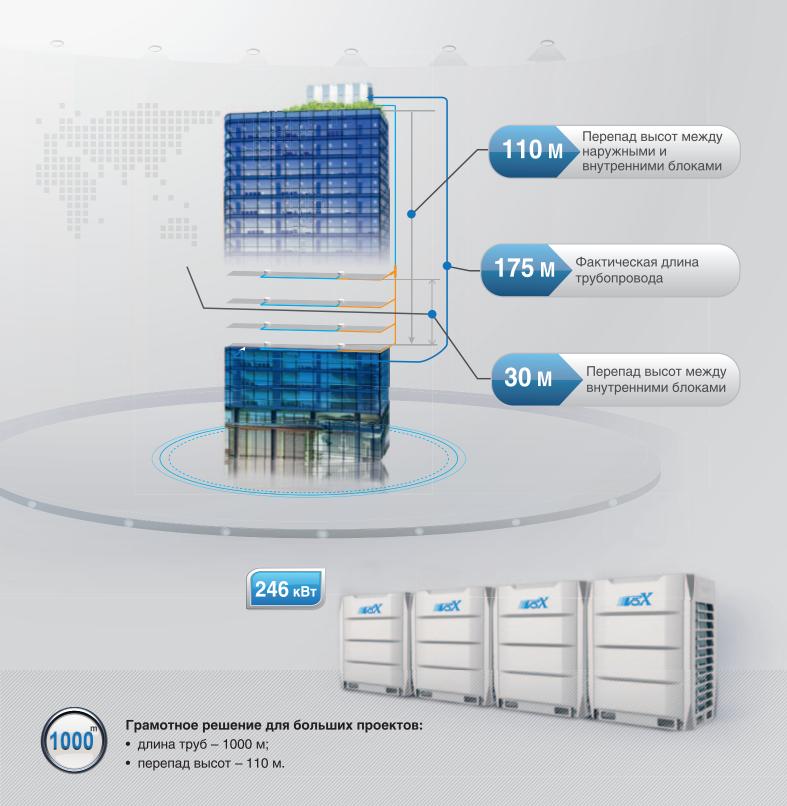


ПРОФЕССИОНАЛЬНОЕ КЛИМАТИЧЕСКОЕ ОБОРУДОВАНИЕ


ГЕНЕРАЛЬНЫЙ КАТАЛОГ

VRF-СИСТЕМЫ
ЧИЛЛЕРЫ
ФАНКОЙЛЫ
КОМПРЕССОРНО-КОНДЕНСАТОРНЫЕ БЛОКИ
РУФТОПЫ
ПОЛУПРОМЫШЛЕННАЯ СЕРИЯ
ТЕПЛОВЫЕ НАСОСЫ

V5 VRF-система

DC-инверторного типа

Содержание

История бренда MDV Особенности техники MDV Модельный ряд	4
VRF-CUCTEMЫ	8
Конкурентные преимуществаПрограмма подбора	
Система управления	
Артикулы	18
Наружные блоки	
Внутренние блоки	
Программа для диагностики	
Управление	41
чиллеры	42
Преимущества	44
Артикулы	
Чиллеры Aqua Tempo Power Чиллеры Aqua Tempo Super	
Модульные чиллеры с воздушным охлаждением конденсатора (250 кВт)	
Чиллер с воздушным охлаждением конденсатора и встроенным гидромодулем	
Воздухоохлаждаемые чиллеры с винтовым компрессором	
Мини-сплит-чиллеры	
	_
ФАНКОЙЛЫ	_
Артикулы	
Четырехтрубные фанкойлы	
Управление	
Программа подбора	. //
КОМПРЕССОРНО-КОНДЕНСАТОРНЫЕ БЛОКИ	78
Артикулы	
Серия MDCCU	80
РУФТОПЫ	82
ПОЛУПРОМЫШЛЕННАЯ СЕРИЯ БОЛЬШОЙ МОЩНОСТИ (UNITARY)	_
Канальные сплит-системы большой мощности Колонные сплит-системы большой мощности	
TERRODUE HACOCH	00
ТЕПЛОВЫЕ НАСОСЫ	90
Тепловые насосы для ГВС	
Тепловые насосы для бассейнов	93

ИСТОРИЯ БРЕНДА MDV

О БРЕНДЕ

MDV - оригинальный бренд корпорации GD Midea Holding Co., Ltd., под которым выпускается профессиональное климатическое оборудование.

На протяжении последнего десятилетия марка MDV удерживает высокие позиции в рейтинге потребительских предпочтений, оставаясь одним из самых успешных брендов корпорации-производителя. Стабильная популярность и высокий спрос подтверждают надежность и качество климатического оборудования MDV, о которых говорят не только многочисленные международные сертификаты, но и годы безукоризненной службы оборудования.

Начало истории бренда MDV было положено в 1985 году, когда GD Midea Holding Co., Ltd., открыла подразделение, занимающееся исключительно производством кондиционеров. Через восемь лет был разработан бренд MD, – прототип MDV.

В 1999 году GD Midea Holding Co., Ltd. провела реорганизацию, результатом которой было создание самостоятельного подразделения Midea CAC, отвечающего за производство коммерческих систем кондиционирования, в этом же году был создан бренд MDV. Под этой торговой маркой корпорация начала производить и экспортировать, главным образом, полупромышленное оборудование, системы чиллер-фанкойл и мультизональные VRF-системы, т.е. наиболее высокотехнологичную продукцию. Именно поэтому бренд MDV является воплощением передовых технических решений.

В 2001 году руководством компании принято решение о включении в линейку MDV модельного ряда бытовых кондиционеров. В настоящее время модельный ряд MDV включает в себя полную номенклатуру оборудования - от промышленных чиллеров до мобильных кондиционеров.

MDV – НАДЕЖНОЕ И ФУНКЦИОНАЛЬНОЕ КЛИМАТИЧЕСКОЕ ОБОРУДОВАНИЕ

Своим успехом бренд MDV обязан более чем 45-летнему опыту работы корпорации GD Midea Holding Co., Ltd., которая сегодня по качеству изделий и объемам производства входит в десятку признанных мировых лидеров в области климатики. Продукция корпорации экспортируется в более чем 120 стран мира.

При разработке и производстве систем MDV применяются технологии инверторного управления компрессором, используются хладагенты с нулевым потенциалом разрушения озонового слоя, применяются новые технологии и разработки, позволяющие повысить энергоэффективность и понизить уровень шума.

В 1998 производитель стал совладельцем компрессорного завода Macro Toshiba, который сегодня переименован в GMCC (Guangdong Midea-Toshiba Compressor Company). В 2014 году высокое качество компрессоров GMCC было отмечено на государственном уровне.

В 2002 году Midea CAC получила сертификат ISO18001, являющийся подтверждением того, что при производстве компания использует не менее 60% собственных разработок. Кроме того, GD Midea Holding Co., Ltd. стала одной из первых компаний в Китае, которая получила международный сертификат ISO9001 Комитета по сертификации качества. Также корпорация имеет сертификаты CE, CSA, SAA, РосТест и другие.

Производитель MDV традиционно уделяет пристальное внимание научным разработкам и технологическим инновациям. Еще более 10 лет назад Центр научных исследований и развития производственных технологий компании получил высокую оценку Правительства Китая. При этом GD Midea Holding Co., Ltd продолжает уделять особое внимание обмену технологиями с крупнейшими корпорациями мирового уровня, такими как Toshiba, Carrier, NEC Rycsan, Sanyo, Emerson, York. Так, совместно с NEC Rycsan и американской фирмой TI, была основана Лаборатория по созданию технологий электронного контроля производства. Создание и реализация этих технологий позволили продукции MDV выйти на новый уровень качества. Благодаря разработке и внедрению новых технологий MARS (Midea Air Conditioning and Refrigeration Sector) стала самым влиятельным предприятием в сфере производства кондиционеров в Китае и активным участником мирового рынка. В 2014 году производитель заявил о начале строительства своего научно-исследовательского института.

Планы достижения лидерства в производстве кондиционеров подкрепляются наличием значительных производственных мощностей. Общая площадь производственных помещений компании – более 1000000 м2, на которых размещено 108 производственных линий. Годовой оборот за 2012 год составил 25 миллиардов долларов США.

Стремясь к развитию MDV как передового бренда на климатическом рынке, GD Midea Holding Co., Ltd c 2013 года вводит единые международные стандарты бренда MDV. Производитель внедряет унифицированную концепцию и стилистку, вводит новые маркировки оборудования.

ОСНОВНЫЕ НАПРАВЛЕНИЯ ПРОГРАММЫ ПРОИЗВОДИТЕЛЯ ПО ПОВЫШЕНИЮ УЗНАВАЕМОСТИ БРЕНДА MDV В МИРЕ:

- 1. Происходит унификация логотипа MDV для дистрибьюторов всех стран - новый логотип стал обязательным для использования всеми дистрибьюторами.
- 2. Создан глобальный сайт MDV mdv.midea.com, который при поддержке производителя объединён в единую информационную систему с сайтами региональных дистрибьюторов.
- 3. Созданы единые стандарты маркировки и наименования моделей оборудования MDV.
- 4. Реализуется программа MDV Elite Camp, предполагающая централизованную организацию обучающих мероприятий с целью повышения уровня профессиональной подготовки и мотивации менеджеров продающих подразделений дилерских компаний. Данные мероприятия полностью соответствуют долгосрочной стратегии производителя - сфокусироваться на продвижении собственных брендов с целью повышения узнаваемости.

СВЕДЕНИЯ О ПРОИЗВОДИТЕЛЕ

В корпорации Midea трудятся более 100 000 специалистов, 2 000 из них – инженеры. Производитель гордится своей командой, ее нацеленностью на совершенствование, результат и движение вперел!

Корпорация по праву может соперничать с любым производителем климатического оборудования в мире, в первую очередь, благодаря уникальной по своей завершенности цепочке производства - одной из самых совершенных в мире. Компания имеет отделения по производству электроники, компрессоров и двигателей для кондиционеров, а также свой собственный дизайнерский центр. За всем процессом производства пристально следит отдел контроля качества. Таким образом, осуществляется вся цепочка производства от начала до конца, от создания первоначальной концепции продукта, к проектированию, производству пробной модели, выпуску комплектующих, сборке, продаже и сервисному обслуживанию.

Общая площадь производственных помещений корпорации составляет более 1 015 000 ${\rm m}^2$, на которых размещены 108 производственных линий.

Производственная база в г. Шунде (Shunde)

Штаб-квартира Midea и ее основная производственная база находятся в городе Шунде, провинция Гуандун. Здесь ежегодно производится свыше 9 млн. единиц самого различного климатического оборудования: от бытовых кондиционеров до промышленных систем

В Шунде располагаются цеха по производству VRF-систем. Первая мультизональная система сошла с конвейера Midea в 2000 году. Сейчас корпорация ежегодно производит около 800 тысяч комплектов на 550 млн. долларов США.

Цех по производству внешних блоков VRF

На производстве трудится 450 рабочих. Общая площадь цеха - 14 880 м. Цех специализируется на производстве внешних блоков VRF-систем, внутренних кассетных блоков, теплообменников и медных трубок.

Конвейерная линия позволяет произвести большинство необходимых для сборки кондиционеров компонентов. Процесс производства и контроль качества соответствуют самым строгим международным стандартам.

Цех по производству внутренних блоков VRF

Штат -540 человек. Площадь $25\,000\,{\rm m}^2$, на которых функционируют 9 производственных площадок. Основная продукция - внутренние

блоки VRF, включая канальные, настенные и однопоточные кассетные блоки. Кроме того, завод производит теплообменники и трубки, необходимые для сборки внутренних блоков VRF. Объем производства - около 1 миллиона комплектов в год.

Завод по производству компрессоров GMCC.

С 2010 года корпорации принадлежит контрольный пакет акций завода по производству компрессоров GMCC. Это совместное предприятие Midea и Toshiba.

Вся продукция производится по японским технологиям и стандартам. Сегодня завод обеспечивает не только собственные нужды Midea, но и поставляет внушительную долю своей продукции на внешний рынок. Здесь производится треть мирового объема компрессоров – более 27 млн. единиц ежегодно, что выводит GMCC на первое место в мире по экспортным продажам.

Сейчас GMCC начинает массовое производство нового типа энергосберегающего компрессора. Разработчикам удалось совместить инверторную технологию с технологией переменной производительности. Новая модель имеет большую энергоэффективность при работе на охлаждение, нежели традиционные модели. Данная технология уже стала лидером на китайском рынке, а теперь набирает обороты и в мировом масштабе.

Завод по производству чиллеров в г. Чунцин (Chongqing)

Завод Чунцин – одно из крупнейших предприятий по производству чиллеров в Китае. Цеха вместе с административными зданиями располагаются на площади более полумиллиона квадратных метров. Здесь производится 6 линеек чиллеров, включающих более 100 моделей, в том числе, центробежные чиллеры, винтовые чиллеры с водяным охлаждением конденсатора и центральные внутренние терминальные устройства по охлаждению воздуха (AHU/FCU).

На производстве действует 5 цехов с 14 конвейерными линиями, с которых ежегодно сходит до 250 центробежных чиллеров, 1000 воздухоохлаждаемых винтовых чиллеров, 2000 винтовых чиллеров с водяным охлаждением и 200 000 единиц АНU.

Инновации

Сегодня производитель MDV – одно из самых влиятельных предприятий в климатической индустрии. Компания постоянно ведет поиск и разработку новых технологий и ни на шаг не отступает от стратегии использования передовых решений для создания комфортного, энергосберегающего, экологически безопасного, удобного в эксплуатации и, самое главное, надежного оборудования. Корпорация обладает собственным Центром тестирования оборудования (МСАС). На сегодняшний день это самая современная площадка для испытания разнообразных систем кондиционирования воздуха в Китае.

В центре располагается более 40 различных новейших испытательных стендов и около 30 специализированных лабораторий. Общая площадь помещений - 12 000 m^2 .

В 2007 году работа Центра была одобрена на государственном уровне. За эффективность и безопасность лаборатории Midea получили сертификат CNAS.

ПРИГЛАШАЕМ В ВИРТУАЛЬНЫЙ ТУР ПО ЗАВОДУ НА САЙТЕ WWW.MDV-RUSSIA.RU

Особенности техники MDV

ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ

ЗДОРОВЬЕ И КОМФОРТ

Приток свежего воздуха

Подача в помещение свежего воздуха нормализует концентрацию кислорода и повышает уровень комфорта.

Панель с круговым распределением воздушного потока

Панель с круговым (360) распределением воздуха обеспечивает быстрое и равномерное охлаждение или нагрев помещения большого объема.

Автоматическая работа воздушных заслонок

Возможность автоматического качания вертикальных и горизонтальных заслонок обеспечивает распределение воздушного потока по большой площади.

Автоматическое качание заслонки

Автоматическое качание горизонтальных заслонок распределяет холодный и теплый воздух по максимальной площади.

Комфортный сон

При включенном режиме комфортного сна кондиционер автоматически увеличивает (в режиме охлаждения) или уменьшает (в режиме обогрева) температуру на 1 С в течение первых двух часов, затем поддерживает ее стабильной в течение следующих 5 часов, после чего выключается. Эта функция обеспечивает энергосбережение и поддреживает комфортные условия ночью.

Независимое осушение

Режим независимого осушения эффективно уменьшает влажность в помещении, и при этом не так заметно снижает температуру в комнате, как режим охлаждения.

ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ

Запоминание положения жалюзи

При включении блока горизонтальные жалюзи автоматически перемещаются в то же положение, в которое они были установлены перед выключением.

Теплый пуск

При включении режима нагрева скорость вращения вентилятора автоматически возрастает от наименьшей до установленной пользователем в соответствии с ростом температуры испарителя. Эта функция позволяет предотвратить поступление холодного воздуха в начале работы и избежать некомфортных ощущений.

Таймер

При помощи таймера время включения и выключения может быть установлено в 24-часовом интервале.

Проводной пульт управления

В отличие от инфракрасного дистанционного пульта управления проводной пульт может быть закреплен на стене, что предотвращает его потерю. Это очень удобно в офисах и на предприятиях.

Функция самодиагностики

Микропроцессор кондиционера, отслеживающий нештатный режим работы или неисправность узлов, автоматически выключит и защитит систему. В это время на дисплее внутреннего блока отобразится код ошибки или аварии.

НАДЕЖНОСТЬ

Автоматический перезапуск

В случае непредвиденного отключения кондиционера из-за сбоя питания после возобновления подачи электроэнергии он автоматически возвращается к предыдущим настройкам.

Корпус с антикоррозионным покрытием

Корпус наружного блока имеет антикоррозионное покрытие, которое обеспечивает длительный срок службы даже в неблагоприятных условиях наружного воздуха.

Автоматическая оттайка инея

Защищает теплообменник наружного блока от обрастания инеем, исключая тем самым потери производительности кондиционера и экономя электроэнергию.

Нагрев до 8 С

Для режима обогрева может быть задана температура всего 8 С, что позволяет поддерживать стабильную температуру зимой в помещениях.

Защитная крышка присоединительных патрубков

Эта крышка защищает патрубки от ударов во время транспортировки. Кроме того, она также предотвращает стекание с патрубков сконденсировавшейся воды.

Особенности техники MDV

ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ

ЭНЕРГОСБЕРЕЖЕНИЕ

1 Вт в режиме ожидания

Благодаря интеллектуальной системе включения и выключения кондиционеры MDV в режиме ожидания автоматически переходят в энергосберегающий режим, снижая потребляемую мощность с обычных 4 - 5 Вт до 1 Вт, это экономит 80% энергии.

Влагоотталкивающее алюминиевое оребрение

Использование в теплообменнике внутреннего блока несмачиваемого алюминиевого оребрения улучшает эффективность охлаждения за счет свободного течения сконденсировавшейся воды между ребрами. В наружном блоке такой теплообменник повышает эффективность обогрева за счет ускорения процесса размораживания.

Медные трубки с внутренними канавками трапецеидальной формы

По сравнению с традиционными медными трубками, они пропускают большой объем хладагента, это улучшает эффективность теплообмена и снижает энергопотребление, поддерживая производительность на том же уровне.

ПРОСТОТА ОБСЛУЖИВАНИЯ

Легко моющаяся панель

Лицевая панель внутреннего блока легко снимается для очистки.

УНИКАЛЬНЫЕ ВОЗМОЖНОСТИ

■ 1 ВТ В РЕЖИМЕ ОЖИДАНИЯ

НИЗКОЕ ЭНЕРГОПОТРЕБЛЕНИЕ В РЕЖИМЕ ОЖИДАНИЯ

Если электроприбор выключен, но не обесточен, он продолжает потреблять электроэнергию. Используемые MDV технологии позволяют уменьшить потребление в режиме покоя до 1 Вт, по сравнению с 4-5 Вт стандартных кондиционеров, и сэкономить до 70% электроэнергии в этом режиме.

БЕСПРОВОДНОЙ ПУЛЬТ ДУ

Когда Вы выключили кондиционер, пульт самостоятельно запоминает текущие настройки, и при следующем включении кондиционера он продолжит работу с ранее запомненными установками. Вы экономите время, т. к. нет необходимости вводить желаемые параметры снова.

Компактный дизайн

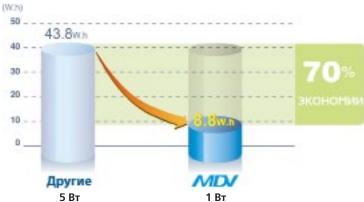
Сокращение до минимума габаритов изделия улучшает внешний вид и расширяет возможности установки.

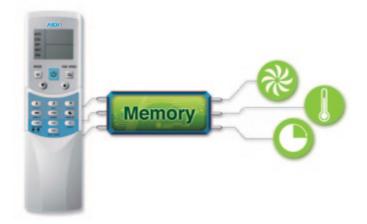
Моющийся фильтр

Моющийся фильтр легко очистить в домашних

Встроенный дренажный насос

Дренажный насос способен поднять конденсат на высоту до 750 мм (в зависимости от модели).


2 варианта присоединения трубопровода


Присоединение соединительных трубопроводов и дренажного шланга может выполняться как с левой, так и с правой стороны внутреннего блока.

Удобное подключение электропроводки

Распределительная коробка делает подключение проводов между внутренним и наружным блоком значительно более гибким.

Модельный ряд

VRF-СИСТЕМЫ

ВНЕШНИЕ БЛОКИ

	min	max	
(New!)	25,2 кВт	246 кВт	Новинка! Мультизональная система MDV серии V5X. Внешние блоки модульного исполнения, R410A
And their	25.2 кВт	180 кВт	Мультизональная инверторная система MDV серии V4+. Внешние блоки модульного и индивидуального исполнения, R410a
	8 кВт	26 кВт	Мультизональная система MDV-mini с компрессором DC-Inverter, R410a

ВНУТРЕННИЕ БЛОКИ

	min	max	
	3.6 кВт	16 кВт	Напольно-потолочные блоки Серия DL/N1 (-C)
(New!)	1.8 кВт	3,6 кВт	Новинка! Компактные кассетные блоки однопоточные Серия Q1/N1 (-D)
	1.5 кВт	5.6 кВт	Компактные кассетные блоки Серия Q4/N1(-A3)
	2.8 кВт	14 кВт	Кассетные блоки R410a Серия Q4/N1(-D)
	2.2 кВт	14 кВт	Канальные блоки средненапорные Серия T2/N1(-BA5)
	7.1 кВт	56 кВт	Канальные блоки высоконапорные Серия Т1/N1(-B)
	12.5 кВт	28.0 кВт	Канальные блоки высоконапорные 100% приток свежего воздуха Серия Т1/N1-FA
	1.5 кВт	9.0 кВт	Настенные блоки со встроенным EXV Серия G/N1-R3 Серия G/N1Y-C1
ACLY	2.2 кВт	8 кВт	Напольные блоки Серия Z/N1-(F1/F4)
	200 м³//ч	2000 м³//ч	Приточно-вытяжные установки с рекуперацией тепла Серия HRV

КОМПРЕССОРНО-КОНДЕНСАТОРНЫЕ БЛОКИ

	min	max	
(New!)	3,2 кВт	105 кВт	Новинка! Компрессорно-конденсаторные блоки, R407c, R410a.

СИСТЕМЫ С ПРОМЕЖУТОНЫМ ТЕПЛОНОСИТЕЛЕМ

ЧИЛЛЕРЫ

	min	max	
(New)	30 кВт	250 кВт	Новинка! Модульные чиллеры с воздушным охлаждением конденсатора, R407c, R410a, серии Aqua Tempo Power, Aqua Tempo Super
	380 кВт	1400 кВт	Модульные чиллеры с воздушным охлаждением конденсатора с винтовым компрессором, R134a
	340 кВт	1450 кВт	Водоохлаждаемые чиллеры с винтовым компрессором, R134a
	5.0 кВт	16 кВт	Мини-чиллеры и мини сплит-чиллеры с воздушным охлаждением конденсатора, R410a

ФАНКОЙЛЫ

(New!)	3.04 кВт	3.79 кВт	Новинка! Кассетные компактные с односторонним распределением воздуха
	3.0 кВт	4.5 кВт	Кассетные компактные
	5.7 кВт	12.9 кВт	Кассетные
	2.2 кВт	5 кВт	Настенные
	1.2 кВт	7.9 кВт	Напольные и потолочные, корпусные и бескорпусные
4	2.0 кВт	19.9 кВт	Канальные

ПОЛУПРОМЫШЛЕННЫЕ СИСТЕМЫ

СПЛИТ-СИСТЕМЫ БОЛЬШОЙ МОЩНОСТИ

22 кВт	56,3 кВт	Канальные кондиционеры большой мощности R407c, On/Off
22 кВт	28 кВт	Колонные кондиционеры большой мощности R407c, On/Off

РУФТОПЫ

EM	27.5 кВт	97 кВт	Крышные кондиционеры R410a, R407c

ТЕПЛОВЫЕ НАСОСЫ

i	190 л	300 л	Тепловые насосы для ГВС, R134a
6 -	6.0 кВт	14.0 кВт	Тепловые насосы для бассейнов, бытовые, R410a
	45.0 кВт	90 кВт	Тепловые насосы для бассейнов, коммерческого назначения, R410a

Новая серия наружных блоков VRF-системы MDV V5X

Новая серия VRF-системы MDV V5X состоит из 8 наружных блоков. Это блоки производительностью 25.2, 28.0, 33.5, 40.0, 45.0, 50.0, 56.0 и 61.50 кВт. Максимальная мощность модуля из четырех наружных блоков составляет 246 кВт. Это максимальный показатель в индустрии.

Новая серия VRF-системы MDV V5X отличается увеличенными коэффициентами энергоэффективности, в частности значение EER достигает 4.35, COP достигает 4.66.

Высокоэффективный инверторный компрессор постоянного тока производства Hitachi снижает потребление электроэнергии на 25%.

Инверторный преобразователь, формирующий чистую синусоиду, обеспечивает наиболее плавное вращение ротора двигателя, что значительно повышает эффективность его работы по сравнению с традиционными решениями.

В серии MDV V5X увеличены длины магистралей хладагента:

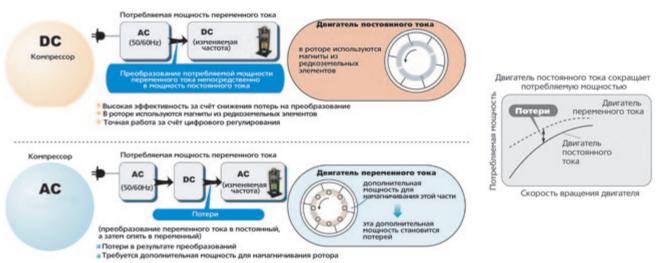
- суммарная длина трубопроводов хладагента до 1000 метров;
- перепад высоты между внутренними блоками теперь составляет 30 метров;
- перепад высоты между наружным блоком и внутренними при условии, что наружный блок находится выше внутренних, составляет 90 метров и 110 метров при условии, что наружный блок ниже внутренних;
- эквивалентная длина трубопровода до 200 метров.

DC моторы вентиляторов наружного блока, управляемые датчиком давления, способствуют более точной подаче хладагента.

Пять режимов блокировки:

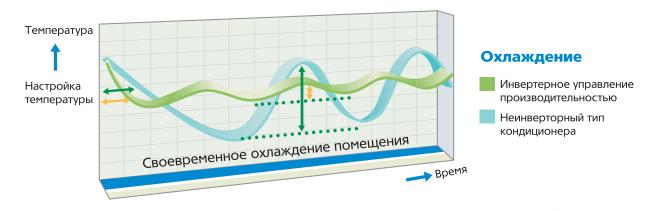
- только охлаждение;
- только нагрев;
- приоритет охлаждения;
- приоритет нагрева;
- работа по выбранному режиму блоком с адресом 63 (приоритет директора).

Уникальный дизайн наружного блока, разработанный французским дизайнерским бюро. Впервые в отрасли дизайн наружного блока перестал быть среднестатистической составляющей!


Конкурентные преимущества

VRF-системы от MDV с технологией управления DC inverter обеспечивают комфортные условия для жизни.

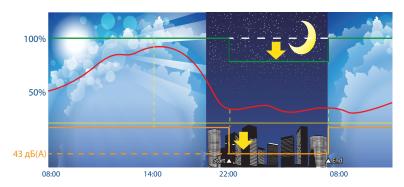
- Большой диапазон регулирования по производительности.
- 2 Адаптируемая технология DC inverter
 - 2.1. Экономия электроэнергии


КОМПРЕССОР ПОСТОЯННОГО ТОКА С БОЛЕЕ ВЫСОКОЙ ЭФФЕКТИВНОСТЬЮ

(Меньшее потребление электроэнергии экономит ваши затраты)

2.2. Комфорт

При пуске используется полная мощность. Поэтому установленные в помещении температурные значения достигаются достаточно быстро. Далее мощность регулируется в соответствии с изменениями наружной температуры, меняется и нагрузка внутреннего блока. Как следствие, происходит точная регулировка комнатной температуры. Неинверторные типы кондиционеров должны повторно включаться и выключаться, вызывая, тем самым, большие колебания комнатной температуры.


3 Сохранение окружающей среды.

Хладагент R410A не приносит вред окружающей среде и не разрушает озоновый слой. Полное соответствие европейским нормам.

4 Ночной режим.

