Клапаны воздухорегулирующие типа КОРД

инструкция по эксплуатации

КОРД-00ИЭ

Содержание:

1 Описание и работа	3
2 Использование по назначению	5
3 Техническое обслуживание	6
4 Текущий ремонт	6
5 Хранение	8
6 Транспортирование	8
7 Утилизация	8
Приложение А	9
Приложение Б	16

Настоящая инструкция по эксплуатации является эксплуатационным документом для клапанов воздухорегулирующих типа КОРД-1 и КОРД-2 (далее «клапаны»), предназначенные для регулирования или отсечки воздушных потоков, в том числе взрывоопасных, в системах вентиляции и кондиционирования воздуха.

По функциональному назначению клапаны КОРД-1 и КОРД-2 применяются для работы в отсечном режиме или в режиме регулировки воздушного потока. При этом клапаны типа КОРД-2 имеют более тяжёлую и жёсткую конструкцию по сравнению с клапанами КОРД-1 и могут использоваться в качестве газонепроницаемых клапанов (технические характеристики клапанов представлены в таблице 1).

Клапаны выпускаются в двух исполнениях - общепромышленное и взрывозащищенное (искробезопасное).

Вид климатического исполнения по ГОСТ 15150 - У2, У3, УХЛ2, УХЛ3, Т2, Т3, ОМ1, ОМ2, ОМ3, ОМ4. Температура перемещаемой среды соответствует климатическому исполнению.

Клапаны предназначены для работы при механических воздействиях:

вибрации с частотами от 2 до 80 Гц, а именно:

вибрации с амплитудой перемещения ± 1 мм при частотах от 2 до 13,2 Гц;

вибрации с ускорением \pm 1,0 g при частотах от 13,2 Γ ц до 80 Γ ц;

ударах с ускорением \pm 5,0 g при частоте 40 - 80 ударов в минуту.

Клапаны спроектированы с учетом особых условий:

сейсмическая активность — уровень максимального расчетного землетрясения 8 баллов (ускорение 2 m/c^2);

- сейсмические силы могут иметь любое направление в пространстве, в том числе горизонтальное и вертикальное. Ориентацию воздействия следует принимать по направлениям, реализующим максимум динамической реакции.

Клапан разработан и изготовлен ООО «ВЕЗА».

Каждый экземпляр паспорта КОРД-00ПС должен быть заверен подлинной печатью ООО «ВЕЗА», копии – недействительны.

Производство клапана осуществляется в соответствии с ТУ 4863-187-40149153-2014. Конструирование и производство клапанов осуществляется на основании лицензий Ростехнадзора.

1 ОПИСАНИЕ И РАБОТА

1.1 Основные параметры и размеры

- 1.1.1 Клапаны соответствуют требованиям ТУ 4863-187-40149153-2014 и комплекту конструкторской документации на данный клапан. Клапаны во взрывозащищённом исполнении также соответствуют ГОСТ Р МЭК 60079-0, ГОСТ 31441.1 (ЕН 13463-1:2001) и ГОСТ 31441.5 (ЕН 13463-5:2003).
 - 1.1.2 Внешний вид клапанов соответствует рисункам Приложения А.

Габаритные, присоединительные и установочные размеры клапанов находятся в пределах, указанных в Приложении А.

Масса клапана соответствует технической документации на данный клапан.

1.1.3 Технические характеристики клапанов соответствуют значениям, указанным в таблице 1.

Таблица 1

Наименование параметра		Норма	
		КОРД-2	
1. Скорость перемещения воздушной среды через клапан,	20	20	
м/с, не более			
2. Максимальное статическое давление на клапан, Па, не	2500	10000	
более			
3. Скорость нарастания давления, Па/сек, не более	50	100	
4. Утечка воздуха через закрытый клапан, отнесенная к			
площади проходного сечения, при перепаде давления 300		(700)	
Па не должна превышать, $\pi/(c \cdot M^2)$ ($M^3/(u \cdot M^2)$)			
5. Масса клапана, кг	Прилох	кение А	

