

Клапаны противопожарные универсальные серии КПУ

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ КПУ-00ИЭ

Изготовитель:

ООО «ВЕЗА», Россия.

Адрес: 141190, г.Фрязино, Московская обл., Заводской проезд, 6. Тел. (495) 745-15-73; Факс (495) 745-15-73;

e-mail: fryazino@veza.ru; http://www.veza.ru

Содержание:

1. Назначение изделия	3
2. Основные технические данные и характеристики	4
3. Устройство и принцип действия	4
4. Требования безопасности	6
5. Порядок монтажа и подготовки изделия к работе	7
6. Техническое обслуживание	7
Приложение А ОБЩИЙ ВИД И ОСНОВНЫЕ РАЗМЕРЫ КЛАПАНОВ	8
Приложение Б ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ЭЛЕКТРОМАГНИТНЫХ ПРИВОДОВ	27
Приложение В ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ЭЛЕКТРОПРИВОДОВ	28
Приложение Г СХЕМЫ МОНТАЖА	31

Клапан противопожарный универсальный серии КПУ (далее – клапан) разработан и изготовлен ООО «ВЕЗА». Производство клапанов осуществляется в соответствии с ТУ 4863-100-40149153-07 на основании сертификатов соответствия.

Поставка клапанов предусматривается с использованием знака пожарной безопасности. Каждый клапан должен сопровождаться техническим паспортом, каждый экземпляр технического паспорта КПУ-00ПС должен быть заверен подлинной печатью ООО «ВЕЗА» (синий цвет печати), копии – недействительны.

1 НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Настоящая инструкция по эксплуатации является эксплуатационным документом клапанов противопожарных универсальных серии КПУ в соответствии с требованиями ТУ 4863-100-40149153-07.

Клапаны предназначены для автоматического перекрытия проемов в ограждающих строительных конструкциях, для установки в системах общеобменной вентиляции, кондиционирования, приточной и вытяжной противодымной вентиляции, а также в системах основной вентиляции помещений, защищенных установками газового, аэрозольного или порошкового пожаротушения, используемых для удаления газов и дыма после пожара. По функциональному назначению клапаны могут применяться в качестве нормально открытых, нормально закрытых, дымовых, или двойного действия, согласно Технического регламента о требованиях пожарной безопасности №123-Ф3 (Статья 138) и требованиям СП 7.13130.2013.

Клапаны соответствуют требованиям технического регламента о требованиях пожарной безопасности.

Клапаны серии КПУ могут изготавливаться канального (прямоугольное и круглое сечения), стенового (прямоугольное сечение) и ниппельного (круглое сечение) тип. Для больших площадей сечений допускается несколько клапанов объединять в кассеты (приложение A, рисунок A.15)

Клапаны имеют исполнения по параметрам потока рабочей среды:

- стандартное (0) установка в системах со статическим давлением не более 1500 Па для клапанов канального и ниппельного типа и 700 Па для клапанов стенового типа. Скорость рабочей среды в сечении клапана не более 13 м/с;
- высокодинамичное (ВД) установка в системах со статическим давлением не более 5000 Па и скоростью рабочей среды в сечении клапана не более 30 м/с (только для клапанов КПУ-1Н и КПУ-2Н прямоугольного сечения канального типа).

Клапаны сохраняют работоспособность вне зависимости от пространственной ориентации и плоскости их установки, но для клапанов с исполнением по параметрам потока рабочей среды «ВД» - при условии горизонтального расположения оси лопаток.

Клапаны выпускаются в общепромышленном и взрывозащищённом исполнениях.

Клапаны в общепромышленном исполнении не подлежат установке в воздуховодах и каналах, помещений категории А и Б взрывопожароопасности, в местных отсосах взрывопожароопасных смесей.

Клапаны во взрывозащищённом исполнении используются в зонах класса «1, 2» по ГОСТ IEC 60079-10-1, в которых возможно образование взрывоопасной газовой среды, и относятся к оборудованию подгруппы IIC с температурным классом Т1, Т2, Т3, Т4, Т5 и Т6 в соответствии с ГОСТ 31610.0-2014.

Клапаны имеют уровень взрывозащиты «взрывобезопасный» («высокий»).

Маркировка взрывозащиты клапанов − 1Ex d IIC T6 Gb/ II Gb с IIC T6.

Маркировка взрывозащиты в морозостойком исполнении - 1Ex de IIC T6 Gb/ II Gb с IIC T6.

Клапаны не подлежат установке в системах в которых перемещаются среды, с агрессивностью по отношению к углеродистым сталям обыкновенного качества выше агрессивности воздуха, запыленностью более 100мг/м^3 , содержащие взрывчатые вещества, взрывоопасную пыль, липкие и волокнистые материалы, а также для перемещения газо-паровоздушных взрывоопасных смесей от технологических установок, в которых взрывоопасные вещества нагреваются выше температуры их воспламенения или находятся под избыточным давлением.

Условия применения клапанов определяются требованиями проекта с учетом действующей законодательной и нормативной базы РФ.

Вид климатического исполнения – УХЛ2* по ГОСТ 15150-69, при отсутствии прямого воздействия солнечного излучения, атмосферных осадков и конденсации влаги на клапане и его элементах.

*Температура эксплуатации клапанов, оснащенных электроприводами, соответствует температуре эксплуатации заявленной фирмой производителем для данного электропривода, кроме клапанов, оснащенных подогревом электропривода.

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

2.1 Основные технические характеристики приведены в таблице 1.

Таблина 1

Наименование параметра	Hoj	ома
1. Предел огнестойкости, не менее		
- в исполнении КПУ-ДД	EI	15
- в исполнении КПУ-1Н	EI 90	, E 90
- в исполнении КПУ-2Н	EI 120	, E 120
- в исполнении КПУ-3	EI 180	, E 180
2. Минимально допустимое приведенное удельное сопротивление		
дымогазопроницанию при температуре 20 °C в закрытом положении	16	00
клапана, $M^3/K\Gamma$, не менее		
3. Инерционность срабатывания, секунд, не более		
- с электромагнитом	5	
- с электроприводом	200	
4. Номинальное напряжение питания		
- для питания электропривода клапана, В	=24 или ~2	4 или ~220
- для питания электромагнита клапана, В	=24 ил	и ~220
- для питания цепей контроля положения клапана, В	=24 или ~2	4 или ~220
5. Потребляемая мощность, Вт, не более	= 24 B	~ 220 B
- электроприводов "Belimo"*	7,5	5
- электромагнита	60	120
6. Масса клапана, кг	Таблица А.1	- A.10

^{*}для других производителей значения мощности привода могут отличаться

- 2.2 Средний срок службы клапанов при отсутствии огневого воздействия должен составлять не менее 6 лет.
- 2.3 Конструкция клапана обеспечивает его срабатывание без обслуживания в течение 10000 часов с коэффициентом технической готовности клапана -0.95. Среднее оперативное время восстановления не более 12 часов.
- 2.3 Общий вид клапанов с указанием габаритных и присоединительных размеров приведены в приложении A, а электрические схемы включения клапанов приведены в приложении Б.
 - 2.4 Питание цепей контроля положения лопатки клапана (концевых выключателей) может быть:
 - напряжение питания ~220 B, коммутируемый ток до 500 мA;
 - напряжение питания = 24 В, коммутируемый ток до 1000 мА.

3 УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

- 3.1 Конструкция клапана серии КПУ состоит (приложение А):
- клапаны КПУ-1Н в стандартном исполнении по параметрам потока рабочей среды (0) представляют собой стальной корпус прямоугольного или круглого сечения, с установленной внутри него лопаткой поворотного типа. Лопатка выполнена из огнестойкого материала с низким коэффициентом теплопроводности;
- клапаны КПУ-1Н в высокодинамичном исполнении (ВД) состоят из двух полукорпусов, между которыми находится проставка из термоизоляционного материала, что дает клапану большую жесткость и препятствует перетоку тепла с горячего на холодный полукорпус. В плоскости термоизоляционной проставки находится лопатка поворотного типа из огнестойкого материала с низким коэффициентом теплопроводности;
- клапаны КПУ-2Н представляют собой сдвоенный стальной корпус прямоугольного или круглого сечения, состоящий условно из «холодной» и «горячей» частей, разделенных между собой термоизолирующей проставкой. Внутри корпуса установлена лопатка поворотного типа. Лопатка выполнена из огнестойкого материала с низким коэффициентом теплопроводности;