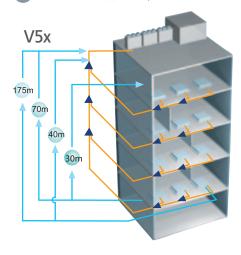
Позволяет снизить уровень шума наружного блока ночью почти до 43дБ(А).

- Модифицированный и универсальный контроллер для инверторных кондиционеров DC, включая инфракрасный пульт управления, проводной пульт управления, недельный таймер, централизованный пульт, сетевой пульт управления, шлюзы, BMS.
- Автоматическая адресация и блокировка режимов работы.

приоритет обогрева

приоритет охлаждения

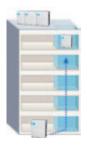
только охлаждение

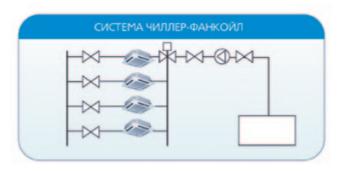


только обогрев

приоритет по выделенному адресу

7 Увеличение длины трассы.


- 1000m общая длина труб (фактическая)
- 75m актуальная длина труб между внутренним и наружным блоками
- 200m эквивалентная длина труб между внутренним и наружным блоками
- максимальный перепад по высоте между внутренним и наружным блоками
- максимальное расстояние между первым разветвителем и последним внутренним блоком
- 30т максимальный перепад по высоте между внутренними блоками
- 8 V5X уникальный дизайн наружного блока, разработанный французским дизайнерским бюро.
- 9 Суммарная производительность внутренних блоков может превышать производительность наружных на величину до 30%.

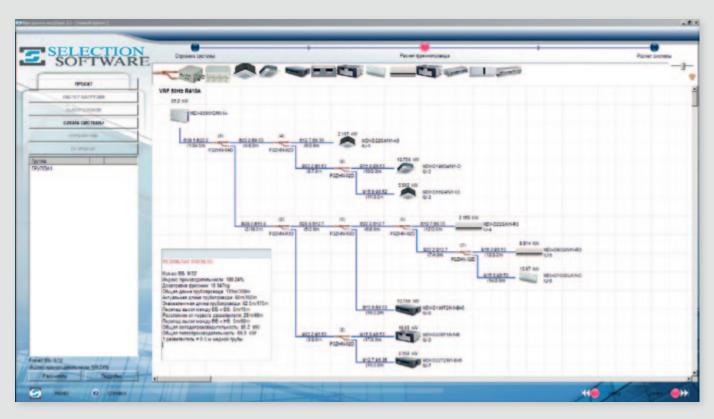

ПРЕИМУЩЕСТВА ПРИ МОНТАЖЕ

1 Простота установки

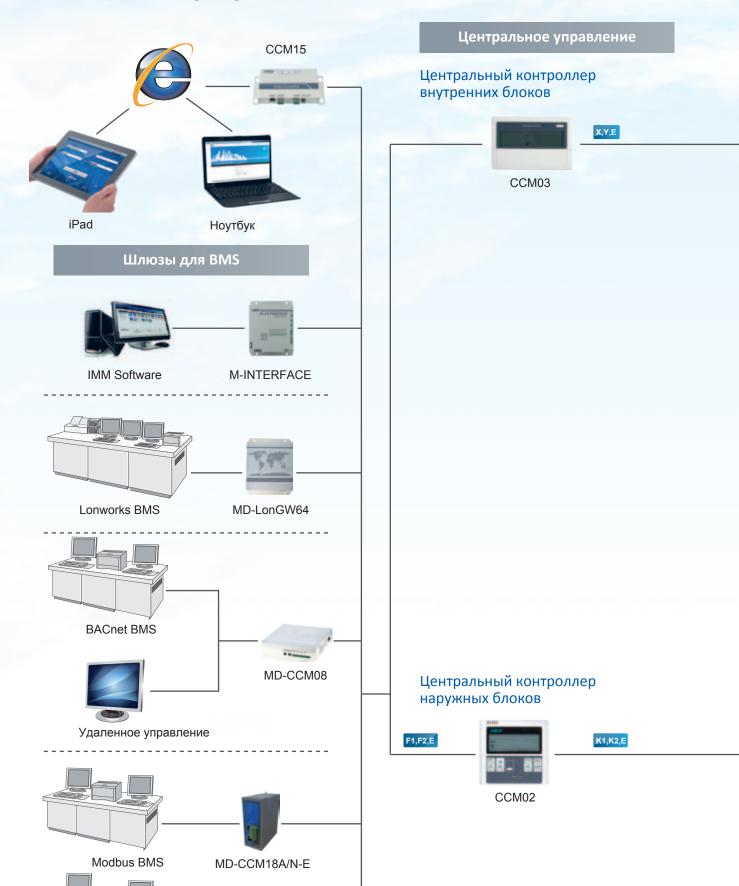
Не требуется специальное помещение для наружных блоков, Легкая транспортировка: наружный модуль может транспортироваться лифтом. Это делает установку легкой, и эффективно сокращает затраты времени и рабочей силы.

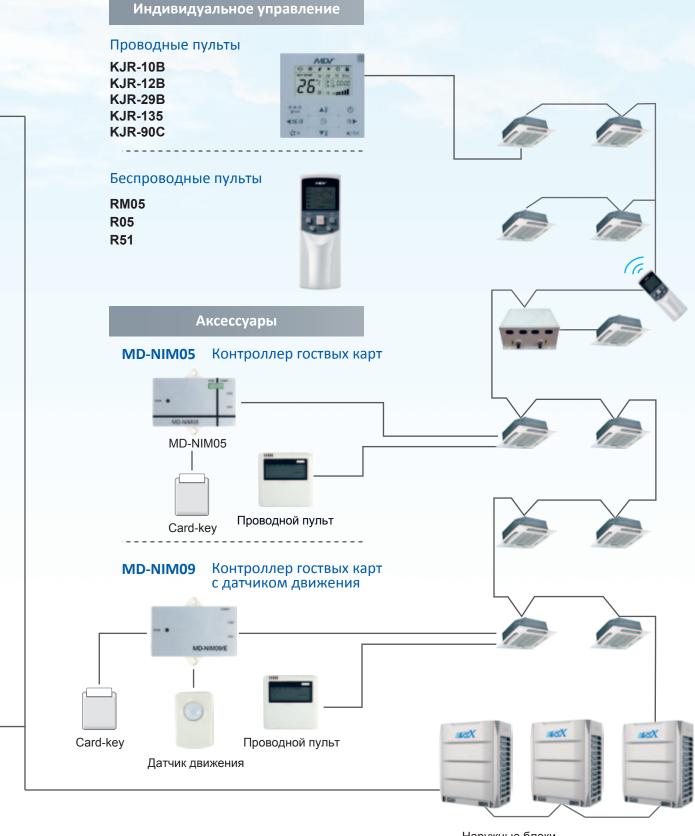
- 2 Преимущества перед системой чиллер-фанкойл
 - **2.1.** В традиционных водных системах необходимы фильтры, запорные вентили, двухходовые и трехходовые клапаны и т.д. В системе с переменным расходом хладагента требуются только два главных фреоновых трубопровода, что упрощает монтаж и снижает его стоимость. Благодаря технологии баланса хладагента, несоответствий в распределении хладагента между блоками успешно избегают даже при большой и разветвленной системе.
 - **2.2.** Благодаря использованию хладагента R410A, уменьшен диаметр трубы. Система нуждается в меньшем количестве медной трубы и снижается стоимость монтажа.

- 3 Легкое обслуживание
 - **3.1.** Кнопка «Forced cooling» (принудительное охлаждение) позволяет включить наружный блок в режим охлаждения при любых условиях, таким образом, это позволяет зарядить хладагент в систему, когда это потребуется.
 - **3.2.** Функция самодиагностики обнаруживает сбои в системе и показывает тип сбоя и место. Это позволяет более эффективно устранять возможные неполадки и проводить сервисное обслуживание.



Преимущества при проектировании


ПРОГРАММЫ ПОДБОРА НА РУССКОМ ЯЗЫКЕ


ВЫ МОЖЕТЕ СКАЧАТЬ ПРОГРАММУ ПОДБОРА НА САЙТЕ WWW.MDV-RUSSIA.RU

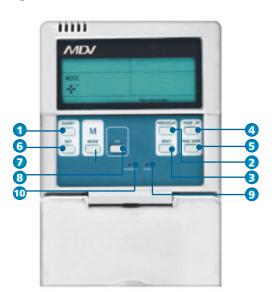
Система управления

KNX

KNX BMS

Наружные блоки

ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА УПРАВЛЕНИЯ ТРЕТЬЕГО ПОКОЛЕНИЯ, НА БАЗЕ ПК


КРАТКИЙ ОБЗОР СИСТЕМЫ

Интеллектуальная система управления кондиционерами построена на основе модернизированной предыдущей версии системы управления и объединена с системой индивидуального учета потребляемой электроэнергии каждым блоком.

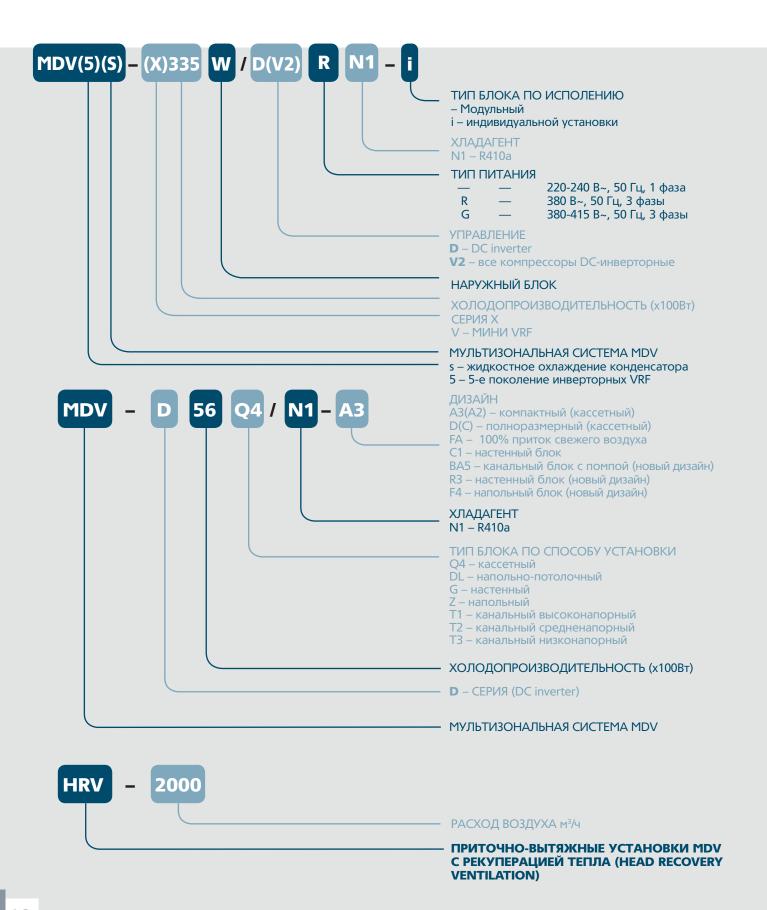
Данная система идеально подходит для зданий малого и среднего размера, ей можно управлять до 1024 внутренними блоками и 512 наружными блоками.

Обеспечивает большие возможности управления кондиционированием в здании, включая расчет стоимости электроэнергии и другие многочисленные функции работы с данными. Система применяет понятие иерархических пользователей, чтобы гарантировать, что одновременные и возможно противоречащие друг другу операции пользователей не будут влиять на правильность данных системы.

ЦЕНТРАЛЬНЫЙ ПУЛЬТ УПРАВЛЕНИЯ НАРУЖНЫМИ БЛОКАМИ ССМ02

- КНОПКА QUERY (СПРАВКА)
 Нажмите кнопку для перехода в режим справки.
- 2 КНОПКА PREVIOUS (ПРЕДЫДУЩИЙ)
 В режиме справки, нажмите кнопку PREVIOUS для вызова справки действительных (текущих) состояний других подключенных установок кондиционирования воздуха.
- 3 КНОПКА NEXT (СЛЕДУЮЩИЙ)
 В режиме справки, нажмите кнопку NEXT для вызова справки действительных (текущих) состояний других подключенных установок кондиционирования воздуха.
- 4 КНОПКА PAGE UP (СТРАНИЦА ВВЕРХ)
 При выборе подключенной установки кондиционирования воздуха, нажатие кнопки PAGE UP для вызова справки может отобразить параметры на предыдущей странице и это может циклически повторяться.
- 5 КНОПКА PAGE DOWN (СТРАНИЦА ВНИЗ)
 При выборе подключенной установки кондиционирования воздуха, нажатие кнопки PAGE DOWN для вызова справки может отобразить параметры на следующей странице и это может циклически повторяться.
- 6 КНОПКА SET (УСТАНОВКА) Нажмите кнопку SET для перехода на Страницу Установок (Set Page).
- **7** КНОПКА MODE (РЕЖИМ РАБОТЫ) Нажмите кнопку MODE для перехода в Установку Режима Работы (MODE Set) и выберите кругообразно между Forced (Вынужденным), Охлаждением (COOLING) и ВЫКЛ (OFF) состоянием.
- **8** КНОПКА ОК Нажмите кнопку ОК для подтверждения всех установок и отсылки их на соответствующие установки кондиционирования воздуха.
- 9 КНОПКА LOCK (БЛОКИРОВКА) Некоторые кнопки, при нажатии LOCK перестанут управлять системой. Разблокировка произойдет при повторном нажатии кнопки LOCK.
- 10 KHOПKA ADDRESS SET (УСТАНОВКА АДРЕСА) В странице Установок, неоднократно нажимайте кнопку установок SET, адрес будет увеличиваться один за другим. Когда адрес станет равным 31, и вы нажмете кнопку еще раз, то адрес возобновится с 16.
- 1. Центральный пульт может осуществлять централизованное управление и запрос статуса наружных блоков. Один пульт ССМ02 максимально может объединить 32 наружных блока через порты коммуникации находящиеся в РСВ наружных блоков.
- 2. Пульт ССМ02 может общаться с РС (ПК) через конвертер RS485/RS232. Один РС может максимально соединить 16 наружных ССМ и 16 внутренних ССМ. РС может осуществлять централизованный контроль, управление, запрос статуса, и т.д. наружных централизованных пультов, внутренних централизованный пультов, внутренних и наружных блоков в пределах контроля и управления системой.
- 3. ССМ и наружные блоки, РС и ССМ поддерживают связь как главный/дополнительный. В сети ССМ и наружных блоков, ССМ главный блок, а наружные блоки блоки дополнительные.
 - 1.3.2 Основные требования
 - 1. Напряжение питания: 220~240V/AC.
 - 2. Частота переменного тока: 50Hz/60Hz.
 - 3. Окружающая температура.: -15 °C +43 °C
 - 4. Окружающая влажность: 40 ~ 90 %.

ЦЕНТРАЛЬНЫЙ ПУЛЬТ УПРАВЛЕНИЯ ВНУТРЕННИМИ БЛОКАМИ CCM03 (/E)


- 1) В функции централизованного пульта управления внутренними блоками входит передача информации о состоянии внутреннего блока на компьютер, проверка команд и управление.
- 2) Внутренний централизованный пульт и 64 внутренних блока кондиционера формируют сеть и таким образом управляют всеми кондиционерами в пределах сети. По сети можно посылать различные команды управления внутренним блокам и статус может быть настроен, чтобы удовлетворить различные требования контроля. Сигналы управления централизованного контроллера можно послать на расстояние до 1200 м.
- 3) Централизованный пульт управления через интерфейс согласовывается с компьютером или шлюзом и осуществляет централизованное компьютерное управление и урегулирование параметров и вопросов статуса всех кондиционеров в сети. Кроме того, это позволяет осуществить связь с через компьютер или шлюз и, таким образом, получить компьютеризированное дистанционное управление.

- 1. На странице настроек нажмите LOCK для блокировки или разблокировки ПДУ.
 - На странице универсальной настройки нажмите кнопку UP и LOCK для блокировки или разблокировки режима.
 - После нажатия кнопки QUERY, нажмите LOCK для блокировки или разблокировки клавиатуры устройства централизованного контроля
- 2 На странице настройки нажмите кнопку ОК для пересылки информации по настройке, за исключением сигнала блокировки, к кондиционеру
- 3 Введите страницу настройки кондиционера для переключения между унифицированной и глобальной настройкой
- Ввод страницы запроса кондиционера
- 5 1. Кнопки UP, DOWN предназначены для выбора строк
 - 2. Кнопки LEFT, RIGHT предназначены для выбора колонок

- 6 На странице настройки устройства централизованного контроля нажмите кнопку RESET
- 7 1. На странице настройки, установите температуру, увеличьте или уменьшите время включения / выключения таймера
 - 2. На странице запроса, прокрутите список запрашиваемых параметров
- **8** На странице настройки установите рабочий режим кондиционера
- На странице настройки настройте ВКЛ/ВЫКЛ., скорость воздушного потока кондиционера
- На странице настройки устройства централизованного контроля нажмите кнопку RESET
- На странице настройки включите или выключите функцию качания.

Артикулы

Наружные блоки VRF V5X

ВОЗМОЖНЫЕ КОМБИНАЦИИ БЛОКОВ МОДУЛЬНОГО ИСПОЛНЕНИЯ

Модель	Мощность	Рекомендуемые	Производит	Максимальное числ	
		комбинации	Охлаждение	Обогрев	подключаемых внутренних
MDV5-X252W/V2GN1	8	8HPx1	25.2	27	13
MDV5-X280W/V2GN1	10	10HPx1	28	31.5	16
MDV5-X335W/V2GN1	12	12HPx1	33.5	37.5	20
MDV5-X400W/V2GN1	14	14HPx1	40	45	23
MDV5-X450W/V2GN1	16	16HPx1	45	50	26
MDV5-X500W/V2GN1	18	18HPx1	50	56	29
MDV5-X560W/V2GN1	20	20HPx1	56	63	33
MDV5-X615W/V2GN1	22	22HPx1	61.5	69	36
MDV5-X670W/V2GN1	24	12HPx2	67	75	39
MDV5-X730W/V2GN1	26	10HP+16HP	73	81.5	43
MDV5-X780W/V2GN1	28	10HP+18HP	78	87.5	46
MDV5-X840W/V2GN1	30	10HP+20HP	84	94.5	50
MDV5-X895W/V2GN1	32	10HP+22HP	89.5	100.5	53
MDV5-X950W/V2GN1	34	12HP+22HP	95	106.5	56
MDV5-X1000W/V2GN1	36	18HPx2	100	112	59
MDV5-X1065W/V2GN1	38	16HP+22HP	106.5	119	63
MDV5-X1115W/V2GN1	40	18HP+22HP	111.5	125	64
MDV5-X1175W/V2GN1	42	20HP+22HP	117.5	132	64
MDV5-X1230W/V2GN1	44	22HPx2	123	138	64
MDV5-X1285W/V2GN1	46	12HPx2+22HP	128.5	144	64
MDV5-X1345W/V2GN1	48	10HP+16HP+22HP	134.5	150.5	64
MDV5-X1395W/V2GN1	50	10HP+18HP+22HP	139.5	156.5	64
MDV5-X1455W/V2GN1	52	10HP+20HP+22HP	145.5	163.5	64
MDV5-X1510W/V2GN1	54	10HP+22HPx2	151	169.5	64
MDV5-X1565W/V2GN1	56	12HP+22HPx2	156.5	175.5	64
MDV5-X1615W/V2GN1	58	18HPx2+22HP	161.5	181	64
MDV5-X1680W/V2GN1	60	16HP+22HPx2	168	188	64
MDV5-X1730W/V2GN1	62	18HP+22HPx2	173	194	64
MDV5-X1790W/V2GN1	64	20HP+22HPx2	179	201	64
MDV5-X1845W/V2GN1	66	22HPx3	184.5	207	64
MDV5-X1900W/V2GN1	68	12HPx2+22HPx2	190	213	64
MDV5-X1960W/V2GN1	70	10HP+16HP+22HPx2	196	219.5	64
MDV5-X2010W/V2GN1	72	10HP+18HP+22HPx2	201	225.5	64
MDV5-X2070W/V2GN1	74	10HP+20HP+22HPx2	207	232.5	64
MDV5-X2125W/V2GN1	76	10HP+22HPx3	212.5	238.5	64
MDV5-X2180W/V2GN1	78	12HP+22HPx3	218	244.5	64
MDV5-X2230W/V2GN1	80	18HPx2+22HPx2	223	250	64
MDV5-X2295W/V2GN1	82	16HP+22HPx3	229.5	257	64
MDV5-X2345W/V2GN1	84	18HP+22HPx3	234.5	263	64
MDV5-X2405W/V2GN1	86	20HP+22HPx3	240.5	270	64
MDV5-X2460W/V2GN1	88	22HPx4	246	276	64

Наружные блоки VRF V5X

овая серия VRF-системы MDV V5X состоит из 8 наружных блоков. Это блоки производительностью 25.2, 28.0, 33.5, 40.0, 45.0, 50.0, 56.0 и 61.50 кВт.

Максимальная мощность модуля из четырех наружных блоков составляет 246 кВт. Коэффициенты энергоэффективности: EER - 4.35, COP - 4.66.

ДЛИНЫ МАГИСТРАЛЕЙ ХЛАДАГЕНТА:

суммарная длина трубопроводов хладагента - до 1000 метров;

перепад высоты между внутренними блоками - 30 метров;

перепад высоты между наружным блоком и внутренними при условии, что наружный блок находится выше внутренних, составляет 90 метров и 110 метров при условии, что наружный блок ниже внутренних;

эквивалентная длина трубопровода – до 200 метров.

DC моторы вентиляторов наружного блока, управляемые датчиком давления, способствуют более точной подаче хладагента. Пять режимов блокировки: только охлаждение, только нагрев, приоритет охлаждения, приоритет нагрева, работа по выбранному режиму блоком с адресом 63 (приоритет директора).

НАРУЖНЫЙ БЛОК

			MDV5-X252W/V2GN1	MDV5-X280W/V2GN1	MDV5-X335W/V2GN1	MDV5-X400W/V2GN1		
Произродитольность	Охлаждение	кВт	25,2	28	33,5	40		
Производительность	Нагрев	кВт	27	31,5	35	45		
Электропитание		V-ph-Hz		380-	-3-50			
Охлаждение	Потребляемая мощ- ность	кВт	5,79	7,02	8,71	10,81		
	EER		4,35	3,99	3,85	3,7		
ХладагентНагрев	Потребляемая мощ- ность	кВт	5,79	7,19	8,82	10,98		
	COP		4,66	4,38	4,25	4,1		
Рабочие показатели	Расход воздуха	M ³ /4	10800	10800	10800	14000		
	Уровень шума	ДБ(А)	43 ~ 58	43 ~ 59	43 ~ 60	43 ~ 62		
	Тип			R410A				
Хладагент	Количество заправ- ленного фреона	КГ	9	9	11	13		
Размер	ШхВхГ	MM		990x1635x790		1340×1635×790		
Вес Нетто		КГ	2	19	237	297		
	Жидкостная труба	мм(дюйм)		12,7(1/2")				
Диаметр труб	Газовая труба	мм(дюйм)		22,2(7/8")		25,4(1")		
Диаметр груо	Масляная балансировочная труба мм(дюйм) 6,35(1/4")							
Диапазон температур	Рабочий диапазон	охлаждение		-5°C +48°C				
дианазон температур			+24°C					

			MDV5-X450W/V2GN1	MDV5-X500W/V2GN1	MDV5-X560W/V2GN1	MDV5-X615W/V2GN1	
Произродинот пост	Охлаждение	кВт	45	50	56	61,5	
Производительность	Нагрев	кВт	50	56	63	69	
Электропитание		V-ph-Hz		380-	3-50		
Охлаждение	Потребляемая мощ- ность	кВт	12,83	14,47	16,67	18,77	
	EER		3,51	3,46	3,36	3,28	
ХладагентНагрев	Потребляемая мощ- ность	кВт	12,47	14,15	15,98	17,86	
	COP		4,01	3,96	3,94	3,86	
Рабочие показатели	Расход воздуха	M3/4	14000	15500	15500	15500	
Раоочие показатели	Уровень шума	ДБ(А)	43 ~ 62	43 ~ 63	43 ~ 63	43 ~ 63	
	Тип			R410A			
Хладагент	Количество заправ- ленного фреона	КГ	13	13	16	16	
Размер	ШхВхГ	MM		1340×16	535×790		
Вес Нетто		КГ	297	305	34	40	
	Жидкостная труба	мм(дюйм)		12,7(1/2")		12,7(1/2")	
Диаметр труб	Газовая труба	мм(дюйм)		22,2(7/8")		25,4(1")	
Масляная балансировочная труба мм(дюйм) 6,35(1/4")		(1/4")					
Диапазон температур	Рабочий диапазон	охлаждение		-5°C -	+48°C		
наружного воздуха	температур наружного воздуха	обогрев	-20°C +24°C				

Наружные блоки VRF V4+

ВОЗМОЖНЫЕ КОМБИНАЦИИ БЛОКОВ МОДУЛЬНОГО ИСПОЛНЕНИЯ

	Производительность	Стандартная	ффективность*	Высокая эффекти	івность (EER/COP)**	Количество подключаемых
Дизайн		Модель	Комбинация	Модель	Комбинация	внутренних блоков
	8	MDV-252W/DRN1	8HPx1	MDV-252W/DRN1	8HPx1	13
-	10	MDV-280W/DRN1	10PHx1	MDV-280W/DRN1	10PHx1	16
~_ ~_	12	MDV-335W/DRN1	12HPx1	MDV-335W/DRN1	12HPx1	20
	14	MDV-400W/DRN1	14HPx1	MDV-400W/DRN1	14HPx1	23
	16	MDV-450W/DRN1	16HPx1	MDV-504W/DRN1	8HPx2	26
	18	MDV-532W/DRN1	8HP+10HP	MDV-532W/DRN1	8HP+10HP	29
	20	MDV-560W/DRN1	10HP+10HP	MDV-587W/DRN1	8HP+12HP	33
***	22	MDV-615W/DRN1	10HP+12HP	MDV-615W/DRN1	10HP+12HP	36
	24	MDV-680W/DRN1	10HP+14HP	MDV-756W/DRN1	8HPx3	39
	26	MDV-730W/DRN1	10HP+16HP	MDV-784W/DRN1	8HPx2+10HP	43
	28	MDV-800W/DRN1	14HPx2	MDV-839W/DRN1	8HPx2+12HP	46
	30	MDV-850W/DRN1	14HP+16HP	MDV-867W/DRN1	8HP+10HP+12HP	50
	32	MDV-900W/DRN1	16HPx2	MDV-1008W/DRN1	8HPx4	53
	34	MDV-960W/DRN1	10HPx2+14HP	MDV-1036W/DRN1	8HPx3+10HP	56
	36	MDV-1010W/DRN1	10HPx2+16HP	MDV-1091W/DRN1	8HPx3+12HP	59
	38	MDV-1065W/DRN1	10HP+12HP+16HP	MDV-1119W/DRN1	8HPx2+10HP+12HP	63
	40	MDV-1130W/DRN1	10HP+14HP+16HP	MDV-1174W/DRN1	8HPx2+12HPx2	64
	42	MDV-1200W/DRN1	14HPx3	MDV-1202W/DRN1	8HP+10HP+12HPx2	64
	44	MDV-1250W/DRN1	14HPx2+16HP	MDV-1257W/DRN1	8HP+12HPx3	64
	46	MDV-1300W/DRN1	14HP+16HPx2	MDV-1285W/DRN1	10HP+12HPx3	64
	48	MDV-1350W/DRN1	16HPx3	MDV-1340W/DRN1	12HPx4	64
	50	MDV-1432W/DRN1	8HP+10HP+16HPx2	MDV-1405W/DRN1	12HPx3+14HP	64
	52	MDV-1460W/DRN1	10HPx2+16HPx2	MDV-1455W/DRN1	12HPx3+16HP	64
	54	MDV-1515W/DRN1	10HP+12HP+16HPx2	MDV-1520W/DRN1	12HPx2+14HP+16HP	64
	56	MDV-1580W/DRN1	10HP+14HP+16HPx2	MDV-1570W/DRN1	12HPx2+16HPx2	64
	58	MDV-1650W/DRN1	14HPx3+16HP	MDV-1635W/DRN1	12HP+14HP+16HPx2	64
	60	MDV-1700W/DRN1	14HPx2+16HPx2	MDV-1685W/DRN1	12HP+16HPx3	64
	62	MDV-1750W/DRN1	14HP+16HPx3	MDV-1750W/DRN1	14HP+16HPx3	64
	64	MDV-1800W/DRN1	16HPx4	MDV-1800W/DRN1	16HPx4	64

При использовании высокоэффективной комбинации считать в программе подбора стандартную, и по окончании расчета заменить комбинацию блоков со стандартной на эффективную.