- 1.1.4 Конструкция клапанов соответствует следующим требованиям:
- поворот створок производиться посредством ручного привода и/или электропривода;
- вращение створок происходит без рывков и заеданий. В закрытом состоянии створки плотно прилегают друг к другу и к упорам;
- в конструкции клапаном с ручным приводом должен быть предусмотрен фиксатор открытого положения рукоятки;
- в клапанах взрывозащищенного исполнения в узлах трения и ударного соприкосновения предусмотрены конструктивные меры по предотвращению возможности воспламенения окружающей среды (не искрящиеся пары материалов: сталь-латунь, нержавеющая сталь нержавеющая сталь);
- в клапанах морозостойкого исполнения обеспечен периметральный обогрев с удельной мощностью 0,08 кВт/м посредством гибкого саморегулирующегося нагревательного кабеля, расположенного по периметру клапана и постоянно включённого в сеть переменного тока 220 В.
- конструкция лопаток для клапанов КОРД-1 при изготовлении лопаток допускается использовать катаный стальной профиль. Лопатки клапана КОРД-2 изготовлены полой коробчатой конструкции, из листовой стали толщиной не менее 2 мм. Для клапанов шириной менее 400 мм допускается изготовление лопаток простой листовой (не коробчатой) конструкции.
- 1.1.5 В качестве электроприводов используются электроприводы с номинальным напряжением 230 В переменного тока частотой 50/60 Гц или 24 В постоянного или переменного тока.

Типы электроприводов и схемы подключения указаны в приложение Б. Максимальная потребляемая мощность электропривода — 25 Вт при 220 В и 12 Вт при 24 В.

В клапанах морозостойкого исполнения электропривод размещается в защитном кожухе содержащем внутри гибкий саморегулирующийся нагревательный кабель с удельной мощностью 0,08 кВт/м. В клапанах взрывозащищенного используются взрывозащищённые электроприводы, имеющие сертификат соответствия в части

взрывозащиты. В клапанах морозостойкого исполнения внутри взрывонепроницаемой оболочки также размещается саморегулирующийся нагревательный кабель.

1.1.6 Показатели надёжности клапана соответствуют следующим значениям:

- межремонтный период до капитального ремонта, лет, не менее 12;

- средний срок эксплуатации клапана, лет 35;

- вероятность безотказной работы за 15 000 ч 0,95;

- среднее время восстановления, ч

1.2 Маркировка

1.2.1 Табличка потребительской маркировки находиться на корпусе клапана на видном месте.

24.

Маркировка содержит:

- товарный знак предприятия-изготовителя;
- условное обозначение клапана;
- заводской номер клапана;
- номер заказа;
- год выпуска;
- номер технических условий;
- знак сертификации (при наличии).

