
Потолочные диффузоры

- . Серия ADLR круглая внешняя панель
- Серия ADLR-Q

квадратная внешняя панель

TRO TECHNIK

TROX GmbH

Heinrich-Trox-Platz D-47504 Neukirchen-Vluyn Telephone +49/2845/202-0 Telefax +49/2845/202-265

e-mail trox@trox.de www.troxtechnik.com

Содержание - Описание

Описание	2
Быстрый подбор · Определение расхода	3
Конструкция · Размеры	4
Монтаж · Материалы	5
Шумовые характеристики	6

Шумовые характеристики · Обозначения	7
Акустические характеристики	8
Аэродинамические характеристики	1
Информация для заказа оборудования	14

ADLR

ADLR-Q

Диффузоры серии ADLR и ADLQ рекомендованы для установки заподлицо в потолок. В этом случае гарантировано достижение «эффекта прилипания струи» при горизонтальной раздаче. Характерные расходы приточного воздуха для каждого типоразмера приведены в таблицах и графиках.

Установка заподлицо в потолок необязательна, если диффузор используется в вытяжной вентиляции. Характерные перепады температур между приточным воздухом и температурой помещения лежат в пределах от +10 К до -10 К. Круглые (серия ADLR) или квадратные (серия ADLR-Q) диффузоры могут использоваться в стандартных потолочных системах. Аэродинамические и акустические характеристики одинаковы для обоих исполнений.

У этих диффузоров может быть различное применение, не упомянутое в данной брошюре, так как существует множество вариантов их использования.

Быстрый подбор - Определение расхода

Определение расхода

В приведенной ниже таблице для быстрого подбора максимальное значение количества приточного воздуха \dot{V}_{max} задано таким образом, чтобы уровень звуковой мощности $L_{WA\ max}$ не превышал 40 дБ(A).

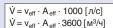
При минимальном из приведенных расходов скорость потока $v_{\rm eff}$ на выходе из воздухораспределителя не падает ниже 2 м/сек. Это позволяет быть уверенным в том, что «эффект прилипания», необходимый для работы диффузора при установке в потолке, будет достигнут.

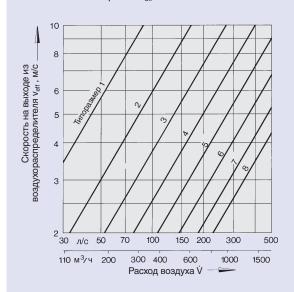
При подборе важно принимать во внимание расходы воздуха через диффузор. При необходимости, они должны быть рассчитаны квалифицированными специалистами.

Ниже описаны 2 пути для выполнения этой работы:

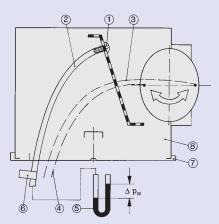
Определение расхода по veff

Эффективная скорость потока $v_{\rm eff}$ измеряется при помощи пьезометрической трубки. Точки замеров должны быть равномерно распределены со стороны внешней панели, после чего должно быть найдено среднее значение. Затем расход может быть рассчитан по нижеприведенным формулам.


Определение расхода по Δp_w

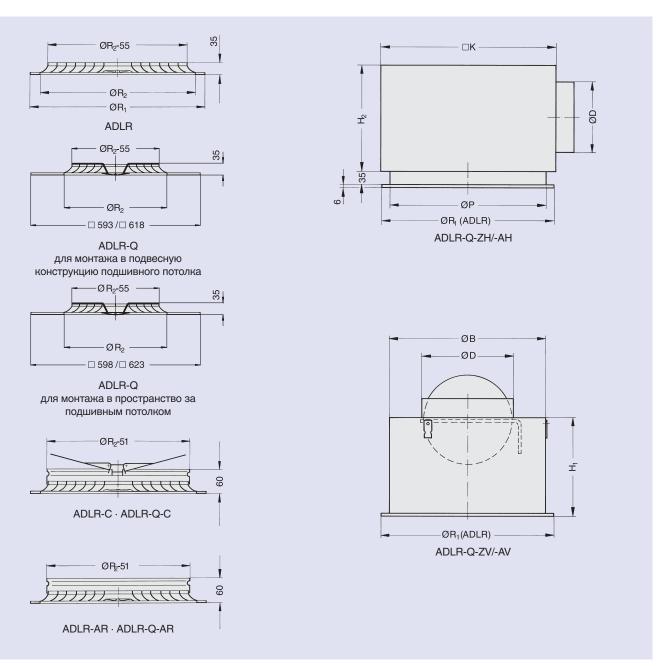

Благодаря опции "MN" (расход регулируется при помощи гибкой тяги и измерительного ниппеля) – см. информацию для заказа оборудования – установка требуемого расхода упрощена. Исходное давление Δp_w измеряется пластиковой трубкой ② стандартного манометра.