^{*} Лучшее соотношение цена/качество

^{**} Максимальная эффективность

Наружные блоки VRF V4+

HAPУЖНЫЕ БЛОКИ МИНИ-VRF V4+

ерия наружных блоков мини VRF с однофазным электропитанием 220 В – 8; 10; 12,3; 14,0; 15,5 кВт. С трехфазным электропитанием 380 В - 12,3; 14,0; 15,5; 17.5; 20.0; 22.4; 26.0 кВт.

OCHOBHЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ НАРУЖНЫХ БЛОКОВ МИНИ VRF-CИСТЕМ MDV:

- двухроторные компрессоры производства Mitsubishi;
- инверторное DC-управление компрессорами;
- высокая скорость реагирования на изменение тепловой нагрузки;
- 💚 все необходимые датчики для точной и безопасной работы системы;
- низкошумный аэродинамический профиль крыльчатки вентилятора;
- оптимизированный профиль оребрения теплообменника;
- высокоскоростной EXV;
- микроконтроллер NEC;
- возможность диспетчеризации;
- контроль основных параметров холодильного цикла;
- максимальное количество защищаемых параметров;
- контроль электропитания;
- коррозионностойкое покрытие корпуса;
- контроль работы холодильного контура при низкой температуре;
 - изменение площади теплопередающей поверхности конденсатора для более точной подстройки производительности;

СПЕЦИФИКАЦИИ

					MDV-V120W/DN1			
	Охлаждение	кВт	8	10	12,3	14	15,5	12,3
	Нагрев	кВт	9	11.5	13,2	15,4	17	13,2
		V-ph-Hz	220-24	10-50-1				380-50-3
	Номинальная мощность	А	1,85	2,3	3,25	3,95	4,52	3,25
	EER	кВт	3,9	3,92	3,78	3,54	3,43	3,78
	Номинальная мощность	А	1,29	2,27	3,47	4,16	4,77	3,47
	COP	кВт	4,02	3,97	3,8	3,7	3,56	3,8
	Расход воздуха	М³/Ч	5500	5530	6000 600			6000
	Уровень шума	ДБ(А)	56		57			
	Тип		R410A					
	Заправка	КГ	2,8	2,95	3,3	3,9	3,9	3,3
	ШхВхГ	MM	990×9	66×336		900x13	327x320	
		КГ	62	74	95	95	100	95
	Жидкостная труба	мм(дюйм)	9,53(3/8")				9,53(3/8")	9,53(3/8»)
	Газовая труба	мм(дюйм)	15,88(5/8")				19,05(3/4")	15,88(5/8»)
	Охлаждение				-15~	-48°C		
	Обогрев				-15~	-27°C		
Кол-во подключаемых внутренних блоков		шт.	4	5	6	6	7	6

	Охлаждение	кВт	14	15,5	17,5	20	22,4	26
	Нагрев	кВт	15,4	17	19	22	24,5	28,5
		V-ph-Hz			380-	-50-3		
	Номинальная мощность	А	3,95	4,52	5,3	6,1	6,8	7,6
	EER	кВт	3,54	3,43	3,3	3,28	3,29	3,42
	Номинальная мощность	А	4,16	4,77	5	6,1	5,9	6,8
	COP	кВт	3,7	3,56	3,8	3,61	4,15	4,19
	Расход воздуха	М ³ /Ч	6000	6000	6800	11000	10500	10500
	Уровень шума	ДБ(А)	57	57	59	59	59	60
	Тип				R410A			
	Заправка	КГ	3,9	3,9	4,5	4,8	6,2	6,2
	ШхВхГ	MM		900x1327x320			1120×1558×400	
		КГ	95	102	107	137	146,5	147
	Жидкостная труба	мм(дюйм)			9,53	(3/8»)		
	Газовая труба	мм(дюйм)	15,88(5/8»)		19,05	(3/4»)		22,2(7/8»)
Рабочмй диапазон темпе-	Охлаждение				-15~	48 ℃		
	Обогрев				-15~	27 ℃		
Кол-во подключаемых внутренних блоков		ШТ.	6	7	9	10	11	12

ПРИМЕЧАНИЕ

- 1. За основу номинальной холодопроизводительности берутся следующие факторы: температура в помещении 27 °C (сухой термометр), 19 °C (влажный термометр), наружная температура 35 °C (сухой термометр).
- 2. За основу номинальной теплопроизводительности берутся следующие факторы: температура в помещении 20 °C (сухой термометр), 15 °C (влажный термометр), наружная температура 7 °C (сухой термометр)

Наружные блоки VRF

ПОЛНОРАЗМЕРНЫЕ НАРУЖНЫЕ БЛОКИ VRF-СИСТЕМЫ V4+

аружные блоки системы VRF V4+ с вертикальным выбросом воздуха и возможностью регулировки внешнего статического давления вентилятора. Модульный принцип соединения блоков для получения необходимой производительности. Модельный ряд 25,2, 28, 33,5, 40, 45 кВт. Маскимальная мощность модуля из 4-х блоков - 180 кВт. Принцип свободной коминации блоков по мощности в модуле. Два габаритных типоразмера: для блоков 25,2 и 28 кВт, и для блоков 33,5, 40, 45 кВт, представлены в обновленном компактном дизайне. Новые высокоэффективные компрессоры DC-инвертор производства Hitachi. Система автоматической адресации внутренних блоков.

СУММАРНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ ВНУТРЕННИХ БЛОКОВ МОЖЕТ ПРЕВЫШАТЬ ПРОИЗВОДИТЕЛЬНОСТЬ НАРУЖНЫХ НА ВЕЛИЧИНУ **ДО 30**%.

НАРУЖНЫЙ БЛОК

						MDV-400W/DRN1	MDV-450W/DRN1
	Охлаждение	кВт	25,2	28	33,5	40	45
	Нагрев	кВт	27	31,5	35	45	50
Электропитание		V-ph-Hz			380 - 3 - 50		
	Потребляемая мощность	кВт	5,87	7,2	9,05	12,31	14,02
	EER		4,29	3,89	3,7	3,25	3,21
	IPLV		4,5	4,5	4,57	4,47	4,46
	Потребляемая мощность	кВт	6,15	7,61	8,99	11,19	12,79
	COP		4,39	4,14	4,17	4,02	3,91
	Расход воздуха	M ³ /4	11700	11700	15600	15600	15600
	Уровень шума	ДБ(А)	57	57	58	60	60
Хладагент	Тип		R410A				
	Количество заправленного фреона	грамм	10	10	12	15	15
	ШхВхГ	MM	960x16	15x765		1250×1615×765	
Вес Нетто		КГ	24	15	285	32	25
	Жидкостная труба	мм(дюйм)		12,7(1/2")		15,88	(5/8")
	Газовая труба	мм(дюйм)		25,4(1")		31,75(1" 1/4")
	Масляная балансировочная труба	мм(дюйм)			6,35(1/4")		
200	охлаждение				-5°C +48°C		
	обогрев				-20°C +21°C		

ВОДООХЛАЖДАЕМЫЕ НАРУЖНЫЕ БЛОКИ VRF-СИСТЕМЫ V4+

аружные блоки системы VRF V4+ с жидкостным охлаждением конденсатора. Примененное жидкостное охлаждение позволяет использовать данный тип оборудования (при применении в качестве теплоносителя растворов гликолей) круглогодично. Идеальное решение для поддержания необходимых климатических условий в помещениях дата-центров, помещениях с телекоммуникационным и серверным оборудованием. Модульный принцип соединения блоков для получения необходимой производительности. Модельный ряд 25,2, 28, 33,5. Маскимальная мощность модуля из 3-х блоков - 101,5кВт (36НР). Используется принцип свободной комбинации блоков по мощности в модуле. Все блоки в едином компактном габарите, 780×1000×550 мм (ШхВхГ). Малый вес – 146 кг. Новые высокоэффективные компрессоры DC-инвертор производства Hitachi. Система автоматической адресации внутренних блоков. Увеличенный перепад высоты между внутренними блоками – 30 метров. Технология динамического газового баланса для модульной сборки блоков, нет трубы газового баланса. Система автоматического выравнивания моточасов компрессоров для модульной сборки блоков. Увеличенные коэффициенты EER, COP, IPLV.

НАРУЖНЫЙ БЛОК

Модель			MDVS-252W/DRN1	MDVS-280W/DRN1	MDVS-335W/DRN1	
	Охлаждение	кВт	25,2	28	33,5	
	Нагрев	кВт	27	31,5	35	
Электропитание		V-ph-Hz		380 - 3 - 50		
	Номинальная мощность	кВт	4,8	6,1	8	
	Номинальная мощность	кВт	4,45	5,83	7,8	
			5,25	4,59	4,19	
			6,07	5,4	4,81	
			5,9	5,8	5,8	
	Расход воздуха	M ³ /4	5,4	6	7,2	
Рабочие показатели	Температура воды на входе	С		+7 - +45		
	Уровень шума	ДБ(А)	51	52	52	
	Тип			R410A		
	Количество заправленного фреона	грамм	2000	2000	2000	
	ШхВхГ	MM		780x1000x550		
Размер в упаковке	ШхВхГ	MM		845x1170x600		
		КГ		146		
		КГ		155		
	Жидкостная труба	мм(дюйм)	12,7(1/2")	12,7(1/2")	15,88(5/8")	
	Газовая труба	мм(дюйм)	25,4(1")	25,4(1")	31,75(1" 1/2")	
	Масляная балансировочная труба	мм(дюйм)	6,35(1/4")	6,35(1/4")	6,35(1/4")	

Наружные блоки VRF-системы V4+ серии Individual

HAPYЖHЫЕ БЛОКИ VRF V4+ INDIVIDUAL

бновленная и расширенная линейка серии Individual теперь состоит из 8 наружных блоков.

Это блоки производительностью 53.0, 56.0, 61.5, 67.0, 73.0, 78.5, 85.0 и 90.0 кВт. Таким образом, перекрывается наиболее используемый диапазон производительности наружных блоков.

Нет необходимости применять модульный наружный блок, состоящий из 2-х наружных блоков и соединительного комплекта. Например, стоимость комбинаторного наружного блока в среднем на 10-15% дороже, чем стоимость наружного блока серии Individual. Монтаж такой системы так же стоит дешевле, как и расходы на транспортировку.

Снижены такие показатели, как занимаемая площадь, вес наружного бло-

Максимальное количество подключаемых наружных блоков достигает 53 штуки (у наружного блока модели MDV-900W/DRN1-i).

В этой обновленной серии увеличены длины магистралей хладагента, например, перепад высоты между внутренними блоками теперь составляет

30 метров, перепад высоты между наружным блоком и внутренними (при условии, что наружный блок находится ниже внутренних) составляет 90 метров.

Проектные решения на блоках этой серии являются максимально выгодными с позиции цена/качество. При этом качество остается неизменно высоким. Оставлена совместимость со внутренними блоками поколения V4, что может быть удобным при замене модуля наружных блоков предыдущего поколения.

Модель			MDV-530W/DRN1-i	MDV-560W/DRN1-i	MDV-615W/DRN1-i	MDV-670W/DRN1-i			
	Охлаждение	кВт	53	56	61,5	67			
	Нагрев	кВт	59	63	69	75			
		V-ph-Hz		380/	3/50				
Охлаждение	Номинальная мощность	А	16,0	17,0	18,8	20,8			
	EER	кВт	3,31	3,3	3,27	3,22			
	Номинальная мощность	А	14,9	16,0	17,9	19,8			
	COP	кВт	3,96	3,94	3,86	3,79			
	Расход воздуха	м³/ч	23000						
	Уровень шума	ДБ(А)	63						
	Тип			R41	10A				
	Заправка	КГ	1	8	18,5	18,5			
	ШхВхГ	MM	1960*1	615*765	1585*1615*765	1585*1615*765			
Размер в упаковке			2025*1	815*830	1650*1810*840	1650*1810*840			
Вес Нетто		КГ	4	50	385	390			
Вес Брутто			4	85	400	405			
	Жидкостная труба	мм(дюйм)		19,1((3/4")				
Диаметр труб	Газовая труба	мм(дюйм)	31,8(1" 1/4")						
Рабочмй диапазон	Охлаждение			-5°C -	+48°C				
емператур наружного оздуха	Обогрев			-20°C	+21°C				

			MDV-730W/DRN1-i	MDV-785W/DRN1-i	MDV-850W/DRN1-i	MDV-900W/DRN1-i	
	Охлаждение	кВт	73	78,5	85	90	
	Нагрев	кВт	81,5	87,5	95	100	
Электропитание		V-ph-Hz	380/3/50				
	Номинальная мощность	А	22,3	24,2	28,3	28,5	
	EER	кВт	3,27	3,24	3,00	3,16	
	Номинальная мощность	А	20,6	22,4	26,0	26,5	
	COP	кВт	3,96	3,91	3,65	3,77	
	Расход воздуха	M ³ /4					
	Уровень шума	ДБ(А)	64	64	65	65	
	Тип		R410A				
	Заправка	КГ					
	ШхВхГ	MM		2540*16	515*765		
Размер в упаковке				2600*18	300*825		
Вес Нетто		КГ	555	555	600	600	
Вес Брутто			590	590	635	635	
B	Жидкостная труба	мм(дюйм)		22,2(7/8")		
Диаметр труб	Газовая труба	мм(дюйм)		38,1(1'	' 1/2")		
Рабочмй диапазон	Охлаждение			-5°C -	⊦48°C		
температур наружного воздуха	Обогрев			-20°C	+21℃		

НА САЙТЕ WWW.MDV-RUSSIA.RU ВЫ МОЖЕТЕ ПОСМОТРЕТЬ СПИСОК ОБЪЕКТОВ, НА КОТОРЫХ УЖЕ УСПЕШНО РАБОТАЮТ VRF-СИСТЕМЫ MDV.

Внутренние блоки VRF

КАССЕТНЫЕ

ассетные однопоточные блоки – это идеальное решение для обеспечения комфортного микроклимата в небольших помещениях, таких, например, как переговорные комнаты. Используются в помещениях с подвесными потолками, имеют управляемые жалюзи, обеспечивающие оптимально комфортное воздухораспределение, что улучшает воздухообмен в помещении. Блоки данного типа всегда оборудованы дренажным насосом для отвода конденсата на высоту до 750 мм. Современный дизайн, передовая технология производства компонентов и исходных материалов обеспечивают высокую производительность при низких шумовых характеристиках. Имеют малую высоту корпуса, всего 153 мм. Современный дизайн и продуманная конструкция делают блок почти незаметным - видна только декоративная решетка (лицевая панель). Поставляется в комплекте с беспроводным пультом ДУ. Возможно подключение опционального проводного пульта ДУ или центрального контроллера.

КАССЕТНЫЕ (КОМПАКТНЫЕ) С ОДНОСТОРОННИМ РАСПРЕДЕЛЕНИЕМ ВОЗДУХА

Модель			MDV-D18Q1/N1-D	MDV-D22Q1/N1-D	MDV-D28Q1/N1-D	MDV-D36Q1/N1-D	
	Охлаждение	кВт	1,8	2,2	2,8	3,6	
	Нагрев	кВт	2,2	2,6	3,2	4	
		V-ph-Hz		220-24	10-50-1		
		Вт	41	41	41	41	
Рабочие показатели	Расход воздуха	М³/Ч	523	523	573	573	
	Уровень шума	ДБ(А)	30	30	34	34	
Хладагент	Тип		R410A				
	Корпус (Ш х В х Г)	MM	970*153*410				
	Панель (Ш х В х Г)	MM	1180*25*465				
	Корпус (ШхВхГ)	MM		1155*2	45*490		
	Панель (Ш х В х Г)	MM		1232*1	37*517		
	Корпус	КГ	12,5	12,5	13	13	
	Панель	КГ	3,5	3,5	3,5	3,5	
	Корпус	КГ	16	16	16,5	16,5	
	Панель	КГ	5,2	5,2	5,2	5,2	
	Жидкостная труба	мм(дюйм)					
	Газовая труба	мм(дюйм)					
	Дренажная труба	MM		2	25		

КАССЕТНЫЕ

К ассетные блоки – это идеальное решение для обеспечения комфортного микроклимата в помещениях большой площади и предполагающих большое скопление людей. Широко используются в помещениях с подвесными потолками, особенно общественного назначения – в магазинах, офисах, школах, конференц-залах и т.д. Имеют управляемые жалюзи, обеспечивающие оптимально комфортное воздухораспределение на 360 градусов, что улучшает воздухообмен в помещении.

Блоки данного типа всегда оборудованы дренажным насосом для отвода конденсата на высоту до 750мм. Современный дизайн, передовая технология производства компонентов и исходных материалов обеспечивают высокую производительность при низких шумовых характеристиках. Блоки кассетного типа малой мощности имеют стандартный габаритный размер внутреннего блока 600х600 мм, и предназначены для монтажа в стандартный подвесной потолок, имеют встроенную панель управления, что значительно облегчает монтаж изделия, и управляемую решётку для обеспечения оптимального комфорта в управлении данной системой. Также выпускаются блоки кассетного типа со стандартным типоразмером. Модельный ряд с диапазоном производительности, от 2,2 до 14 кВт. Максимальный комфорт обеспечивается при установке данного кассетного блока в центре помещения. Современный дизайн и продуманная конструкция делают блок почти незаметным – видна только декоративная решетка – лицевая панель. Поставляется в комплекте с беспроводным пультом ДУ. Возможно подключение опционального проводного пульта ДУ или центрального контроллера.

КАССЕТНЫЕ (КОМПАКТНЫЕ) С 4-СТОРОННИМ РАСПРЕДЕЛЕНИЕМ ВОЗДУХА

СПЕПИФИКАПИИ

Модель			MDV-D15Q4/N1-A3	MDV-D22Q4/N1-A3	MDV-D28Q4/N1-A3	MDV-D36Q4/N1-A3	MDV-D45Q4/N1-A3	MDV-D56Q4/N1-A3	
	Охлаждение	кВт	1,5	2,2	2,8	3,6	4,5	5,6	
	Нагрев	кВт	1,7	2,4	3,2	4	5	6,3	
		V-ph-Hz			220-24	0-50-1			
		Вт	36	48	48	56	56	60	
Рабочие показатели	Расход воздуха	м³/ч	501	522	522	610	610	610	
	Уровень шума	ДБ(А)	22,5	23,4	23,4	28,8	28,8	28,8	
Хладагент	Тип			R410A					
	Корпус (ШхВхГ)	MM	570*260*570						
	Панель (Ш х В х Г)	MM	647*50*647						
	Корпус (ШхВхГ)	MM			675*28	35*675			
	Панель (Ш х В х Г)	MM			715*12	23*715			
	Корпус	КГ	16	16	16	18	18	19	
	Панель	КГ	2,5	2,5	2,5	2,5	2,5	2,5	
	Корпус	КГ	19,5	20	20	22	22	23	
	Панель	КГ	4,5	4,5	5	4,5	4,5	4,5	
	Жидкостная труба	мм(дюйм)			6,35(1/4")			9,53(3/8")	
	Газовая труба	мм(дюйм)			12,7(1/2")			15,9(5/8")	
	Дренажная труба	MM			2	5			

Внутренние блоки VRF

КАССЕТНЫЕ (ПОЛНОРАЗМЕРНЫЕ) С 4-СТОРОННИМ РАСПРЕДЕЛЕНИЕМ ВОЗДУХА

СПЕЦИФИКАЦИИ

Модель			MDV-D28Q4/N1-D	MDV-D36Q4/N1-D	MDV-D45Q4/N1-D	MDV-D56Q4/N1-D	MDV-D71Q4/N1-(D/C)	
	Охлаждение	кВт	2,8	3,6	4,5	5,6	7,1	
	Нагрев	кВт	3,2	4	5	6,3	8	
Электропитание		V-ph-Hz			220-240-50-1			
		Вт	80	80	90	75	82	
Рабочие показатели	Расход воздуха	М ³ /Ч	850	850	860	860	1150	
	Уровень шума	ДБ(А)	35	35	35	35	39	
Хладагент	Тип		R410A					
	Корпус (ШхВхГ)	MM						
	Панель (Ш х В х Г)	MM	950x46x950					
	Корпус (ШхВхГ)	MM			955x247x955			
	Панель (Ш х В х Г)	MM			1000x60x1000			
	Корпус	КГ	24	24	26	26	26	
	Панель	КГ	6	6	6	6	6	
	Корпус	КГ	28	28	30	30	30	
	Панель	КГ	9	9	9	9	9	
	Жидкостная труба	мм(дюйм)		6,35(1/4")		9,53	(3/8")	
	Газовая труба	мм(дюйм)		12,7(1/2")		15,88(5/8")		
	Дренажная труба	MM			32			

Модель			MDV-D80Q4/N1-D	MDV-D90Q4/N1-D	MDV-D100Q4/N1-D	MDV-D112Q4/N1-D	MDV-D140Q4/N1-D	
	Охлаждение	кВт	8	9	10	11,2	14	
	Нагрев	кВт	9	10	11	12,5	15	
Электропитание		V-ph-Hz			220-240-50-1			
		Вт	97	160	160	160	170	
Рабочие показатели	Расход воздуха	M ³ /4	1240	1540	1540	1540	1800	
	Уровень шума	ДБ(А)	39	43	43	43	44	
Хладагент	Тип		R410A					
	Корпус (ШхВхГ)	MM	840x230x840		840x3	300x840		
	Панель (Ш х В х Г)	MM	950x46x950					
	Корпус (ШхВхГ)	MM	955x247x955		955x3	317x955		
	Панель (Ш х В х Г)	MM			1000x60x1000			
	Корпус	КГ	26	32	32	32	32	
	Панель	КГ	6	6	6	6	6	
	Корпус	КГ	30	37	37	37	37	
	Панель	КГ	9	9	9	9	9	
	Жидкостная труба	мм(дюйм)			9,53(3/8")			
	Газовая труба	мм(дюйм)			15,88(5/8")			
	Дренажная труба	MM			32			

НАСТЕННЫЕ (СО ВСТРОЕННЫМ РАСШИРИТЕЛЬНЫМ КЛАПАНОМ)

В нутренние блоки настенного типа VRF-систем MDV поставляются с уже встроенным расширительным клапаном. Они имеют электронную (микроконтроллерную) систему управления, систему очистки воздуха и пульт дистанционного управления. Во внутреннем блоке расположены теплообменник, вентилятор, блок индикации, блок управляемых жалюзи, кнопка аварийного управления, воздушный фильтр, система управления. Примененные параметры регулирования микроклимата создают комфортные условия для жизни, а современный элегантный дизайн вписывается практически в любой интерьер.

СМОТРИТЕ 3D-МОДЕЛЬ ВНУТРЕННЕГО БЛОКА НА САЙТЕ WWW.MDV-RUSSIA.RU

111	(£*)	

Модель		MDV-D15G/ N1-R3	MDV-D22G/ N1-R3	MDV-D28G/ N1-R3	MDV-D36G/ N1-R3	MDV-D45G/ N1-R3	MDV-D56G/ N1-R3	MDV-D71G/ N1-R3	MDV-D80G/ N1-R3	MDV-D90G/ R3-R3			
	Охлаждение	кВт	1,5	2,2	2,8	3,6	4,5	5,6	7,1	8	9		
	Нагрев	кВт	1,7	2,6	3,2	4	5	6,3	8	9	10		
Электропитание		V-ph-Hz		220-2-					0-240-50-1				
Номинальная мощность	Вт		28	28	28	28	45	45	79	8	6		
	Расход воздуха	м³/ч	427	525	525	590	860	925	1190		1320		
	Уровень шума	ДБ(А)	28	29	29	29	34	34	42	38	38		
Хладагент	Тип		R410A										
Размер	Блок (ШхВхГ)	MM	915*290*230 1072*290*					90*230	0*230 1250*325*245				
	Блок (ШхВхГ)	MM	1020*390*315				1180*4	15*315	1345*335*430				
Вес Нетто	Блок	КГ	12,4	13	13	13	15,1	15,1		19,9			
	Блок	КГ	15,9	16,5	16,5	16,5	18,8	18,8		25			
	Жидкостная труба	мм(дюйм)			6,35(1/4")		9,53(3/8")						
	Газовая труба	мм(дюйм)			12,7(1/2")		15,88(5/8")						
	Дренажная труба	MM					16,5						

Внутренние блоки VRF

НАСТЕННЫЕ (СО ВСТРОЕННЫМ РАСШИРИТЕЛЬНЫМ КЛАПАНОМ)

В нутренние блоки настенного типа VRF-систем MDV по-ставляются с уже встроенным расширительным клапаном. Они имеют электронную (микроконтроллерную) систему управления, систему очистки воздуха и пульт дистанционного управления. Во внутреннем блоке расположены теплообменник, вентилятор, блок индикации, блок управляемых жалюзи, кнопка аварийного управления, воздушный фильтр, система управления. Примененные параметры регулирования микроклимата создают комфортные условия для жизни, а современный элегантный дизайн вписывается практически в любой интерьер.

Модель			MDV-D22G/N1Y-C1	MDV-D28G/N1Y-C1	MDV-D36G/N1Y-C1	MDV-D45G/N1Y-C1	MDV-D56G/N1Y-C1	MDV-D71G/N1Y-C1		
	Охлаждение	кВт	2,2	2,8	3,6	4,5	5,6	7,1		
	Нагрев	кВт	2,4	3,2	4	5	6,3	8		
Электропитание		V-ph-Hz	220-240-			0-50-1)-50-1			
Номинальная мощность		Вт		30			45			
Dakayya nayasarany	Расход воздуха	M ³ /4		580		900		1010		
Рабочие показатели 	Рабочие показатели Уровень шума ДБ(A)			29		34				
Хладагент	Тип		R410A							
Размер	Блок (ШхВхГ) мм			915*290*210			1070*315*210			
	Блок (ШхВхГ) мм			1020*385*300		1180*410*300				
Вес Нетто	Блок кг			12		15				
	Блок	КГ		16			19			
	Жидкостная труба	мм(дюйм)		6,35(1/4")	9,53(3/8")				
	Газовая труба	мм(дюйм)		12,7(1/2")	15,88(5/8")				
	Дренажная труба	MM			1:	5				

НАПОЛЬНО-ПОТОЛОЧНЫЕ

апольно-потолочный блок обеспечивает равномерное распределение температуры в помещении, направляя мощную струю обработанного воздуха вдоль стены или потолка по 4-м сторонам (вверх-вниз, вправо-влево). Это позволяет равномерно распределить воздух по всему объему обслуживаемого помещения и избежать прямого попадания холодного воздуха на людей, домашних животных и комнатные растения. Используется там, где недостаточно обычного традиционного кондиционера настенного типа (большие помещения с высокими потолками, залы ресторанов, супермаркеты, крупные офисы и т.д.). Идеально подходит для помещений сложной архитектуры, например, имеющих сильно вытянутую форму.

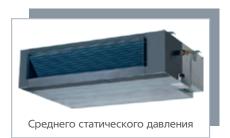
Внутренний блок VRF напольно-потолочного типа отличается низким уровнем шума и простотой установки, как на потолке, так и к стене. Поставляется в комплекте с беспроводным пультом ДУ. Управление блоком осуществляется с пульта ДУ. Возможно подключение опционального проводного пульта ДУ или центрального контроллера. На передней панели блока находится панель управления и индикации с приемником ИК-сигналов от пульта ДУ. Блок выполнен в современном стильном дизайне, имеет компактные размеры и надежно защищен от протечек конденсата дополнительной абсорбирующей защитой.