1.3 Упаковка

- 1.3.1 Клапаны упаковываются на поддоны по варианту УМ-3 ГОСТ 9.014.
- 1.3.2 Сопроводительная и эксплуатационная документация в заклеенном полиэтиленовом пакете укрепляется на корпусе клапана.
- 1.3.3 Консервация и упаковка закупаемой продукции, а также комплектно поставляемых материалов, приспособлений, запасных частей, инструментов, должны обеспечить их нормальную транспортировку и хранение на открытой площадке в течение 2 лет.
- 1.10.4 На упаковке должны наносятся четкие несмываемые надписи на русском языке.
 - 1.10.5 Дополнительные условия упаковки оговариваются в договоре на поставку.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1 Клапаны поставляются в полной готовности к эксплуатации.
- 2.2 Перед монтажом клапана необходимо произвести внешний осмотр. Замеченные повреждения, вмятины, полученные в результате неправильной транспортировки и хранения, устранить. Произвести проверку работоспособности клапана с электроприводом.
- 2.3 Монтаж клапана производиться вне зависимости от пространственной ориентации и направления движения воздушного потока, с обязательным обеспечением свободного доступа к исполнительному механизму клапана.
- 2.4 В ходе монтажа и регулировки клапана запрещается подвергать его силовым воздействиям (в т.ч. ударам), которые могут привести к перекосу корпуса, лопаток и элементов кинематики. Кроме того, необходимо предотвращать попадание сторонних предметов (монтажных приспособлений, строительного раствора и пр.) во внутреннюю полость клапана.
 - 2.4 После монтажа клапана производится подключение его электрооборудования.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 К эксплуатации и обслуживанию клапана допускаются лица, изучившие его устройство и эксплуатационную документацию, а также прошедшие инструктаж по соблюдению правил техники безопасности.
- 3.2 Обслуживание и ремонт должны выполняться в соответствии с требованиями "Правил по охране труда при эксплуатации электроустановок» (ПОТЭУ).
- 3.3 Техническое обслуживание клапана предусматривает профилактические осмотры и контроль его работоспособности. Периодичность технического обслуживания клапана должна соответствовать установленным срокам технического обслуживания комплекса вентиляционного оборудования эксплуатируемого объекта.
- 3.4 При проведении профилактических осмотров выполняются необходимые ремонтно-восстановительные работы и очистка внутренней полости клапана (при наличии в нем отложений).
- 3.5 Контроль работоспособности клапана производиться посредством троекратного воспроизведения цикла закрытия и открытия клапана без рывков и заеданий вручную с использованием ручного привода или ручного управления электроприводом.
- 3.6 Данные, полученные при техническом обслуживании клапана, должны регистрироваться в формуляре. Допускается ведение единых формуляров на комплекс вентиляционного оборудования эксплуатируемого объекта.

4 ТЕКУЩИЙ РЕМОНТ

- 4.1 Показатели надежности гарантируются при условии проведения технического обслуживания и ремонта через каждые 15000 часов эксплуатации, с заменой, вышедших из строя или отработавших свой ресурс деталей и узлов.
- 4.2 Капитальный ремонт клапанов осуществляется при достижении ими предельных состояний или при выработке ресурса, но не чаще одного раза в 12 лет. Предельным состоянием клапана считается состояние, при котором клапан перестает отвечать хотя бы одному из технических параметров п.1.1 настоящей инструкции.
- 4.3 Ремонт осуществляется путем замены или реставрации деталей и узлов, достигших предельного состояния.
- 4.4 Эксплуатация клапанов должна быть прекращена при достижении предельного состояния или назначенного срока службы.
- 4.5 Внутренние поверхности клапанов следует подвергать периодической очистке в соответствии с общим регламентом работ по чистке каналов вентиляционных систем для предотвращения образования и накопления отложений.
- 4.6 Монтаж электрооборудования, установленного на клапанах, должен производиться в соответствии с «Правилами устройства электроустановок» ПУЭ главы 1.7 «Заземление и защитные меры электробезопасности». При эксплуатации клапанов с электроприводами должны быть обеспечены требования «Правил техники безопасности при эксплуатации электроустановок потребителей». При монтаже и

демонтаже клапанов необходимо соблюдать правила техники безопасности при выполнении строительно-монтажных работ.

4.7 Возможные неисправности и способы их устранения.

Таблица 2

№	Наименование неисправностей, внешнее проявление и дополнительные признаки	Вероятная причина	Метод устранения
1	2	3	4
1	При включении клапана лопатки не открываются полностью	предметов или препятствий во внутренней полости клапана (грязь, строительный мусор,	Удалить посторонние предметы (монтажные приспособления или инструмент, следы или части строительных смесей — цементнопесчаных растворов и пр.) или устранить причины, искажающие геометрию корпуса
2	_ -	Отсутствие напряжения в электрической цепи питания клапана или	
	при повороте лопаток, заедание	перекос корпуса, наличие посторонних предметов	корпуса клапана (промерять
		при транспортировке или	Зону повреждения зачистить от посторонних загрязнений и коррозии, нанести лакокрасочное или порошковое эпоксидное покрытие на повреждённый участок с учётом сохранения прежних цветовых свойств поверхности и фактуры восстанавливаемой детали
	Наличие вмятин, царапин, незначительных механических повреждений	воздействие, удары, нарушения при транспортировке или	Механическим способом выправить все выбоины, вмятины и нарушения плоскостности с использованием доступного слесарного инструмента. При наличии повреждений покрытия

