоса (установка с 2 насосами)

Защита насосов от перегрева, перегрузки, сухого хола


Защита от повышенного/пониженного напряжения, пропажи фазы, перекоса фаз

Внешние выходы для подачи аварийного сигнала, беспотенциальные контакты, максимум 250 В, 2А

Возможность соединения с системой диспетчеризации здания по протоколу Modbus RTU через шину связи RS485

Схема электрического подключения (установка с 2 насосами)

Трехфазное исполнение

Однофазное исполнение

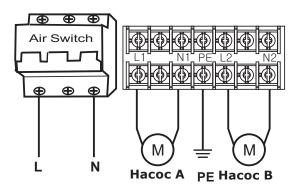
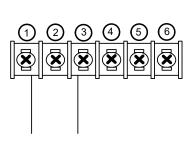



Схема подключения внешних выходов

Схема подключения реле уровня

Поплавковый выключатель (дополнительный) для подачи сигнала аварийного переполнения

для соединения с системой диспетчеризации

диспетчеризация

Подключение порта RS 485

F1 F2

внешние выходы для подачи аварийного сигнала

7. Рекомендации по монтажу

Правильный монтаж насосной установки Prolift требует соблюдения следующих требований и рекомендаций:

- Монтаж в хорошо освещенном и вентилируемом помещении, с обеспечением свободной зоны по периметру на расстоянии 600 мм вокруг установки для облегчения технического обслуживания и эксплуатации. Запрещено становиться ногами на приемный бак.
- 2. Предусмотреть приямок для дренажного насоса с поплавковым выключателем для опорожнения в случае внешнего затопления. При отсутствии дренажного насоса установить поплавковый выключатель для подачи аварийного сигнала затопления.
- Для опорожнения бака рекомендуется ручной насос, подсоединенный в нижней части бака с патрубком DN50 (40 мм).
- 4. Трубные соединения должны быть гибкими для снижения вибрации.
- Пол, на котором установлен приемный бак, должен быть идеально ровным, уровень горизонтальным. Бак должен крепиться к полу.
- 6. Все напорные патрубки насосной установки, дренажного насоса, ручного насоса должны быть оснащены петлей, высшая точка которой расположена выше уровня грунта во избежание внешнего затопления помещения при обратном потоке.
- На всасывающей и напорной линиях должны быть установлены задвижки – для перекрытия трубопроводов в случае проведения ремонтных работ и замены оборудования.
- Объём участка напорного трубопровода выше обратного клапана до верхнего постоянного уровня воды в трубопроводе должен быть меньше полезного объёма резервуара.
- Вентиляция от насосной установки для бытовых (фекальных) сточных вод должна быть отведена выше уровня крыши. Не допускается отведение вентиляции в основную вентиляционную систему здания. При невозможности вывода вентиляции можно использовать угольный фильтр.
- Подводящий трубопровод должен иметь коэффициент наполнения как минимум h/d = 0,7. Его диаметр должен быть больше диаметра напорного трубопровода минимум на один номинальный типоразмер.
- Рекомендуется, чтобы подводящий трубопровод был подключен на максимально возможной высоте относительно пола (верхнее положение вращающегося диска). В этом случае эффективный объем максимальный, при этом насос включается реже, что увеличивает надежность работы.
- 13. Шкаф управления насосной установкой должен располагаться в месте, свободном от затопления.
- Должен быть подключен к шкафу дополнительный поплавковый выключатель для подачи сигнала аварийного переполнения.

8. Методика подбора установки Prolift

Объёмы сточных вод не постоянны, если рассматривать их во времени, например, в течение часа.

Утром, в обеденное время и вечером объём потребления воды, а, следовательно, и расход сточных вод выше среднего уровня.

Насосы должны справляться с максимальными нагрузками в течение определённого короткого периода времени, в течение которого одновременно используется несколько видов санитарно-технического оборудования.

Для выбора резервуара правильной емкости необходимо знать расход сточных вод, отводящихся от всего подключенного санитарнотехнического оборудования за один час.

Необходимо учитывать повторно-кратковременный режим эксплуатации установки и насоса(-ов), вызванный неравномерным притоком и особенностями конструкции электродвигателя.

Электродвигатели, используемые для насосных установок Prolift, предназначены для эксплуатации в повторно-кратковременном режиме. Это означает, в течение цикла откачки электродвигатель может работать на протяжении определённого времени, а затем определенное время не работать и охлаждаться.

Повторно-кратковременный режим работы (S3) имеют обозначение: S3 50 % – 1 минута.

Это означает, что рабочий цикл длится 1 минуту, и за один цикл насосы могут отработать 50 % времени цикла, т. е. в течение 30 секунд, а затем им понадобится 30-секундная пауза.

Таким образом можно повторить 60 циклов за час, что означает, что один насос способен опорожнять резервуар насосной установки до 60 раз за час.

Максимальный объём водоотведения за один час зависит от полезного объёма резервуара.

Подбор насосной установки Prolift

Этап 1. Определение рабочей точки и типоразмера установки.

- С помощью норм расхода, указанных в СП «Внутренний водопровод и канализация зданий» определяем суммарный секундный расход.
- 2. Определяем требуемый минимальный расход насоса в расчетной рабочей точке (с учетом возможной погрешности расчета притока, возможного увеличения нагрузки или расширения здания, возможного старения и заиливания напорной трубы). Он должен быть гарантированно больше максимального секундного расхода.
- 3. Определяем геодезический напор разницу уровней выключения и точки излива.
- 4. Строим кривую сопротивления напорного трубопровода.
- 5. Зная минимальный расход, подбираем подходящий тип насосной установки, которая его обеспечивает. Рабочая точка насоса в месте пересечения двух кривых.
- 6. Проверяем скорость воды в напорном трубопроводе в полученной рабочей точке (не ниже 0,7 м/с).

Важно: не следует подбирать насос с большим запасом по напору. В этом случае реальная рабочая точка может оказаться в крайней правой части кривой характеристики насоса или вне кривой. Это приведет к перегрузке электродвигателя.

Этап 2. Проверка эффективного объема резервуара

Подобрав насосную установку, получив расчетное значение расхода насоса в рабочей точке, проверяем минимальный эффективный объем приемного резервуара.

 $V_{_{9\Phi}} \times n > Q_{_{4ac}}$

 $V_{_{9\varphi}}^{_{_{9\psi}}}$ - минимальный эффективный объем резервуара, м³

n - максимальное число пусков в час (=60)

 $Q_{\mbox{\tiny час}}$ - максимальный часовой приток, м³/ч

ООО «Вандйорд Групп» Адрес: 109544, г. Москва, ул. Школьная, д.39-41. Тел.: +7 (495) 730-36-55

E-mail: info.moscow@vandjord.com

Для использования в качестве ознакомительного материала. Возможны технические изменения. Товарные знаки, представленные в этом материале, в том числе VANDJORD, являются зарегистрированными товарными знаками, ООО «Вандйорд Групп». Все права защищены.

22111004/1723