Модель			MDV-D36DI /N1-C	MDV-D45DI /N1-C	MDV-D56DI /N1-C	MDV-D71DI /N1-C	MDV-D80DI /N1-C	MDV-D90DI /N1-C	MDV-D112DI /N1-0	MDV-D140DL/N1	-C MDV-D160DL/N1-0		
			MIDV-D30DL/NT-C	IND V D T D E IN C	IIIDV-D30DEJIVI-C	MOV-D7 IDE/NI-C	INDV-DOODE/NT-C	MDV-D30DE/NT-C	1112 V-D 112 D J (11-C	. 11104-014000/11	-C MID V-D 100D2/141-		
	Охлаждение	кВт	3,6	4,5	5,6	7,1	8	9	11,2	14	16		
	Нагрев	кВт	4	5	6,3	8	9	10	12,5	15,5	18		
		V-ph-Hz		220-240-50-1									
		Вт	49	120	122	125	130	130	182	182	300		
	Расход воз- духа	M ³ /4	650	800	800	800	1200	1200	1980	1980	1980		
	Уровень шума	ДБ(А)	36	38	38	38	40	40	42	42	42		
Хладагент	Тип			R410A									
	Блок (ШхВхГ)	MM		990x6	60x206		1280*660*206 1670*6			580*244	1670*680*285		
	Блок (ШхВхГ)	MM		1089x7	'44x296		1379x7	'44x296	1764x760x329		1775*372*760		
	Блок	КГ	26	28	28	29	34,5	34,5	54	54	57,5		
	Блок	КГ	32	34	34	35	41	41	59	59	63,5		
Диаметр труб	Жидкостная труба	мм (дюйм)	6,35	(1/4")		9,53(1/4")							
	Газовая труба	мм (дюйм)	12,7	(1/2")	15,88(5/8")								
	Дренажная труба	MM			16								

Внутренние блоки VRF

НАПОЛЬНЫЕ

апольный внутренний блок VRF-систем MDV обеспечивает равномерное распределение температуры в помещении, направляя мощную струю обработанного воздуха вдоль стены по 4-м сторонам (вверх-вниз, вправовлево). Это позволяет равномерно распределить воздух по всему объему обслуживаемого помещения и избежать прямого попадания холодного воздуха на людей, домашних животных и комнатные растения. Внутренний блок напольного типа размещается на стене. В результате, в режиме поток воздуха направляется вверх и, отражаясь от потолка, равномерно распределяется по помещению. В режиме обогрева поток воздуха направляется вниз и, отражаясь от пола, так же равномерно распределяется по помещению. Блок выполнен в современном стильном дизайне, имеет компактные размеры и легко монтируется в подоконные ниши. Модельный ряд представлен семью моделями разной производительности.



					MDV-D36Z/N1-(F4/F1)					
	Охлаждение	кВт	2,2	2,8	3,6	4,5	5,6	7,1	8	
	Нагрев	кВт	2,6	3,2	4	5	6,3	8	9	
		V-ph-Hz				220-240-50-1				
		Вт	40	46	35	49	88	130	130	
Рабочие показа- тели	Расход воз- духа	м³/ч	530	569	624	660	1150	1380	1332	
	Уровень шума	ДБ(А)	33		34	35	37	38	38	
Хладагент	Тип		R410A							
	Корпус (ШхВхГ)	MM	1000*6	25*200	1200*6	25*200	1500*625*200			
	Корпус (Ш х В х Г)	MM	1089*7	22*312	1289*7	22*312	1589*722*312			
	Корпус	КГ	3	0	3	7	44			
	Корпус	КГ	3	5	4	3	50			
	Жидкостная труба	мм(дюйм)		6,35(1/4")	9,53(3/8")				
	Газовая труба	мм (дюйм)		12,7(1/2")	15,9(5/8")				
	Дренажная труба	MM	25							

КАНАЛЬНЫЕ

анальные блоки могут быть использованы для кондиционирования одного или нескольких помещений одновременно. Они рассчитаны на работу в режиме рециркуляции или в режиме частичной рециркуляции с подмесом подготовленного свежего воздуха. Блоки канального типа устанавливаются, например, за подвесным потолком, воздух забирается и раздается воздуховодами по кондиционируемым помещениям: воздух забирается из помещения через решетку, обрабатывается внутренним блоком и по системе воздуховодов снова подается в помещения через распределительные решетки. Блок снабжен вентилятором, позволяющим преодолеть сопротивление распределительных воздуховодов и решеток.

При обеспечении подачи свежего воздуха дополнительно к канальному кондиционеру необходимо устанавливать электрические или водяные калориферы, клапаны, фильтры, наружные решетки, систему автоматики, обеспечивающие необходимый подогрев, фильтрацию подаваемого воздуха и управление системой подачи свежего воздуха, или применять приточные вентиляционные установки со встроенными нагревателями. Благодаря полноценной вентиляции за счет возможности притока свежего воздуха канальный блок создает гармоничную атмосферу уюта и комфорта.

Таким образом, внутренние блоки VRF-систем канального типа имеют целый ряд преимуществ и при этом незаметны для глаз окружающих, так как их скрытый монтаж не влияет на интерьер обслуживаемого помещения. Выпускаются низконапорные, средненапорные и высоконапорные блоки. Поставляются в комплекте с проводным пультом ДУ.

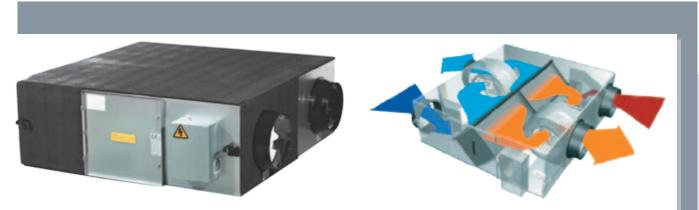
СПЕЦИФИКАЦИИ (СО 100% ПРИТОКОМ СВЕЖЕГО ВОЗДУХА)

Модель			MDV-D125T1/N1-FA	MDV-D140T1/N1-FA	MDV-D200T1/N1-FA	MDV-D250T1/N1-FA	MDV-D280T1/N1-FA		
Производительность	Охлаждение	кВт	12,5	14,0	20	25	28		
	Нагрев	кВт	10,5	12,0	18	20	22		
Электропитание		V-ph-Hz			220-240-50-1				
		Вт	430 430		2000	2126	2126		
Рабочие показатели	Расход воздуха м³/ч		17	00	3150 3300				
	Статическое дав- ление	Па	30~	220	50~260				
	Уровень шума	ДБ(А)	5	0	51	52	52		
Хладагент		Тип			R410A				
	Корпус (ШхВхГ)	MM	1368*4	20*691	1443*470*810				
Размер в упаковке	Корпус (ШхВхГ)	MM	1436*4	40*768		1509*522*964			
Вес Нетто	Корпус	КГ	69),5		115			
Вес Брутто	Корпус	КГ	7	6		125			
	Жидкостная труба	мм(дюйм)	9,53((3/8")		9,53(3/8")*2			
Диаметр труб	Газовая труба	мм(дюйм)	15,88	(5/8")	15,88(5/8")*2				
	Дренажная труба	MM	2	5	32				

СПЕЦИФИКАЦИИ (СРЕДНЕГО СТАТИЧЕСКОГО ДАВЛЕНИЯ)

Модель			MDV-D22T2/N1-BA5	MDV-D28T2/N1-BA5	MDV-D36T2/N1-BA5	MDV-D45T2/N1-BA5	MDV-D56T2/N1-BA5	
	Охлаждение	кВт	2,2	2,8	3,6	4,5	5,6	
	Нагрев	кВт	2,6	3,2	4	5	6,3	
		V-ph-Hz			220-240-50-1			
		Вт	57	57	61	92	92	
Рабочие показатели	Расход воздуха	M^3/H	530	530	530	85	50	
	Статическое давление	Па						
	Уровень шума	ДБ(А)	32	32	36			
	Тип				R410A			
	Корпус (ШхВхГ)	MM		700*210*635		1010*2	210*635	
	Корпус (Ш х В х Г)	MM		915*290*655		1135*2	90*655	
	Корпус	КГ	21	,5	22	2	7	
	Корпус	КГ	2	6	27	3	2	
Диаметр труб	Жидкостная труба	мм(дюйм)		6,35(1/4»)		9,53(3/8»)	
	Газовая труба	мм(дюйм)		12,7(1/2»)		15,88(5/8»)	
	Дренажная труба	MM			32			

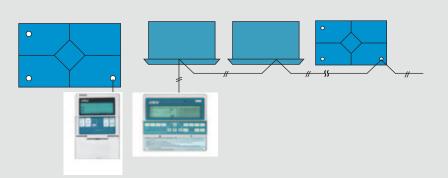
Модель			MDV-D71T2/N1-BA5	MDV-D80T2/N1-BA5	MDV-D90T2/N1-BA5	MDV-D112T2/N1-BA5	MDV-D140T2/N1-BA5		
	Охлаждение	кВт	7,1	8	9	11,2	14		
	Нагрев	кВт	8	9	10	12,5	15,5		
		V-ph-Hz	220-240-50-1						
	Вт		149	190	200	313	274		
Рабочие показатели	Расход воздуха	M ³ /4	1050	1226	1226	1750	1918		
	Статическое давление	Па	10~30	10~50		10~80	10~100		
	Уровень шума	ДБ(А)	36	37		38	39		
	Тип				R410A				
	Корпус (ШхВхГ)	MM	1010*210*635		1230*270*775		1290*300*865		
	Корпус (ШхВхГ)	MM	1135*290*655		1355*350*795		1400*375*925		
	Корпус	КГ	30	38	40	40	49		
	Корпус	КГ	34	46,5	48	48	58		
Диаметр труб	Жидкостная труба	мм(дюйм)			9,53(3/8")				
	Газовая труба	мм(дюйм)			15,88(5/8")				
	Дренажная труба	MM			32				


СПЕЦИФИКАЦИИ (ВЫСОКОГО СТАТИЧЕСКОГО ДАВЛЕНИЯ)

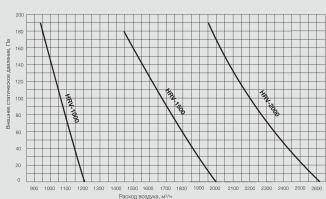
Модель			MDV-D-71T1/N1-B	MDV-D-80T1/N1-B	MDV-D-90T1/N1-B	MDV-D-112T1/N1-B	MDV-D-140T1/N1-B	MDV-D-160T1/N1-B			
	Охлаждение	кВт	7,1	8,0	9,0	11,2	14,0	16,0			
	Нагрев	кВт	8,0	9,0	10,0	12,5	16,0	17,0			
Электропитание		V-ph-Hz		220-240-50-1							
Номинальная мощ- ность		Вт	263	263 263 423 524 724							
Рабочие показатели	Расход воздуха	M ³ /4	1400	1400	1940	2115	3000	3620			
	Статическое давление	Па									
	Уровень шума	ДБ(А)	44	44,5	47	47	48	50			
Хладагент		Тип			R4	10A					
	Корпус (ШхВхГ)	MM		952*4	20*690		1300*4	20*690			
Размер в упаковке	Корпус (ШхВхГ)	MM		1090*4	40*768		1430*4	50*768			
Корпус	Корпус	КГ	4	15	46,5	50,6	68	70			
Корпус	Корпус	КГ	5	50	52,4	56	70	77,5			
	Жидкостная труба	мм(дюйм)	(дюйм) 9,53(3/8")								
	Газовая труба	мм(дюйм)			15,88	8(5/8")					
	Дренажная труба	MM			3	32					

СПЕЦИФИКАЦИИ (ВЫСОКОГО СТАТИЧЕСКОГО ДАВЛЕНИЯ)

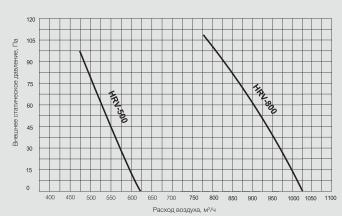
Модель			MDV-D-200T1/N1-B	MDV-D-250T1/N1-B	MDV-D-280T1/N1-B	MDV-D-400T1/N1	MDV-D-450T1/N1	MDV-D-560T1/N1		
Производительность	Охлаждение	кВт	20	25	28	40	45	56		
	Нагрев	кВт	22,5	26	31,5	45	50	63		
Электропитание		V-ph-Hz		220-240-50-1						
Номинальная мощ- ность		Вт		1516		2700	2700	3400		
Рабочие показатели	Расход воздуха	M ³ /4		4465		7490	7490	9625		
	Статическое давление	Па			50~	-250				
	Уровень шума	ДБ(А)		52		56	56	57		
Хладагент		Тип			R41	10A				
	Корпус (ШхВхГ)	MM		1443×470×810		1970*668*858.5				
Размер в упаковке	Корпус (ШхВхГ)	MM		1509×570×964			2095*800*964			
Корпус	Корпус	КГ		115			232			
Корпус	Корпус	КГ		129			245			
	Жидкостная труба	мм(дюйм)	9,53(3/8")*2	9,53(3	//8")*2		12,7(1/2")*2			
	Газовая труба	мм(дюйм)	19,1(3/4")*2	22,2(7	//8")*2	28,58(1' 1/8")*2				
	Дренажная труба	MM	32							


Приточно-вытяжные установки с рекуперацией тепла

ПРОИЗВОДИТЕЛЬНОСТЬ: 200, 300, 400, 500, 800, 1000, 1500, 2000 м³/ч


RV (Heat Recovery Ventilation) – приточно-вытяжные компактные установки с рекуперацией тепла. Модельный ряд представлен системами с расходом воздуха от 200 до 2000м3/ч. Обычно системы кондиционирования воздуха обеспечивают поддержание комфортной температуры в помещениях, но не обеспечивают приток свежего воздуха и удаление воздуха. Эти системы позволяют создавать системы вентиляции с эффективностью теплообмена до 60%. В холодный период HRV сокращают до минимума потери на подогрев приточного воздуха за счет теплопередачи от вытяжного воздуха к приточному. В теплый период HRV снижают до 20% тепловую нагрузку в помещении, по сравнению с традиционной системой притока и вытяжки. Применение HRV решает проблему с пониженной влажностью помещения в холодный период, так как до 60% влагосодержания остается в воздухе помещения. Интеграция в единую систему управления с системой VRF позволяет добиться максимальной энергоэффективности системы.

Компактные размеры обеспечиваются благодаря теплообменнику из специальной бумаги типа НЕР, применением оптимальных с точки зрения аэродинамики элементов воздушной системы. Компактные размеры позволяют установить HRV в узком запотолочном пространстве. Пульт управления позволяет делать все необходимые установки, температурные, скорости вентилятора, выбор режимов, таймера. Широкий выбор режимов работы предоставляет максимальное удобство в использовании HRV. Доступны режимы: автоматический, приток, вытяжка, байпас, рекуперация.



HRV-200, HRV-300, HRV-400

HRV-1000, HRV-1500, HRV-2000

HRV-500, HRV-800

СПЕЦИФИКАЦИИ

					HRV-400					
		М³/Ч	200	300	400	500	800	1000	1500	2000
		V-ph-Hz			380-50-3					
Потребляемая мощность		Вт	20	40	80	120	360	360	900	1100
		Па	75	75	80	80	100	150	160	170
Охлаждение воздуха	Темп. Эффек- тивность	%	60	60	60	60	60	60	60	60
	Энтальп. Эф- фективность	%	50	50	50	50	50	50	50	50
	Темп. Эффек- тивность	%	65	65	65	70	70	70	70	70
	Энтальп. Эф- фективность	%	55	55	55	60	60	60	60	60
	Уровень шума(НБ)	ДБ(А)	27	30	32	35	39	40	51	53
	ШхВхГ	MM	667*264*580	744*270*599	744*270*804	824*270*904	1116*388*884	1116*388*1134	1500*540*1200	1500*540*1200
	ШхВхГ	MM	968*456*835	1046*462*855	1046*462*1059	1126*462*1159	1418*580*1139	1418*580*1389	1672*1372*716	1722*1572*716
	Внутренний блок	КГ	22	23	30	35,5	57,5	59	160	175
	Внутренний блок	КГ	46	48	57	65,5	91,5	95	200	215

КОМПЛЕКТЫ ДЛЯ ПОДКЛЮЧЕНИЯ ПРИТОЧНЫХ УСТАНОВОК AHUKZ

Используются для подключения секций непосредственного охлаждения приточных установок к наружным блокам VRF-систем. Данные комплекты для подключения состоят из шкафа управления, EXV, температурных датчиков и проводного контроллера. Комплекты для подключения приточных установок AHUKZ обладают следующими возможностями управления:

Вариант 1: Температурный контроль осуществляется через внешний температурный контроллер (любого производителя). Температура в помещении контролируется как функция рециркуляционного и входящего воздуха (по выбору пользователя). Внешний контроллер передает разницу температур между установленной и температурой рециркуляционного воздуха (или температуры входящего воздуха или температуры в помещении) и управляет наружным блоком.

Вариант 2: По фиксированной температуре испарителя. Фиксированная температура испарителя может быть установлена в пределах от 3 до 8 °C. Необходимая нагрузка вычисляется по актуальной температуре испарителя. Проводной контроллер (KJR-12B) может указывать возможные ошибки.

Вариант 3: Использование проводного контроллера (KJR-12B). Настройки температуры через проводной контроллер. Необходимая нагрузка вычисляется по разности температуры входящего воздуха и установленной температуры.

Две модели комплектов – FCUKZ-01, соединительный комплект для AHU (8,0/9,0/11,2/14,0кВт) и FCUKZ-02, соединительный комплект для AHU (20,0/25,0/28,0кВт). FCUKZ-02 подключается только к двухсекционному испарителю.

Модель			AHUKZ-01A	AHUKZ-02A	AHUKZ-03A		
Производительность	Охлаждение, до	кВт	2,2-14,0	14,1-28,0	28,1-56,0		
		V-ph-Hz	220-240-50-1				
		Вт	40 40 40				
Хладагент	Тип		R410A				
	Корпус (ШхВхГ)	MM		375*350*150			
	Корпус (ШхВхГ)	MM		490*420*240			
		КГ	4,5				
		КГ	6				
Диаметр труб	Жидкостная труба	мм(дюйм)	9,53(3/8") 12,7(1/2") 15,88(5/8				

Программа для диагностики

ПРОГРАММА КОМПЛЕКСНОГО МОНИТОРИНГА МУЛЬТИЗОНАЛЬНЫХ СИСТЕМ КОНДИЦИОНИРОВАНИЯ VRF MDV

MDV объявляет о расширении функциональных возможностей мультизональных систем кондиционирования с переменным расходом хладагента.

Для повышения конкурентоспособности и функциональных возможностей мультизональных систем кондиционирования MDV выпускает новый программный продукт, предназначенный для оперативного мониторинга и записи параметров состояния VRF-системы.

Во время эксплуатации мультизональных систем кондиционирования возникает необходимость в определении состояния отдельных ее элементов, диагностики параметров, а также изменения параметров работы в различное время, при различных условиях. Например, функциональные возможности пульта центрального управления ССМ02 позволяют выводить на экран жидкокристаллического дисплея только ограниченную информацию о параметрах работы системы кондиционирования. Центральный пульт управления ССМ02 не может анализировать большое количество данных, а также, анализировать и выявлять любые тенденции в работе системы, предотвращать возникновение аварийных ситуаций.

Новое программное обеспечение позволяет решить вопрос оперативной диагностики, анализа, отображения информации о параметрах работы наружных блоков различных поколений мультизональных систем кондиционирования MDV.

- 1. Функциональные особенности программного обеспечения:
- 1.1 Программное обеспечение может быть установлено на любой персональный компьютер, соответствующий требованиям, описанным ранее. Компьютер подключается через конвертор непосредственно к плате управления наружного блока мультизональной системы кондиционирования;
- Программное обеспечение выводит информацию о параметрах работы системы кондиционирования в реальном времени;
- 1.3 Отображение информации о параметрах работы системы кондиционирования на временной диаграмме. Пользователь может анализировать динамику изменения параметров для выявления возможных причин или тенденций, способствующих возникновению аварийных ситуаций;
- 1.4 Отображение детальной информации об аварийной ситуации: параметрах работы системы, во время возникновения аварийной ситуации.
- 2. Функциональные возможности программного обеспечения:
- 2.1 Интерфейс пользователя;
- Отображение информации об изменениях параметров работы системы.

Данный интерфейс отображает изменение параметров работы системы во время ее эксплуатации;

2.3 Отображение информации о состоянии устройств и параметрах работы наружного блока, холодильного контура наружного блока.

Управление

Шлюзы для BMS

IMM-ENET-MA

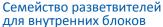
IMM441V4PA58

MD-LonGW64

CCM08/E

MD-CCM18A/N-E

Шлюзы для внешнего управления


CCM15

Комплекты разветвителей

Семейство разветвителей для наружных блоков

FQZHW-02(03; 04) FQZHW-02(03; 04)C FQZHW-02(03: 04)D

FQZHW-02(03; 04)D FQZHW-02(03; 04)SB

FQZHN-01(02; 03; 04; 05) FQZHN-01(02; 03; 04; 05; 06)C FQZHN-01(02;03; 04; 05; 06)D FQZHN-01(02; 03; 04; 05)SB

FQZHN-01D

FQZHW-03N1D

FQZHW-02N1D

FQZHW-04N1D

Индивидуальное управление

Проводные пульты (серии пультов)

KJR-10B KJR-12B KJR-29B KJR-135

Беспроводные пульты

RM05 R05 R51

Аксессуары

MD-NIM05 Контроллер гостевых карт

MD-NIM05

MD-NIM09 Контроллер гостевых карт с датчиком движения

NIM01 Модуль адресации

Центральное управление

Центральный контроллер внутренних блоков

CCM03 CCM30

Центральный контроллер наружных блоков

CCM02

Программа диагностики

MCAC-DIAG/E

Чиллеры MDV были разработаны с учетом высоких требований стран Центральной и Восточной Европы, Америки и Юго-Восточной Азии по техническим и эксплуатационным характеристикам, уровню шума, а также уровню энергетической эффективности. При разработке были учтены последние мировые тенденции в развитии оборудования для систем центрального кондиционирования и холодоснабжения. Ряд серий чиллеров MDV сертифицированы на соответствие стандартам Eurovent.

Модульные чиллеры с воздушным охлаждением конденсатора предназначены для использования при наружной установке на крыше здания или его прилегающей территории. Серия включает пять базовых агрегатов производительностью 30, 65, 130, 185 и 250 кВт. Модульная конструкция позволяет компоновать агрегаты различной производительности, путем соединения соответствующих модулей, получая, таким образом, требуемую холодопроизводительность.

Воздухоохлаждаемые чиллеры MDV с винтовыми компрессорами. Чиллер предназначен для наружной установки, оснащен малошумным высокоэффективным двухвинтовым полугерметичным компрессором с асимметричным профилем роторов 5+6 с регулируемой производительностью, высокоэффективными испарителем и конденсатором, высокоэффективным малошумным вентилятором и микропроцессорным контроллером. Серия включает шесть базовых агрегатов производительностью от 360 до 900 кВт. Данный тип чиллеров также является модульным.

Также в заводской программе представлены водоохлаждаемые **чиллеры с винтовыми компрессорами**. Предназначены для установки внутри помещения. Модельный ряд от 340 до 1450 кВт.

В линейке чиллеров с водяным охлаждением представлены модели с центробежными компрессорами. Предназначены для установки внутри помещения. Модельный ряд от 600 до 14000 кВт.

Мини чиллеры MDV, с воздушным охлаждением конденсатора и спиральными компрессорами. Производительность 10, 12, 14, 16 кВт. Подходят для кондиционирования объектов требующих небольшой производительности. Полностью готовы к монтажу, имеют встроенный гидромодуль.

Мини-сплит чиллеры MDV, с воздушным охлаждением конденсатора и спиральными компрессорами. Производительность 10, 12, 14, 16 кВт. Походят для кондиционирования объектов требующих небольшой производительности. Наружный модуль мини чиллера представляет собой компрессорно-конденсаторный блок. Внутренний модуль – это пластинчатый испаритель в корпусе и встроенный гидромодуль.

ПРЕИМУЩЕСТВА МОДУЛЬНЫХ ЧИЛЛЕРОВ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА

ОХЛАЖДЕНИЕ И ОБОГРЕВ

ЭЛЕКТРОННЫЙ ТРВ

ГЕРМЕТИЧНЫЙ Н СПИРАЛЬНЫЙ КОМПРЕССОР

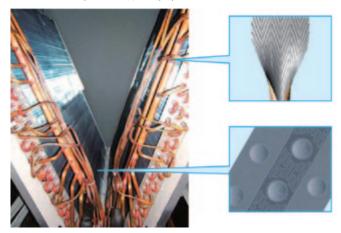
НАДЕЖНОСТЬ

Модульные чиллеры с воздушным охлаждением конденсатора серии MDGB были разработаны с учетом высоких требований стран Центральной и Восточной Европы, Америки и Юго-Восточной Азии по техническим и эксплуатационным характеристикам, уровню шума, а также уровню энергетической эффективности. При разработке новой серии были учтены последние мировые тенденции в развитие оборудования для систем центрального кондиционирования и холодоснабжения.

Чиллеры серии MDGB проходят полный цикл производства и испытаний в в производственном комплексе компании в городе Shunde. Специалисты компании отвечают высоким требованиям профессиональной подготовки и квалификации. Производственный комплекс компании в г. Shunde оснащен высокотехнологичным оборудованием для производства чиллеров. Цикл производства включает в себя 100%-ое производство и контроль качества:

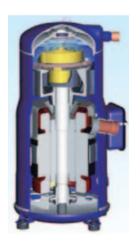
спиральных, винтовых и центробежных компрессорных агрегатов.

воздушных теплообменников.

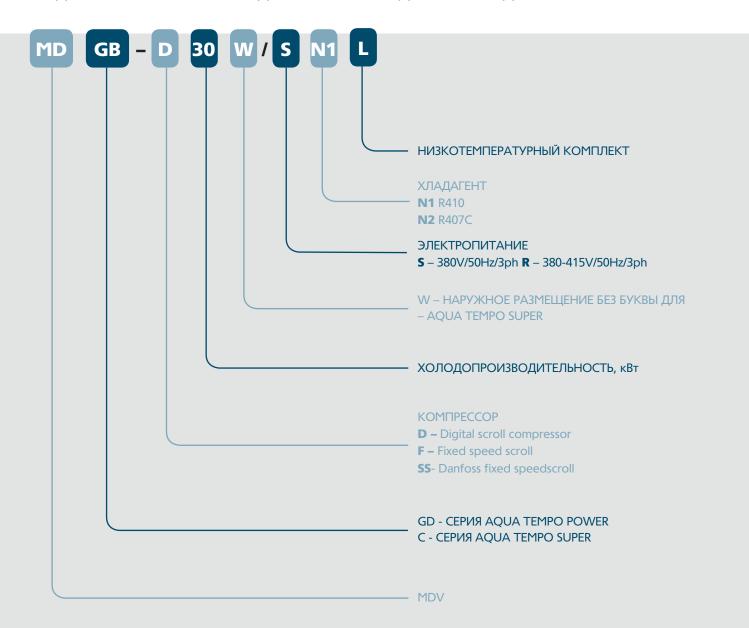

водяных пластинчатых и кожухо-трубных теплообменников. автоматизированных систем управления.

А также, 100%-ая сборка и контроль качества готовых изделий.

Серия включает 5 стандартных типоразмеров модульных чиллеров, все компоненты системы унифицированы. Проектирование, сборка, а также комплектация чиллеров производится из стандартных узлов. При этом затраты на разработку, внедрение в производство, а также непосредственно сборку чиллеров невысоки. Кроме того такой подход позволяет обеспечивать высокое качество сборки готовых изделий. Каждый агрегат оснащен двумя или более контурами циркуляции хладагента. Необходимость технического обслуживания или выход из строя одного из холодильных контуров не влияет на работу агрегата. Кроме того, система центрального кондиционирования на базе модульных чиллеров включает не один, а несколько агрегатов. Также


необходимость технического обслуживания или замены любого из агрегатов существенно не влияет на работоспособность всей системы. При этом может произойти только небольшое снижение холодопроизводительности системы. Уровень снижения холодопроизводительности зависит от количества агрегатов в системе и от количества ступеней регулирования производительности каждого агрегата. Регулирование производительности каждого агрегата осуществляется с помощью включения и выключения ступеней регулирования производительности (компрессоров). В агрегатах, оснащенных компрессорами с технологией Digital Scroll осуществляется плавное регулирование производительности.