	деталей корпуса,		– зону повреждения зачистить и
	присоединительны		покрытие восстановить.
	х фланцев и		•
	лопаток клапана		
6	Наличие коррозии	Избыточное содержание	Зону повреждения зачистить от
	на внешней	химически активного	посторонних загрязнений и
	поверхности	вещества в окружающей	коррозии, нанести лакокрасочное
	сварных швов и	атмосфере, механическое	или порошковое эпоксидное
	внешней стороне	нарушение целостности	покрытие на повреждённый участок
	деталей корпуса и	покрытия элементов	
	лопаток клапана.	корпуса и лопаток	
		клапана	
7	Критическая	Повышенные	Произвести устранение
	деформация или	механические воздействия	неисправностей по специальной
	разрушение	или скрытые дефекты	инструкции эксплуатирующей
	элементов	элементов оборудования	организации
	оборудования		

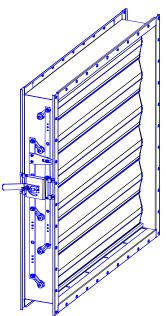
Если работоспособность клапана не восстановлена с помощью рекомендации указанных в таблице 2, обратиться в сервисную службу вашего региона.

5 ХРАНЕНИЕ

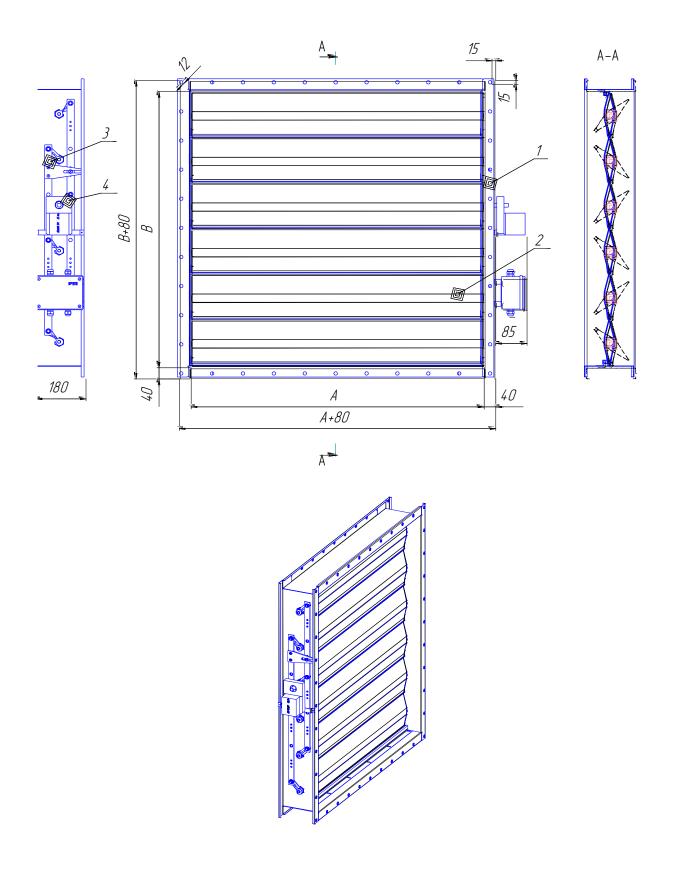
- 5.1 Условия хранения в части воздействия климатических факторов должны соответствовать группе условий хранения 5 по ГОСТ 15150.
- 5.2 Рядность складирования клапанов в упаковке по высоте не более трех ящиков.