- клапаны КПУ-3 состоят из двух полукорпусов прямоугольного или круглого сечения, между которыми находится проставка из термоизоляционного материала. Лопатка клапана находится в плоскости термоизоляционной проставки и выполнена из огнестойкого материала с низким коэффициентом теплопроводности. Электропривод расположен вне зоны лопатки с передачей крутящего момента посредством рычажного механизма.
- клапаны КПУ-ДД представляют собой стальной корпус прямоугольного или круглого сечения, с установленной внутри него лопаткой поворотного типа. Лопатка выполнена из огнестойкого материала с низким коэффициентом теплопроводности;
- в клапанах морозостойкого исполнения MC и MCK обеспечен периметральный обогрев привода с номинальной мощностью $0.03\pm0.005~\mathrm{kBt/m}$ посредством гибкого саморегулирующегося нагревательного элемента с номинальным напряжением питания $220~\mathrm{B}$.
- в клапанах морозостойкого исполнения ВМСК и ВМС должны применяться приводы и/или конструктивные меры их обогрева согласно требуемым условиям эксплуатации.
- 3.2 Конструкция клапанов должна обеспечивать приведение лопаток клапанов в рабочее положение дистанционно с помощью электропривода или электромагнита.
 - 3.3 Типы исполнительных механизмов:
 - а) Клапаны нормально открытые КПУ-1Н-О, КПУ-2Н-О, КПУ-3-О:
 - электропривод с возвратной пружиной с терморазмыкающим устройством (ТРУ по заказу),
 - электромагнитный привод (кроме КПУ-3);
 - б) Клапаны нормально закрытые КПУ-1Н-3, КПУ-2Н-3, КПУ-3-3:
 - электропривод реверсивного типа,
 - электромагнитный привод (кроме КПУ-3);
 - в) Клапаны дымовые КПУ-1Н-Д, КПУ-2Н-Д, КПУ-3-Д:
 - электропривод реверсивного типа,
 - электромагнитный привод (кроме КПУ-3);
- г) Клапаны КПУ-ДД-П, КПУ-3-ДД-П (для применения в качестве клапанов двойного действия согласно СП 7.13130.2013 п. 7.13 в):
 - электропривод с пружинным возвратом;
- д) Клапаны КПУ-ДД-Р, КПУ-3-ДД-Р (для применения в качестве клапана двойного действия или нормально закрытого клапана согласно СП 7.13130.2013 п. 7.13 б, в):
 - электропривод реверсивного типа.
- 3.4 В конструкции клапанов используются электроприводы фирм "Belimo", "Siemens", "Schischek" и иные, согласно требований заказчика. В модификации «В», «ВК», «ВМС», «ВМС» используется взрывозащищённый электропривод. Изготовитель оставляет за собой право устанавливать другие исполнительные устройства, имеющие комплект необходимой разрешительной документации и не ухудшающие технические параметры клапанов.
 - 3.5 Механизм аварийного срабатывания клапанов:
 - а) нормально открытого, нормально закрытого и дымового:
- при оснащении электроприводом лопатки клапана автоматически устанавливаются в охранное положение (нормально открытый клапан открыт, нормально закрытый и дымовой клапан закрыт). Электропривод с возвратной пружиной (только для нормально открытых клапанов) в охранном положении постоянно находится под напряжением, реверсивный электропривод (только для нормально закрытого и дымового клапана) после установки в охранном положении обесточивается. Далее, при аварийном срабатывании: электропривод с возвратной пружиной отключается от питания, на реверсивный электропривод подается питание и лопатки клапана автоматически устанавливаются в рабочее положение за счет энергии пружины или энергии двигателя привода соответственно. При отключении напряжения питания, не связанного с пожаром и последующего его включения на приводе с возвратной пружиной лопатки клапана, возвращаются охранное положение. В случае использования реверсивного электропривода управление лопатками в клапане происходит путем подачи напряжения на соответствующие группы контактов;
- при оснащении электромагнитным приводом лопатки устанавливаются в рабочее положение за счет энергии пружины реализующейся при подаче электрического импульса на электромагнит. При напряжении питания электромагнита 220 В длительность импульса не должна превышать 10 сек.

- б) клапанов двойного действия:
- лопатки клапана автоматически устанавливаются в охранное положение (клапан открыт). Электропривод с возвратной пружиной в охранном положении постоянно находится под напряжением, реверсивный электропривод после установки в охранном положении обесточивается. Далее, при аварийном срабатывании: электропривод с возвратной пружиной отключается от питания, на реверсивный электропривод подается питание и лопатки клапана автоматически устанавливаются в рабочее положение (клапан закрыт) за счет энергии пружины или энергии двигателя привода соответственно. Для удаления газов и дыма после срабатывания автоматических установок газового, аэрозольного или порошкового пожаротушения по сигналу автоматики клапан должен открыться: на электроприводе с возвратной пружиной вновь возобновляется постоянная подача напряжения, на реверсивном электроприводе происходит подача напряжения на соответствующие группы контактов. При отключении напряжения питания, не связанного с пожаром и последующего его включения на приводе с возвратной пружиной лопатки клапана, возвращаются в охранное положение. В случае использования реверсивного электропривода управление лопатками в клапане происходит путем подачи напряжения на соответствующие группы контактов;
- в) нормально закрытых клапанов (для применения в помещениях, защищенных установками газового, аэрозольного или порошкового пожаротушения, используемых для удаления газов и дыма после пожара согласно СП 7.13130.2013 п. 7.13 б):
- лопатки клапана автоматически устанавливаются в нормальное охранное положение (клапан закрыт). Реверсивный электропривод после установки в охранном положении обесточивается. Для удаления газов и дыма после срабатывания автоматических установок газового, аэрозольного или порошкового пожаротушения (после пожара) по сигналу автоматики клапан должен открыться: на реверсивный электропривод происходит подача напряжения на соответствующие группы контактов (клапан открыт). Управление лопатками в клапане происходит путем подачи напряжения на соответствующие группы контактов;

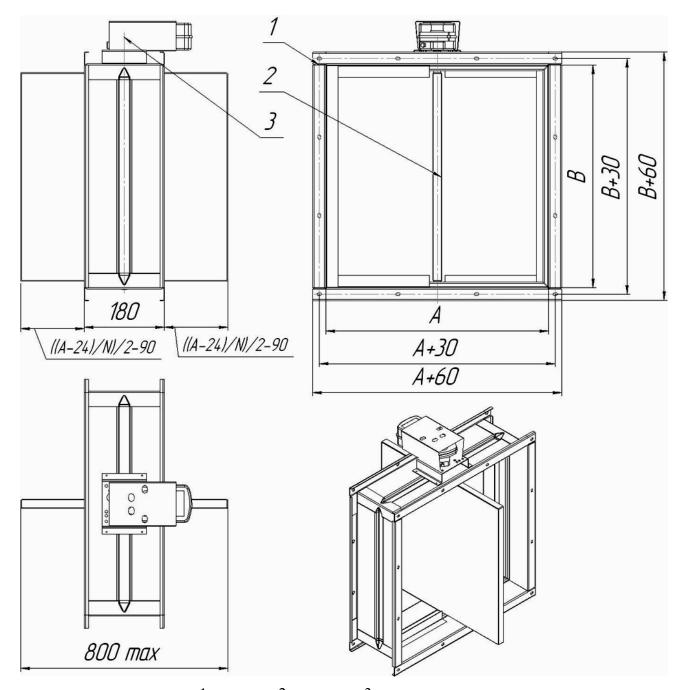
На определенных клапанах лопатки могут иметь вылет за габарит корпуса.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При подготовке клапана к работе и при эксплуатации должны соблюдаться общие и специальные правила техники безопасности.
- 4.2 К эксплуатации и обслуживанию клапана допускаются лица, изучившие его устройство и эксплуатационную документацию, а также прошедшие инструктаж по соблюдению правил техники безопасности.
- 4.3 Во избежание травмы рук о края частей клапана из листового металла, любые перемещения вручную и монтаж клапанов обязательно должны производится в защитных перчатках.
- 4.4 Обслуживание, ремонт и контроль работоспособности производить только при отключенной вентиляционной системе, в сети которой он установлен.
 - 4.5 При проведении работ по монтажу, техническому обслуживанию и ремонту запрещается:
- приступать к осмотру клапана без предварительного отключения электропитания электропривода и цепей контроля положения лопаток (кроме контроля работоспособности);
- прикасаться руками к подвижным элементам конструкции клапана и токоведущим частям его электрооборудования при контроле работоспособности;
- выполнять очистку внутренней полости клапана посредством скребков или металлических щеток, способных повредить материал уплотнителя.
 - применять при наладке и ремонте неисправный инструмент;
 - производить удары по лопаткам и поворотно-рычажному механизму.
- 4.6 Монтаж, обслуживание и ремонт электрооборудования должен выполняться в соответствии с требованиями "Правил по охране труда при эксплуатации электроустановок" ПОТЭУ 2014.
- 4.7 При работах, связанных с опасностью поражения электрическим током (в том числе статическим электричеством), применять защитные средства.