При запуске любого компрессора или вентилятора общее повышение уровня потребляемой мощности, и уровня рабочего тока всей системы незначительно. Кроме того система автоматизированного управления чиллера выбирает необходимый для запуска компрессор в зависимости от часов его наработки на отказ и от количества запусков в единицу времени.



Чиллеры

АРТИКУЛЫ

МОДУЛЬНЫЕ ЧИЛЛЕРЫ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА

Чиллеры Aqua Tempo Power

МОДЕЛЬНЫЙ РЯД МОДУЛЬНЫХ ЧИЛЛЕРОВ СЕРИИ AQUA TEMPO POWER С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА

олодильные контуры чиллеров построены с использованием озонобезопасных хладагентов, таких как R407C, R410A. Особенностью этих серий чиллеров является модульность, т.е. из стандартных базовых чиллеров могут быть собраны модули различной производительности. Например, модульные чиллеры с воздушным охлаждением и спиральными компрессорами имеют модельный ряд 30, 65, 130, 185 и 250 кВт. Максимальное число чиллеров производительностью 30 кВт и 65 кВт в едином модуле может достигать 16. Это означает, что максимальная производительность модуля, состоящего из чиллеров мощностью 30 кВт, может достигать 480 кВт, из чиллеров мощностью 65 кВт – 1040 кВт. Чиллеры производительностью 130 кВт собираются в единый модуль из 8 единиц, в этом случае максимальная производительность составит 1040 кВт. Чиллеры производительностью 185 кВт собираются в единый модуль из 5 единиц, в этом случае максимальная производительность составит 925 кВт. Соединение в единый модуль осуществляется просто - внутренняя структура модульных чиллеров спроектирована таким образом, что чиллеры устанавливаются в единую линейку. Один контроллер управляет 16 чиллерами - 30 или 65 кВт, 8 чиллерами - 130 кВт, или 5 чиллерами - 185 кВт. Работа нескольких чиллеров в группе осуществляется в режиме ведущий/ведомый: один чиллер является ведущим, остальные чиллеры - ведомыми. В зависимости от требуемой производительности система автоматизированного управления ведущего чиллера включает необходимую ступень производительности (компрессор), чиллер или группу чиллеров. Модульная конструкция чиллеров дает большие преимущества при монтаже, эксплуатации, техническом и сервисном обслуживании.

ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ МОДУЛЬНЫХ ЧИЛЛЕРОВ СО СПИРАЛЬНЫМИ КОМПРЕССОРАМИ:

- контроль тока компрессоров;
- реле высокого давления;
- реле низкого давления;
- фазовый монитор;
- двухскоростные моторы вентиляторов (управление по температуре конденсации);
- защита от высокой температуры конденсации;
- защита от высокой температуры нагнетания;
- вывод кодов ошибок, плате чиллера и контроллере;
- электронное EXV;
- тестирование электронных компонентов и датчиков при включении;

- помехоустойчивый промышленный интерфейс RS485 для связи между чиллерами и контроллером;
- четырехступенчатая защита от заморозки испарителя;
- контроль протока критическое изменение разности температур (прямая-обратная) температурный глайд (вниз) прямой воды устойчиво низкая температура прямой воды;
- прямое регулирование температуры теплоносителя 5-17 °C для моделей 30-185 кВт, и возможность расширения этого диапазона, 0-17 °C;
- интуитивно понятный контроллер;
- прямой запрос всех контролируемых параметров с платы управления или с контроллера.

ДИАПАЗОН РАБОЧИХ ТЕМПЕРАТУР 10°C ~ 46°C 5°C ~ 17°C (7°C по умолчанию) -10°C ~ 21°C 5°C ~ 17°C (7°C по умолчанию) Уличная температура 10°C Охлаждение 46°C Обогрев 21 °C -15°C -10°C -5°C 0°C 5°C 10°C 15°C 20°C 25°C 30°C 35°C 40°C 45°C 50°C Температура вых. воды 5 °C Охлаждение 17 °C 45°C Обогрев 50°C 5°C 45 °C 17°C 50 °C

Модель			MDGB-F30W/RN2(1)	MDGB-F65W/RN2(1)	MDGB-F130W/RN2(1)	MDGB-F185W/RN2(1)
	Охлаждение	кВт	30	65	130	185
	Нагрев	кВт	32	69	138	200
		V-ph-Hz		380-	3-50	
Охлаждение	Номинальная мощность	кВт	9,8	20,4	40,8	63
	Номинальная мощность	кВт	10	21,5	43	61
Гидравлические параметры	Сопротивле- ние	кРа	60	15	25	30
	Расход воды	м3/ч	5,2	11,2	22,4	31,8
		ДБ(А)	6:	5	70	74
	Тип			R407C	(R410a)	
	ШхГхВ	MM	1514*1841*865	2000*1880*900	2000*2090*1685	2850*2110*2000
		КГ	380	580	1150	1730
	охлаждение	°C		+10-	~+46	
температур наружного воздуха	обогрев	°C		-10~	 +21	
	охлаждение	°C		5~-	+17	
	обогрев	°C		+45/	~+50	

Чиллеры Aqua Tempo Super

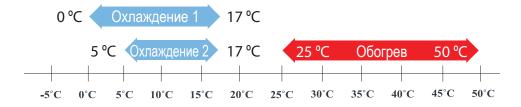
НОВАЯ СЕРИЯ ЧИЛЛЕРОВ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА MDV «AUQA TEMPO SUPER»

редставлены модели холодопроизводительностью 35; 65 и 130 кВт, хладагент озонобезопасный фреон R410a. Работа в режимах охлаждения и обогрева. Новая серия оснащена испарителем кожухотрубного типа с измененным потоком жидкости, при котором внутри теплообменника не остается "мертвых" зон для потока теплоносителя. Новый воздушный теплообменник с круговой диаграммой забора воздуха обладает высокой эффективностью. Чиллеры этой серии базируются на спиральных компрессорах Danfoss. Контроллер KJRM-120D/BMK-Е позволяет объединять до 16-ти чиллеров в одном модуле, таким образом, максимальная мощность модуля может составлять 2080 кВт. Контроллер позволяет изменять не только температурные установки теплоносителя, но и изменять температурный дифференциал до 8 градусов. Нижняя граница температуры наружного воздуха при работе на охлаждение -10 °C (для моделей 35 и 65 кВт). Нижняя граница температуры наружного воздуха при работе на обогрев -15°C. При монтаже можно выбрать два диапазона температур для охлажденного теплоносителя: 5-17 °C либо 0-17 °C. Температура теплоносителя при работе на обогрев может быть установлена от +25 до +50 °C. В оборудовании реализована защита от превышения тока компрессоров по двум фазам, защита по высокому и низкому давлению хладагента, высокой температуре нагнетания, защита от заморозки, контроль протока теплоносителя, контроль разности входящей и выходящей температуры теплоносителя, имеется полноценный монитор сетевого напряжения, подогреватель картера, электронные ТРВ, предохранительный клапан в гидравлическом контуре, автоматическое тестирование электронных компонентов чиллера.

ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ МОДУЛЬНЫХ ЧИЛЛЕРОВ СО СПИРАЛЬНЫМИ КОМПРЕССОРАМИ:

- Контроль тока компрессоров;
- реле высокого давления;
- реле низкого давления;
- фазовый монитор;
- двухскоростные моторы вентиляторов (управление по температуре конденсации);
- защита от высокой температуры конденсации;
- защита от высокой температуры нагнетания;
- вывод кодов ошибок, плате чиллера и контроллере;
- электронное EXV;
- тестирование электронных компонентов и датчиков при включении:
- помехоустойчивый промышленный интерфейс RS485 для связи между чиллерами и контроллером;
- четырехступенчатая защита от заморозки испарителя;
- контроль протока критическое изменение разности температур (прямая-обратная) температурный глайд (вниз) прямой воды устойчиво низкая температура прямой воды.

- прямое регулирование температуры теплоносителя 5-17 °C для моделей 30-185 кВт, и возможность расширения этого диапазона, 0-17 °C;
- интуитивно понятный контроллер;
- прямой запрос всех контролируемых параметров с платы управления или с контроллера;
- хладагент R410a;
- увеличенное число подключаемых в один модуль чиллеров производительностью 130 кВт, до 16-ти чиллеров в одном модуле;
- расширенные диапазоны уличных температур при работе в режимах охлаждения (-10~+46 °C) и обогрева (-15~+24 °C):
- обновленный контроллер (Touch Style);
- возможность диспетчеризации (MODbus, BACnet, LonWorks);
- программа управления с персонального компьютера.


ДИАПАЗОН РАБОЧИХ ТЕМПЕРАТУР

Режим	Уличная температура	Температура воды
Охлаждение		
Обогрев		

РАБОЧИЙ ДИАПАЗОН ТЕМПЕРАТУР

РЕГУЛИРОВКА ТЕМПЕРАТУРЫ ТЕПЛОНОСИТЕЛЯ

Модель			MDC-SS35/RN1L	MDC-SS65/RN1L	MDC-SS130/RN1			
	Охлаждение	кВт	35	65	130			
	Нагрев	кВт	37	69	138			
		V-ph-Hz		380-3-50				
Охлаждение	Номинальная мощность	кВт	11,5	20,4	42,3			
Нагрев	Номинальная мощность	кВт	11,3	20,5	43			
Гидравлические	Сопротивле- ние	кРа	55	30	40			
параметры	Расход воды	M ³ /4	6	11,2	22,4			
		ДБ(А)	65	67	70			
Хладагент	Тип			R410a				
	ШхГхВ	MM	1020×1770×980	2000×1770×960	2200×2060×1120			
		КГ	320	530	935			
	охлаждение	°C		-10~+46				
	обогрев	°C		-15~+24				
Пределы регулировки	охлаждение	°C	0~+17					
	обогрев	°C		+25~+50				

Чиллеры

МОДУЛЬНЫЙ ЧИЛЛЕР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА ПРОИЗВОДИТЕЛЬНОСТЬЮ 250 КВТ

одульный чиллер с воздушным охлаждением конденсатора производительностью 250 кВт. Холодильные контуры чиллера сконструированы с использованием озонобезопасного хладагента R410A. Особенностью этого чиллера является модульность, т.е. из стандартных базовых чиллеров могут быть собраны модули различной производительности. Максимальное число чиллеров в едином модуле может достигать 8. В этом случае максимальная производительность составит 2000 кВт. Соединение в единый модуль осуществляется просто, - внутренняя структура спроектирована таким образом, что чиллеры устанавливаются в единую линейку. Один контроллер управляет 8 чиллерами. Работа нескольких чиллеров в группе осуществляется в режиме ведущий ведомый: один чиллер является ведущим, остальные чиллеры - ведомыми. В зависимости от требуемой производительности система автоматизированного управления ведущего чиллера включает необходимую ступень производительности (компрессор), чиллер или группу чиллеров. Модульная конструкция чиллеров дает большие преимущества при монтаже, эксплуатации, техническом и сервисном обслуживании. Воздухо-

охлаждаемый чиллер сконструирован на базе спиральных компрессоров. Количество компрессоров – 8. Расширена регулировка температуры теплоносителя при работе на охлаждение от 0 до 17 °C. Температурный перепад (дифференциал) между температурой входящей и выходящей воды может быть до 12 градусов.

ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ

кожухотрубные испарители;

вентиляторы с точно рассчитанной аэродинамикой, со сниженными шумовыми характеристиками;

многокомпрессорная схема;

 V-образные конденсаторы с улучшенными аэродинамическими характеристиками;

 несколько холодильных контуров, работающих на один испаритель;

регулирование производительности переключением числа компрессоров и EXV;

контроль электропитания;

максимальное количество защищаемых параметров;

контроль тока компрессоров;

контроль основных параметров холодильного цикла;

независимость чиллеров в модуле;

возможность диспетчеризации;

удобная система диагностики;

новый контроллер KJR-120A/MBE.

НОВЫЕ ВОЗМОЖНОСТИ КОМПОНОВКИ

+

+ ... =

•••

= 2000 кВт

СПЕПИФИКАПИИ

Модель		/IDGB-F250W/RN1	
	Охлаждение	кВт	250
	Нагрев	кВт	270
Электропитание		V-ph-Hz	380-3-50
	Номинальная мощность	кВт	78,3
	Номинальная мощность	кВт	80
	Сопротивление	кРа	40
	Расход воды	M ³ /4	43
		ДБ(А)	74
Хладагент	Тип		R410a
	ШхВхГ	MM	3800*2130*2000
		КГ	2450
	охлаждение	°C	+10~+52
	обогрев	°C	-10~+21
	охлаждение	°C	0~+17
носителя	обогрев	°C	+45~+50

ЧИЛЛЕР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА И ВСТРО-ЕННЫМ ГИДРОМОДУЛЕМ

иллер с воздушным охлаждением конденсатора и встроенным гидромодулем производительностью 30кВт. Холодильные контуры чиллера сконструированы с использованием озонобезопасного хладагента R410A. Воздухоохлаждаемый чиллер сконструирован на базе спиральных компрессоров. Количество компрессоров – 2.

Диапазон уличной температуры для работы на охлаждение снижен до -10 °C. Расширена регулировка температуры теплоносителя при работе на охлаждение от 0 до 17 °C. Температурный перепад (дифференциал) между температурой входящей и выходящей воды может быть до 12 градусов. Применен насос консольного типа с напорностью 18м. Расширительный бак, испаритель кожухотрубного типа.

Две модели, с плавно регулируемой производительностью, и с фиксированной производительностью. Модель с плавной регулировкой производительности основана на технологии компании Emerson – Digital Scroll.

ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ

кожухотрубные испарители;

вентиляторы с точно рассчитанной аэродинамикой, со сниженными шумовыми характеристиками;

многокомпрессорная схема;

V-образные конденсаторы с улучшенными аэродинамическими характеристиками:

регулирование производительности переключением числа компрессоров и ЭРВ;

регулирование производительности переключение числа

компрессоров, ЭРВ и изменением производительности компрессора.

контроль электропитания;

максимальное количество защищаемых параметров;

контроль тока компрессоров;

контроль основных параметров холодильного цикла;

возможность диспетчеризации;

удобная система диагностики;

новый контроллер KJR-120A/MBE.

ДИАПАЗОН РАБОЧИХ ТЕМПЕРАТУР Уличная температура -10°C Обогрев 21°C -10°C -5°C 0°C 5°C 10°C 15°C 20°C 25°C 30°C 35°C 40°C 45°C 50°C Температура вых. воды О°С Охлаждение 17°C 45°C 06огрев 50°C

Чиллеры

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ С ВИНТОВЫМ КОМПРЕССОРОМ

одульные чиллеры с воздушным охлаждением конденсатора и винтовыми полугерметичными компрессорами с холодопроизводительностью от 360 до 7200 кВт.

Такой диапазон холодопроизводительности достигается благодаря модульному принципу соединения этих чиллеров (до восьми чиллеров в единую систему).

Высокоэффективный двухвинтовой полугерметичный компрессор с асимметричным профилем зубьев, производства Bitzer. Кожухотрубный испаритель. Малые капитальные затраты при покупке оборудования. Отличная стандартная комплектация. Высокая надежность. Средний срок наработки на отказ более 60000 часов. Многофункциональность. Использование в качестве систем центрального кондиционирования, промышленных систем холодоснабжения. Малые амортизационные затраты при эксплуатации оборудования. Возможно техническое обслуживание и ремонт

компрессора. Регулирование холодопроизводительности винтового компрессора осуществляется автоматически. В зависимости от тепловой нагрузки на чиллер загрузка компрессора осуществляется ступенчато на 25%, 50%, 75% или 100%. Возможен заказ опциональной системы плавного регулирования в диапазоне 50% – 100%. Хладагент R134a.

Контроллер с LCD Touch Screen панелью. Контроллер поддерживает возможность резервирования контуров, журнал аварийных ситуаций, а также пользовательских настроек, возможность группового управления, возможность интеграции в систему диспетчеризации. Автоматическая защита от высокого/низкого давления в холодильном контуре, отсутствия протока воды, перегрузки электродвигателя, пропадания фазы, перекоса фаз, защита от размораживания. Контроль чередования фаз, уровня масла в компрессоре и давление масла.

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ

расширенный модельный ряд - 8 моделей

диапазон по ходопроизводительности от 376 до 1419 кВт

новый PLC (Programmable Logic Controller)

новые двухроторные винтовые компрессоры Bitzer

обновленная программа управления

модуль управления электронным EXV производства Carel

 манометры высокого и низкого давления в контуре хладагента устройство контроля питающего напряжения, подключенное непосредственно к клеммам компрессора

М-образный теплообменник увеличенной эффективности

 кожухотрубный испаритель с улучшенной системой циркуляции теплоносителя

новый профиль крыльчаток вентиляторов для снижения уровня шума

доступный диапазон регулировки температуры теплоносителя от +5 до +15C

встроенный интерфейс RS485

до 8-ми чиллеров в модуле, максимально 7200 кВт

•	•									
Модель			LSBLGW380/C	LSBLGW500/C	LSBLGW600/C	LSBLGW720/C	LSBLGW900/C	LSBLGW1000/C	LSBLGW1200/C	LSBLGW1420/0
	Охлаждение	кВт	376	496	594	720	902	996	1203	1419
		В/Гц/ф				380	/50/3			
Охлаждение	Номинальная мощность	кВт	124	159	187	234	285	318	381	466
Количество компрес- соров		ШТ		1	I			2	2	
		%		25-50-75-100 (опционально плавная 50 - 100)						
						R1	34a			
	Сопротивление	кРа	39	54	56	58	74	75	71	69
метры	Расход воды	M ³ /4	65,4	86	103,2	123,8	151,4	172	206,4	244,2
	Кол-во вентиля- торов	ШТ	6	8	10	10	14	16	16	20
	Расход воздуха	м3/ч	23000*6	23000*8	20000*10	23000*10	23000*14	23000*16	23000*16	23000*20
	ШхВхГ	MM	3810*2370*2280	4680*2370*2280	5880*23	370*2280	8800*2430*2280	9640*24	30*2280	11700*2430*228
		ΚΓ	3320	4330	5000	5500	7750	8900	9100	11100
Рабочий диапазон температур наружного воздуха		°C	+15~+43							
Пределы регулировки температуры тепло-		°C				0~	+15			

ВОЗДУХООХЛАЖДАЕМЫЕ МИНИ-ЧИЛЛЕРЫ

Идеальное решение для небольших частных домов

СЕРИЯ MDGC

ини-чиллеры MDV с воздушным охлаждением конденсатора и спиральными компрессорами постоянной производительности. Производительность 5, 7, 9, 10, 12, 14, 16 кВт. Теплообменник (испаритель) пластинчатого типа. Насос для теплоносителя с ротором мокрого типа Wilo. Встроенный контроллер ST542 Eliwell с LED дисплеем. Возможно подключение опционального проводного контроллера для установке его в помещении. Чиллер подготовлен для работы на водно-гликолевых смесях. Походят для кондиционирования объектов требующих небольшой производительности. Для создания комфортных условий в квартирах, коттеджах, торговых павильонах, малых гостиницах и небольших офисных зданиях кроме VRF и традиционных сплит-системам применяются системы чиллер-фанкойл на базе мини-чиллеров. Мини-чиллеры высокоэффективные, моноблочные холодильные машины с режимами работы на охлаждение и обогрев, со встроенным гидромодулем, позволяющие как охлаждать теплоноситель, так и нагревать его. Моноблочное исполнение мини-чиллера снижает капитальные затраты на монтаж: из коммуникаций необходимо только подключить трубы с теплоносителем и подключить электропитание, при этом не требуются работы с холодильным контуром. Компрессоры GMCC, Copeland, Sanyo.

ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ

Испаритель пластинчатого типа

Встроенный гидромодуль

Спиральный компрессор

Встроенный контроллер

Модель			MDGC-F05W/N1	MDGC-F07W/N1	MDGC-F09W/N1	MDGC-F10W/SN1	MDGC-F12W/SN1	MDGC-F14W/SN1	MDGC-F16W/SN1			
	Охлаждение	кВт	5,0	7,2	9,0	10,5	12,0	14,0	16,0			
НОСТЬ	Нагрев	кВт	5,5	7,7	9,5	12,0	14,0	16,1	18,0			
		В/Гц/ф		220-240/50/1			380/50/3					
	Номинальный ток	А	8,82	12,5	16,1	5,5	6,7	7,4	9,8			
Охлаждение	Номинальная мощность	кВт	1,94	2,76	3,54	3,61	4,41	4,86	6,43			
	Номинальный ток	А	8,82	12,8	17,4	6,1	7,06	7,94	9,8			
	Номинальная мощность	кВт	1,99	2,83	3,82	4	4,64	5,22	6,44			
	Расход воды	M ³ /4	0,86	1,24	1,54	1,74	2	2,4	2,8			
	Уровень шума	ДБ(А)	55	56	58	60	59	6	0			
Хладагент	Тип					R410a						
	ШхВхГ	MM	990*9	66*354	940×12	245×360	1070*1249*420	1070*12	249*420			
		КГ	83	94	138	138	137	145	142			
	на охлаждение	C				+10-+43						
	на обогрев	C				-15 - +24						
	температура теплоносителя (охлаждение)	С				+5-+17						
	разность температур	град.				5						
Контроллер					встроенный S	Г542, проводной (опция) SWK210					

Чиллеры

МИНИ-СПЛИТ ЧИЛЛЕРЫ

Идеальное решение для небольших частных домов

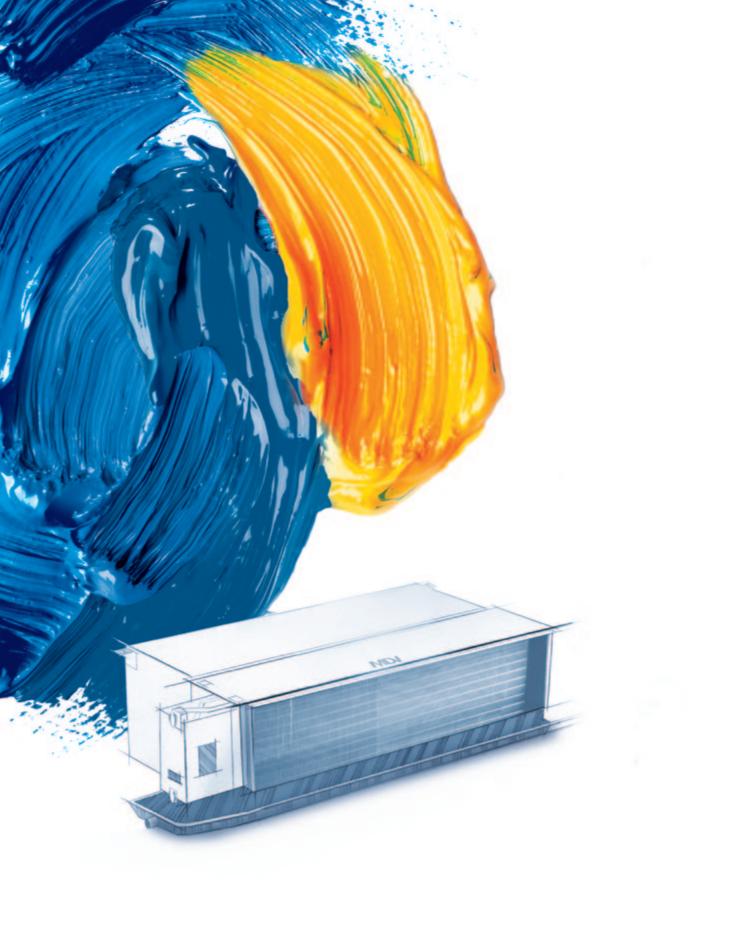
SWK 210

СЕРИЯ MDGA

ини-сплит чиллеры MDV с воздушным охлаждением конденсатора и спиральными компрессорами с регулируемой производительностью. Производительность 10, 12, 14, 16 кВт. Представляет собой наружный блок (компрессорно-конденсаторный блок), который соединяется медными трубопроводами хладагента с внутренним блоком чиллера (гидромодулем). Блок гидромодуля устанавливается в техническом помещении коттеджа. В состав блока входят пластинчатый теплообменник пластинчатого типа, насосная группа, реле протока и экспанзомат. При применении мини сплит-чиллера нет необходимости в заполнении системы водным раствором гликоля, т.к. вся часть системы, работающая с теплоносителем, находится в теплом помещении. В этом случае система заполняется подготовленной водой. Для управления чиллеры этих двух типов имеют встроенный контроллер. Если есть необходимость, то их можно доукомплектовать выносным контроллером, который можно установить в помещении. Компрессоры Copeland.

ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ

Испаритель пластинчатого типа


Спиральный компрессор

Внешний гидромодуль

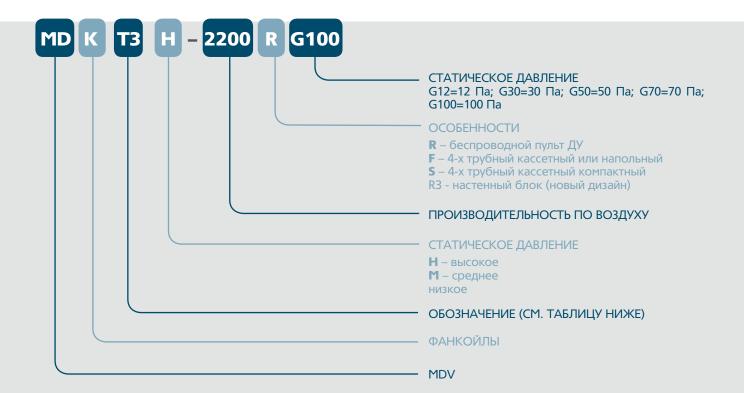
		чиллер идромодуль	MDGA-10/SN1 SBX/N1-01	MDGA-12/SN1 SBX/N1-01A	MDGA-14/SN1 SBX/SN1-01	MDGA-16/SN1 SBX/SN1-01A
	Охлаждение	кВт	10	12	14	16
	Нагрев	кВт	12,6	14,3	16	17
		В/Гц/ф	220-24	0/50/1	380/	/50/1
	Номинальный ток	А	17,8	18,1	6,95	7,65
	Номинальная мощность	кВт	3,91	3,98	4,45	4,9
	Номинальный ток	А	19,2	18,9	7,6	7,7
	Номинальная мощность	кВт	4,22	4,16	4,83	4,94
	Напор насоса	M	22	20	18	17
	Расход воды	M ³ /4	1,8	2,06	2,4	2,58
	Уровень шума(НБ)	дБ(А)	57	60	60	60
	Уровень шума(ВБ)	дБ(А)	38	39	41	38
	Тип			R4	10a	
	ШхВхГ(НБ)	MM	990*966*340		940*1250*340	
	ШхВхГ(ВБ)	MM	905*370*366		905*370*366	
		КГ	109	122	123	126
		КГ	52	54	54	55
	на охлаждение	С		+10	- +43	
	на обогрев	С		-15 -	+24	
	температура теплоносителя (охлаждение)	С		+5 -	+17	
	разность температур	град.		Ľ.	5	
Контроллер				проводной	KJR-08B/BE	

Фанкойлы (наименование по ГОСТ — вентиляционные доводчики) — устройства, содержащие теплообменник и вентилятор, предназначенные для поддержания комфортных температурных условий в помещении. В фанкойл подается теплоноситель от чиллера, также может поступать горячая вода из системы центрального отопления, и в некоторых типах свежий воздух от приточной установки. По своей конструкции и функциям фанкойлы похожи на внутренние блоки сплит-систем, но имеют ряд отличий.

Используется в теплоносителе вода или антифриз (незамерзающий водный раствор этиленгликоля). Расстояние между фанкойлами и чиллером практически не ограничено, и зависит только от параметров насоса гидромодуля. Для прокладки системы используются стандартные водопроводные трубы и запорная арматура, что значительно снижает расходы на монтаж. Основными характеристиками, влияющие на выбор фанкойла, являются производительность по холоду и производительность по воздуху.

Существует несколько типов фанкойлов, в зависимости от их внешнего вида, места установки, типа подключения к гидравлической системе и способа управления. От типа фанкойла зависит способ его подключения к гидравлической системе.