Подходящий расход $\dot{V}=f\left(\Delta p_{w}\right)$ определяется по характеристикам статической камеры. При необходимости тяги и ниппель (③ и ④) могут быть использованы для регулировки дроссельного клапана для достижения желаемого значения расхода. По завершении измерений и регулировок, трубка и тяги задвигаются за лицевую панель диффузора.


	Быстрый подбор для серий ADLR и ADLR-Q (приточная вентиляция)											
Типо- размер	л/с	пах М³/Ч	У, л/с	min M ³ /4	L _{WA max} дБ(A)	L _{WNC max}	L _{WA min} дБ(A)	L _{WNC min}	A _{eff} m²	R ₂	С мм	
1	80	290	20	70	40	31	< 20	< 20	0,0085	192	140	
2	120	430	30	110	40	33	< 20	< 20	0,0157	248	196	
3	180	650	50	180	40	34	< 20	< 20	0,0257	304	252	
4	230	830	80	290	40	35	< 20	< 20	0,0381	360	308	
5	300	1080	110	395	40	35	< 20	< 20	0,0536	416	364	
6	360	1295	140	505	40	36	< 20	< 20	0,0730	472	420	
7	440	1585	180	650	40	37	< 20	< 20	0,0955	528	476	
8	500	1800	220	790	40	37	< 20	< 20	0,1150	584	532	

Определение расхода по ∆р_w

- ① Измерительный ниппель
- ② Пластиковая трубка
- ③ Белая тяга (для открытия дроссельного клапана)
- ④ Зеленая тяга (для закрытия дроссельного клапана)
- ⑤ Манометр
- ⑥ Код статической камеры
- Э Внешняя панель диффузора
- ® Статическая камера


Конструкции - Размеры

Все диффузоры серии ADLR подходят для монтажа практически в любых вентиляционных системах. Возможна поставка только внешней панели или в комплекте с дроссельным клапаном или монтажным кольцом. Статическая камера может поставлять с боковым или верхним соединением патрубка и регулятором расхода или уплотнением. Для измерения и установки расхода статическая камера может быть укомплектован тягами регулятора расхода и измерительным ниппелем (см. стр. 3).

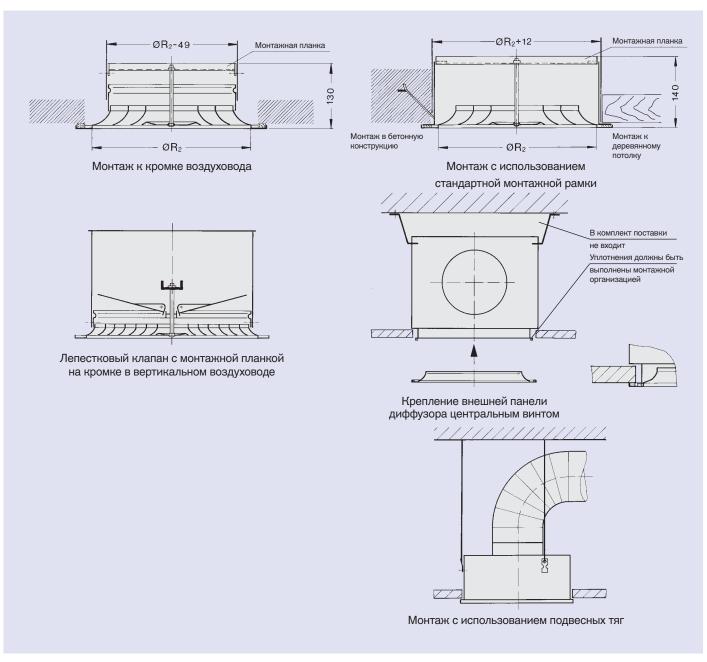
Также имеются другие опции, как монтажная рамка для установки в вертикальные воздуховоды.

Внешняя панель диффузора может сниматься и устанавливаться на место при помощи центрального винта. Головка центрального винта закрыта декоративным колпачком. Конструкция статической камеры для вытяжной и приточной вентиляции различается для достижения наилучших характеристик.