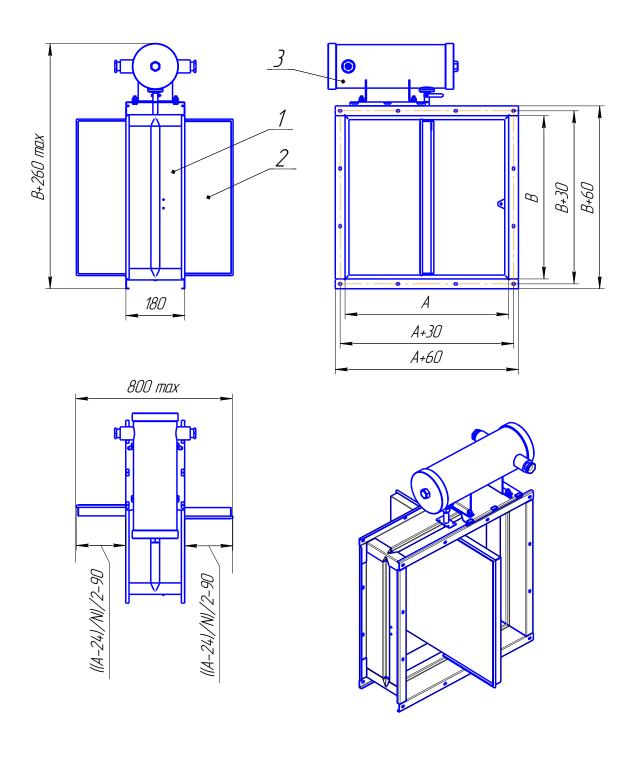
5 ПОРЯДОК МОНТАЖА И ПОДГОТОВКИ ИЗДЕЛИЯ К РАБОТЕ

- 5.1 Перед монтажом клапана необходимо произвести внешний осмотр. Повреждения и вмятины, полученные в процессе транспортировки или при хранении устранить.
 - 5.2 Клапан должен быть проверен на работоспособность перед монтажом и после монтажа.
- 5.3 При монтаже клапана должны быть приняты меры по защитите внутренних поверхностей корпуса, лопаток и приводных механизмов от попадания строительного раствора, и воды. Если загрязнения избежать не удалось произвести очистку клапана.
- 5.4 Монтаж клапана производится в соответствии с типовыми установочными схемами, приведенными в приложении В, в зависимости от функционального назначения, расположения обслуживаемого помещения и глубины проема строительной конструкции с нормируемым пределом огнестойкости.
- 5.5 При монтаже в стены и перекрытия с меньшим классом огнестойкости, чем у клапанов, огнестойкость клапана принимать равной огнестойкости стены, перекрытия.
- 5.6 Корпус клапана не должен воспринимать внешние нагрузки и не может быть использован в качестве несущей опоры строительных конструкций. Внешние нагрузки могут вызвать прогиб или перекос корпуса и нарушить работоспособность клапана.
- 5.7 Установка решеток и любых других элементов должна производится с обязательным учетом обеспечения минимального пространства достаточного для полного открытия лопаток клапана.
- 5.8 Электропривод, тяги и другие подвижные элементы после монтажа должны быть доступны для подключения, осмотра и технического обслуживания. В элементах конструкций воздуховодов, присоединяемых к клапану, должны быть предусмотрены сервисные проемы, закрываемые крышкой, обеспечивающие возможность осмотров и очистки внутренней поверхности клапана.
- 5.9 При установке клапана вне проема строительной конструкции или при его стыковке с последней через отрезок воздуховода, часть корпуса клапана до плоскости закрытия лопатки и указанный отрезок воздуховода подлежат дополнительной наружной теплоизоляции с соответствующим уровнем огнестойкости. Для клапанов дымоудаления дополнительная теплоизоляция не требуется.
- 5.10 После монтажа клапана, производится подключение его электрооборудования и установка лопаток клапана в требуемое исходное положение. Электромонтажные работы должны производиться в соответствии с требованиями действующих нормативных документов. Для удобства проверки работоспособности клапанов с электроприводом рекомендуется устанавливать кнопку КН1 (смотри приложение Б) под клапаном на высоте 1,2... 1,5 м от пола.


6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 6.1 Техническое обслуживание клапана предусматривает профилактические осмотры и контроль его работоспособности. Периодичность технического обслуживания клапана должна соответствовать установленным срокам технического обслуживания комплекса оборудования противопожарной защиты эксплуатируемого объекта.
- 6.2 При проведении профилактических осмотров выполняются необходимые ремонтновосстановительные работы и очистка внутренней полости клапана (при наличии в ней отложений).
- 6.3 Контроль работоспособности клапана с электроприводом производится путем отключения питания исполнительного устройства (например, нажав на кнопку KH_1) при этом лопатки клапана должны перейти в охранное положение. При особых условиях эксплуатации контроль работоспособности должен выполняться с соблюдением требований специально разработанных инструкций.
- 6.4 Данные, полученные при техническом обслуживании клапана, должны регистрироваться в формуляре. Допускается ведение единых формуляров на комплекс оборудования противопожарной защиты эксплуатируемого объекта.
- 6.5 Клапаны, сработавшие по прямому назначению (огневое или дымовое воздействие), не ремонтопригодны и подлежат списанию.

приложение а


(Справочное)

ОБЩИЙ ВИД И ОСНОВНЫЕ РАЗМЕРЫ КЛАПАНОВ

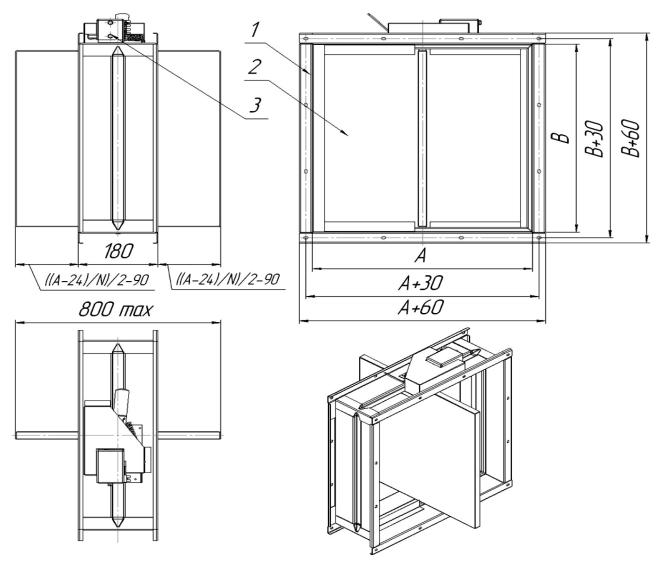

1 – корпус, 2 – лопатка, 3 - электропривод

Рисунок А.1 - Клапан КПУ-1Н канальный прямоугольный с электроприводом снаружи

1 – корпус, 2 – лопатка, 3 - электропривод

Рисунок А.2 - Клапан КПУ-1Н канальный прямоугольный во взрывозащищённом исполнении с электроприводом снаружи

1 - корпус; 2 - лопатка; 3 – электромагнитный привод.

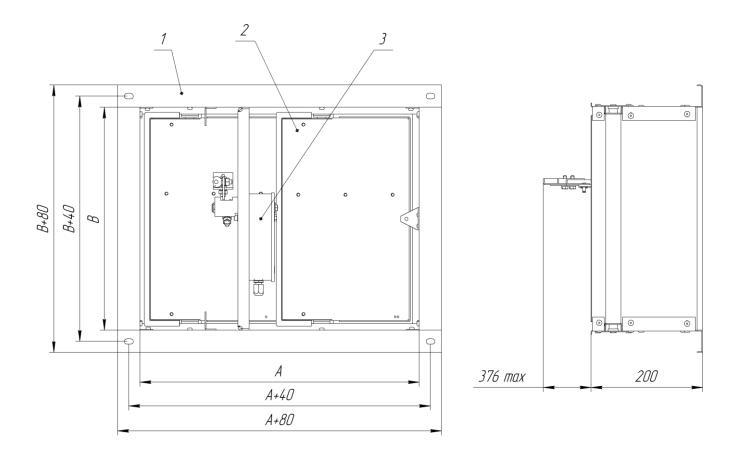

Рисунок А.3 - Клапан КПУ-1Н канальный прямоугольный с электромагнитом

Таблица А.1 (для рисунков А.1 - А.3, А.28)

A*, MM	В*,	Кол-во лопаток, шт.	Вылет лопаток за габарит корпуса, «справа» и «слева» от корпуса**	Масса клапана без привода, кг
100	100	1	0	8,0
150	150	1	0	9,0
200	200	1	0	11,5
250	250	1	35	14,0
300	300	1	60	15,5
400	400	1	110	20,0
500	500	1	160	24,5
600	600	1	210	29,0
800	800	1	310	34,0
1000	1000	2	147/147	53,0
1200	1200	2	197/197	58,5

^{* -} по согласованию принимаются к изготовлению клапаны других сочетаний размеров А и В.

^{**} - формула расчета фактического вылета лопаток клапана исполнения КПУ-1H для других размеров: вылет лопатки "справа" или "слева" от клапана = ((A/N)*0.5 - 90, где A - ширина клапана, N - число лопаток в клапане. Фактическое число лопаток в клапане серии КПУ-1H для других размеров определяется по формуле: N = A/800 с округлением до целого значения в большую сторону.