Двутрубные фанкойлы имеют один теплообменник. В зависимости от температуры подаваемого чиллером теплоносителя такой фанкойл работает либо на обогрев, либо на охлаждение помещения.


Четырехтрубные фанкойлы содержат два теплообменника. В один из них поступает теплоноситель от чиллера, другой подключается к центральной системе отопления. Фанкойлы этого типа могут быть использованы зимой в качестве основного источника отопления.

Типы фанкойлов MDV – канальные, кассетные, настенные, напольные и напольно-потолочные в корпусе и без корпуса. Модельный ряд с производительностью от 2 до 20 кВт.

Фанкойлы

АРТИКУЛЫ

Обозначения	Расшифровка
A	кассетный стандартный
С	кассетный однопоточный
D	кассетный компактный
F1	напольный без корпуса (фронтальный вход воздуха)
F2	напольный без корпуса (нижний вход воздуха)
F3	настенный
G	потолочный без корпуса (нижний)
H1	потолочный без корпуса (фронтальный забор воздуха)
H2	потолочный без корпуса (нижний)
H3	потолочный корпусной
T2	канальный (2-х рядный теплообменник)
ТЗ	канальный (3-х рядный теплообменник)
T4	канальный (4-х рядный теплообменник)
T3H***G***	канальный высоконапорный

Фанкойлы

КАССЕТНЫЕ ОДНОПОТОЧНЫЕ

ерия однопоточных кассетных фанкойлов MDV в компактном корпусе разработана в соответствии с европейскими нормами, и для европейского рынка. Отвечают самым жестким стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Две модели 3,0 кВт 3,79 кВт. Панель выполнена из высококачественного пластика.

В комплекте воздушный фильтр класса G2 и беспроводной пульт управления. Возможность комплектации платой адресации для целей диспетчеризации. Агрегаты включают корпус из пластика и стали с гальваническим покрытием, высокоэффективный теплообменник воздухоохладителя, вентилятор, поддон для сбора конденсата, клеммную колодку для коммутации. Применение высо-

кокачественных материалов и современных технологий обеспечивают низкий уровень шума агрегата. Полное соответствие требованиям безопасности.

Малая высота фанкойлов, всего 170 мм, обеспечивает возможность установки в условиях ограниченного межпотолочного пространства. Сокращены потери давления на теплообменниках. Легкость в проведении монтажа и работ по техобслуживанию. Медные трубки и алюминиевое оребрение теплообменника с покрытием из гидрофильного алюминия. Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором. Фанкойлы MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002.

Модель			MDKC-300R	MDKC-400R				
	Охлаждение	кВт	3,04	3,79				
	Нагрев	кВт	5,13	6,41				
		V-ph-Hz	220-24	90-50-1				
Номинальная мощность		Вт	46	46				
Рабочие показатели	Расход воздуха	M ³ /4	400	500				
Раоочие показатели ————————————————————————————————————	Уровень шума	ДБ(А)	32	34				
	Сопротивление	кРа	10,27	14,45				
	Расход воды	л/мин	8	10,2				
	Корпус (ШхВхГ)	MM	MM 1053*170*425					
	Панель (Ш х В х Г)	MM	1180*25*465					
	Корпус (ШхВхГ)	MM	1155*2	45*490				
	Панель (Ш х В х Г)	MM	1232*1	07*517				
Вес Нетто	Корпус	КГ	12	2,8				
	Панель	КГ	3	,5				
	Корпус	КГ	16	5,6				
	Панель	КГ	5	,2				
	Входная	дюйм	1/2	"BP				
	Выходная	дюйм	1/2	"BP				
	Дренажная труба	дюйм	2	5				

КАССЕТНЫЕ КОМПАКТНЫЕ

2011804A0020

ерия кассетных фанкойлов MDV в компактном корпусе разработана в соответствии с европейскими нормами и для европейского рынка. Отвечают самым жестким стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Полный модельный ряд от 3,0 кВт до 5,48 кВт.

Панель выполнена из высококачественного пластика. В комплекте воздушный фильтр класса G2 (противопылевой) и беспроводной пульт управления. Дополнительно поставляется дренажный поддон (в комплекте), разработанный с учетом подключения 3-х ходового клапана к фанкойлу. Возможность комплектации платой адресации для целей диспетчеризации. Агрегаты включают корпус, из пластика и стали с гальваническим покрытием, высокоэффективный теплообменник воздухоохладителя, вентилятор, поддон для сбора конденсата, клеммную колодку для коммутации.

Применение высококачественных материалов и современных технологий обеспечивает низкий уровень шума агрегата. Полное соответствие требованиям безопасности. Малая высота фанкойлов обеспечивают возможность установки в условиях ограниченного межпотолочного пространства. Уменьшена потеря давления на теплообменниках.

Легкость в проведении монтажа и работ по техобслуживанию. Медные трубки и алюминиевое оребрение теплообменника с покрытием из гидрофильного алюминия. Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором.

Фанкойлы MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002.

			MDKD-300R	MDKD-400R	MDKD-450R	MDKD-500R		
	Охлаждение	кВт	3	3,7	4,1	4,5		
	Нагрев	кВт	4	5,1	5,6	6		
		V-ph-Hz		220-24	10-50-1			
Номинальная мощность		Вт	50	70	80	95		
	Расход воздуха	м³/ч	510	680	760	850		
	Уровень шума	ДБ(А)	28	32	33	34		
	Сопротивление	кРа	14	15	15	16		
Гидравлические параметры	Расход воды	л/мин	0,516	0,636	0,684	0,774		
	Корпус (ШхВхГ)	MM	575*261*575					
	Панель (Ш х В х Г)	MM	647*50*647					
	Корпус (ШхВхГ)	MM		670*29	90*670			
	Панель (Ш х В х Г)	MM		715*12	23*715			
	Корпус	КГ		17	7,5			
	Панель	КГ		2	,5			
	Корпус	КГ		21	,5			
	Панель	КГ		4	,5			
	Входная	дюйм		3/4	"BP			
	Выходная	дюйм		3/4	"BP			
	Дренажная труба	дюйм		2	5			

КАССЕТНЫЕ ПОЛНОРАЗМЕРНЫЕ

ерия кассетных фанкойлов MDV в стандартном корпусе разработана в соответствии с европейскими нормами, и для европейского рынка. Отвечают самым жестким стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Полный модельный ряд от 5,72 кВт до 12,87 кВт.

Панель выполнена из высококачественного пластика. В комплекте воздушный фильтр класса G2 (противопылевой) и беспроводной пульт управления. В комплекте дренажный поддон, разработанный с учетом подключения 3-х ходового клапана к фанкойлу. Возможность комплектации платой адресации для целей диспетчеризации. Агрегаты включают корпус из пластика и стали с гальваническим покрытием, высокоэффективный теплообменник воздухоохладителя, вентилятор, поддон для сбора конденсата, клеммную колодку для коммутации.

Применение высококачественных материалов и современных технологий обеспечивают низкий уровень шума агрегата. Полное соответствие требованиям безопасности. Малая высота фанкойлов обеспечивает возможность установки в условиях ограниченного межпотолочного пространства. Уменьшена потеря давления на теплообменниках.

Легкость в проведении монтажа и работ по техобслуживанию. Медные трубки и алюминиевое оребрение теплообменника с покрытием из гидрофильного алюминия. Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором. Цифровой дисплей на панели управления.

Фанкойлы MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002.

Модель			MDKA-600R	MDKA-750R	MDKA-850R	MDKA-950R	MDKA-1200R	MDKA-1500R
	Охлаждение	кВт	5,7	7	7,27	8,22	10,39	12,9
	Нагрев	кВт	9,96	11,55	12,42	12,85	17,58	17,6
		V-ph-Hz			220-24	10-50-1		
		Вт	125	130	150	155	190	190
	Расход воздуха	М³/ЧЧ	1000	1250	1400	1600	2000	2250
	Уровень шума	ДБ(А)	36	37	38	39	40	41
	Сопротивление	кРа	23,8	25,2	27	30	44	56
Гидравлические параметры	Расход воды	л/мин	0,98	1,204	1,25	1,414	1,787	2,219
² азмер	Корпус (ШхВхГ)	MM	830*24	0*830		830*3	00*830	
	Панель (Ш x B x Г)	MM						
	Корпус (ШхВхГ)	MM	960*26	0*900		900*3	30*900	
	Панель (Ш x B x Г)	MM	1035*90*1035					
	Корпус	КГ	25	5		30,5		35
	Панель	КГ			(6		
	Корпус	КГ	27	7		33		37,5
	Панель	КГ			(9		
Диаметр труб	Входная	дюйм			3/4	"BP		
	Выходная	дюйм			3/4	"BP		
	Дренажная труба	дюйм			3	32		

Фанкойлы

НАСТЕННЫЕ

CMOTPИТЕ 3D-МОДЕЛЬ ВНУТРЕННЕГО БЛОКА НА САЙТЕ WWW.MDV-RUSSIA.RU

ерия настенных фанкойлов MDV разработана в соответствии с европейскими нормами, и для европейского рынка. Отвечают самым строгим стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Полный модельный ряд от 2,2кВт до 4,56 кВт.

Корпус выполнен из высококачественного пластика. Встроенный в корпус 3-х ходовой клапан упрощает монтаж фанкойла. В комплекте воздушный фильтр класса G2 (противопылевой) и беспроводной пульт управления. Возможность комплектации платой адресации для целей диспетчеризации. Агрегаты включают корпус из пластика, высокоэффективный теплообменник воздухоохладителя, вентилятор, поддон для сбора конденсата, клеммную колодку для коммутации.

Применение высококачественных материалов и современных технологий обеспечивает низкий уровень шума агрегата. Полное соответствие требованиям безопасности. Уменьшена потеря давления на теплообменниках.

Легкость в проведении монтажа и работ по техобслуживанию. Медные трубки и алюминиевое оребрение теплообменника с покрытием из гидрофильного алюминия.

Фанкойлы MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002. Настенные фанкойлы MDV новой серии R3 сертифицированы EUROVENT.

Модель			MDKG-250R3	MDKG-300R3	MDKG-400R3	MDKG-500R3	MDKG-600R3	
	Охлаждение	кВт	2,63	2,97	3,28	4,25	5	
	Нагрев	кВт	3,36	3,91	4,37	5,81	6,7	
		V-ph-Hz	220-240-50					
Номинальная мощность		Вт	24	37	40	50	66	
	Расход воздуха	м³/ч	425	510	680	850	1020	
	Уровень шума	ДБ(А)	20	24	26	28	29	
	Сопротивление	кРа	29,4	35,6	22	26	29	
Гидравлические параметры	Расход воды	л/мин	7,53	8,52	9,4	12,18	14,33	
	ШхВхГ	MM		915*290*210			30*315	
	ШхВхГ	MM		1020*300*390		1180*315*415		
		КГ	13	13	13,3	15	5,8	
		КГ	16,3	16,3	16,7	19	9,4	
	Входная	дюйм			3/4" BP			
	Выходная	дюйм			3/4" BP			
	Дренажная труба	дюйм			20			

НАСТЕННЫЕ

ерия настенных фанкойлов MDV разработана в соответствии с европейскими нормами, и для европейского рынка. Отвечают самым строгим стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Полный модельный ряд от 2,2кВт до 4,56 кВт.

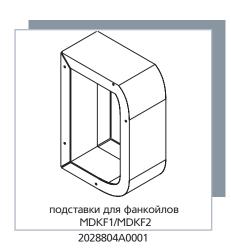
Корпус выполнен из высококачественного пластика. Встроенный в корпус 3-х ходовой клапан упрощает монтаж фанкойла. В комплекте воздушный фильтр класса G2 (противопылевой) и беспроводной пульт управления. Возможность комплектации платой адресации для целей диспетчеризации. Агрегаты включают корпус из пластика, высокоэффективный теплообменник воздухоохладителя, вентилятор, поддон для сбора конденсата, клеммную колодку для коммутации.

Применение высококачественных материалов и современных технологий обеспечивает низкий уровень шума агрегата. Полное соответствие требованиям безопасности. Уменьшена потеря давления на теплообменниках.

Легкость в проведении монтажа и работ по техобслуживанию. Медные трубки и алюминиевое оребрение теплообменника с покрытием из гидрофильного алюминия.

Фанкойлы MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002.

			MDKG-250	MDKG-300	MDKG-400	MDKG-500	MDKG-600	
	Охлаждение	кВт	2,2	2,64	3,08	4,07	4,56	
	Нагрев	кВт	3,02	3,69	4,34	5,69	6,3	
		V-ph-Hz						
		Вт	28	40	44	50	60	
	Расход воздуха	M ³ /4	425	510	680	850	1020	
<u>Рабочие показатели</u>	Уровень шума	ДБ(А)	30	3	5	3	8	
	Сопротивление	кРа	12	18	22	26	29	
Гидравлические параметры	Расход воды	л/мин	6,3	7,57	8,82	11,68	12,77	
	ШхВхГ	MM	915*290*210			1070*315*210		
	ШхВхГ	MM		1020*300*385	1180*300*410			
		КГ		12		1	5	
		КГ		16		1	9	
	Входная	дюйм			3/4" BP			
Диаметр труб	Выходная	дюйм			3/4" BP			
	Дренажная труба	дюйм			20			


Фанкойлы

НАПОЛЬНЫЕ И ПОТОЛОЧНЫЕ (КОРПУСНЫЕ И БЕСКОРПУСНЫЕ)

ерия напольных фанкойлов MDKF разработана в соответствии с европейскими нормами, и для европейского рынка. Предназначены для вертикального монтажа с фронтальным (серия MDKF1) или с нижним (серия MDKF2) забором воздуха. Поставляются в корпусном и бескорпусном (серия MDKF3) исполнениях. Производятся из компонентов прошедших многоступенчатый контроль качества. Полный модельный ряд от 1,15 кВт до 7,85 кВт. Фанкойлы серии MDKF разработаны и изготовлены на базе передовых технологий. Небольшой размер и толщина агрегата дают ему ряд преимуществ, таких, как экономия места и легкость осуществления монтажа. Применение высококачественных материалов и современных технологий обеспечивают оптимальную производительность и низкий уровень шума агрегата. В комплекте поставляется дренажный поддон, разработанный с учетом подключения 3-х ходового клапана к фанкойлу. Фанкойлы серии MDKF производства MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Благодаря небольшим размерам и удачному дизайну агрегаты данной серии подходят для применения, как в промышленных, так и в бытовых помещениях. Полное соответствие требованиям безопасности. Плавные линии корпуса агрегата. Широкий диапазон устройств управления. Низкий уровень шума. Сокращение потери давления на теплообменниках. Легкость в проведении монтажа и работ по техобслуживанию. Воздушный фильтр класса G2 (противопылевой) легко снимается и чистится. Съемные крыльчатки вентилятора для обеспечения легкой и эффективной чистки. Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором.

Медные трубки и алюминиевое оребрение теплообменника с покрытием из из гидрофильного алюминия. Агрегат изготовлен из коррозионно стойкой оцинкованной стали с гальваническим покрытием. Для корпусных моделей применяется высококачественный пластик. Массивный оцинкованный стальной дренажный поддон оснащен теплоизоляцией, предотвращающей запотевание и коррозию. Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002.

ерия потолочных фанкойлов МDКН, разработана в соответствии с европейскии нормами, и для европейского рынка. Предназначены для вертикального и подпотолочного монтажа с фронтальным (серия MDKH1) или с нижним (серия MDKH2) забором воздуха. Поставляются в корпусном и бескорпусном (серия MDKH3) исполнениях. Производятся из компонентов прошедших многоступенчатый контроль качества. Полный модельный ряд от 1,15 кВт до 7,85 кВт. Фанкойлы серии МDKH разработаны и изготовлены на базе передовых технологий. Небольшой размер и толщина агрегата дают ему ряд преимуществ, таких, как экономия места и легкость осуществления монтажа. Применение высококачественных материалов и современных технологий обеспечивают оптимальную производительность и низкий уровень шума агрегата. В комплекте поставляется дренажный поддон, разработанный с учетом подключения 3-х ходового клапана к фанкойлу. Фанкойлы серии MDKH производства MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Благодаря небольшим размерам и удачному дизайну агрегаты данной серии подходят для применения, как в промышленных, так и в бытовых помещениях. Полное соответствие требованиям безопасности.

Плавные линии корпуса агрегата. Широкий диапазон устройств управления. Низкий уровень шума. Сокращение потери давления на теплообменниках. Легкость в проведении монтажа и работ по техобслуживанию. Воздушный фильтр класса G2 (противопылевой) легко снимается и чистится. Съемные крыльчатки вентилятора для обеспечения легкой и эффективной чистки. Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором.

Медные трубки и алюминиевое оребрение теплообменника с покрытием из из гидрофильного алюминия. Агрегат изготовлен из коррозионно стойкой оцинкованной стали с гальваническим покрытием. Для корпусных моделей применяется высококачественный пластик. Массивный оцинкованный стальной дренажный поддон оснащен теплоизоляцией, предотвращающей запотевание и коррозию. Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002.

СПЕЦИФИКАЦИИ, НАПОЛЬНЫЕ С ФРОНТАЛЬНЫМ ЗАБОРОМ ВОЗДУХА

Модель			MDKF1-150	MDKF1-250	MDKF1-300	MDKF1-400	MDKF1-450	MDKF1-500	MDKF1-600	MDKF1-800	MDKF1-900
Производительность	Охлажде- ние	кВт	1,15	1,87	2,53	3,27	3,97	4,95	5,64	6,52	7,85
	Нагрев	кВт	1,52	2,53	3,49	4,58	5,64	6,98	8,23	9,58	11,69
Электропитание		V-ph-Hz					220-240-50-1				
Номинальная мощ- ность		Вт	29	30	44	47	36	51	64	97	143
	Расход воздуха	М³/Ч	255	425	510	680	765	850	1020	1360	1530
	Уровень шума	ДБ(А)	28	29	30	33	34	35	37	38	42
	Сопротив- ление	кРа	18,3	10,1	14,2	9,5	10,3	24,6	11,4	9,5	12,1
	Расход воды	л/мин	3,3	5,37	7,25	9,27	11,18	13,9	16,17	18,83	22,5
	ШхВхГ	MM	800*6	26*225	1000*6	526*225	1200*6	526*225		1500*626*225)
	ШхВхГ	MM	889*7	22*312	1089*7	722*312	1289*7	722*312	1589*722*312		
	Корпус	КГ	22	2,5	2	26	3	2,5		39	
	Корпус	КГ	26	5,5	3	31	3	38		45	
В В Диаметр труб В Д	Входная	дюйм					3/4"BP				
	Выходная	дюйм					3/4"BP				
	Дренажная труба	дюйм					3/4"HP				

СПЕЦИФИКАЦИИ, НАПОЛЬНЫЕ С НИЖНИМ ЗАБОРОМ ВОЗДУХА

		•									
Модель			MDKF2-150	MDKF2-250	MDKF2-300	MDKF2-400	MDKF2-450	MDKF2-500	MDKF2-600	MDKF2-800	MDKF2-900
	Охлажде- ние	кВт	1,15	1,87	2,53	3,27	3,97	4,95	5,64	6,52	7,85
	Нагрев	кВт	1,52	2,53	3,49	4,58	5,64	6,98	8,23	9,58	11,69
		V-ph-Hz					220-240-50-1				
		Вт	29	30	44	47	36	51	64	97	143
	Расход воздуха	м³/ч	255	425	510	680	765	850	1020	1360	1530
Рабочие показатели	Уровень шума	ДБ(А)	28	29	30	33	34	35	37	38	42
Гидравлические	Сопротив- ление	кРа	18,3	10,1	14,2	9,5	10,3	24,6	11,4	9,5	12,1
	Расход воды	л/мин	3,3	5,37	7,25	9,27	11,18	13,9	16,17	18,83	22,5
	ШхВхГ	MM	800*6	26*225	1000*6	526*225	1200*6	526*225		1500*626*225	,
	ШхВхГ	MM	889*7	22*312	1089*7	722*312	1289*722*312		1589*722*312)
	Корпус	КГ	2:	2,5	2	26	32,5		39		
	Корпус	КГ	20	6,5	3	31	3	38		45	
В Диаметр труб	Входная	дюйм					3/4"BP				
	Выходная	дюйм					3/4"BP				
	Дренажная труба	дюйм					3/4"HP				

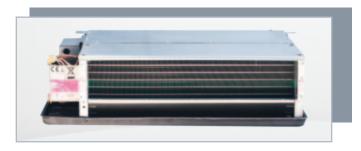
СПЕЦИФИКАЦИИ, НАПОЛЬНЫЕ БЕСКОРПУСНЫЕ

Модель			MDKF3-150	MDKF3-250	MDKF3-300	MDKF3-400	MDKF3-450	MDKF3-500	MDKF3-600	MDKF3-800	MDKF3-900	
Производительность	Охлажде- ние	кВт	1,15	1,87	2,53	3,27	3,97	4,95	5,64	6,52	7,85	
	Нагрев	кВт	1,52	2,53	3,49	4,58	5,64	6,98	8,23	9,58	11,69	
Электропитание		V-ph-Hz		220-240-50-1								
Номинальная мощ-		Вт	29	30	44	47	36	51	64	97	143	
Рабочие показатели	Расход воздуха	м³/ч	255	425	510	680	765	850	1020	1360	1530	
Раоочие показатели	Уровень шума	ДБ(А)	28	29	30	33	34	35	37	38	42	
Гидравлические	Сопротив- ление	кРа	18,3	10,1	14,2	9,5	10,3	24,6	11,4	9,5	12,1	
параметры	Расход воды	л/мин	3,3	5,37	7,25	9,27	11,18	13,9	16,17	18,83	22,5	
Размер	ШхВхГ	MM	550*5	45*212	750*5	45*212	950*5	45*212	1250*545*212			
Размер в упаковке	ШхВхГ	MM	795*6	40*305	995*6	40*305	1039*6	540*305	1495*640*305			
Вес Нетто	Корпус	КГ	1	7	2	20	25		32			
Вес Брутто	Корпус	КГ	1	9	2	23	2	29		36		
Диаметр труб	Входная	дюйм					3/4"BP					
	Выходная	дюйм					3/4"BP					
	Дренажная труба	дюйм					3/4"HP					

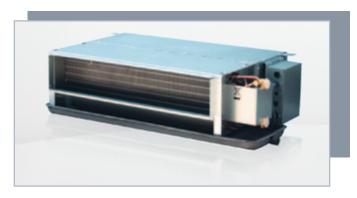
Фанкойлы

СПЕЦИФИКАЦИИ, ПОТОЛОЧНЫЕ С ФРОНТАЛЬНЫМ ЗАБОРОМ ВОЗДУХА

Модель			MDKH1-150	MDKH1-250	MDKH1-300	MDKH1-400	MDKH1-450	MDKH1-500	MDKH1-600	MDKH1-800	MDKH1-900
	Охлажде- ние	кВт	1,15	1,87	2,53	3,27	3,97	4,95	5,64	6,52	7,85
НОСТЬ	Нагрев	кВт	1,52	2,53	3,49	4,58	5,64	6,98	8,23	9,58	11,69
Электропитание		V-ph-Hz					220-240-50-1				
Номинальная мощность		Вт	29	30	44	47	36	51	64	97	143
Рабочие показа-	Расход воздуха	M ³ /4	255	425	510	680	765	850	1020	1360	1530
тели	Уровень шума	ДБ(А)	28	29	30	33	34	35	37	38	42
Гидравлические	Сопротив- ление	кРа	18,3	10,1	14,2	9,5	10,3	24,6	11,4	9,5	12,1
	Расход воды	л/мин	3,3	5,37	7,25	9,27	11,18	13,9	16,17	18,83	22,5
Размер	ШхВхГ	MM	800*6	26*225	1000*6	526*225	1200*6	26*225		1500*626*22	5
	ШхВхГ	MM	889*7	22*312	1089*7	722*312	1289*7	22*312		1589*722*312	2
Вес Нетто	Корпус	КГ	22	2,5	2	26	32	2,5		39	
	Корпус	КГ	26	5,5	3	31	3	88		45	
	Входная	дюйм					3/4"BP				
Диаметр труб	Выходная	дюйм					3/4" BP				
Hamery 1910	Дренажная труба	дюйм					3/4" HP				


СПЕЦИФИКАЦИИ, ПОТОЛОЧНЫЕ С НИЖНИМ ЗАБОРОМ ВОЗДУХА

Модель			MDKH2-150	MDKH2-250	MDKH2-300	MDKH2-400	MDKH2-450	MDKH2-500	MDKH2-600	MDKH2-800	MDKH2-900					
	Охлажде- ние	кВт	1,15	1,87	2,53	3,27	3,97	4,95	5,64	6,52	7,85					
НОСТЬ	Нагрев	кВт	1,52	2,53	3,49	4,58	5,64	6,98	8,23	9,58	11,69					
Электропитание		V-ph-Hz					220-240-50-1									
Номинальная мощ-		Вт	29	30	44	47	36	51	64	97	143					
2.6	Расход воздуха	м³/ч	255	425	510	680	765	850	1020	1360	1530					
Рабочие показатели	Уровень шума	ДБ(А)	28	29	30	33	34	35	37	38	42					
Гидравлические	Сопротив- ление	кРа	18,3	10,1	14,2	9,5	10,3	24,6	11,4	9,5	12,1					
	Расход воды	л/мин	3,3	5,37	7,25	9,27	11,18	13,9	16,17	18,83	22,5					
	ШхВхГ	MM	800*6	26*225	1000*626*225		1200*626*225		1500*626*225							
	ШхВхГ	MM	889*7	22*312	1089*7	722*312	1289*7	1289*722*312		1589*722*312						
Вес Нетто	Корпус	КГ	22	2,5	26		32,5		39							
	Корпус	КГ	26	5,5	31 3			38 45								
	Входная	дюйм					3/4"BP									
	Выходная	дюйм					3/4"BP									
	Дренажная труба	дюйм					3/4"HP									


СПЕЦИФИКАЦИИ, ПОТОЛОЧНЫЕ БЕСКОРПУСНЫЕ

Модель			MDKH3-150	MDKH3-250	MDKH3-300	MDKH3-400	MDKH3-450	MDKH3-500	MDKH3-600	MDKH3-800	MDKH3-900				
Производитель-	Охлажде- ние	кВт	1,15	1,87	2,53	3,27	3,97	4,95	5,64	6,52	7,85				
НОСТЬ	Нагрев	кВт	1,52	2,53	3,49	4,58	5,64	6,98	8,23	9,58	11,69				
Электропитание		V-ph-Hz					220-240-50-1								
Номинальная мощ-		Вт	29	30	44	47	36	51	64	97	143				
Расход воздуха	Расход воздуха	М³/Ч	255	425	510	680	765	850	1020	1360	1530				
Рабочие показатели	Уровень шума	ДБ(А)	28	29	30	33	34	35	37	38	42				
Гидравлические	Сопротив- ление	кРа	18,3	10,1	14,2	9,5	10,3	24,6	11,4	9,5	12,1				
	Расход воды	л/мин	3,3	5,37	7,25	9,27	11,18	13,9	16,17	18,83	22,5				
Размер	ШхВхГ	MM	550*54	45*212	750*545*212		950*545*212		1250*545*212						
	ШхВхГ	MM	795*6	40*305	995*6	40*305	1039*6	1039*640*305		1495*640*305					
Вес Нетто	Корпус	КГ	1	7	20		25		32						
	Корпус	КГ	1	9	2	23 29			29 36						
	Входная	дюйм					3/4"BP								
Диаметр труб	Выходная	дюйм					3/4"BP								
	Дренажная труба	дюйм					3/4"HP	3/4"HP							

КАНАЛЬНЫЕ

Устанавливаются за подвесным потолком и не нарушают интерьер помещений. Особенность канальных фанкойлов заключается в том, что они могут подсоединяться к общей вентиляционной системе здания и, таким образом, не только охлаждают или обогревают помещение, но еще и подмешивают свежий воздух из приточной установки. Различаются по производительности и статическому давлению.

MDKT2(3)-__G(12/30/50)

Новая серия канальных фанкойлов с двух и трехрядными теплообменниками MDV разработана в соответствии с европейскими нормами, и для европейского рынка. Отвечают самым жестким стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Сертифицированы по стандартам EUROVENT.