Типо- размер	ØВ	ØD	H ₁	H ₂	□К	ØΡ	ØR ₁	ØR ₂	Код АК для бокового соединительного партубка
1	201.5	123	233	220	266	202	244	192	AK 019
2	257.5	158	233	250	290	258	300	248	AK 020
3	313.5	198	233	295	372	314	356	304	AK 021
4	369.5	248	267	345	476	362	412	360	AK 022
5	425.5	248	267	345	476	426	468	416	AK 023
6	481.5	313	298	410	567	482	542	472	AK 024
7	537.5	313	298	410	590	578	598	528	AK 025
8	593.5	313	298	410	615	590	654	584	AK 026

Монтаж · Материалы

Монтаж

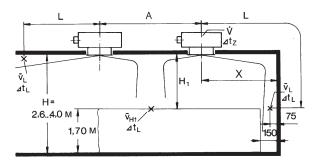

Все конструктивные исполнения и типоразмеры были сконструированы для установки в подвесные потолки. При использовании статических камер воздухораспределительное устройство подвешивается на проволоке или на металлической ленте через имеющиеся отверстия и крепятся к перекрытию.

Внешняя панель закреплена центральным винтом и подрамником. Декоративный колпачок предназначен для того, чтобы закрыть головку винта. Если монтаж необходимо осуществить в металлический вертикальный воздуховод, диффузор может быть прикреплен при помощи центрального винта и монтажной рамки или соединен непосредственно с кромкой воздуховода при помощи саморезов.

Ниже приведены примеры различных способов монтажа.

Материалы

Внешняя панель изготовлена из алюминия, остальные компоненты из прокатной листовой стали, которые покрыты порошковой белой краской (RAL 9010, степень блеска 50–60%). Поверхности и внутренние компоненты фосфатированы и покрыты высококачественной черной краской с применением технологии термоосушки и электроосаждения. Статическая камера изготовлена из оцинкованной листовой стали, уплотнение – из резины.



Шумовые характеристики

		П	Іопр	авка	aΔL	для	ПОЛ	оже	ния	заслонки под	угл	ом О	°					
Типо-	Эфф. скорость потока	ADL			` '	точна часто			ция)	Эфф. скорость потока	ADL			`	тяжна часто			ция)
размер	V _{eff} M/C	63	125	250	200	1000	2000	4000	8000	V _{eff} M/C	63	125	250	200	1000	2000	4000	8000
1	5 7 9 12	18 15 12 7	3 3 2 -1	2 1 0 -4	1 0 -1 -5	- 8 - 5	- 27 - 18 - 12 - 8	- 24 - 20	- 28 - 26	5 6 7 8	18 16 14 12	7 5 4 2	3 1 0 -2	-3 -22 -3 -3	- 7 - 6	– 11 – 9	- 19 - 16 - 14 - 13	- 21 - 20
2	4 6 8 10	19 16 13 10	3 3 2 0	1 0 -1 -3	1 -1	- 16 - 9 - 5 - 3	- 21 - 14	-26 -21	- 29 - 27	4 5 6 7	17 15 13 11	5 4 2 0	5 4 2 1	-2 -1	- 12 - 9 - 7 - 6	- 14 - 11	- 19 - 16	- 25 - 23
3	4 5 7 9	18 17 13 9	2 2 1 -1	-1 -1 -3 -6				-29 -23	- 31 - 29	3 4 5 6	17 15 13 11	3 2 1 -1	6 6 4 3	-2 -1	- 17 - 13 - 10 - 8	- 17 - 14	- 23 - 19	- 29 - 26
4	3 4 5 7	20 19 17 14	2 2 3 2	0 0 0 -2	1 1	- 19 - 14 - 10 - 5	- 31 - 25	- 34 - 29	- 34 - 31	2.5 3 4 5	11 11 11 10	9 6 1 -3	3 3 1 -1	0	- 12 - 10 - 7 - 5	-21 -15	-33 -26	- 33 - 30
5	3 4 5 7	20 18 16 12	1 2 2 0	-2 -2 -3 -5	1 1 1 -1	- 11 - 7	- 37 - 29 - 23 - 16	- 32 - 28	- 32	2.5 3 4 5	- 12 - 5 3 9	5 5 3 0	7 7 4 1	_		- 15 - 11		- 30 - 25
6	3 4 5 7	19 17 14 9	1 1 0 -3	-4 -5 -6 -9	1 0	- 12 - 7 - 4 - 2	- 27 - 22	-31 -28	- 34 - 33	2.5 3 4 5	- 23 - 16 - 7 - 2	3 3 1 -1	8 7 5 2	-6 -3	- 15 - 12 - 9 - 7	- 14 - 10	-23 -16	- 32 - 20
7	2.5 3 4 5	20 19 17 14	0 1 1 0	-4 -4 -5 -6	1 1	- 15 - 12 - 7 - 4	- 35 - 27	-37 -31	- 38 - 35	2.5 3 4 5	11 12 11 10	8 5 0 -5	3 3 1 -2	0 - 1	- 10 - 8 - 5 - 4	– 18 – 12	-28 -21	- 32 - 30
8	2.5 3 4 5	20 19 17 15	1 1 1	-4 -3 -4 -4	1 1	- 17 - 14 - 8 - 5	- 36 - 28	- 38 - 32	- 38 - 34	2.5 3 4 5	12 12 11 10	8 5 0 -6	3 2 0 -2	0 -1	- 10 - 8 - 5 - 4	- 17 - 12	-27 -20	- 32 - 29