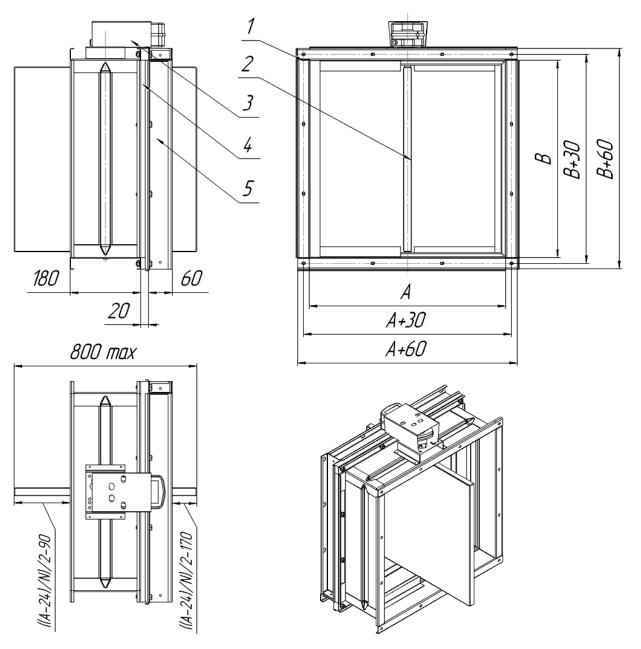
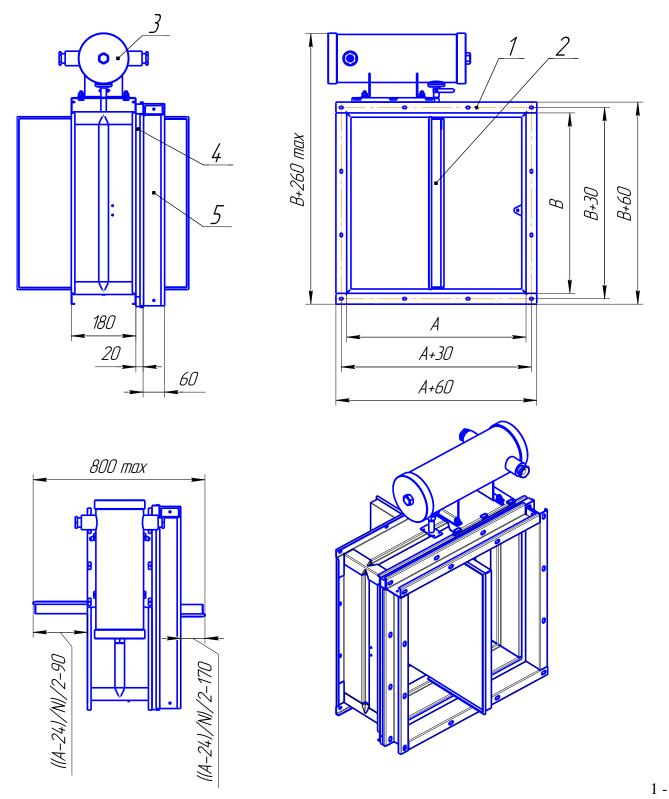

1 – корпус, 2 – лопатка, 3 - исполнительный механизм

Рисунок А.4 - Клапан КПУ-1H стеновой прямоугольного сечения с исполнительным механизмом внутри

Таблица А.2 (для рисунка А.4)


A*, MM	В*,	Масса клапана без привода, кг
250	300	7
700	700	24
1000	1000	41
1200	1200	51
1400	1000	50

^{*-} по согласованию принимаются к изготовлению клапаны других сочетаний размеров A и B; в зависимости от комплектации клапана возможен вылет лопатки за габарит корпуса.

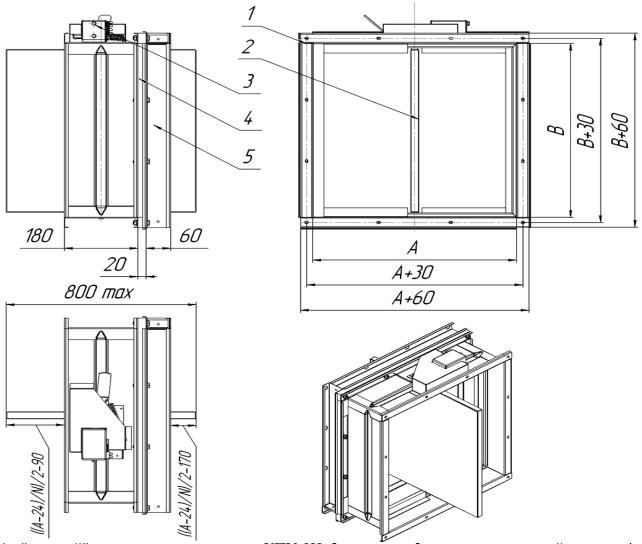

1 - "горячий" корпус - корпус клапана КПУ-2H, 2 - лопатка, 3 — электропривод, 4 - термоизолирующая вставка, 5 - "холодный" корпус

Рисунок А.5 - Клапан КПУ-2Н канальный прямоугольный с электроприводом

"горячий" корпус - корпус клапана КПУ-2H, 2 - лопатка, 3 — электропривод, 4 - термоизолирующая вставка, 5 - "холодный" корпус

Рисунок А.6 - Клапан КПУ-2Н канальный прямоугольный во взрывозащищённом исполнении с электроприводом

1 - "горячий" корпус - корпус клапана КПУ-2H; 2 - лопатка; 3 - электромагнитный привод; 4 - термоизолирующая вставка; 5 — "холодный" корпус

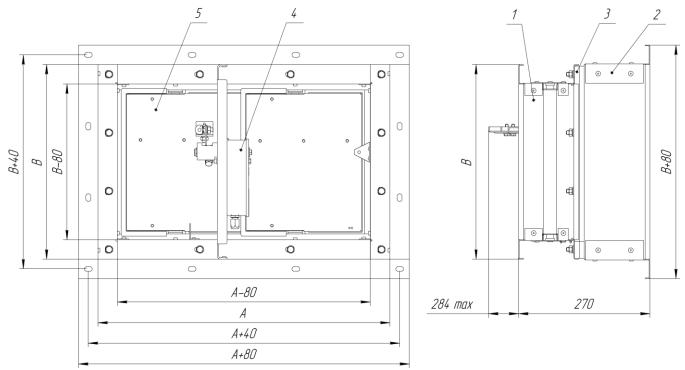
Рисунок А.7 - Клапан КПУ-2Н канальный прямоугольный с электромагнитом

Таблица А.3(для рисунков А.5 - А.7)

A*, MM	В*, мм	Кол-во лопаток, шт	Вылет лопаток за габарит корпуса, «справа»/«слева»** от корпуса	Глубина корпуса клапана КПУ-2Н без вылета лопаток, X***. мм	Масса клапана без привода, кг
100	100	1	0/0	260	10,0
150	150	1	0/0	260	13,0
200	200	1	0/0	260	15,0
250	250	1	0/35	320	16,5
300	300	1	0/60	320	18,0
400	400	1	30/110	500	22,0
500	500	1	80/160	500	25,5
600	600	1	130/210	860	25,5 30,5
800	800	1	230/310	860	46,5
1000	1000	2	80/160	680	63,0
1200	1200	2	130/210	860	68,5

^{* -} по согласованию принимаются к изготовлению клапаны других сочетаний размеров А и В;

** - формула расчета фактического вылета лопаток клапана исполнения КПУ-2Н для других размеров:


- вылет лопатки "справа" от клапана = (A/n)*0.5 – 170 мм;

- вылет лопатки "слева" от клапана = (A/n)*0.5 – 90 мм, где А - ширина клапана, п - число лопаток в клапане. Фактическое число лопаток в клапане серии КПУ для других размеров определяется по формуле:

п = A/800 с округлением до целого значения в большую сторону.

^{*** -} допускается изготовление канальных клапанов КПУ-2H без вылета лопаток: в этом случае глубина его корпуса будет составлять X мм (таблица A.2).

1 - "горячий" корпус; 2 - "холодный" корпус,

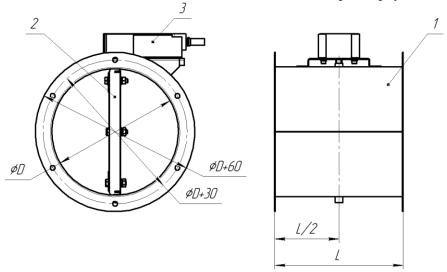

3 - термоизолирующая вставка, 4 - исполнительный механизм, 5 – лопатка

Рисунок А.8 - Клапан КПУ-2H стеновой прямоугольный с исполнительным механизмом, установленным внутри

Таблица А.4 (для рисунка А.8)

A*, MM	В*,	Масса клапана без привода, кг
300	300	10
700	700	27
1000	1000	43
1200	1200	56
1400	1000	55

^{*-} по согласованию принимаются к изготовлению клапаны других сочетаний размеров A и B; в зависимости от комплектации клапана возможен вылет лопатки за габарит корпуса.

1 – корпус, 2 – лопатка, 3 - электропривод

Рисунок А.9. Клапан КПУ-1Н круглый с электроприводом.