6 ТРАНСПОРТИРОВАНИЕ

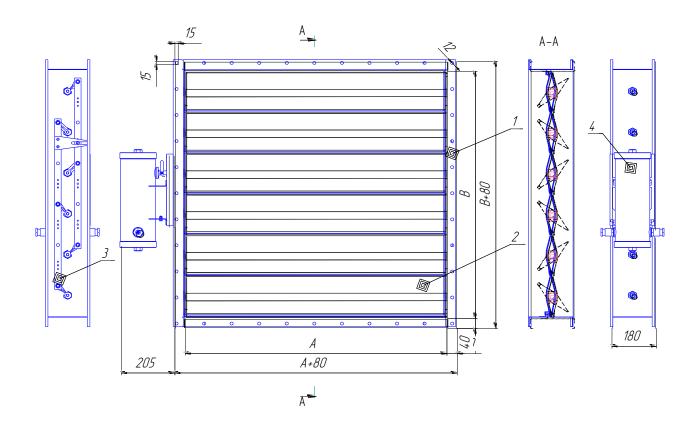

- 6.1 Клапаны могут транспортироваться любым видом транспорта без ограничения расстояния в соответствии с правилами перевозок, действующими на этих видах транспорта. Должна быть обеспечена защита от прямого попадания влаги
- 6.2 Условия транспортирования в части воздействия климатических факторов должны соответствовать группе условий хранения 5 по ГОСТ 15150.

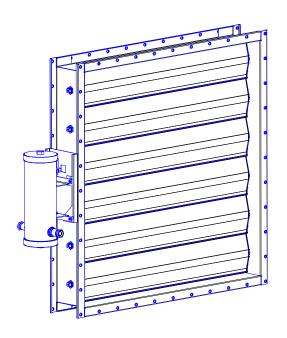

Условия транспортирования в части воздействия механических факторов - средние C(2) по ГОСТ Р 51908.

7 УТИЛИЗАЦИЯ


- 7.1 Перед утилизацией клапан необходимо разобрать таким образом, чтобы разделить его на металлические и неметаллические детали.
- 7.2 Детали, изготовленные из стали и других металлов, утилизируют путем вторичной переработки металлического лома.
- 7.3 Детали, изготовленные из неметаллических материалов, необходимо утилизировать отдельно как промышленные неметаллические отходы.

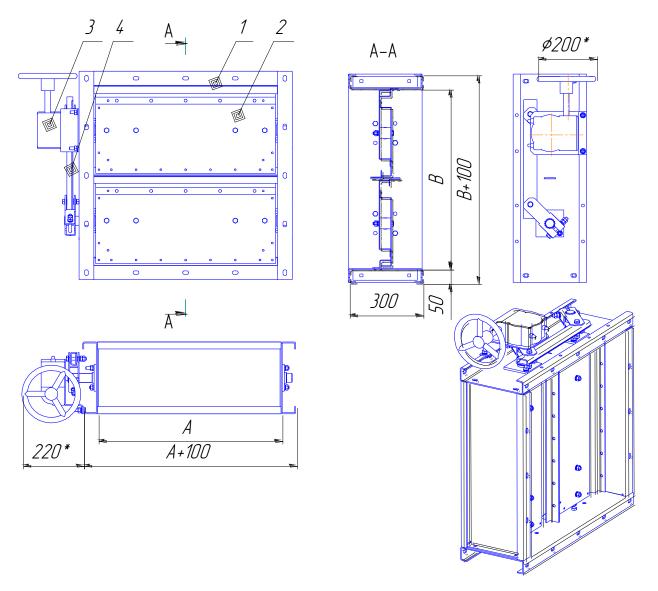
ПРИЛОЖЕНИЕ АГАБАРИТНЫЕ, ПРИСОЕДИНИТЕЛЬНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ





1 — корпус, 2 — лопатка, 3 — рычаги и тяги, 4 —рукоятка Рисунок А.1 - Клапан КОРД-1 с ручным управлением в общепромышленном или взрывозащищённом исполнении

1 — корпус, 2 — лопатка, 3 — рычаги и тяги, 4 — электропривод Рисунок А.2 - Клапан КОРД-1 с электроприводом в общепромышленном исполнении



1 — корпус, 2 — лопатка, 3 — рычаги и тяги, 4 — электропривод Рисунок А.3 - Клапан КОРД-1 с электроприводом во взрывозащищённом исполнении

Таблица А.1 - Ориентировочная масса для некоторых возможных сочетаний размеров клапана КОРД-1