Шумовые характеристики - Обозначения

Обозначения

Эффективная площадь сечения

A_{eff}, м² V, л/с V, м³/ч Расход на диффузор Расход на диффузор

Расстояние между двумя диффузорами Расстояние между потолком и рабочей зоной А, м Н₁, м Х, м Расстояние от стены до центра диффузора : Средняя скорость потока Н₁ между двумя $\bar{V}_{H1},\;M/C$

диффузорами

: Расстояние по горизонтали и вертикали $(X + H_1)$ потока против стены L, M

 \bar{V}_L , M/C: Средняя скорость потока вдоль стены на

расстоянии L

 Δt_z , K Разность температур приточного воздуха

и помещения

 Δt_L , K : Разность температур помещения и потока на

расстоянии $L = A/2 + H_1$ или $L = X + H_1$

 Δp_t , Па : Полная потеря давления

L_{WA}, дБ(A) : Уровень звуковой мощности, нормированный

L_{WNC} : Уровень звуковой мощности, нормированный по

предельному спектру октавных частот

 L_{WNR} $L_{WNR} = L_{WNC} + 2$

 $\Delta \mathsf{L}$, дБ/окт : Относительный к L_{WA} уровень звуковой мощности

L_W, дБ/окт : Октавный уровень мощности потока

 $L_W = L_{WA} + \Delta L$

: Уровень звукового давления в помещении, норми- L_{pA} , L_{pNC}

рованный по А-фильтру и предельному спектру

 $L_{pA}^{\sim} \approx L_{WA} - 8 \text{ дБ} \ L_{pNC}^{\sim} \approx L_{WNC} - 8 \text{ дБ}$

	Эфф. скорость	ADLR-ZV · ADLR-Q-ZV						Эфф. скорость	ADLR-AV · ADLR-Q-AV									
Типо-	потока	Октавная частота, Гц						потока	Октавная частота, Гц									
размер	V _{eff} M/C	63	125	250	200	1000	2000	4000	8000	V _{eff} M/C	63	125	250	200	1000	2000	4000	8000
1	2 4 6 8	4 4 2 0	0 1 0 -2	7 7 6 4		– 15 – 8	- 19	- 24	- 17	4 5 6 7	0 - 1 - 3 - 4	4 3 1 0	6 5 4 4	-3 -3	- 7 - 6	- 18 - 15 - 12 - 11	- 18 - 16	- 32
2	2 3 5 7	7 7 5 2	2 3 2 -1	7 7 5 2	-4 -2	-25 -17 - 8 - 4	- 29 - 19	- 25 - 22	- 12 - 17	4 5 6 7	10 8 7 5	4 3 2 1	6 5 4 3	-3 -3	- 7 - 6	- 17 - 14 - 12 - 10	- 21 - 19	- 30 - 33
3	2 3 5 7	9 8 5 2	4 4 2 -1	7 6 4 1	- 3 - 1	-22 -15 - 7 - 3	- 26 - 17	- 24 - 22	- 14 - 20	4 5 6 7	11 9 8 6	4 3 2 1	5 4 3	-3 -3	- 7 - 6	- 17 - 14 - 12 - 10	- 22 - 20	- 30 - 33
4	2 3 5 7	9 8 6 2	4 4 2 -1	7 6 3 0	-2 -1	-21 -14 - 6 - 3	- 25 - 16	- 24 - 22	- 14 - 20	3 4 5 6	0 - 4 - 8 -11	6 1 -3 -6	3 2 1 -1	0 - 1	- 7 - 5	- 20 - 15 - 12 - 10	- 24 - 21	- 32 - 31
5	2 3 5 7	12 11 6 1	7 6 3 -2	5 4 0 -5	– 1 – 1	- 17 - 10 - 4 - 2	- 20 - 13	- 23 - 22	- 26	2.5 3 4 5	12 9 3 - 2	5 4 1 -1	5 4 3 2	- 1 - 1	- 9 - 7	- 15 - 14 - 14 - 14	- 26 - 24	- 30 - 31
6	2 3 5 7	12 10 6 1	7 6 3 -2	6 4 0 -5	- 1 - 1	- 17 - 11 - 4 - 2	-21 -13	-23 -22	- 18 - 26	2.5 3 4 5	12 8 2 - 3	5 4 1 -1	5 4 3 2	- 1 - 1	- 8 - 7	- 15 - 15 - 15 - 1	- 26 - 24	- 30 - 30
7	2 3 4 6	14 12 9 3	8 7 4 -1	4 2 -1 -6	0 - 1	- 14 - 8 - 5 - 2	- 17 - 13	- 23 - 23	- 22 - 27	2.5 3 4 5	5 3 - 1 - 5	9 6 2 -2	3 3 22 1	0	- 10 - 7	- 23 - 20 - 15 - 11	- 32 - 27	- 37 - 36
8	2 3 4 6	15 12 9 2	9 7 4 -1	2 0 -3 -9	0 - 1	- 13 - 7 - 4 - 2	- 15 - 12	- 23 - 24	- 25 - 30	2.5 3 4 5	6 5 1 - 3	9 7 3 -2	3 3 2	0	- 10 - 7	- 23 - 19 - 14 - 11	- 34 - 30	- 40 - 39