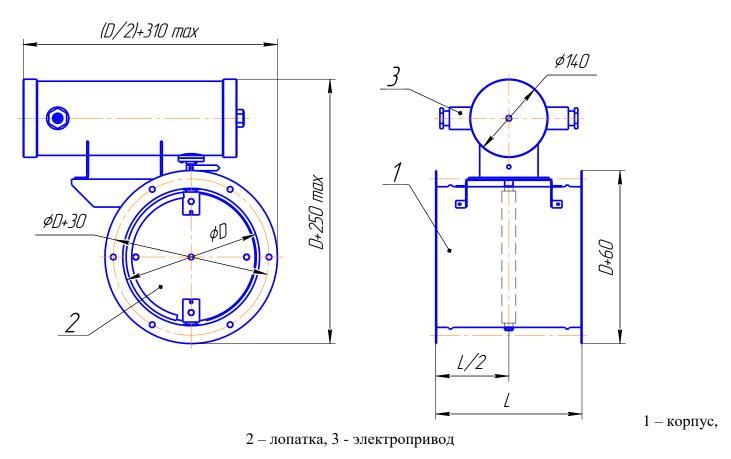


Рисунок А.10 - Клапан КПУ-1Н круглый во взрывозащищённом исполнении с электроприводом

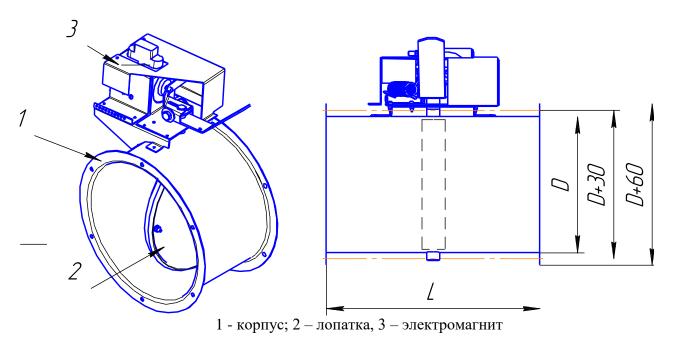
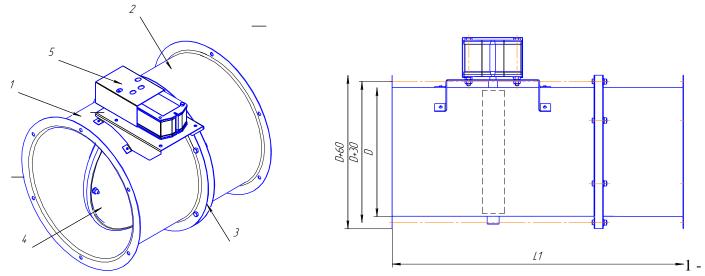
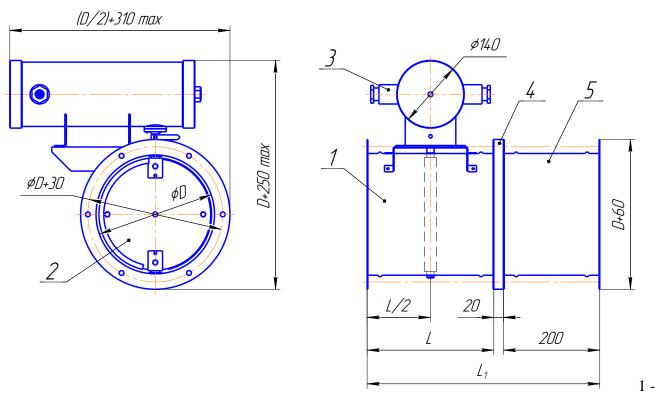




Рисунок А.11 - Клапан КПУ-1Н круглый с электромагнитом

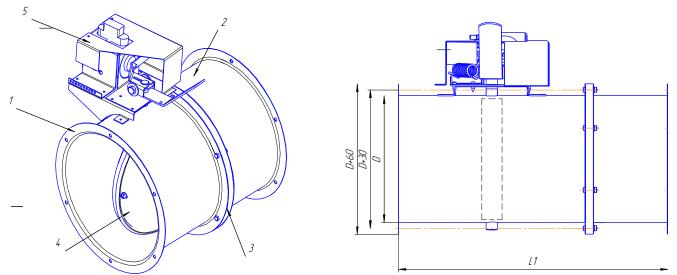

"горячий" корпус, 2 - "холодный" корпус, 3 - термоизолирующая вставка, 4 - лопатка, 5 - электропривод

Рисунок А.12 - Клапан КПУ-2Н круглый с электроприводом

"горячий" корпус, 2 - "холодный" корпус, 3 - термоизолирующая вставка, 4- лопатка, 5- электропривод

Рисунок А.13 - Клапан КПУ-2Н круглый во взрывозащищённом исполнении с электроприводом

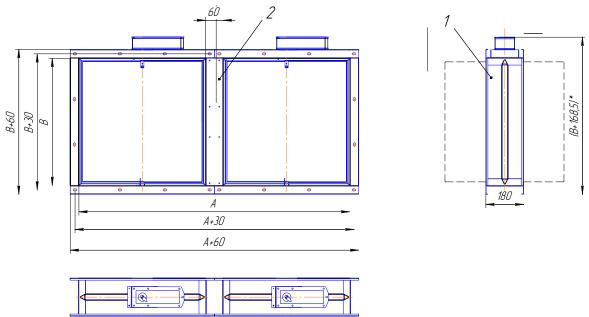
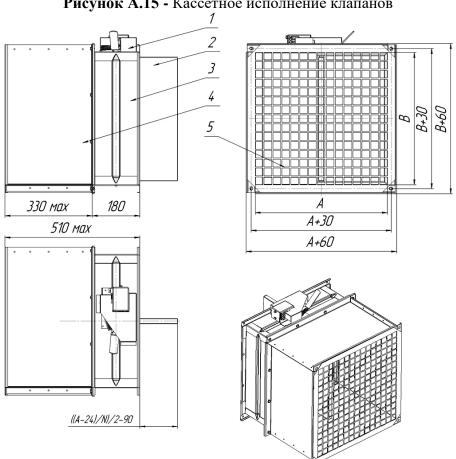

1 - "горячий" корпус, 2 - "холодный" корпус, 3 - термоизолирующая вставка, 4 - лопатка; 5 - электромагнит

Рисунок А.14 - Клапан КПУ-2Н круглый с электромагнитом

Таблица А.5(для рисунков А.9 - А.14, А.29)

	Ì	-	Масса клапана		
D*,	L*,	L_1* ,	без привода, кг		
MM	MM	MM	КПУ-1Н, КПУ-ДД	КПУ-2Н	
100	220	440	1,6	3	
125	220	440	1,9	4	
140	220	440	2,2	4,2	
150	220	440	2,3	4,3	
160	220	440	2,5	5	
180	220	440	2,8	5,2	
200	220	440	3,3	6	
225	220	440	3,9	7	
250	250	470	4,6	8	
280	250	470	5,4	9	
315	250	470	6,4	10	
355	250	470	7,6	12	
400	260	480	9,2	14	
450	285	515	11,2	17	
500	310	530	13,2	20	
560	340	560	16,5	24	
630	375	595	20,5	28	
710	415	635	25,5	34	
800	415	635	27,8	36,4	
900	415	635	33,8	43	
1000	415	635	37,4	50,2	


^{* -} по согласованию принимаются к изготовлению клапаны других сочетаний размеров; в зависимости от комплектации клапана возможен вылет лопатки за габарит корпуса

1 -клапан КПУ; 2 -монтажный швеллер

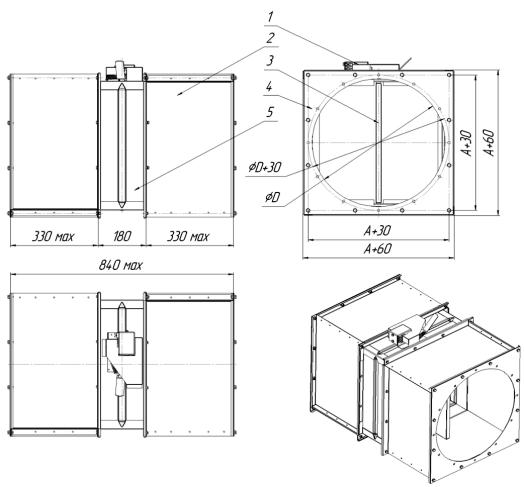

Кассетное исполнение представляет собой два или более клапанов, корпуса которых соединены между собой монтажными швеллерами (поз.2). Также для соединения клапанов допускается использовать монтажные рамы с обеих или одной из фронтальных сторон соединяемых клапанов. При этом глубина общей конструкции может отличаться от представленных на рисунке значений. Для удобства транспортировки клапаны и элементы соединения, по согласованию с заказчиком, могут поставляться в разобранном виде.

Рисунок А.15 - Кассетное исполнение клапанов

1 – исполнительный механизм, 2 – лопатка, 3 – корпус, 4 – компенсационный корпус, 5 – антивандальная сетка.

Рисунок А.16 - Клапан КПУ-1Н канальный прямоугольный. Пример комплектации антивандальной сеткой (то же – для просечной жалюзийной или декоративной решётки).

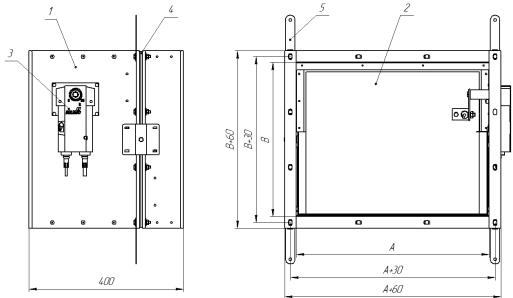
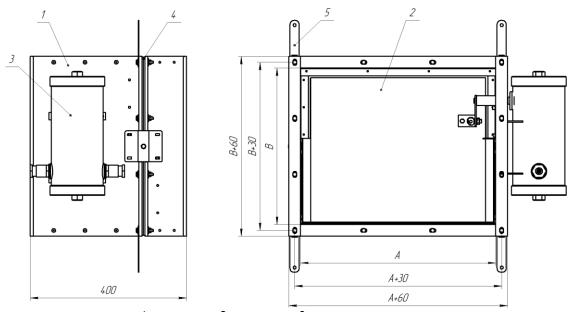

1 – исполнительный механизм, 2 – компенсационный корпус, 3 – лопатка, 4– листовой переходник на воздуховод круглого сечения, 5 - корпус.

Рисунок А.17 - Клапан КПУ-1Н канальный прямоугольный. Пример комплектации двумя переходниками на воздуховод круглого сечения.