A*,	B*,	Масса клапана без привода,
MIM	MM MM	кг, не более
100	100	6
300	300	11
500	500	18
700	700	26
800	800	31
1000	1000	43
1200	1200	55
1500	1500	80
2000	2400	140

^{*} При необходимости клапаны могут изготавливаться других размеров в соответствии с требованиями заказа и конструктивных особенностей, сечением: с высотой клапана не более B=2400 мм и шириной в односекционном исполнении не более A=2000 мм. Стандартный шаг промежуточных размеров - 50 мм. Возможно кассетное исполнение с использованием 2-х и более клапанов, объединенных общей рамой.

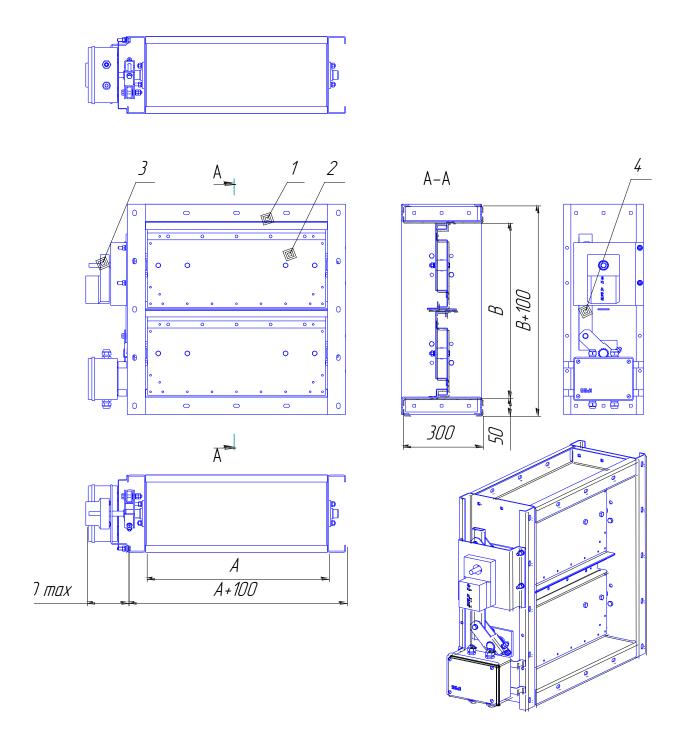
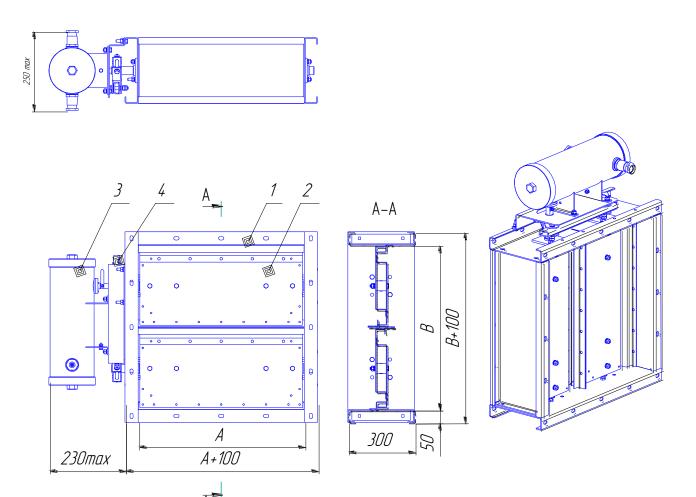

*Размеры определяются поставщиком привода 1- корпус, 2- лопатка, 3- исполнительный механизм, 4- рычаги и тяги

Рисунок А.4 - Клапан КОРД-2 с ручным управлением в общепромышленном или взрывозащищённом исполнении

Таблица А.2 - Ориентировочная масса для некоторых возможных сочетаний размеров клапана КОРД-2 с ручным приводом


A*,	В*, мм	Масса клапана без привода, кг, не более
200	200	20
400	400	37,5
600	600	43
1000	1000	114
1300	1300	170
1700	1700	210