Три варианта с различным внешним статическим давлением 12, 30 и 50 Па. Полный модельный ряд от 2,2 кВт до 12,5 кВт. Корпус выполнен из стали с гальваническим покрытием хорошо противостоящим коррозии. Снабжены фланцами для подключения пленумов или воздуховодов. Увеличенный шаг оребрения – 2,2 мм. В комплекте дренажный поддон, разработанный с учетом подключения 3-х ходового клапана к фанкойлу. В комплекте воздушный фильтр класса G2 (противопылевой), фильтр для чистки может выниматься вверх, вниз, вправо и влево. Новый симметричный дизайн, возможность простого поворота теплообменника по оси для смены стороны подключения. Возможность комплектации платой управления для целей диспетчеризации.

Фанкойлы предназначены для скрытой горизонтальной установки за подвесным потолком или в эксплуатационном помещении. Фанкойлы имеют безкорпусное исполнение. Агрегаты включают корпус из оцинкованой стали, высокоэффективный теплообменник воздухоохладителя, центробежный вентилятор, поддон для сбора конденсата, клеммную колодку для подключения термостата управления. Применение высококачественных материалов и современных технологий обеспечивают низкий уровень шума агрегата. Полное соответствие требованиям безопасности. Малые габаритные размеры фанкойлов обеспечивают возможность установки в условиях ограниченного пространства. Сокращение потери давления на теплообменниках. Легкость в проведении монтажа и работ по техобслуживанию.

Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором. Медные трубки и алюминиевое оребрение теплообменника с покрытием из из гидрофильного алюминия. Массивный оцинкованный стальной дренажный поддон оснащен теплоизоляцией, предотвращающей запотевание и коррозию.

Фанкойлы MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Агрегат прошел испытания на производительность в соответствии со стандартами IEC 60335-2-40-2002 и EUROVENT6/C/002-2007.

Фанкойлы

Модель MDKT2-		200G(12/30/50)	300G(12/30/50)	400G(12/30/50)	500G(12/30/50)	600G(12/30/50)				
		м3/ч	340/255/170	510/385/255	680/510/430	850/640/425	1020/765/510			
		кВт	2,00	2,70	3,60	4,40	5,50			
Теплопроизводительность		кВт	3,20	4,30	5,40	6,80	8,10			
Расход теплоносителя		М³/Ч	0,344	0,644	0,619	0,757	0,946			
		Па			12/30/50					
Электропитание		В/Гц/Ф	220-240/50/1							
Потребляемая мощность	12Па	Вт	31	50	60	80	97			
	30Па	Вт	45	55	67	108	110			
	50Па	Вт	45	55	67	108	110			
	12Па	дБ(А)	36/34/29	38/33/29	38/35/31	39/36/32	40/36/33			
Уровень шума (Выс/Сред/Низ)	30Па	дБ(А)	41/37/31	41/37/32	42/39/33	45/41/34	46/41/35			
	50Па	дБ(А)	41/37/33	41/37/35	42/39/36	45/41/37	46/41/37			
Рабочее давление		Мпа	1,0							
Габаритные размеры	(Ш*В*Г)	MM	757*241*522	841*241*522	941*2	41*522	1161*241*522			
Веснетто		КГ	13,9	16,5	19,2	19,2	22			
Подключение труб теплоносителя		дюйм	3/4" BP							
Подключение дренажа(внешний диа	метр)	MM	24							

Модель MDKT2-			800G(12/30/50)	1000G(12/30/50)	1200G(12/30/50)	1400G(12/30/50)			
	ность по воздуху (Выс/Сред/Низ) м3/ч 1360/1020/680 1700/1275/850 2040/1530/1020 2380/1785/11								
		кВт	7,50	8,90	10,80	12,30			
Теплопроизводительность		кВт	11,00	13,50	16,50	19,50			
Расход теплоносителя		м³/ч							
		Па		12/3	0/50				
Электропитание		В/Гц/Ф		220-24	0/50/1				
Потребляемая мощность	12Па	Вт	140	172	205	216			
	30Па	Вт 130		171	212	249			
	50Па	Вт	130	171	212	249			
	12Па	дБ(А)	42/37/33	44/39/34	46/40/35	48/42/37			
Уровень шума (Выс/Сред/Низ)	30Па	дБ(А)	46/41/36	47/43/37	48/44/38	49/44/39			
	50Па	дБ(А)	46/41/40	47/43/41	48/44/41	49/44/42			
Рабочее давление		Мпа	1,0						
Габаритные размеры	(Ш*В*Г)	MM	1461*241*522	1566*241*522	1856*241*522	2022*241*522			
Веснетто		КГ	30,9	33,4	42	47,5			
Подключение труб теплоносителя	оносителя дюйм 3/4" ВР								
Подключение дренажа(внешний диам	етр)	MM		2	4				

СПЕЦИФИКАЦИИ (12 ПА)

Модель MDKT3-			200G(12/30/50)	300G(12/30/50)	400G(12/30/50)	500G(12/30/50)	600G(12/30/50)			
		м3/ч	340/255/170	510/385/255	680/510/430	850/640/425	1020/765/510			
		кВт	2,2	3,1	4,0	4,6	5,8			
Теплопроизводительность		кВт	3,5	5,3	6,8	7,9	9,8			
Расход теплоносителя		M ³ /4	0,378	0,533	0,688	0,791	0,998			
		Па			12/30/50					
Электропитание		В/Гц/Ф	/Ф 220-240/50/1							
Потребляемая мощность	12Па	Вт	33	53	66	87	100			
	30Па	Вт	49	64	75	93	114			
	50Па	Вт	49	64	75	93	114			
	12Па	дБ(А)	35/32/26	36/33/27	37/34/28	40/36/30	42/38/32			
Уровень шума (Выс/Сред/Низ)	30Па	дБ(А)	41/37/31	42/38/32	43/39/33	44/40/34	45/41/35			
	50Па	дБ(А)	45/40/35	47/42/37	48/43/38	49/44/39	49/44/40			
Рабочее давление		Мпа	1,0							
Габаритные размеры	(Ш*В*Г)	MM	757*241*522	841*241*522	941*2	41*522	1161*241*522			
Вес нетто кг			14,6	17	20,2	20,2	23			
Подключение труб теплоносителя		дюйм	3/4" BP							
Дренажная труба(НД)		MM	24							

Модель MDKT3-			800G(12/30/50)	1000G(12/30/50)	1200G(12/30/50)	1400G(12/30/50)			
		м3/ч	1360/1020/680	1700/1275/850 2040/1530/1020 2380/1785/1190					
		кВт	8,2	9,0	11,0	12,5			
Теплопроизводительность		кВт	13,6	16,0	20,1	21,0			
Расход теплоносителя		м³/ч							
		Па	12/30/50						
Электропитание		В/Гц/Ф	220-240/50/1						
Потребляемая мощность	12Па	Вт	145	180	210	222			
	30Па	Вт	154	180	220	222			
	50Па	Вт	154	180	220	222			
	12Па	дБ(А)	43/39/33	45/41/35	46/42/36	48/44/38			
Уровень шума (Выс/Сред/Низ)	30Па	дБ(А)	46/42/36	47/43/37	48/44/38	49/45/39			
	50Па	дБ(А)	49/45/40	50/45/40	51/46/41	51/46/42			
Рабочее давление		Мпа	1,0						
Габаритные размеры	(Ш*В*Г)	MM	1461*241*522	1566*241*522	1856*241*522	2022*241*522			
Вес нетто		КГ	31,9	34,4	39,5	43,1			
Подключение труб теплоносителя	дюйм 3/4" ВР								
Дренажная труба(НД)		MM		2	4				

ТРЕХРЯДНЫЕ КАНАЛЬНЫЕ ФАНКОЙЛЫ БОЛЬШОЙ МОЩНОСТИ, ВЫСОКОНАПОРНЫЕ СЕРИИ MDKT3H-___G(70/100)

ерия высоконапорных канальных фанкойлов с трехрядным теплообменником MDV разработана в соответствии с европейскими нормами, и для европейского рынка. Отвечают самым жестким стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Два варианта с различным внешним статическим давлением, 70 и 100 Па. Полный модельный ряд от 6,5 кВт до 19,9 кВт.

Корпус выполнен из стали с гальваническим покрытием хорошо противостоящим коррозии. Снабжены фланцами для подключения пленумов или воздуховодов. Шаг оребрения – 1,8 мм. В комплекте дренажный поддон, разработанный с учетом подключения 3-х ходового клапана к фанкойлу. В комплекте воздушный фильтр класса G2 (противопылевой). Возможность комплектации платой управления для целей диспетчеризации. Фанкойлы предназначены для скрытой горизонтальной установки за подвесным потолком или в эксплуатационном помещении. Фанкойлы имеют безкорпусное исполнение. Агрегаты включают корпус из оцинкованной стали, высокоэффективный теплообменник воздухоохладителя, центробежный вентилятор, поддон для сбора конденсата, клеммную колодку для подключения термостата управления. Применение высококачественных материалов и современных технологий обеспечивают низкий уровень шума агрегата. Полное соответствие требованиям безопасности. Малые габаритные размеры фанкойлов обеспечивают возможность установки в условиях ограниченного пространства.

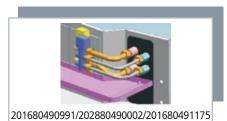
Сокращение потери давления на теплообменниках. Легкость в проведении монтажа и работ по техобслуживанию. Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором. Медные трубки и алюминиевое оребрение теплообменника с покрытием из из гидрофильного алюминия. Массивный оцинкованный стальной дренажный поддон оснащен теплоизоляцией, предотвращающей запотевание и коррозию.

Фанкойлы MDV прошли испытания в национальном центре проверки качества систем центрального кондиционирования. Они рекомендованы к использованию Китайской Ассоциацией холодильной промышленности CRRA (China Refrigeration And Air-Conditioner Industry Association). Агрегат прошел испытания на производительность в соответствии со стандартом IEC 60335-2-40-2002.

СПЕПИФИКАПИИ

			MDKT3-800G70	MDKT3-1000G70	MDKT3-1200G70	MDKT3-1400G70	MDKT3-1600G100	MDKT3-1800G100	MDKT3-2200G100		
	Охлажде- ние	кВт	6,6	8,8	10	12	14,1	15,8	19,9		
НОСТЬ	Нагрев	кВт	9,7	13,2	15	17,9	21,2	23,8	30		
		V-ph-Hz		220-240-50-1							
	Расход воздуха	м³/ч	1360	1700	2040	2380	2720	3060	3740		
Рабочие пока- затели	Уровень шума	ДБ(А)	49/42/35	50/4	3/36	51/44/37	52/45/38	54/47/40	60/53/46		
	Стат. Давле- ние	Pa		7	0		100				
Гидравлические	Сопротив-	кРа	8,5	24	23,4	34,2	51	85	121		
	Расход воды	л/мин	1,135	1,514	1,72	2,064	2,425	2,718	3,423		
	ШхВхГ	MM		946*40	00*816			1290*400*809			
	ШхВхГ	MM		1015*4	80*857			1368*460*877			
		КГ	50	5	2	54		76			
		КГ	55	55 57 59 83							
Входная дюйм 3/4" ВР											
	Выходная	дюйм		3/4" BP							
	Дренажная труба	дюйм				32					

ЧЕТЫРЕХТРУБНЫЕ



етырехтрубные фанкойлы MDV разработаны в соответствии с европейскими нормами, и для европейского рынка. Отвечают самым жестким стандартам качества. Производятся из компонентов прошедших многоступенчатый контроль качества. Модельный ряд представлен кассетными компактными, кассетными и канальными фанкойлами. Применение высококачественных материалов и современных технологий обеспечивают низкий уровень шума агрегата. Полное соответствие требованиям безопасности. Сокращены потери давления в теплообменниках. Легкость в проведении монтажа и работ по техобслуживанию. Медные трубки и алюминиевое оребрение теплообменника, которое имеет покрытие из гидрофильного алюминия. Вентиляторы приводятся в движение непосредственно однофазным 4х-скоростным конденсаторным двигателем с постоянно включенным конденсатором.

Основное отличие четырехтрубных фанкойлов от двухтрубных заключается в наличии дополнительных рядов теплообменика. Это позволяет одновременно подключать фанкойл к источникам охлажденной и горячей воды (чиллеру, системе отопления). Это позволяет использовать фанкойлы как основные источников тепла взамен системы отопления с радиаторами.

3-х ходовые клапаны

СПЕЦИФИКАЦИИ, КАССЕТНЫЙ КОМПАКТНЫЙ, 4-Х ТРУБНЫЙ

Модель			MDKD-300S	MDKD-400S	MDKD-500S	
	Охлаждение	кВт	2,5	2,9	3,5	
	Нагрев	кВт	3,7	4,6	5,1	
		V-ph-Hz		220-240-50-1		
Номинальная мощность		Вт	50	70	95	
Рабочие показатели	Расход воздуха	м3/ч	510	680	850	
Рабочие показатели	Уровень шума	ДБ(А)	28	32	34	
	Сопротивление (охл.)	кРа	22	16	24	
	Сопротивление(нагрев)	кРа	17	23	27	
Гидравлические параметры	Расход воды (охл.)	м³/час	0,432	0,504	0,6	
	Расход воды (нагрев)	м³/час	0,318	0,396	0,438	
	Корпус (Ш x B x Г)	MM		575*261*575		
	Панель (Ш x B x Г)	MM	647*50*647			
	Корпус (Ш x B x Г)	MM	665*290*665			
	Панель (Ш x B x Г)	MM	715*123*715			
Вес Нетто	Корпус	КГ		17,5		
вес нетто	Панель	КГ		3		
	Корпус	КГ		21,5		
	Панель	КГ		5		
	Входная (охл.)	дюйм		3/4" BP		
	Выходная (охл.)	дюйм		3/4" BP		
	Входная (нагрев)	дюйм	1/2" BP			
	Выходная (нагрев)	дюйм	1/2" BP			
	Дренажная труба (НД)	дюйм	25			

СПЕЦИФИКАЦИИ, КАССЕТНЫЙ 4-Х ТРУБНЫЙ

Модель			MDKA-600F	MDKA-750F	MDKA-850F	MDKA-950F	MDKA-1200F	MDKA-1500F	
	Охлаждение	кВт	5,1	5,93	6,17	6,7	9,28	10,58	
	Нагрев	кВт	6,67	7,87	8,06	8,67	11,65	12,62	
		V-ph-Hz	220-240-50-1						
Номинальная мощность		Вт	170	188	198	205	197	234	
	Расход воздуха	м3/ч	1150	1460	1480	1720	1860	2100	
	Уровень шума (низк.ск.)	ДБ(А)	26	29	32	32	34	36	
	Сопротивление (охл.)	кРа	15	17	20	22	32	38	
	Сопротивление (нагрев)	кРа	37	41	39	42	57	61	
Гидравлические параметры	Расход воды (охл.)	м³/час	0,877	1,02	1,061	1,152	1,596	1,82	
	Расход воды (на- грев)	м³/час	0,574	0,677	0,693	0,746	1,002	1,085	
	Корпус (ШхВхГ)	MM			830*30	00*830			
	Панель (Ш x B x Г)	MM	950*45*950						
	Корпус (ШхВхГ)	MM			900*30	07*900			
	Панель (Ш x B x Г)	MM			1035*9	1035*90*1035			
	Корпус	КГ		3	5		3	8	
	Панель	КГ			(5			
	Корпус	КГ		4	2		4	5	
	Панель	КГ			(9			
	Входная (охл.)	дюйм			3/4	" BP			
	Выходная(охл.)	дюйм			3/4	"BP			
	Входная (нагрев)	дюйм			1/2	"BP			
	Выходная (нагрев)	дюйм			1/2	"BP			
	Дренажная труба (НД)	дюйм			3	2			

СПЕЦИФИКАЦИИ, КАНАЛЬНЫЕ, 4-Х ТРУБНЫЕ

			MKDT3-200FG12 (G30/G50)	MKDT3-300FG12 (G30/G50)	MKDT3-400FG12 (G30/G50)	MKDT3-500FG12 (G30/G50)	MKDT3-600FG12 (G30/G50)			
	Охлаждение	кВт	2,0	2,7	3,6	4,3	5,0			
	Нагрев	кВт	3,0	4,0	5,2	5,7	7,2			
		V-ph-Hz		220-240-50-1						
	G12/G30/G50	Вт	33/49/49	53/64/64	66/75/75	87/96/96	100/114/114			
	Расход воздуха	м3/ч	340	510	680	850	1020			
	Уровень шума (Низк.ск.) 12Па	ДБ(А)	26	27	28	30	32			
Рабочие показатели	Уровень шума (Низк.ск.) 30Па	ДБ(А)	31	32	33	34	35			
	Уровень шума (Низк.ск.) 50Па	ДБ(А)	32	34	35	36	37			
	Стат. Давление	Pa		50						
	Сопротивление (охл.)	кРа	7,6	14,4	8,2	9,5	17,2			
	Сопротивление (нагрев)	кРа	6,8	12,5	23,5	24	40,7			
Гидравлические параметры	Расход воды (охл.)	м³/час	0,344	0,464	0,619	0,74	0,86			
	Расход воды (нагрев)	м3/час	0,258	0,344	0,447	0,49	0,619			
	ШхВхГ	MM	741*241*522	841*241*522	941*241*522	941*241*522	1161*241*522			
	ШхВхГ	MM	790*260*550	890*260*550	990*260*550	990*260*550	1210*260*550			
		КГ	15,1	17,5	20,7	20,7	23,5			
		КГ	17,4	20	23,1	23,1	26			
	Входная (охл.)	дюйм			3/4" BP					
	Выходная (охл.)	дюйм			3/4" BP					
	Входная (нагрев)	дюйм			1/2" BP					
	Выходная (нагрев)	дюйм			1/2" BP					
	Дренажная труба (НД)	дюйм			24					

			MKDT3-800FG12(G30/G50)	MKDT3-1000FG12(G30/G50)	MKDT3-1200FG12(G30/G50)	MKDT3-1400FG12(G30/G50)						
	Охлаждение	кВт	6,8	7,8	10,2	11,5						
	Нагрев	кВт	9,6	10,8	13,5	15,5						
		V-ph-Hz		220-240-50-1								
	G12/G30/G50	Вт	145/154/154	180/193/193	210/230/230	222/278/278						
	Расход воздуха	М3/4	1360	1700	2040	2380						
	Уровень шума (Низк.ск.) 12Па	ДБ(А)	33	35	36	38						
	Уровень шума (Низк.ск.) 30Па	ДБ(А)	36	37	38	39						
	Уровень шума (Низк.ск.) 50Па	ДБ(А)	38	39	40	41						
	Стат. Давление	Pa	G12-12/G30-30/G50-50									
	Сопротивление (охл.)	кРа	18,8	30	40,3	51,9						
	Сопротивление (нагрев)	кРа	20,7	34,7	28,6	55,2						
Гидравлические параметры	Расход воды (охл.)	м3/час	1,17	1,342	1,754	1,978						
	Расход воды (нагрев)	м3/час	0,826	0,929	1,161	1,333						
	ШхВхГ	MM	1461*241*522	1566*241*522	1856*241*522	941*241*522						
	ШхВхГ	MM	1510*260*550	1615*260*550	1905*260*550	2070*260*550						
		КГ	32,4	34,9	40	43,6						
		КГ	36	38,6	43,5	48,9						
	Входная (охл.)	дюйм		3/4'	'BP							
	Выходная (охл.)	дюйм		3/4'	'BP							
	Входная (нагрев)	дюйм		1/2'	'BP							
	Выходная (нагрев)	дюйм		1/2'	'BP							
	Дренажная труба (НД)	дюйм		2	4	24						

^{*} Полные технические данные моделей 4-х трубных канальных фанкойлов 50 Па предоставляются по запросу

Управление

КОМПЛЕКТ АВТОМАТИКИ ДЛЯ КАНАЛЬНЫХ НАПОЛЬНЫХ И ПОТОЛОЧНЫХ ФАНКОЙЛОВ FCUKZ

омплект автоматики для фанкойлов серий MDKT, MDKH и MDKF. Позволяют реализовать управление с центрального контроллера ССМ03, и использовать все возможности диспетчеризации, использую шлюзы протоколов BACNet и LonWorks. Возможно применение программ APOGEE от Siemens, Andover от Schneider, Alerton от Honeywell и другие.

К ССМ03 возможно подключение до 64-х фанкойлов. Реализованы все возможности индивидуального и группового управления.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Модель		FCUKZ-01	FCUKZ-02
Электропитание		220-240V-1Ph-5	-Hz
Диапазон работы	Комнатная температура	17°C - 30°	
Диапазон работы	Температура вх. воды	75°C	
Точность по температуре		±1℃	
		310*76*290	

ОСНОВНЫЕ ФУНКЦИИ

Модель	FCUKZ-01	FCUKZ-02
Тип фанкойла	2-х трубный	4-х трубный
Беспроводной пульт ДУ	✓	✓
Проводной пульт ДУ	✓	✓
Центральный контроллер	✓	✓
Управление компьютером	✓	✓

KJR-120A/MBE KJR-08B/BE

Управление до 8 модульных чиллеров. Все основные и необходимые функции

R05, RM05

Беспроводной пульт ДУ входит в комплект настенных и кассетных фанкойлов

KJR-10B, KJR-12B

Проводной пульт ДУ, может подключатся к настенным и кассетным фанкойлам

KJR-15B/E(P)

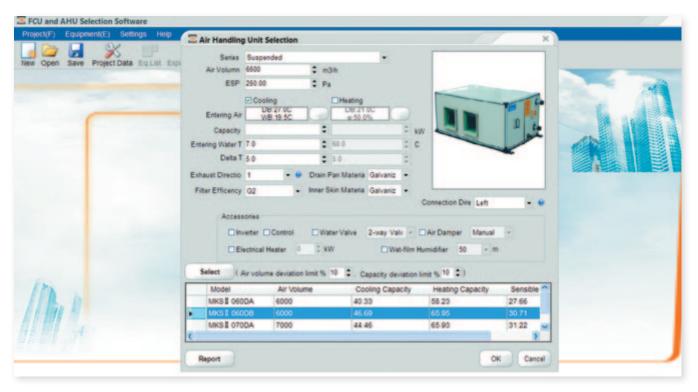
Термостат для напольных фанкойлов

KJR-(18/19)B / E(-B)

Термостат для 2-х и 4-х трубных фанкойлов

LSQ - NET/E2.1

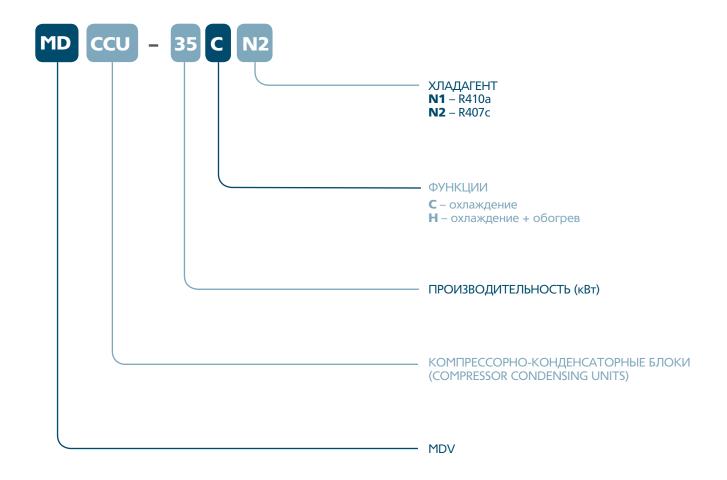
Сетевая программа управления модульными чиллерами


TWVK09 / TWVK04

Клапан с приводом универсальный

В помощь проектировщику

ПРОГРАММА ПОДБОРА ФАНКОЙЛОВ И ПРИТОЧНЫХ УСТАНОВОК



ВЫ МОЖЕТЕ СКАЧАТЬ ПРОГРАММУ ПОДБОРА НА САЙТЕ WWW.MDV-RUSSIA.RU

АРТИКУЛЫ

Компрессорно-конденсаторные блоки

СЕРИЯ МОССИ

MDCCU-7CN2

омпрессорно-конденсаторный блок (ККБ) состоит из конденсатора, компрессора, вентилятора и устройства внутреннего управления. Компрессорно-конденсаторные блоки предназначены для подготовки жидкого хладагента, который подается в теплообменник приточной установки. Являются частью установок центрального кондиционирования воздуха.

Для всех моделей ККБ MDV в комплекте может быть поставлена обвязка. Стандартный состав обвязки: ТРВ в сборе, смотровое стекло, фильтр-осушитель, соленоидный клапан. Модельный ряд поставляемых ККБ включает модели холодопроизводительностью 7, 10, 14, 22, 28, 35, 45, 53, 61, 70 и 105 кВт. Холодильный контур заправлен хладагентом R407C. В ККБ MDV применяются компрессоры Sanyo и Hitachi.

MDCCU-10CN2 MDCCU-14CN2

MDCCU-28HN2

MDCCU-53CN1 MDCCU-61CN1

MDCCU-16CN2

MDCCU-35CN2

MDCCU-70CN1

MDCCU-22CN2 MDCCU-28CN2

MDCCU-45CN2

MDCCU-105CN1

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ

- Контроль тока компрессора.
- Реле высокого давления, модели от 10 кВт.
- Реле низкого давления, модели от 14 кВт.
- Фазовый монитор, модели на 380 В.
- Двухскоростные моторы вентиляторов (управление по температуре конденсации) модели от 22 кВт.
- Защита от высокой температуры конденсации., модели от 10 кВт.
- Защита от высокой температуры нагнетания, модели от 10 кВт.
- Вывод кодов ошибок, модели от 10 кВт.
- Одноконтурное исполнение, модели 7-45 кВт.
- Тестирование электронных компонентов и датчиков при включении.
- Простое управление.

Модель			MDCCU-07CN2	MDCCU-10CN2	MDCCU-14CN2	MDCCU-16CN2	MDCCU-22CN2	MDCCU-28CN2	MDCCU-28HN2		
Производи- тельность	Охлаждение	кВт	7	10	14	16	22	28	28		
Количество кон	Количество контуров										
Электропитани	e	V-ph-Hz	220-240-50-1			380-	-50-3				
Потр. мощность		кВт									
Уровень шума ДБ(A) 47 49 50 52 67				67	67	63					
Тип			R407C								
Хладагент	Заводская за- правка	КГ	1,65	1,4	1,7	2,9	6,2	6,5	8,5		
Размер	ШхВхГ	MM	895*862*313	900*1167*340 1255*908*700 1255*908*700			08*700	980×1615×800			
Размер в упа- ковке	ШхВхГ	MM	1043*915*395	1120*1	100*435	1032*1307*443	1320×1	060*715	1044×1790×865		
Вес Нетто		КГ	62	85	88	94	161	177	280		
		КГ	64	90	95	102	176	192	290		
	Жидкостная труба	мм (дюйм)	9,53(3/8")	12,7(1/2")	9,53(3/8")	9,53(3/8")	12,7(1/2")	12,7(1/2")	12,7(1/2")		
Диаметр труб	Газовая труба	мм (дюйм)	15,88(5/8")	19(3/4")	19(3/4")	19(3/4")	22(7/8"), L>30m - 25(1")	25(1"), L>30m - 28(1" 1/8")	28(1" 1/8")		
	Мах длина труб	М	20 25 30 50								
Максимальный соте между ККЕ	перепад по вы- 5 и испарителем	M	10		10	15		30			

Модель			MDCCU-35CN2	MDCCU-45CN2	MDCCU-53CN1	MDCCU-61CN2	MDCCU-70CN2	MDCCU-105CN1	
Производи- тельность	Охлаждение	кВт	35	45	53	61	70	105	
Количество контуров				1 2					
Э лектропитание V-ph-Hz 380-50-3									
Потр. мощность КВТ					16,8	19	22	28	
Уровень шума ДБ(А)			69	63	73	76	76	78	
Тип			R40)7C	R410A				
Хладагент	Заводская за- правка	КГ	7,2	12,0	11	12,4	17	18	
Размер	ШхВхГ	MM	1255*908*700	1380*1630*830	1825*1245*899	1825*1245*899	2158*1260*1082	2158*1260*1082	
	ШхВхГ	MM	1320×1060*715	1434*1790*860	1844*1272*924	1844*1272*924	2168*1275*1105	2168*1275*1105	
Вес Нетто		КГ	193	356	395	395	508	570	
Вес Брутто		КГ	208	382	405	405	523	582	
	Жидкостная труба	мм (дюйм)	12,7(1/2")	15,88(5/8")	Φ12.7(1/2") ×2	Φ12.7(1/2")×2	Ф12.7(1/2") ×2	Φ12.7(1/2")×2	
Диаметр труб	Газовая труба	мм (дюйм)	28(1"" 1/8""), Φ32(L≥ 30m)	35(1" 3/8")	Ф25(1") ×2	Ф25(1") ×2	Ф25(1") ×2	Φ25(1")×2	
Мах длина труб		М	50						
	перепад по вы- 5 и испарителем	M	2	0					

Руфтопы

СЕРИЯ MDR(B/C)Т

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ

высокая производительность

возможность установки низкотемпературного комплекта

программируемый таймер

проводной пульт ДУ

 фазовый монитор, срабатывает при смене чередования, пропадании или перекосе фаз

подогрев картера

Описание

Руфтопы используются для кондиционирования и вентиляции больших торговых центров, спортивных сооружений, конференц-залов, аэровокзалов и других больших помещений у которых имеется одна общая крыша. Руфтоп представляет собой моноблочную кондиционер, предназначен для установки на крыше здания. Крышный кондиционер по конструкции больше всего похож на большой оконный кондиционер. Благодаря моноблочной конструкции эти кондиционеры отличаются простотой монтажа и обслуживания. По своим характеристикам и области применения крышные кондиционеры близки к центральным кондиционерам. Принципиальное отличие между ними в том, что крышный кондиционер является моноблоком и устанавливается на крыше, а центральный кондиционер устанавливается в помещении, но ему необходим внешний источник холода. Модельный ряд руфтопов MDV от 37,2 до 97кВт.