Таблица А.6 (для рисунков А.15; А.17)

	1 (- 1			
A*, MM	В*,	Кол-во лопаток, шт	Вылет лопаток за габарит корпуса, «справа»/«слева» от корпуса**	Масса клапана без привода, кг
150	150	1	0/0	9,0
200	200	1	0/0	11,5
250	250	1	16/16	14,0
300	300	1	41/41	15,5
400	400	1	91/91	20,0
500	500	1	141/141	24,5
600	600	1	191/191	29,0
800	800	1	291/291	34,0
1000	1000	2	147/147	53,0
1200	1200	2	197/197	58,5


^{* -} по согласованию принимаются к изготовлению клапаны других сочетаний размеров A и B; ** - формула расчета фактического вылета лопаток клапана исполнения КПУ-1H для других размеров: вылет лопатки "справа" или "слева" от клапана = ((A-24)/N)*0.5 - 90, где A - ширина клапана, N - число лопаток в клапане. Фактическое число лопаток в клапане серии КПУ-1H для других размеров определяется по формуле: N = A/800 с округлением до целого значения в большую сторону.

1 – корпус, 2- лопатка, 3 – электропривод,

4 - термостойкая проставка, 5 – уши для стеновой заделки.

Рисунок А.18 - Клапан противопожарный КПУ-3 прямоугольного сечения

1 – корпус, 2- лопатка, 3 – электропривод,

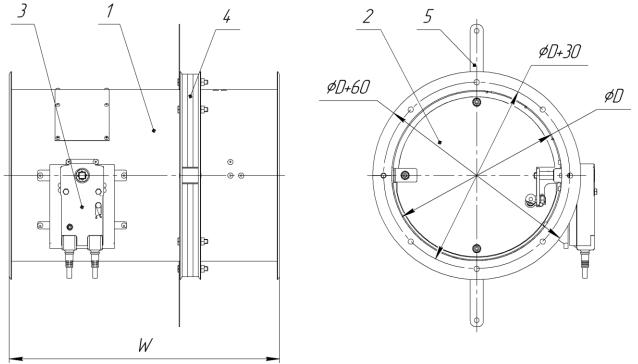
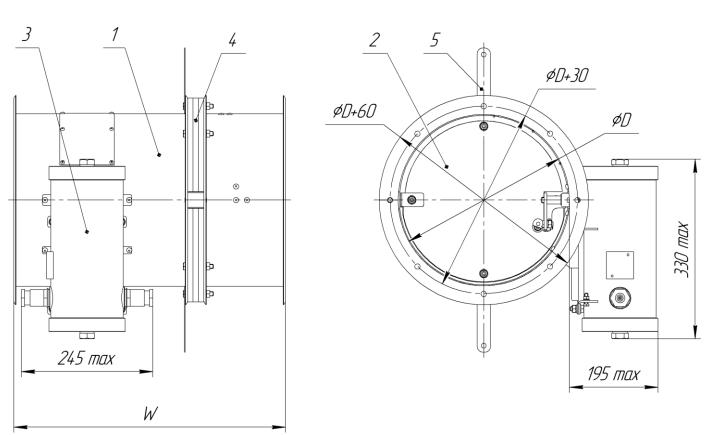

4 - термостойкая проставка, 5 -уши для стеновой заделки.

Рисунок А.19 - Клапан противопожарный КПУ-3 прямоугольного сечения во взрывозащищённом исполнении

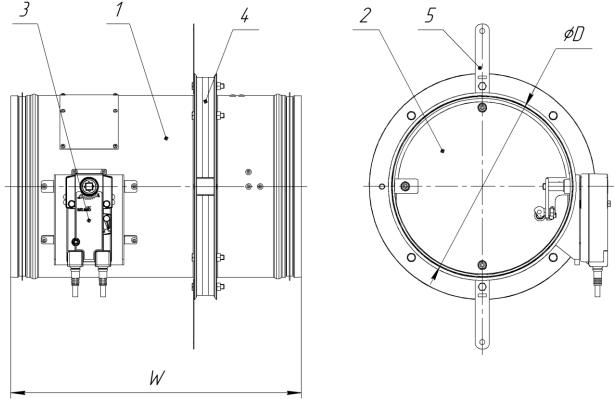
Таблица А.7 (для рисунков А.18, А.19)

А*, мм	В*, мм	Масса клапана без привода, кг
200	200	16,5
250	250	18,0
300	300	20,5
400	400	23,0
500	500	26,5
600	600	30,0
800	800	43,0


^{*-} по согласованию принимаются к изготовлению клапаны других сочетаний размеров А и В;

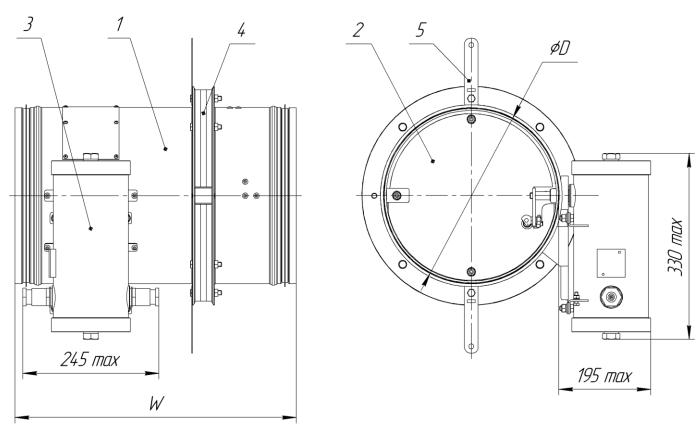
1 – корпус, 2- лопатка, 3 – электропривод,

4 - термостойкая проставка, 5 – уши для стеновой заделки.


Рисунок А.20 - Клапан противопожарный КПУ-3 круглого сечения канального типа

1 – корпус, 2- лопатка, 3 – электропривод,

4 - термостойкая проставка, 5 – уши для стеновой заделки.


Рисунок А.21 - Клапан противопожарный КПУ-3 круглого сечения канального типа во взрывозащищённом исполнении

1 – корпус, 2- лопатка, 3 – электропривод,

4 - термостойкая проставка, 5 – уши для стеновой заделки.

Рисунок А.22 - Клапан противопожарный КПУ-3 круглого сечения ниппельного типа

1 – корпус, 2- лопатка, 3 – электропривод,

4 - термостойкая проставка, 5 – уши для стеновой заделки.

Рисунок А.23 - Клапан противопожарный КПУ-3 круглого сечения ниппельного типа во взрывозащищённом исполнении

Таблица А.8 (для рисунков А.20 - А.23)

D*,	W*,	Масса клапана без приводаи навесных элементов, кг (±10%)				
MM	MM	Канальный тип	Ниппельный тип			
100	450	4,5	4,3			
125	450	5	4,8			
140	450	5,4	5,1			
150	450	5,6	5,4			
160	450	5,8	5,6			
180	450	6,3	6			
200	450	6,8	6,5			
225	500	7,8	7,5			
250	500	8,5	8,1			
280	500	9,3	9			
315	500	10,4	10			
355	500	11,6	11,2			
400	500	13,1	12,6			
450	500	14,9	14,4			
500	500	16,8	16,3			
560	500	19,2	18,5			
630	500	22,1	21,5			
710	550	26,7	25,9			
800	550	37,5	36			
900	550	43,6	42,1			
1000	550	50,2	48,5			

^{* -} по согласованию принимаются к изготовлению клапаны других сочетаний размеров; в зависимости от комплектации клапана возможен вылет лопатки за габарит корпуса

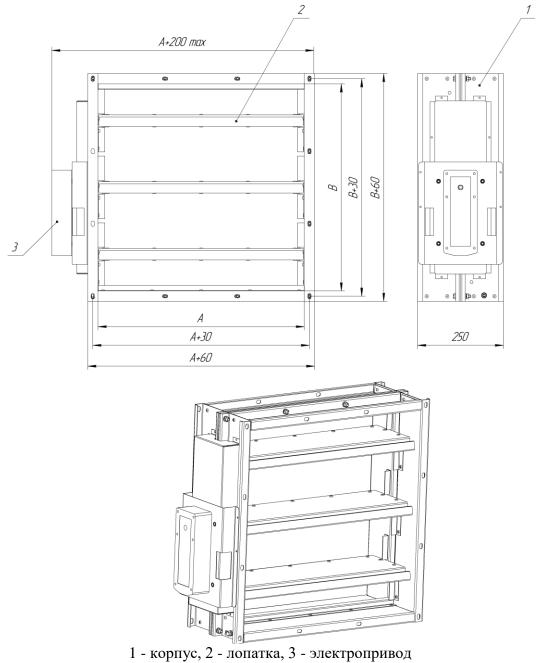
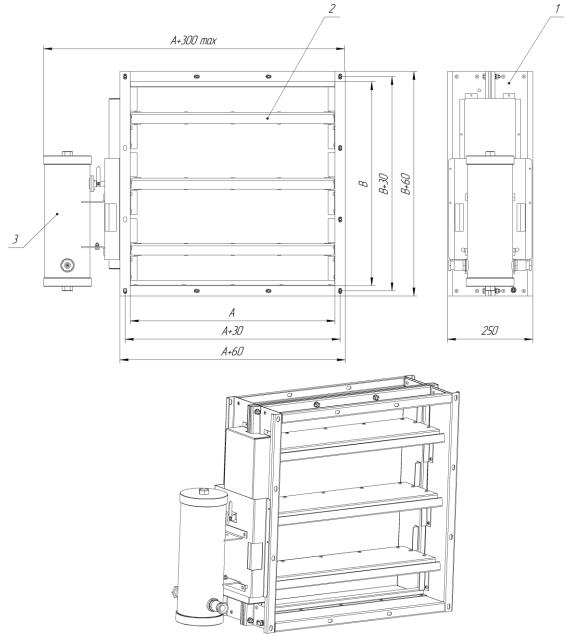
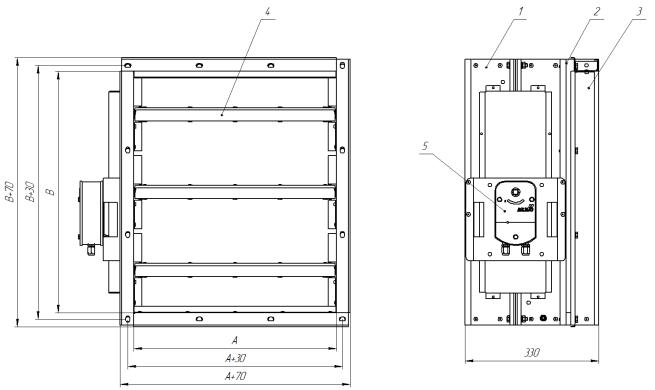