Акустические характеристики

Пример

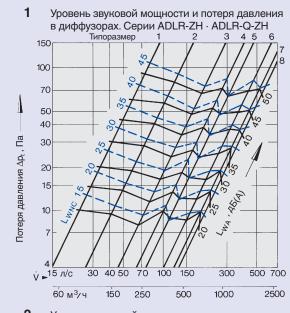
Исходные данные:

Серия ADLR; типоразмер 2

Требуется: определить октавный уровень звуковой мощности L_W

График 4:

Уровень шумами потеря давления

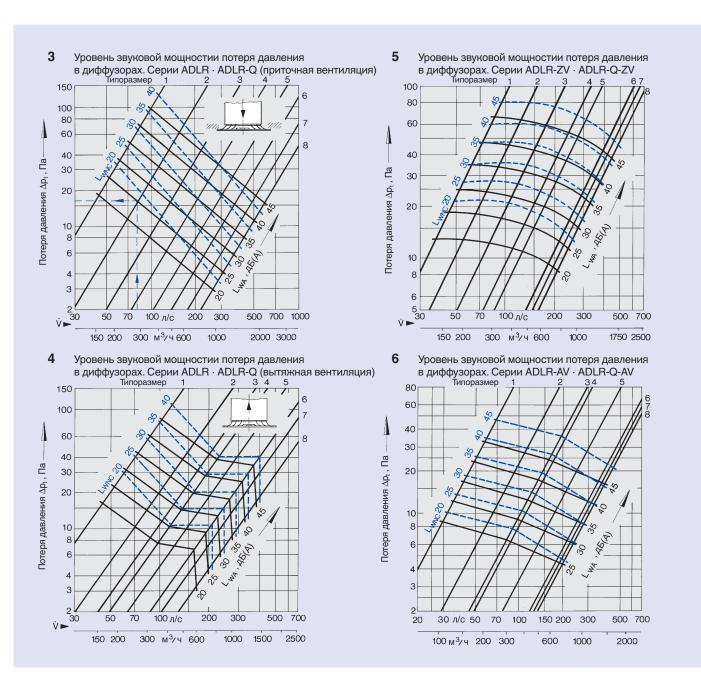

 $L_{WA} = 25 дБ(A)$

 $\Delta p_t = 17 \Pi a$

Эффективная скорость струи v_{eff} :

$$v_{\text{eff}} = \frac{\dot{V}}{A_{\text{eff}} \cdot 1000} = \frac{80}{0.0157 \cdot 1000} = 5.1 \text{ m/c}$$

Октавная частота, Гц	63	125	250	500	1000	2000	4000	8000
L _{WA} , дБ(A)	25	25	25	25	25	25	25	25
Δ L, дБ	+ 15	+ 4	+ 4	-2	-9	- 14	- 19	- 25
L _W , дБ	40	29	29	23	16	11	6	0