Конструкция

На всех моделях руфтопов MDV устанавливаются бесшумные спиральные компрессоры на виброизолирующих опорах. Компрессоры руфтопов укомплектованы подогревателем картера и температурно-токовой защитой. Компрессоры руфтопов имеют теплоизоляционную и размещены в отдельном корпусе, имеющем дополнительную теплоизоляцию. Управляются руфтопы при помощи проводного микроконтроллерного пульта дистанционного управления. Рециркуляционный воздух забирается из помещения по системе воздуховодов и подается в дополнительную смесительную камеру, где может быть смешан с обработанным свежим воздухом. Из смесительной камеры руфтопа воздух проходит через фильтр и подается к теплообменнику (испарителю или конденсатору) холодильного контура, где он охлаждается или нагревается (для руфтопов с тепловым насосом). После теплообменника воздух с требуемыми параметрами подается вентилятором руфтопа в систему распределительных воздуховодов. Воздух для охлаждения конденсатора холодильного контура забирается из атмосферы отдельным вентилятором, и выбрасывается на улицу. Имеются исполнения с возможностью двух вариантов забора и подачи воздуха - в горизонтальном или в вертикальном направлении.

функции автоматической защиты

легкий монтаж и обслуживание

полностью заправлен хладагентом на заводе-изготовителе

фильтр класса G2 (противопылевой)

компрессоры Danfoss

подключение к центральному контроллеру (опция)

максимально дешевое охлаждение

Comm	Maria	Мощность кВт		Электропитание	Потр. мощн. охл.,		Расход	ESP	Габариты блока, мм,	
Серия	Модель			В/ф/Гц		обогр., кВт	воздуха, м3/ч		ВхШхГ	Вес нетто, кг
	MDRBT-075HWN1	27,50	30,00	380/3/50	9,20	8,80	5100	60	1630*1065*1068	380
	MDRBT-100HWN1	37,20	39,60	380/3/50	11,80	10,90	6450	75	2165*1021*1335	450
T3 heat pump	MDRBT-150HWN1	53,00	56,00	380/3/50	18,60	17,50	10200	90	2230*1245*1824	730
	MDRBT-200HWN1	70,00	75,00	380/3/50	25,10	23,40	14250	100	2753*1245*2157	940
	MDRCT-300HWN1	97,00	105,00	380/3/50	33,10	35,80	20380	250	2753*1674*2157	1110
	MDRBT-075CWN1	27,50		380/3/50	9,20		5100	60	1630*1065*1068	315
	MDRBT-100CWN1	37,20		380/3/50	11,80		6450	75	2165*1021*1335	445
To analism and	MDRBT-150CWN1	53,00		380/3/50	18,60		10200	90	2230*1245*1824	710
T3 cooling only	MDRBT-200CWN1	70,00		380/3/50	25,10		14250	100	2753*1245*2157	925
	MDRCT-300CWN1	97,00		380/3/50	33,10		20380	250	2753*1674*2157	1090
T1	MDRCT-250HWN2	87,00	92,00	380/3/50	31,28	30,74	17300	170	2753*1245*2157	970
	MDRCT-250CWN2	87,00		380/3/50	31,30		17300	170	2753*1245*2157	970

Пиадааац рабоциу тампаратир	Охлаждение	Обогрев
Диапазон рабочих температур	18 ~ 52 C°	-10 ~ 24 C°

● ПОЛУПРОМЫШЛЕННАЯ СЕРИЯ (СПЛИТ-СИСТЕМЫ БОЛЬШОЙ МОЩНОСТИ)

Канальные кондиционеры большой мощности предназначены для кондиционирования нескольких помещений одновременно. Внутренние блоки таких кондиционеров устанавливаются за подвесными потолками, и воздух распределяется воздуховодами по кондиционируемым помещениям.

Во внутреннем блоке канального типа установлен вентилятор с высоким статическим напором, позволяющий преодолеть сопротивление распределительных воздуховодов и решеток. Они рассчитаны на работу в режиме рециркуляции или в режиме частичной рециркуляции с подмесом подготовленного свежего воздуха. При обеспечении подачи свежего воздуха дополнительно к канальному кондиционеру необходимо устанавливать электрические или водяные калориферы, клапаны, фильтры, наружные решетки, систему автоматики, обеспечивающие необходимый подогрев, фильтрацию подаваемого воздуха и управление системой подачи свежего воздуха, или применять приточные вентиляционные установки со встроенными нагревателями. Варианты исполнения – только охлаждение или охлаждение/обогрев. Канальные кондиционеры MDV – это сплит-системы мощностью до 150000 BTU.

Колонные кондиционеры большой мощности предназначены для установки на полу. Используются, как правило, в холлах гостиниц, залах ресторанов, конференц-залах, магазинах, залах ожидания вокзалов и аэропортов и других общественных помещениях, где невозможно установить блок на стену или потолок и где требуется большая холодопроизводительность. Их внутренние блоки устанавливаются на полу. Сильный поток охлажденного воздуха, направленный от внутреннего блока вверх, отражается от потолка и равномерно распределяется по всему помещению. Широкий воздушный поток и вертикальные жалюзи позволяют кондиционерам быстро охлаждать и обогревать помещения большой площади. Варианты исполнения – только охлаждение или охлаждение/обогрев. Колонные кондиционеры MDV – это сплит-системы мощностью до 96000 BTU.

Полупромышленная серия

КАНАЛЬНЫЕ СПЛИТ-СИСТЕМЫ БОЛЬШОЙ МОЩНОСТИ

редставляют собой систему кондиционирования воздуха с дистанционным управлением для создания в помещении комфортных климатических условий. Поставляется в комплекте с проводным пультом ДУ. Управление кондиционером осуществляется с пульта дистанционного управления ДУ. Состоит из наружного блока, внутреннего блока и проводного пульта ДУ. В наружном блоке расположены компрессор, вентилятор, и другие элементы холодильного контура. Во внутреннем блоке расположены теплообменник, вентилятор, система управления. Используются компрессоры Copeland. Основные функции пульта ДУ: включает и выключает кондиционер, задает время включения и отключения, устанавливает значения заданной температуры, включает ночной режим, выбор скорости вращения вентилятора, выбор режима работы, отображает текущее время. Текущий режим кондиционера с установленными параметрами отображается на ЖКдисплее пульта ДУ. Возможна поставка в тропическом исполнении Т3, это исполнение подразумевает работу кондиционера при уличной температуре до +52 °C.

анальные сплит-системы могут быть использованы для кондиционирования нескольких помещений одновременно. Они рассчитаны на работу в режиме рециркуляции или в режиме частичной рециркуляции с подмесом подготовленного свежего воздуха, внутренние блоки канальных кондиционеров устанавливаются, например, за подвесным потолком, воздух забирается и раздается воздуховодами по кондиционируемым помещениям. Канальные кондиционеры MDV – это сплит системы достаточно большой мощности, 76000, 96000, 120000, 150000 BTU. Воздух забирается из помещения через решетку, обрабатывается внутренним блоком и по системе воздуховодов снова подается в помещения через распределительные решетки. Внутренний блок снабжен вентилятором, позволяющим преодолеть сопротивление распределительных воздуховодов и решеток. При обеспечении подачи свежего воздуха дополнительно к канальному кондиционеру необходимо устанавливать электрические или водяные калориферы, клапаны, фильтры, наружные решетки, систему автоматики, обеспечивающие необходимый подогрев, фильтрацию подаваемого воздуха и управление системой подачи свежего воздуха, или применять приточные вентиляционные установки со встроенными нагревателями. Варианты исполнения только охлаждение или охлаждение/обогрев.

РЕЖИМЫ РАБОТЫ КАНАЛЬНОЙ СПЛИТ-СИСТЕМЫ

Охлаждение (COOL)

При помощи пульта ДУ устанавливается режим охлаждения, выбирается комфортная температура воздуха в помещении (от 17 °С и выше), выбирается скорость вращения вентилятора (высокая, средняя, низкая, автоматическая).

Обогрев (НЕАТ)

При помощи пульта ДУ устанавливается режим обогрева, выбирается комфортная температура воздуха в помещении (до 30 °C), выбирается скорость вращения вентилятора (высокая, средняя, низкая, автоматическая).

Осушение (DRY)

При помощи пульта ДУ устанавливается режим осушения. В этом режиме не регулируется температура. Ее значение выбирается микроконтроллером в зависимости от начальных условий при включении этого режима. Также

нет необходимости в самостоятельной регулировке скорости вращения вентилятора.

Вентиляция (FAN)

С помощью кнопки «MODE» на пульте ДУ устанавливается режим вентиляции и выбирается скорость вращения вентилятора (высокая, средняя, низкая, автоматическая).

Автоматический режим (AUTO)

При помощи пульта ДУ устанавливается автоматический режим и выбирается комфортная температура воздуха в помещении. Микропроцессор определяет необходимую скорость вращения вентилятора и выбирает оптимальный режим работы (охлаждение, обогрев, осушение или вентиляция)

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ

высокая производительность

возможность установки низкотемпературного комплекта

программируемый таймер

проводной пульт ДУ

низкий уровень шума

режим комфортного сна

фазовый монитор (модели 380 B), срабатывает при смене чередования, пропадании или перекосе фаз

подогрев картера (модели 380 В)

функции автоматической защиты

возможность приточной вентиляции

подача обработанного воздуха по воздуховодам

скрытый монтаж

Модель Внутрен Наружн		ий блок ый блок	MDTA-76HRN2 MDOV-76H-CN2	MDTA-96HRN2 MDOV-96H-CN2	MDTA-120HRN2 MDOV-120H-CN2	MDHA-150HRN2 MDOV-150HN2	MDTA-192HWN1 MDOV-192HN1		
	Охлаждение	кВт	22	28	35	44	56,3		
	Нагрев	кВт	24,2	30	40	48,4	60,1		
	Наружный блок	V-ph-Hz	380-50-3						
	Внутренний блок	V-ph-Hz			220-240-50-1				
	Номинальный ток	А	11,4	14	18,1	24,4	30		
Охлаждение	Номинальная мощность	кВт	7,5	9,2	11,9	16	19,6		
	Номинальный ток	А	11,14	15	19,2	25,1	30		
	Номинальная мощность	кВт	7,32	9,8	12,6	16,5	19,4		
	Расход воздуха(ВБ)	м³/ч	4650	5600	6800	8000	10800		
	Уровень шума(ВБ)	ДБ(А)	54	55	56	45	65		
	Уровень шума(НБ)	ДБ(А)	63	64	65	65	73		
		Pa	100			150	196		
Хладагент	Тип			R4	07C		R410a		
	Ш x В x Г(ВБ)	MM	1350*7	60*450	1828*638*858		1828*668*805		
	Ш x В x Г(НБ)	MM	1260*9	008*700	1260*908*700	1380*1630*830	1390*1615*765		
	ШхВхГ(ВБ)	MM	1549*9	17*476	2095*689*929		2095*800*964		
	Ш x В x Г(НБ)	MM	1320*1	060*730	1320*1060*730	1434*1790*860	1455*1790*830		
	Внутренний блок	КГ	10	05	1	88	235		
	Наружный блок	КГ	10	64	180	196	356		
	Внутренний блок	КГ	1:	20	2	20	250		
	Наружный блок	КГ	179		195	211	382		
	Жидкостная труба	мм (дюйм)	12,7	(1/2")		15,88(5/8")			
Диаметр труб Газовая труба		мм (дюйм)	22,2(7/8") L>	30м=25,4(1")	25,4(1") L>30r	28,6(1 1/8") L>30м=31,75 (1" 1/4")			
	Максимальная длина труб	M			50				
Максимальный перепад п наружным блоками	о высоте между внутренним и	M			30				

Полупромышленная серия

КОЛОННЫЕ СПЛИТ-СИСТЕМЫ БОЛЬШОЙ МОЩНОСТИ

редставляют собой систему кондиционирования воздуха с дистанционным управлением для создания в помещении комфортных климатических условий. Поставляется в комплекте с беспроводным пультом ДУ. Управление кондиционером осуществляется с пульта дистанционного управления (ДУ) или с панели управления. Состоит из наружного блока, внутреннего блока и беспроводного пульта ДУ. В наружном блоке расположены компрессор, вентилятор, и другие элементы холодильного контура. Во внутреннем блоке расположены теплообменник, вентилятор, блок индикации, блок управляемых жалюзи, панель управления с ЖК-дисплеем, воздушный фильтр, система управления. Используются компрессоры Copeland.

Основные функции пульта ДУ: включает и выключает кондиционер, задает время включения и отключения, устанавливает значения заданной температуры, включает ночной режим, управляет работой жалюзи, выбор скорости вращения вентилятора, выбор режима работы, отображает текущее время. Текущий режим кондиционера с установленными параметрами отображается на ЖК-дисплее пульта ДУ. Возможна поставка в тропическом исполнении ТЗ, это исполнение подразумевает работу кондиционера при уличной температуре до +52 °C.

На панели управления расположены индикаторы и кнопки управления:

- включение/выключение кондиционера
- блокировка режима
- выбор скорости вращения вентилятора
- выбор режима работы
- задание температуры
- установка времени
- ввод/отмена настроек
- режим работы по таймеру
- покачивание заслонки

На дисплее отображаются индикация заданной температуры, времени включения и выключения кондиционера по таймеру и другие параметры.

олонные сплит-системы предназначены для создания в помещении комфортных климатических условий. Колонные кондиционеры MDV — это сплит системы достаточно большой мощности (76000, 96000 BTU). Их внутренние блоки имеют большой вес и устанавливаются на полу. Сильный поток охлажденного воздуха, направленный от внутреннего блока вверх, отражается от потолка и равномерно распределяется по всему помещению. Широкий воздушный поток и вертикальные жалюзи позволяют кондиционерам быстро охлаждать и обогревать помещения большой площади. Варианты исполнения только охлаждение или охлаждение/обогрев.

РЕЖИМЫ РАБОТЫ КОЛОННОЙ СПЛИТ-СИСТЕМЫ

При помощи пульта ДУ устанавливается режим охлаждения, выбирается комфортная температура воздуха в помещении (от 17 °С и выше), выбирается скорость вращения вентилятора (высокая, средняя, низкая, автоматическая).

Обогрев (НЕАТ)

При помощи пульта ДУ устанавливается режим обогрева, выбирается комфортная температура воздуха в помещении (до 30 °C), выбирается скорость вращения вентилятора (высокая, средняя, низкая, автоматическая).

Осушение (DRY)

При помощи пульта ДУ устанавливается режим осушения. В этом режиме не регулируется температура. Ее значение выбирается микроконтроллером в зависимости от начальных условий при включении этого режима. Также нет необходимости в самостоятельной регулировке скорости вращения вентилятора.

Вентиляция (FAN)

С помощью кнопки «МОDE» на пульте ДУ устанавливается режим вентиляции и выбирается скорость вращения вентилятора (высокая, средняя, низкая, автоматическая).

Автоматический режим (AUTO)

При помощи пульта ДУ устанавливается автоматический режим и выбирается комфортная температура воздуха в помещении. Микропроцессор определяет необходимую скорость вращения вентилятора и выбирает оптимальный режим работы (охлаждение, обогрев, осушение или вентиляция).

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ

высокая производительность

возможность установки низкотемпературного комплекта

программируемый таймер

беспроводной пульт ДУ

фазовый монитор срабатывает при смене чередования, пропадании или перекосе фаз

подогрев картера

45	ФУНКЦИИ	автоматической	зашить

современный дизайн

простое управление с панели управления или пульта ДУ

дополнительный ТЭН для обогрева

LCD дисплей

	Внутренний блок Наружный блок		MDFA-76HRN2 MDOV-76H-CN2	MDFA-96HRN2 MDOV-96H-CN2	
	Охлаждение	кВт	22	28	
	Нагрев	кВт	24,2	30	
	Наружный блок	V-ph-Hz	380-50-3		
Электропитание	Внутренний блок	V-ph-Hz	220-240-50-1		
	Номинальный ток	А	11,33	14,4	
	Номинальная мощность	кВт	7,45	9,45	
	Номинальный ток	А	9,9	13,9	
	Номинальная мощность	кВт	6,5	9,13	
	Расход воздуха(ВБ)	M ³ /4	45	4500	
	Уровень шума(ВБ)	ДБ(А)	53	54	
	Уровень шума(НБ)	ДБ(А)	63	64	
Хладагент	Тип		R407C		
	ШхВхГ(ВБ)	MM	1200*1860*420		
	Ш x В x Г(НБ)	MM	1260*908*700		
	ШхВхГ(ВБ)	MM	1362*2023*582		
	Ш x В x Г(НБ)	MM	1320*1060*730		
	Внутренний блок	КГ	158		
	Наружный блок	КГ	164	180	
	Внутренний блок	КГ	174		
	Наружный блок	КГ	179	195	
	Жидкостная труба	мм(дюйм)	12,7(1/2")		
	Газовая труба	мм(дюйм)	22,2(7/8") L>30m=25,4(1")	25,4(1") L>30m=28,6(1" 1/8")	
	Максимальная длина труб	М	50		
Максимальный перепад по высоте между внутренним и наружным блоками		М	3	0	

Тепловой насос — отличный вариант для круглогодичного использования, например, в загородном доме.

Основное его отличие от всех остальных источников тепла заключается в исключительной возможности использовать возобновляемую низкотемпературную энергию окружающей среды на нужды нагрева воды.

Название «тепловой насос» возникло из-за того, что прибор позволяет как бы «перекачивать» тепло из низкотемпературного источника в высокотемпературный. Это, кстати, помимо экономии невозобновляемых природных ресурсов, ведёт к уменьшению поступления в атмосферу углекислого газа — ниже общий уровень глобального потепления.

Сегодня российский рынок тепловых насосов стремительно развивается, хотя и не в таких пока объёмах, как в других странах Европы и Азии.

MDV предлагает на российском рынке широкую гамму тепловых насосов различного назначения.

Моноблочные тепловые насосы с баком для системы горячего водоснабжения имеют дополнительный ТЭН для работы при температурах наружного воздуха ниже -7 °C, когда цикл теплового насоса неэффективен. Гибридный режим позволяет опустить нижнюю границу рабочего диапазона температур до -30 °C. Потребляемая мощность в режиме теплового насоса – 500 Вт, в гибридном до 3000 Вт. В качестве хладагента используется озонобезопасный фреон R134a. Емкость бака для ГВС - 190 и 300 литров. Применена высокоэффективная теплоизоляция из сополимера циклопентана. Модель 300 литров может быть заказана с дополнительным контуром для подключения системы солнечного нагрева воды. Эти модели рассчитаны на установку внутри помещения. Воздуховоды для подачи и удаления воздуха могут быть длиной до 5 метров. Встроенный контроллер с LCD-дисплеем. Функция автоматической дезинфекции воды в баке (нагрев воды до +70 °C, и поддержание этой температуры в течении получаса). Функция автоматической разморозки, предохранительный клапан, функции автоматической защиты, встроенное УЗО. Нагрев воды в диапазоне от +38 °C до +70 °C. Минимальные затраты при монтаже тепловых насосов позволяют снизить капитальные затраты, а высокая энергетическая эффективность – снизить эксплуатационные расходы.

Моноблочные тепловые насосы для бассейнов производительностью 6, 8, 12, 14, 45 и 90 кВт оснащены панелью управления с ЖК-дисплеем, встроенными манометрами давления всасывания и конденсации. Высокий коэффициент СОР >4.5, используются озонобезопасные хладагенты R410a и R407. Тепловые насосы работают в диапазоне температур от -15 до +43 °C, поддерживая температуру воды от +15 до +45 °C. Модели мощностью до 14 кВт питаются от однофазной сети 220 В, более мощные – от трехфазной сети переменного тока. Функция автоматической разморозки, развитая система защит тепловых насосов делают их эксплуатацию удобной и беспроблемной. Теплообменники водахладагент изготовлены из титана, что позволяет использовать эту серию для бассейнов с морской водой. Минимальные затраты при монтаже тепловых насосов позволяют снизить капитальные затраты, а высокая энергетическая эффективность – снизить эксплуатационные расходы. Широкий диапазон рабочий температур позволяет увеличить купальный сезон в бассейнах. Реверсивный цикл (работа на охлаждение) позволяют использовать тепловые насосы для поддержания низких температур воды в купелях бань.

Тепловые насосы

ТЕПЛОВЫЕ НАСОСЫ ДЛЯ ГВС

тепловые насосы класса «воздух-вода». Моноблочные устройства предназначенные для установки внутри помещения и работы в системе ГВС. Элегантный дизайн. Накопительный бак интегрирован непосредственно в декоративный корпус теплового насоса. Высокоэффективная теплоизоляция из сополимера циклопентана.

Температура воды в накопительном баке опускается всего лишь на 5 °С в день (без использования подогрева воды). Полнофункциональная система автоматизированного управления имеет простой интерфейс и расположена непосредственно на лицевой панели агрегата. Использование хладагента R134a гарантирует устойчивую работу при критических условиях эксплуатации, например при температуре наружного воздуха до +52 °С. Встроенные электрические водонагреватели позволяют устойчиво работать при самых низких температурах наружного воздуха, до -30 °С. Переключение между режимами работы тепловой насос – ТЭН происходит автоматически в зависимости от наружной температуры воздуха. Тепловой насос может работать в различных режимах: экономичный, гибридный и прямой нагрев.

Экономичный режим: Температура воды 38-60(70) °С. Температура наружного воздуха +5 – +43 °С Гибридный режим: Температура воды 38-60(70) °С. Температура наружного воздуха -7 – +5 °С Режим прямого нагрева: Температура воды 38-60(70) °С. Температура наружного воздуха -30 – +43 °С

RSJ-15/190RDN3 – 1,5 кВт. Размер накопительной емкости 190 л. R134a COP = 3.6.

RSJ-35/300RDN3 – 3,5 кВт. Размер накопительной емкости 300 л. R134a COP = 3.6, представлен в двух исполнениях, с дополнительным теплообменником для подключения к системе солнечного нагрева или системе газового нагрева воды, или без этого теплообменника. Встроенный контроллер с LCD дисплеем. Функция автоматической дезинфекции воды в баке (разогрев воды до +70 °C). Все необходимые функции автоматических защит. Автоматическая разморозка. Внешнее статическое давление 30 Па, что дает возможность применения гибких воздуховодов для подачи и отвода воздуха достаточно большой длины. Воздух может использоваться для осушения помещения. Простая установка. Возможность дооснащения проводным контроллером.

СПЕЦИФИКАЦИИ ТЕПЛОВЫЕ НАСОСЫ ДЛЯ ГВС

Модель		RSJ-35/300RDN3	RSJ-15/190RDN3
	Л	300	190
Регулировка температуры воды	С	+38 - +60	+38 - +70
Мощность нагрева ВТН	кВт	3	1,45
Мощность нагрева ТЭН	кВт	3	3
		3,6	3,6
Электропитание	В/Гц/ф	220-240/50/1	
Потребляемая мощность, ВТН	кВт	1,16	0,57
Потребляемая мощность, ТЭН	кВт	3	3
Уровень шума	дБ(А)	48	41
Хладагент	тип	R134a	
Рабочее давление контура ГВС	Мпа	1	1
Габарит, ф*В	MM	650*1920	560*1680
Вес нетто	КГ	117	94
Подключение по воде	MM	DN20	

ТЕПЛОВЫЕ НАСОСЫ ДЛЯ БАССЕЙНОВ

Тепловые насосы класса «воздух-вода» для нагрева воды в бассейнах. Моноблочное исполнение, встроенный пульт управления с LCD дисплеем, функции таймера, автоматическая разморозка, нагрев и охлаждение. Хладагент R410a. Высокий коэффициент СОР, до 5,49 в модельном ряде. Функционален от -7 °С, максимально эффективен от +15 °С. Экономит электроэнергию на нагрев воды в бассейне, даёт возможность продлить купальный сезон. Возможно применение для охлаждения воды в купели в бане. Теплообменник из титана предоставляет возможность работы с водой различной жесткости или с морской водой. Встроенный манометр. Простой монтаж и подключение.

Модельный ряд моделей бытового назначения с производительностью нагрева 6, 8, 12 и 14 кВт. Электропитание от однофазной сети переменного тока 220 В. Опциональный выносной контроллер. Регулировка нагрева воды от +20 °C до +35 °C, регулировка охлаждения воды от +6 °C до +30 °C.

Модельный ряд моделей коммерческого назначения с производительностью нагрева 45 и 90 кВт. Электропитание от трехфазной сети переменного тока 380 В. Регулировка нагрева воды от +20 °C до +40 °C, регулировка охлаждения воды от +20 °C до +30 °C.

СПЕЦИФИКАЦИИ ТЕПЛОВЫЕ НАСОСЫ ДЛЯ БАССЕЙНОВ

Модель		LRSJ-60/NYN1	LRSJ-80/NYN1	LRSJ-120/NYN1	LRSJ-140/NYN1
	M ³	40	50	60-85	75-100
	кВт	6	8	12	14
Мощность охлаждения	кВт	4	5,8	8,4	10,4
COP		5,22	5,27	5	5,49
		3,2	3,9	3,5	3,6
	В/Гц/ф		220-24	40/50/1	
	кВт	1,15	1,52	2,4	2,55
	кВт	1,3	1,5	2,4	2,9
	дБ(А)	58			
	ТИП	R410a			
Рабочеее давление контура воды	Мпа	0,4			
	MM	1015*7	705*385	1050*8	55*315
	КГ	64	66	75	75
	MM		DI	N50	
	м3/ч	2,6	3,4	5,2	6
Контроллер			встроенный и провод	ной (опция) KJRH-90B/E	

СПЕЦИФИКАЦИИ ТЕПЛОВЫЕ НАСОСЫ ДЛЯ БАССЕЙНОВ КОММЕРЧЕСКОГО НАЗНАЧЕНИЯ

Модель		LRSJ-450/SYN2	LRSJ-900/SYN2
Мощность нагрева	кВт	45	90
	кВт	40	80
		5,29	5,49
		3,48	3,9
	В/Гц/ф	380/5	50/3
	кВт	8,5	16,4
Потребляемая мощность, охлаждение	кВт	11,5	20,5
	дБ(А)	65	
Хладагент	тип	R40	7C
	Мпа	1	
	MM	1514*1820*850	2000*1970*900
	КГ	380	580
Подключение по воде	MM	DN50	DN100
	M ³ /ч	15	30
Контроллер		KJRH-	90B/E

ДЛЯ ЗАМЕТОК
A DI SALIETOR

ДЛЯ ЗАМЕТОК	
ДИЗАПЕТОК	

ДЛЯ ЗАМЕТОК
A DI SALIETOR