Рисунок А.24 - Клапан КПУ-1H с электроприводом в конструктивном исполнении по параметрам потока рабочей среды «ВД»

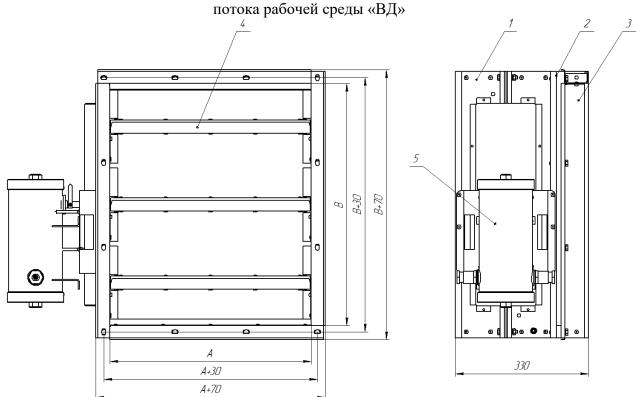
1 - корпус, 2 - лопатка, 3 – электропривод,

Рисунок А.25 - Клапан КПУ-1Н во взрывозащищённом исполнении (на рисунке пример с электроприводом ЭПВ) в конструктивном исполнении по параметрам потока рабочей среды «ВД»


Таблица А.9(для рисунков А.24; А.25)

A*, MM	В*, мм	Масса клапана без привода, кг
100	100	15
300	300	22
500	500	34
700	700	46
800	800	53
1000	1000	73

Таблица А.10(для рисунков А.26; А.27)


A*, MM	В*, мм	Масса клапана без привода, кг
100	100	16
300	300	24
500	500	37
700	700	51
800	800	58
1000	1000	81

^{*-} по согласованию принимаются к изготовлению клапаны других сочетаний размеров А и В; клапаны не имеют вылета лопаток за габарит корпуса.

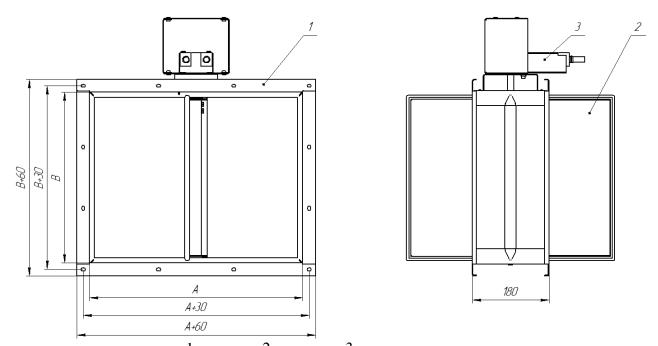
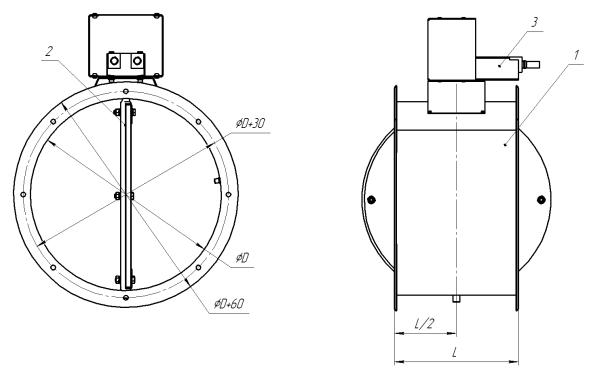
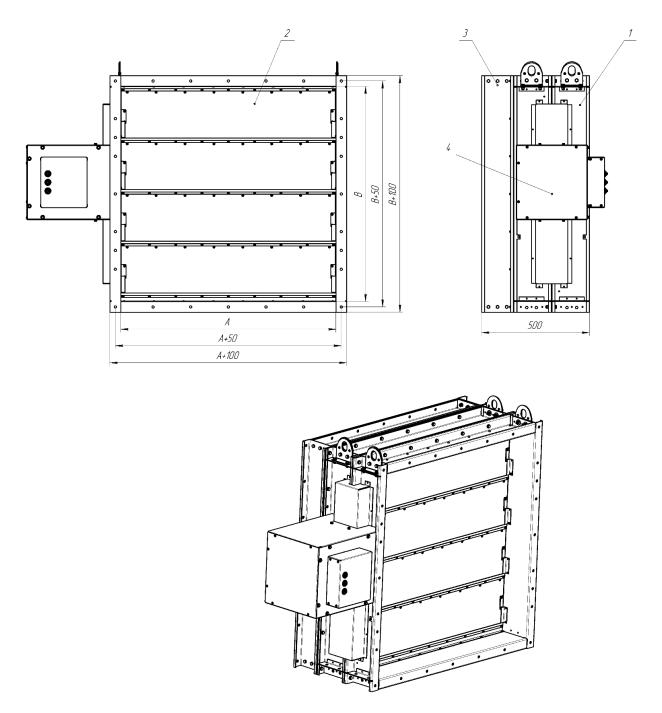

1 - "горячий" корпус, 2 - термоизолирующая вставка, 3 - "холодный" корпус, 4 - лопатка, 5 - электропривод.

Рисунок А.26 - Клапан КПУ-2H с электроприводом в конструктивном исполнении по параметрам потока рабочей среды «ВЛ»



1 - "горячий" корпус, 2 - термоизолирующая вставка, 3 - "холодный" корпус, 4 - лопатка, 5 - электропривод.


Рисунок А.27 - Клапан КПУ-2Н во взрывозащищённом исполнении (на рисунке пример с электроприводом ЭПВ) в конструктивном исполнении по параметрам потока рабочей среды «ВД»

1 - корпус, 2 - лопатка, 3 - электропривод. **Рисунок А.28 -** Клапан КПУ-ДД прямоугольный с электроприводом.

1 - корпус, 2 - лопатка, 3 - электропривод. **Рисунок А.29 -** Клапан КПУ-ДД круглый с электроприводом.

1 - корпус, 2 - лопатка, 3 — рама, 4 — исполнительный механизм МЭО(Φ). **Рисунок А.30**.Клапан КПУ-1H(2H) с исполнительным механизмом МЭО(Φ) в конструктивном исполнении по параметрам потока рабочей среды «ВД»

Таблица А.11 (для рисунка А.30)

A*, MM	В*, мм	Масса клапана без привода, кг
500	500	80
700	700	110
800	800	126
1000	1000	163
1500	1500	270

приложение б

(Справочное)

ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ЭЛЕКТРОМАГНИТНЫХ ПРИВОДОВ

Рисунок Б.1. Электрическая схема электромагнитного привода дымовых и нормально закрытых клапанов

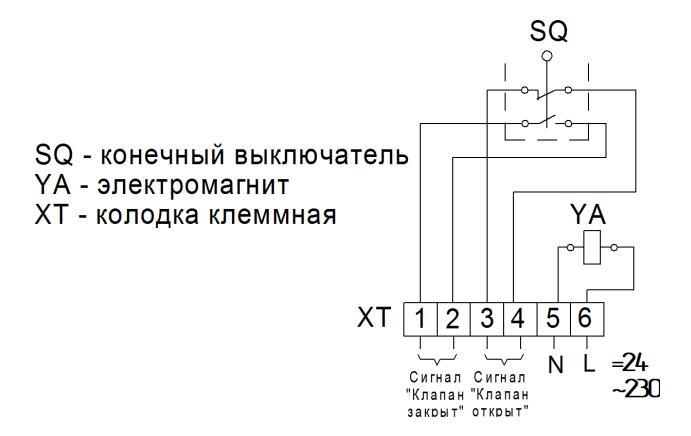


Рисунок Б.2. Электрическая схема электромагнитного привода нормально открытых клапанов

ПРИЛОЖЕНИЕ В

(Справочное)

ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ЭЛЕКТРОПРИВОДОВ

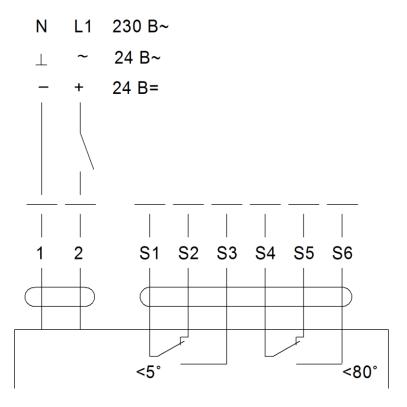
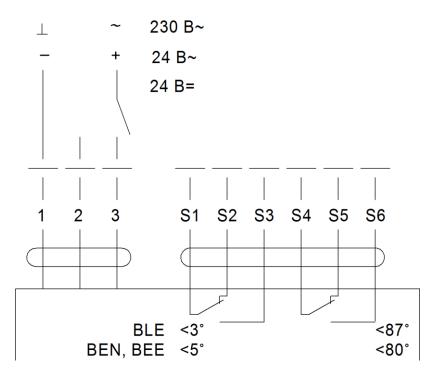
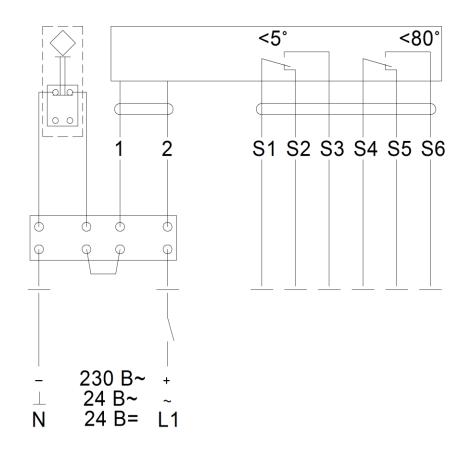




Рисунок В.1. Электропривод с возвратной пружиной (для клапанов назначения «НО»)

Рисунок В.2. Электропривод реверсивный (типа «открыто»-«закрыто») для клапанов назначения «НЗ» и «Д»

Рисунок В.3. Электропривод с возвратной пружиной (для клапанов назначения «НО») совмещенный с термоэлектрическим размыкающим устройством ТРУ

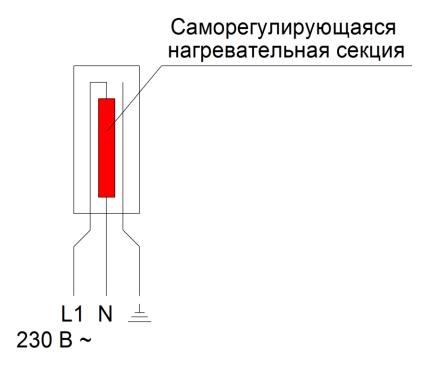


Рисунок В.4. Схема подключения саморегулирующейся нагревательной секции клапана

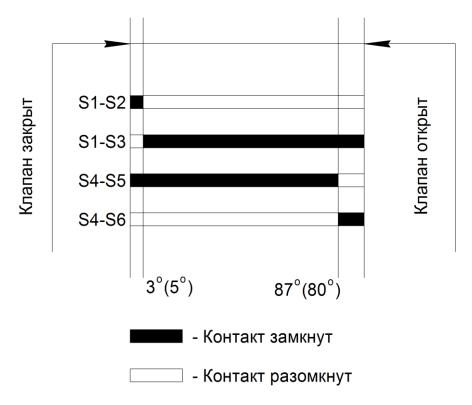


Рисунок В.5. Диаграмма работы контактов

ПРИЛОЖЕНИЕ Г

(Рекомендуемое)

СХЕМЫ МОНТАЖА

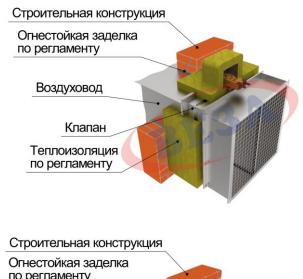


Рисунок Г.1 - Монтаж клапана канального типа вне проема строительной конструкции

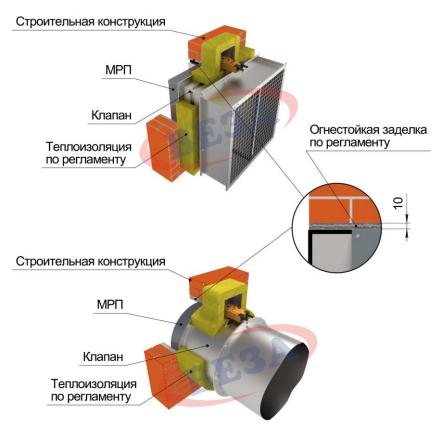
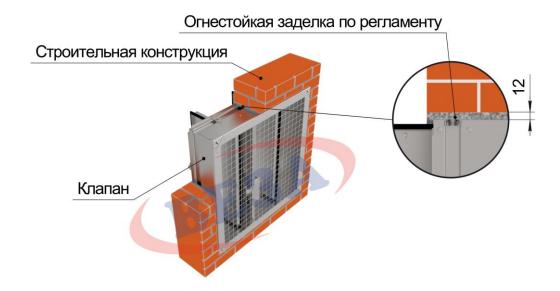
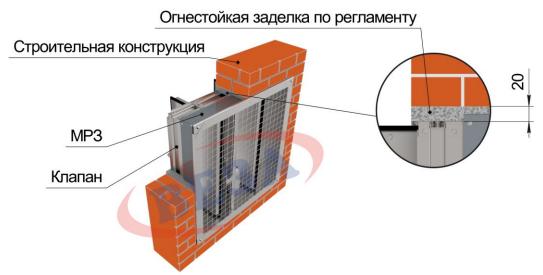




Рисунок Г.2 - Монтаж клапана канального типа с применением монтажной рамы МРП

Рисунок Г.3 - Монтаж клапана стенового типа прямоугольного сечения без применения монтажной рамы MP3

Рисунок Г.4 - Монтаж клапана стенового типа прямоугольного сечения с применением монтажной рамы MP3

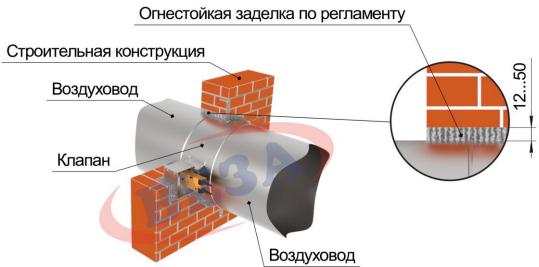


Рисунок Г.5 - Монтаж клапана стенового типа круглого сечения

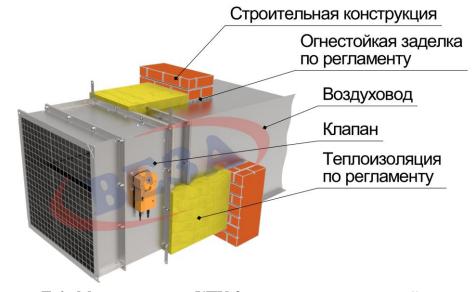


Рисунок Г.6 - Монтаж клапана КПУ-3 вне проема строительной конструкции

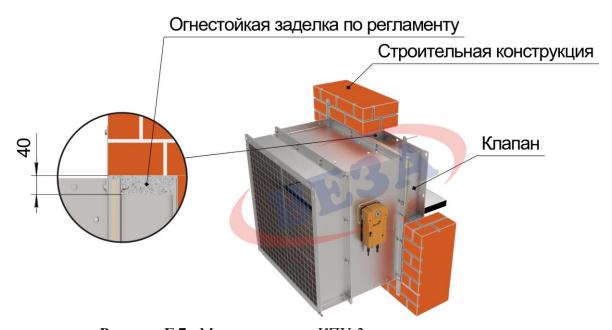


Рисунок Г.7 - Монтаж клапана КПУ-3 в стеновое перекрытие

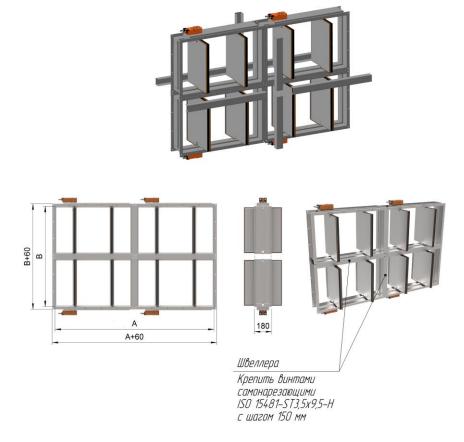


Рисунок Г.8 - Монтаж клапана канального типа в кассетном исполнении

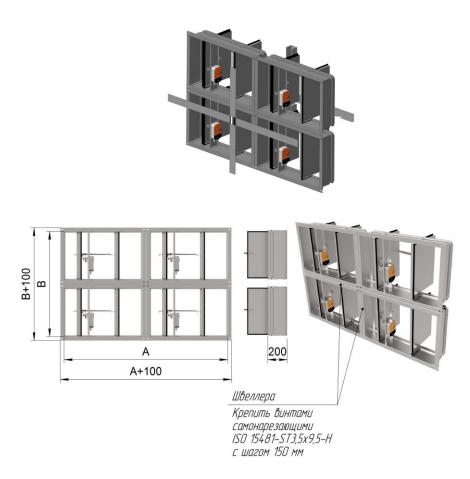


Рисунок Г.9 - Монтаж клапана стенового типа в кассетном исполнении