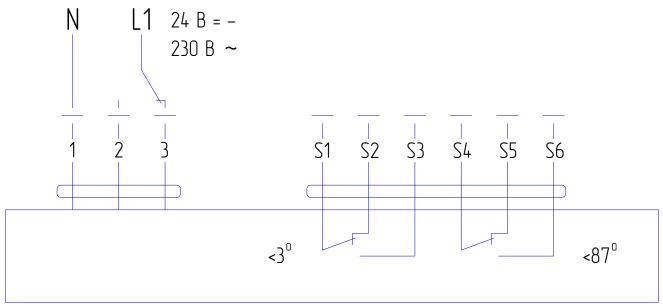
^{*} При необходимости клапаны могут изготавливаться других размеров в соответствии с требованиями заказа и конструктивных особенностей, сечением: с высотой клапана и шириной клапана не более 1700 мм. Стандартный шаг промежуточных размеров - 50 мм. Возможно кассетное исполнение с использованием 2-х и более клапанов, объединенных общей рамой.

1 – корпус, 2 – лопатка, 3 – исполнительный механизм, 4 – рычаги и тяги

Рисунок А.5 - Клапан КОРД-2 с электроприводом в общепромышленном исполнении

1 – корпус, 2 – лопатка, 3 – исполнительный механизм, 4 – рычаги и тяги Рисунок А.6 - Клапан КОРД-2 с электроприводом во взрывозащищённом исполнении

Таблица А.3 - Ориентировочная масса для некоторых возможных сочетаний размеров клапана КОРД-2 с электроприводом


A*,	B*.	Масса клапана
MM	_ ,	без привода,
IVIIVI	MM	кг, не более
200	200	18
400	400	35
600	600	50
1000	1000	110
1300	1300	165
1700	1700	200

^{*} При необходимости клапаны могут изготавливаться других размеров в соответствии с требованиями заказа и конструктивных особенностей, сечением: с высотой клапана и шириной клапана не более 1700 мм. Стандартный шаг промежуточных размеров - 50 мм. Возможно кассетное исполнение с использованием 2-х и более клапанов, объединенных общей рамой.

ПРИЛОЖЕНИЕ Б

(обязательное)

ТИПЫ ПРИМЕНЯЕМЫХ ЭЛЕКТРОПРИВОДОВ, СХЕМЫ ЭЛЕКТРОПРИОВОДОВ, ЭНЕРГОПОТРЕБЛЕНИЕ ТЭН И СХЕМЫ ПОДКЛЮЧЕНИЯ ЭЛЕКТРОПРИВОДОВ КЛАПАНОВ КОРД-1 И КОРД-2 К КЛЕММНОЙ КОРОБКЕ

Возможно параллельное соединение нескольких приводов с учетом мощностей.

нескольких приводов с цчетом мощностей.

Рисунок Б.1 - Схема электропривода типа «открыто/закрыто»