Поправка	ı к графику 1: г	положение	регулятор	ра потока
Типоразмер	Угол регулятора	0 °	45°	90°
	Δp_t	x 1.0	x 1.3	x 2.9
1	L _{WA}	-	+ 1	+ 5
	L _{WNC}	-	+ 1	+ 5
	Δp _t	x 1.0	x 1.3	x 3.1
2	L _{WA}	-	+ 2	+ 7
	L _{WNC}	-	+ 2	+ 7
	Δpt	x 1.0	x 1.4	x 4.0
3	L _{WA}	-	+ 3	+ 7
	L _{WNC}	-	+ 3	+ 7
	Δp _t	x 1.0	x 1.2	x 3.6
4	L _{WA}	-	+ 1	+ 8
	L _{WNC}	-	+ 1	+ 8
	Δp _t	x 1.0	x 1.5	x 4.3
5	L _{WA}	-	+ 3	+ 13
	L _{WNC}	-	+ 3	+ 13
	Δp _t	x 1.0	x 1.4	x 3.6
6	L _{WA}	-	+ 2	+ 6
	L _{WNC}	-	+ 2	+ 6
	Δp _t	x 1.0	x 1.4	x 3.8
7	L _{WA}	-	+ 4	+ 14
	L _{WNC}	-	+ 4	+ 14
	Δp _t	x 1.0	x 1.5	x 3.8
8	L _{WA}	_	+ 4	+ 11
	L _{WNC}	-	+ 4	+ 11

Акустические характеристики

Поправка	Поправка к графику 5: Положение регулятора потока										
При креплении соединительного патрубка к прямому воздуховоду											
Типоразмер	Угол регулятора	0 °	45°	90°							
	Δp_t	x 1.0	x 1.2	x 3.3							
1 - 8	L _{WA}	-	+ 3	+ 7							
	L _{WNC}	-	+ 3	+ 7							

При креплении соединительного патрубка 90° к воздуховоду											
Типоразмер	Угол регулятора	0 °	45°	90°							
	Δp _t	x 1.2	x 1.5	x 3.1							
1 - 8	L _{WA}	+ 3	+ 5	+ 10							
	L _{WNC}	+ 3	+ 5	+ 10							

Акустические характеристики

Пример

В помещении должны быть установлены диффузоры серии ADLR. В помещении – круглый воздуховод, проходящий через центр потолка, поэтому потребуется диффузор ADLR для вертикального потока. Воздуховод низкоскоростной ($v \approx 3.0 \text{ м/c}$)

Исходные данные:

Размеры помещения: В x L x H = 4.0 x 5.0 x 3.0 м Максимальный расход: $\dot{V} = 140$ л/с Диапазон давлений: $\Delta p_{t} = 15 - 25$ Па

Диапазон давлений: Температурный перепад между

приточным воздухом и помещением: $\Delta t_Z = -8 \text{ K}$

Требуемый предельный уровень шума

в помещении: = 30 дБ(A) Затухание шума в помещении: = 6 дБ(A)

Решение:

Так как уровень давления в воздуховоде варьируется от 15 до 25 Па, нужен клапан.

Так как это низкоскоростной воздуховод, выбираем лепестковый клапан.

Выбран потолочный диффузор серии ADLR-C.

Количество: 2 диффузора, расположенные по продольной оси помещения на расстоянии 2 м друг от друга.

Тогда расход на 1 диффузоре $\dot{V} = 140/2 = 70$ л/с После вычислений выбираем типоразмер 2 (графики 12 и 7).

График 7: Уровень звуковой мощности и потеря давления

Уровень звуковой мощности $L_{WA} = 25 \text{ дБ(A)}$ Увелич. уровня звуковой мощн. для 2 дифф. + 3

увелич. уровня звуковои мощн. для 2 дифф. <u>+ 3</u> 28 дБ(A)

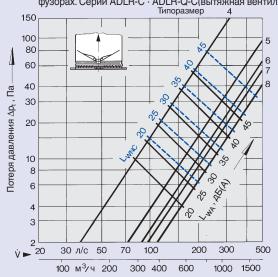
Поправка из таблицы

при открытии на 50% $+ 8 \, \text{дБ(A)}$ 36 дБ(A)

 Затухание в комнате
 – 6 дБ

 Уровень звуковой мощности в комнате
 30 дБ(А)

При Δp_t = 25 Па (14 х 1.7) уровень звуковой мощности в комнате составляет 30 дБ(A).



8	В,	ровень звуковой мощностии потеря давления диффузорах. Серии ADLR-C · ADLR-Q-C (вытяжная вентиляция) Типоразмер 1 2 3
	150	
A	80	
4	60	
	40	8
Потеря давления ∆р _t , Па	30	8/
д М	20	8
лени		- 87
Дав	10	
геря	8	1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>	6	7 7 8 8
	4	\$\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
	3	
,	2 ≥ 20	30 л/с 50 70 100 200 300 500
		100 M ³ /4 200 300 400 600 1000 1500

	Поправка к графику 7									
Flap da	mper	Δp_t	L_WA	L _{WNC}						
	Типоразмер 1 - 6	x 1	_	-						
100 %	Типоразмер 7	x 1.5	+ 5	+ 5						
	Типоразмер 8	x 2.9	+ 9	+ 8						
50 %	Типоразмер 1 - 7	x 1.7	+ 8	+ 7						
25 %	Типоразмер 1 - 8	x 3.3	+ 17	+ 17						