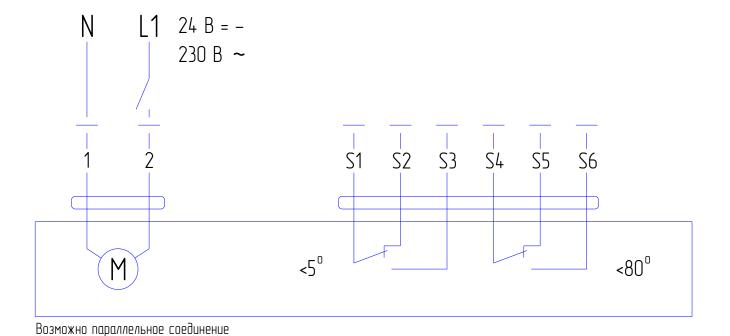


Рисунок Б.2 - Схема электропривода с пружинным возвратом

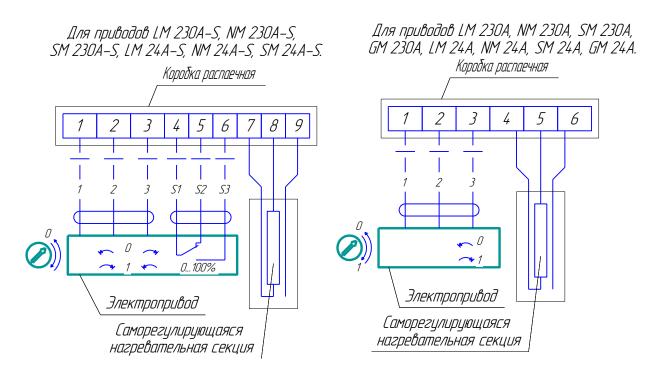


Рисунок Б.3. - Типы применяемых электроприводов и схемы подключения электроприводов и нагревательной секции (кабеля)* клапанов КОРД-1 и КОРД-2 в клеммной коробке

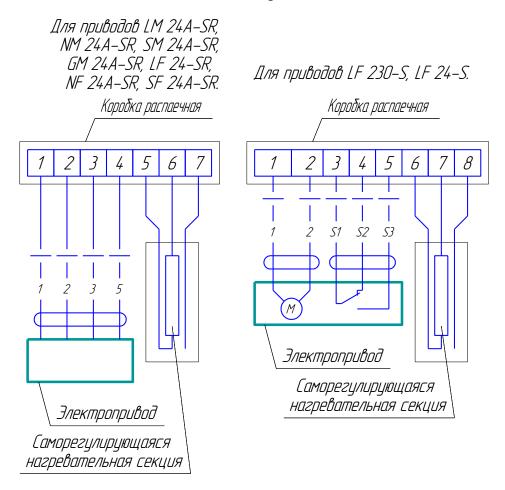


Рисунок Б.4 - Типы применяемых электроприводов и схемы подключения электроприводов и нагревательной секции (кабеля)* клапанов КОРД-1 и КОРД-2 в клеммной коробке

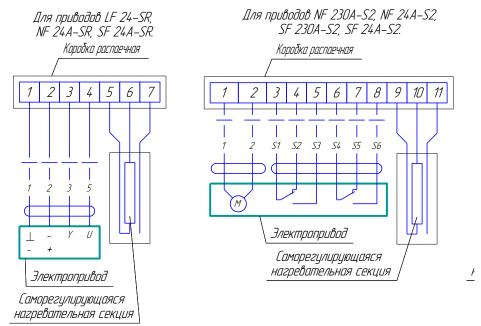


Рисунок Б.5 - Типы применяемых электроприводов и схемы подключения электроприводов и нагревательной секции (кабеля)* клапанов КОРД-1 и КОРД-2 в клеммной коробке

*Примечание к рисункам Б.3- Б.5 - в случае отсутствия необходимости применения нагревательной секции (кабеля) - соответствующие клеммы клеммника остаются пустыми.

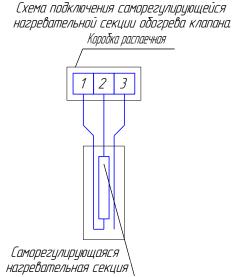


Рисунок Б.6 - Типы применяемых электроприводов, энергопотребление ТЭН и схемы подключения электроприводов клапанов КОРД-1 и КОРД-2 к клеммной коробке

Максимальная (пусковая*) удельная мощность ТЭН периметрального обогрева - $0.08 \mathrm{kBt/m}$.

Максимальная (пусковая*) суммарная мощность: ((2A/1000)+(2B/1000))x0.08+0.05) кВт.

Номинальная (рабочая) удельная мощность ТЭН периметрального обогрева - 0.033 кВт/м.

Номинальная (рабочая) суммарная мощность: ((2A/1000)+(2B/1000))x0.033+0,02) кВт.

^{*}Длительность протекания пускового тока — 300 с.

ДЛЯ ЗАМЕТОК

Изготовитель:

ООО «ВЕЗА», Россия.

Адрес: 141190, г.Фрязино, Московская обл., Заводской проезд, 6.

Тел. (095) 745-15-73; Факс (095) 745-15-73;

e-mail: fryazino@veza.ru; http://www.veza.ru