Поправка к графикам 8 и 9				
Flap damper		Δp_t	L_WA	L _{WNC}
100 %	Типоразмер 1 - 6	x 1	_	_
	Типоразмер 7	x 1.1	+ 1	+ 1
	Типоразмер 8	x 1.8	+ 6	+ 7
50 %	Типоразмер 1 - 7	x 1.1	+ 1	+ 1
25 %	Типоразмер 1 - 8	x 3	+ 8	+ 8

9 Уровень звуковой мощностии потеря давления в диффузорах. Серии ADLR-C · ADLR-Q-C(вытяжная вентиляция)

Аэродинамические характеристики

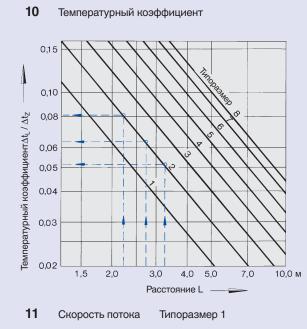
График 10:

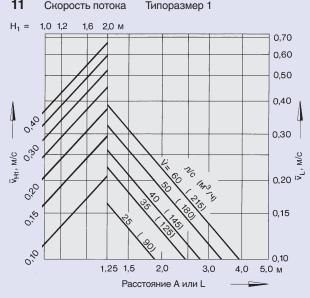
Температурный коэффициент

График 12:

Скорость потока

Между диффузорами на высоте 1,7 м от уровня пола, с $L=A/2+H_1=2.0/2+1.30=2.30$ м остаточный температурный перепад приточного воздуха и помещения составляет $\Delta t_1=0.08 \times (-8)=-0.64$ K

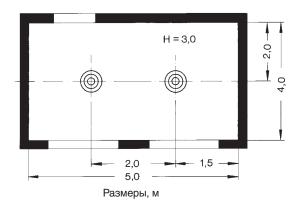

На высоте 1,7 м от уровня пола, на расстоянии от стены L = X + H $_1$ = 1.5 + 1.3 = 2.80 м остаточный температурный перепад приточного воздуха и помещения составляет $\Delta\ t_1=0.065\ x\ (-8)=-0.52\ K$

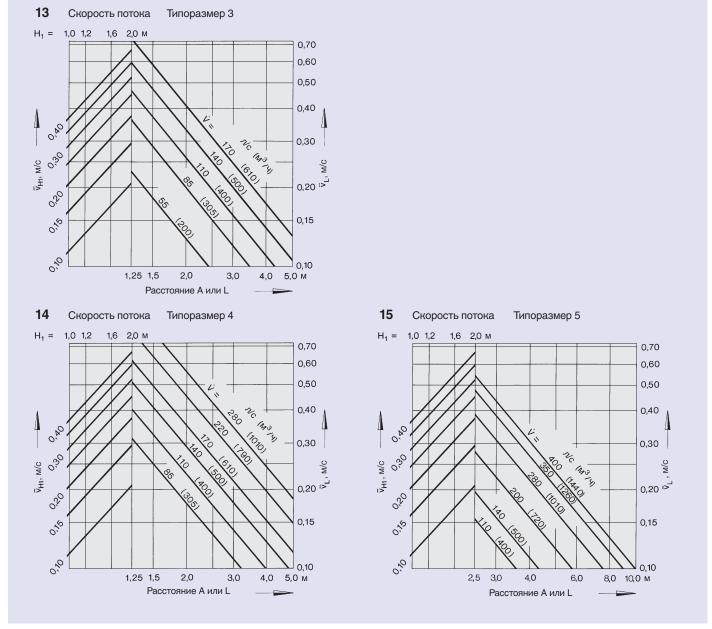

На расстоянии L = X + H $_1$ = 2.0 + 1.3 = 3.30 м остаточный температурный перепад приточного воздуха и помещения составляет Δ t $_L$ = 0.05 x (-8) = -0.4 K

Между диффузорами, на высоте 1,7 м от уровня пола и на расстоянии 2,0 м друг от друга, скорость потока $\bar{v}_{H1}=0.16$ м/с.

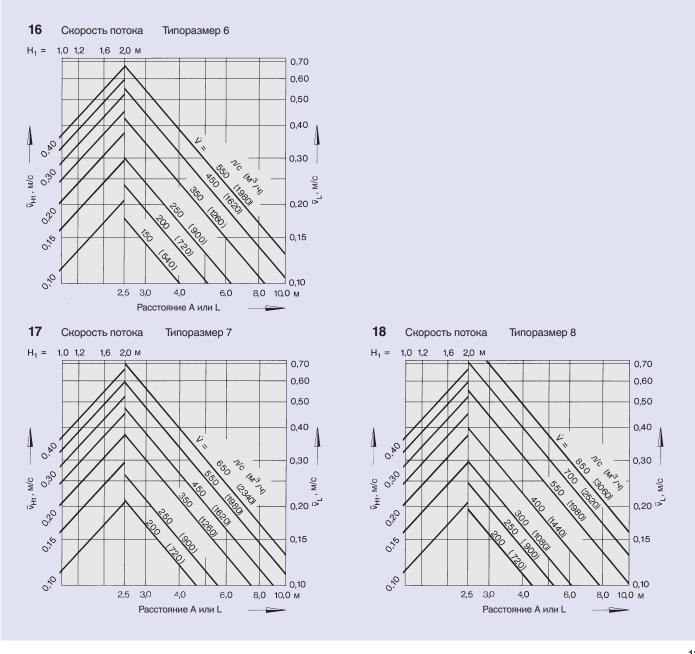
На высоте 1,7 м от уровня пола, на расстоянии от стены $L=X+H_1=1.5+1.3=2.80$ м скорость потока $\bar{\nu}_L=0.14$ м/с.

На другом расстоянии от стены L = X + H $_1$ = 2.0 + 1.3 = 3.30 м скорость потока $\bar{\nu}_L$ = 0.12 м/с.





Аэродинамические характеристики

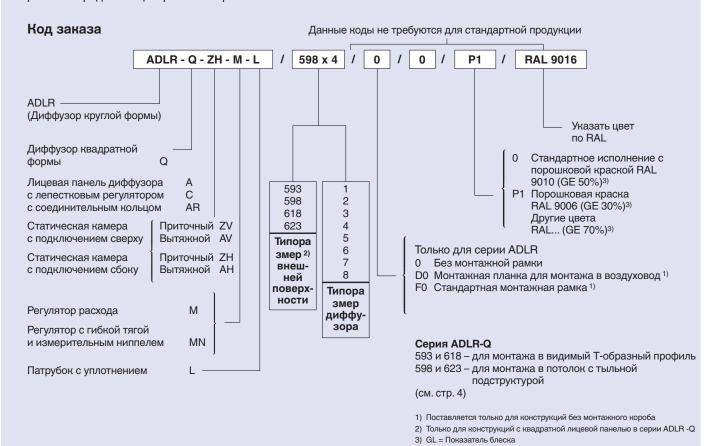

В результате приведенных выше вычислений для выполнения требований по акустике, и по воздухораспределению, рекомендуется установить 2 диффузора серии ADLR-S размера 2.

При установке 4 диффузоров «по квадрату», пожалуйста, умножьте значения скоростей потока на 1, 4.

Аэродинамические характеристики

Информация для заказа оборудования

Описание для спецификации


Потолочные диффузоры серии ADLR (круглой формы) и серии ADLR-Q (квадратной формы) предназначены для скрытого монтажа в потолки, обеспечивают радиальное горизонтальное распределение потока приточного воздуха. Внешняя панель диффузора состоит из концентрически расположенных круговых колец и круглой или квадратной рамки с уплотнением по контуру и конусом в центре.

В комплекте также может поставляться соединительное кольцо или регулятор потока в виде двухлепесткового регулятора, настраиваемого с внешней панели.

Статическая камера поставляется с внутренними направляющими элементами и с боковым или верхним соединением патрубка круглого сечения (дополнительно, со встроенным регулятором и/или уплотнительной прокладкой и измерительным ниппелем). В статической камере также имеются отверстия для подвесного крепления к потолку. Внешняя панель крепится к монтажной рамке посредством центрального крепежного винта.

Материалы

Внешняя панель изготовлена из алюминия, комплектующие детали из профилированной листовой стали. Поверхность внешней панели обработана и имеет порошковое покрытие белого цвета RAL 9010 (степень блеска GE = 50%). Комплектующие детали имеют прочное покрытие, полученное фосфатированием поверхности с последующим нанесением лакокрасочного материала черного цвета (RAL 9005) методом окунания в раствор электролита; материал выдерживает не менее 100 часов воздействия высокой влажности в соответствии с требованиями DIN 50017. Статическая камера изготовлена из оцинкованного листового металла, уплотнительная прокладка из резины.

Пример заказа · Серия ADLR-Q

ADLR - Q - ZH - MN / 598 x 4 / 0 / 0 / P1 / RAL 9016

Производитель: ТВОХ

Серия:

Пример заказа · Серия ADLR

ADLR - ZH - MN / 4 / 0 / 0 / P1 / RAL 9016

Производитель: ТВОХ

Серия: