
Потолочные диффузоры

Серия DLQ-1...4-AK · ADLQ-1...4-AK

Рекомендован для помещений с потолком 2.60 ... 4.00 м

TRO TECHNIK

TROX GmbH

Heinrich-Trox-Platz
D-47504 Neukirchen-Vluyn

Telephone +49/2845/202-0 Telefax +49/2845/202-265

e-mail trox@trox.de www.troxtechnik.com

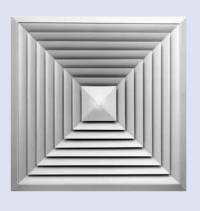
Содержание - Описание

Описание	2
Конструкция · Размеры	3
Материалы	3
Направление потока	4
Обозначения	5
Спектральные характеристики	5
Акустические характеристики	5
Аэродинамические характеристики	7
Аэродинамические характеристики	
DLQ/ADLQ 300	8
Аэродинамические характеристики	
DLQ/ADLQ 400	9
Аэродинамические характеристики	
DLQ/ADLQ 500	10
Аэродинамические характеристики	
DLQ/ADLQ 600	11
Аэродинамические характеристики	
DLQ/ADLQ 625	12
Информация для заказа оборудования	13

Описание

Квадратные диффузоры серий DLQ (стальные) и ADLQ (алюминиевые) предназначены для скрытой установки в потолок в помещениях высотой до 4 м. Допустимая разность температур приточного воздуха составляет ±10 К. Потолочные диффузоры могут применяться в системах приточной и вытяжной вентиляции. Потолочные диффузоры распределяют воздух в горизонтальном направлении ввиду фиксированного расположения неподвижных ламелей. Панель диффузора поставляется в различных исполнениях: для 1, 2, 3 и 4-стороннего распределения воздуха. Особая конструкция статической камеры с дополнительными регуляторами расхода воздуха была разработана для обеспечения оптимального воздухообмена.

DLQ-1/ADLQ-1


DLQ-2/ADLQ-2

DLQ-2E/ADLQ-2E

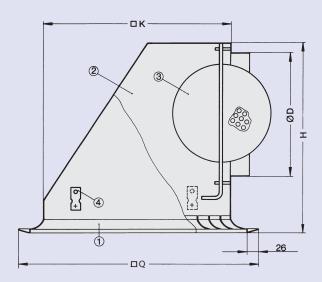
DLQ-4/ADLQ-4

DLQ-3/ADLQ-3

Конструкция - Размеры - Материалы

Конструкция

Внешняя панель диффузоров серии DLQ и ADLQ состоит из рамки со встроенными неподвижными ламелями. Статическая камера оснащена боковым присоединительным патрубком круглого сечения и дополнительным регулятором расхода, который можно настраивать с внешней панели диффузора. Внешняя панель диффузора установлена в статическую камеру.

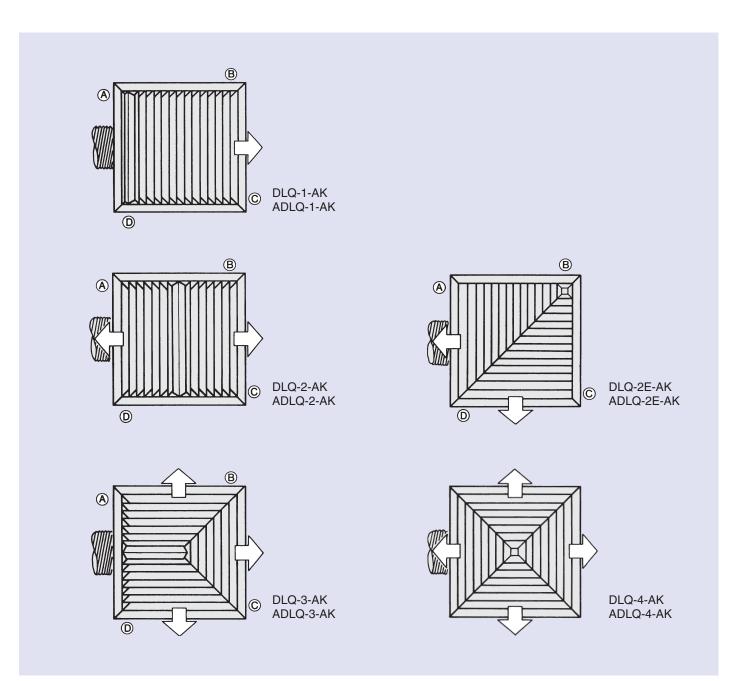

Материалы для серии DLQ

Внешняя панель диффузора изготовлена из профилированной листовой стали, поверхность предварительно обработана, имеет порошковую окраску белого цвета (RAL 9010). Статическая камера изготовлена из оцинкованной листовой стали.

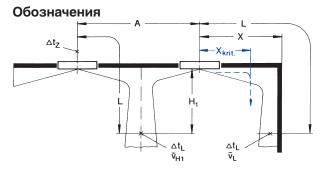
Материалы для серии ADLQ

Внешняя панель диффузора изготовлена из экструдированных алюминиевых профилей с анодированным покрытием по E6-C-0. Статическая камера изготовлена из оцинкованной листовой стали.

Типоразмер	D	Н	K	Q
300	158	290	195	298
400	198	320	295	398
500	248	390	395	498
600	313	440	495	598
625	313	440	520	623



- ① Внешняя панель диффузора
- ② Статическая камера
- ③ Регулятор расхода воздуха
- ④ Подвесные скобы


Направление потока

Расположение присоединительного патрубка

По запросу внешняя панель диффузора может поставляться в различных исполнениях: для 1, 2, 3 или 4-стороннего распределения воздуха. В стандартном исполнении боковой присоединительный патрубок статической камеры расположен на стороне А. В коде заказа необходимо указать, другое место расположения патрубка, если того требует архитектурное решение. (При заказе диффузора с 4-сторонним распределением воздуха данный пункт не требует заполнения).

Обозначения · Спектральные характеристики · Акустические характеристики

 V, л/с
 : Расход на диффузор

 V, м³/ч
 : Расход на диффузор

А, м : Расстояние между двумя диффузорами

L, м : Суммарное расстояние распределения воздуха

по горизонтали и вертикали $(X + H_1)$ вдоль стены X, м : Расстояние от центра диффузора до стены

 $X_{crit.}$, м : Критическое расстояние от диффузора, на кото-

ром, приточный воздух отрывается от потолка в режиме охлаждения (функции \dot{V} и Δt_Z)

Н₁, м : Расстояние от потолка до зоны пребывания людей

 $\mathsf{A}_{\mathsf{eff}},\,\mathsf{M}^2$: Эффективная площадь проходного сечения выхода

воздуха

 \overline{V}_L , м/с : Усредненная по времени скорость потока воздуха $\, ullet$

вдоль стены

 $\overline{v}_{H1},\, \text{м/c}$: Усредняя по времени скорость потока воздуха

между двумя диффузорами на расстоянии H₁ от

потолка

Δt_z, К : Разность температур – температуры приточного

воздуха и комнатной температуры

 $\Delta t_L,\,K$: Разность температур – температуры потока воздуха

и комнатной температуры на расстоянии

 $L = A/2 + H_1$ или $L = X + H_1$

Δр_t, Па : Полная потеря давления

 L_{WA} , дБ(A) : Уровень звуковой мощности с учетом A-фильтра

L_{WNC} : Уровень звуковой мощности по предельному

спектру частот

 L_{WNR} : $L_{WNR} = L_{WNC} + 2$

 $L_{pA},\,L_{pNC}$: Уровень звуковой мощности, помещении с учетом

А-фильтра или по предельному спектру частот уровень $L_{pA} \approx L_{WA} - 8$ дБ, $L_{pNC} \approx L_{WNC} - 8$ дБ

 ΔL , дБ/окт. : Относительный уровень звуковой мощности

с учетом L_{WA}

L_W, дБ/окт. : Генерируемый октавный уровень звуковой мощно-

сти $L_W = L_{WA} + \Delta L$

Спектральная зависимость ∆L при угле заслонки регулятора расхода 0°									
Серия	Эффективная скорость	Средние частоты октавных полос, Гц							
	потона воздуха v _{eff} м/с	63	125	250	500	1000	2000	4000	8000
DLQ/ADLQ	3	5	4	2	- 1	- 5	- 15	- 22	- 26
14-AK	4	6	3	1	-2	- 5	- 12	- 18	- 22
(приточный	5	6	2	0	-3	- 4	- 9	- 15	- 20
воздух)	6	6	1	- 1	- 4	- 5	- 7	- 13	- 18
DLQ/ADLQ	3	5	3	1	-2	- 4	- 12	- 20	- 24
2E-AK	4	2	1	0	-3	- 4	- 9	- 16	- 20
(приточный	5	0	0	-2	- 4	- 4	- 7	- 14	- 18
воздух)	6	-2	- 1	-3	- 6	- 4	- 6	- 12	- 16
DLQ/ADLQ	3	7	4	2	-2	- 5	- 16	- 22	- 27
14-AK	4	6	2	1	-3	- 4	- 12	- 19	- 24
(вытяжной	5	4	1	0	- 4	- 4	- 10	- 16	- 21
воздух)	6	3	- 1	-2	- 5	- 4	- 8	- 15	- 19

Типоразмер Угол наклона ламелей 0° 45° Δp _t x 1.0 x 1.2 300 L _{WA} - + 3	90° x 1.8 + 7
- 11	+ 7
300 L _{WA} - + 3	
	_
L _{WNC} - + 3	+ 8
Δp _t x 1.0 x 1.3	x 2.2
400 L _{WA} - + 4	+ 7
L _{WNC} - + 4	+ 8
Δp _t x 1.0 x 1.4	x 2.9
500 L _{WA} - + 3	+ 7
L _{WNC} - + 3	+ 7
Δp _t x 1.0 x 1.5	x 3.2
600 L _{WA} - + 5	+ 9
L _{WNC} – + 5	+ 9
Δp _t x 1.0 x 1.5	x 3.3
625 L _{WA} -3 +2	+7
L _{WNC} -3 +3	+ 6

Поправки к графику 1: Настройка регулятора				
Типоразмер	Угол наклона ламелей	0 °	45°	90°
	Δp_t	x 1.0	x 1.2	x 1.9
300	L _{WA}	-	+ 3	+ 6
	L _{WNC}	-	+ 2	+ 4
	Δp_{t}	x 1.0	x 1.3	x 2.6
400	L _{WA}	-	+ 3	+ 6
	L _{WNC}	-	+ 1	+ 4
	Δp_t	x 1.0	x 1.5	x 3.6
500	L _{WA}	-	+ 3	+ 6
	L _{WNC}	-	+ 1	+ 5
	Δp_t	x 1.0	x 1.9	x 4.1
600	L _{WA}	-	+ 1	+ 7
	L _{WNC}	-	-	+ 5
	Δp_{t}	x 1.0	x 1.9	x 4.1
625	L _{WA}	-3	-2	+ 5
	L _{WNC}	-3	- 3	+ 3

Акустические характеристики

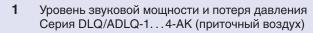
Пример

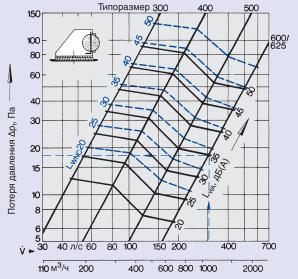
Исходные данные:

Диффузор DLQ-4-AK (приточный воздух), типоразмер 600 Расход на диффузор $\dot{V}=300~\text{л/c}$

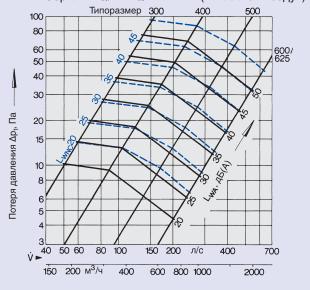
Требуется: Определить генерируемый октавный уровень звуковой мощности L_W

График 1: Уровень звуковой мощности и потеря давления

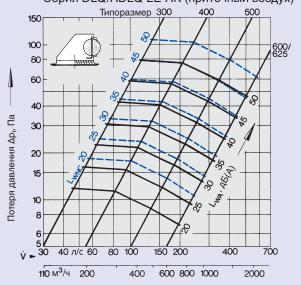

 $L_{WA} = 35 \text{ дБ(A)}$


 $\Delta p_t = 18 \Pi a$

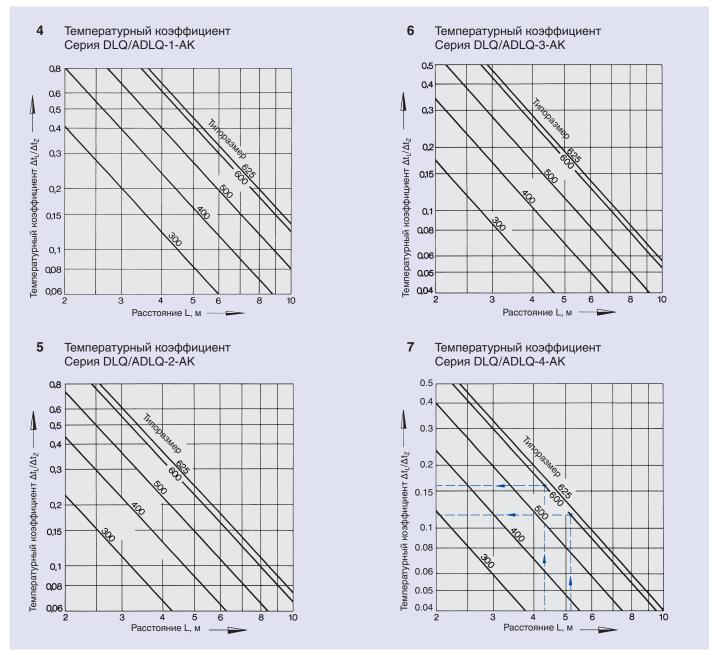
$$v_{eff} = \frac{\dot{V}}{A_{eff} \cdot 1000} = \frac{300}{0.110 \cdot 1000} = 2.7 \text{ m/c}$$


 $v_{eff} \approx 3.0 \text{ M/c}$

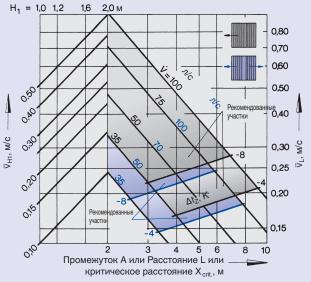
Средние частоты октавных полос, Гц	63	125	250	500	1000	2000	4000	8000
L _{WA} , дБ(A)	35	35	35	35	35	35	35	35
∆L, дБ(A)	+ 5	+ 4	+ 2	- 1	- 5	- 15	- 22	- 26
L _w , дБ	40	39	37	34	30	20	13	9



2 Уровень звуковой мощности и потеря давления Серия DLQ/ADLQ-1...4-АК (вытяжной воздух)


Поправк	и к графику 3:	Настройка	регулятора	расхода
Типоразмер	Угол наклона ламелей	0 °	45°	90°
	Δp_t	x 1.0	x 1.2	x 1.9
300	L _{WA}	-	+ 2	+ 6
	L _{WNC}	_	+ 3	+ 8
	Δp_t	x 1.0	x 1.3	x 2.3
400	L _{WA}	-	+ 3	+ 7
	L _{WNC}	-	+ 4	+ 8
	Δp_t	x 1.0	x 1.4	x 2.9
500	L _{WA}	-	+ 4	+ 8
	L _{WNC}	-	+ 4	+ 8
	Δp_t	x 1.0	x 1.6	x 3.2
600	L _{WA}	_	+ 4	+ 9
	L _{WNC}	-	+ 4	+ 8
	Δp_t	x 1.0	x 1.6	x 3.3
625	L _{WA}	-3	+ 2	+ 6
	L _{WNC}	-3	+ 2	+ 5

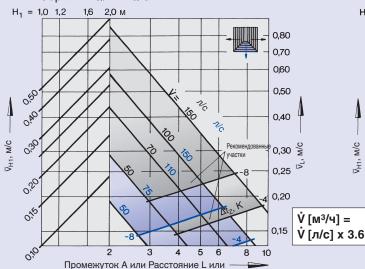
3 Уровень звуковой мощности и потеря давления Серия DLQ/ADLQ-2E-AK (приточный воздух)



Аэродинамические характеристики

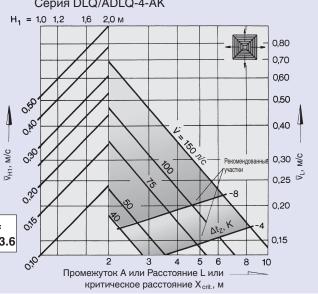
Эффе	Эффективная площадь проходного сечения выхода воздуха				
Типо-			A _{eff} , M ²		
раз- мер	DLQ-1 ADLQ-1	DLQ-2 ADLQ-2	DLQ-2E ADLQ-2E	DLQ-3 ADLQ-3	DLQ-4 ADLQ-4
300	0.0175	0.0165	0.0182	0.0175	0.0175
400	0.0370	0.0350	0.0385	0.0370	0.0370
500	0.0675	0.0610	0.0671	0.0675	0.0675
600	0.1100	0.1040	0.1144	0.1100	0.1100
625	0.1230	0.1150	0.1265	0.1230	0.1230

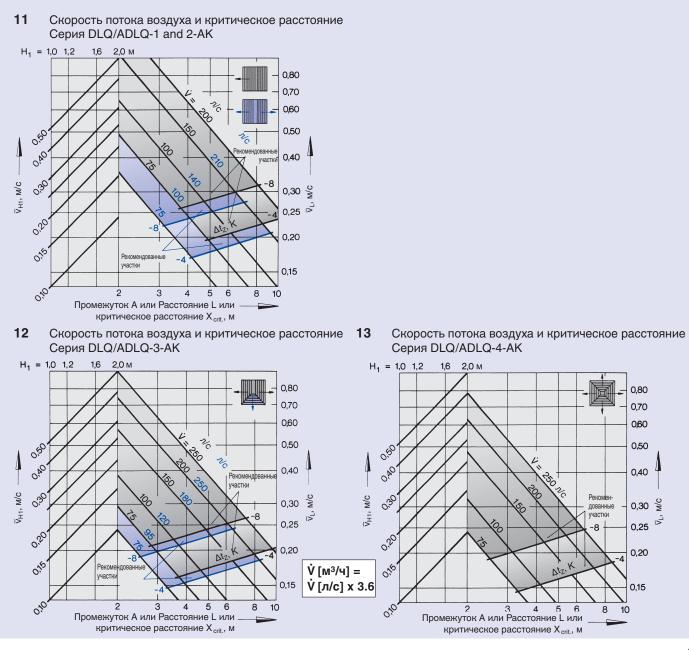
8 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-1 и 2-АК



Поправки к графикам 8 и 11: Серия DLQ/ADLQ-2E-AK (приточный воздух)

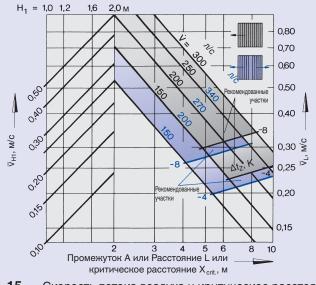
$\Delta t_L/\Delta t_Z$	\overline{V}_{H1}	\overline{V}_L
x 1.09	0.95	x 0.95


Графики 8 и 11 действительны для конструкций с 1 или 2 стороннего распределения воздуха. Для угловой 2-х сторонней раздачи приведённые данные для 2-х стороннего воздуха распределения должны быть скорректированы с использованием поправочных коэффициентов указанных в таблице.


9 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-3-AK

критическое расстояние Х стіт, м

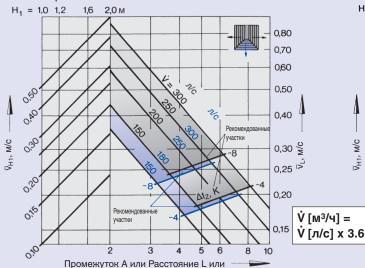
10 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-4-AK



Серия DLQ/ADLQ-1:

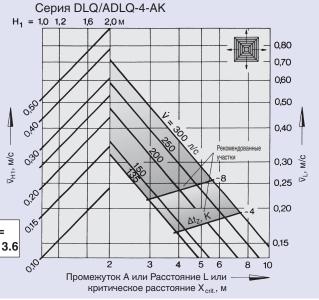
Вышеуказанный диффузор с односторонним распределением воздуха должен применяться для создания комфортных условий в помещениях с высотой потолков > 3,20 м

14 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-1 and 2-AK



Поправки к графикам 14 и 17: Серия DLQ/ADLQ-2E-AK (приточный воздух)

$\Delta t_L/\Delta t_Z$	\overline{v}_{H1}	\overline{V}_L
x 1.09	0.95	x 0.95


Графики 14 и 17 действительны для конструкций с 1 или 2 стороннего распределения воздуха. Для угловой 2-х сторонней раздачи приведённые данные для 2-х стороннего воздуха распределения должны быть скорректированы с использованием поправочных коэффициентов указанных в таблице.

15 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-3-AK

критическое расстояние Х стіт, м

16 Скорость потока воздуха и критическое расстояние Серия DI O/ADI O-4-AK

Пример

Исходные данные:

DLQ-4-AK, типоразмер 600 Объемный расход каждого диффузора $\dot{V}=300$ л/с Разность температур приточного воздуха $\Delta t_Z=-6~K$ Расстояние между двумя диффузорами A=6.20~M Расстояние от потолка до зоны пребывания

людей
Расстояние от центра диффузора до стены
Суммарное расстояние по вертикали
и горизонтали до стены

L = 5.2 м

Температурный коэффициент

 $H_1 = 1.2 \text{ M}$

X = 4 M

График 1: Уровень звуковой мощности и потеря давления $L_{WA} = 35~\text{дБ}(A)~(L_{WNC} = 29~\text{NC})$

 $\Delta p_t = 18 \Pi a$

График 7: L = A/2 + H₁

L = 3.10 + 1.20 = 4.30 M

 $\Delta t_1/\Delta t_7 = 0.16$

 $\Delta t_L = -6 \times 0.16 = -0.96 \text{ K}$

между двумя диффузорами

L = 5.20 M

 $\Delta t_L/\Delta t_Z = 0.12$

 $\Delta t_1 = -6 \times 0.12 = -0.72 \text{ K}$

вдоль стены

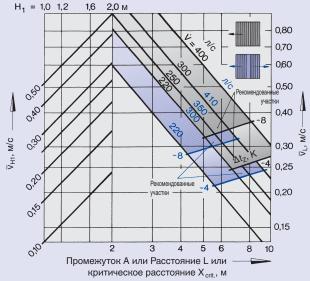
График 19: Скорость потока воздуха и критическое

расстояние

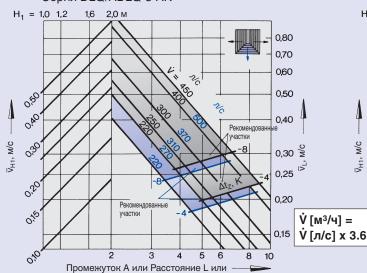
 $\overline{v}_{H1} = 0.12 \; \text{м/c}$ между двумя диффузорами

 $\overline{V}_{L} = 0.21 \text{ м/c}$ вдоль стены

 $X_{crit.} = 4.9 \text{ M}$

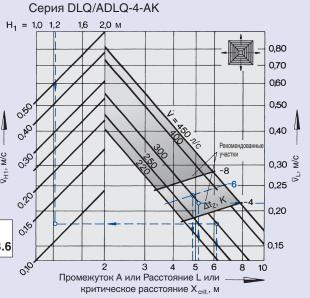

 $X < X_{crit.}$

Следовательно, нет опасности преждевременного отклонения потока воздуха от потолка.


Серия DLQ/ADLQ-1:

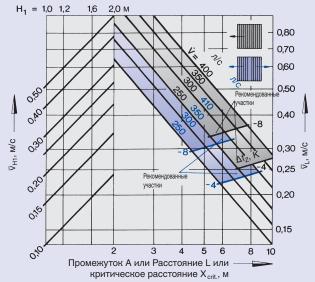
Вышеуказанный диффузор с односторонним распределением воздуха должен применяться для создания комфортных условий в помещениях с высотой потолков > 3,20 м

17 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-1 and 2-AK



18 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-3-AK

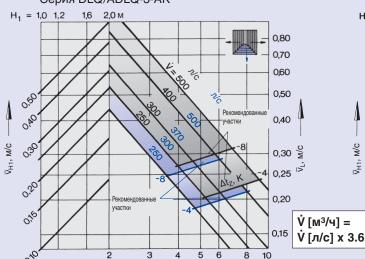
критическое расстояние X crit., м


Скорость потока воздуха и критическое расстояние

Серия DLQ/ADLQ-1:

Вышеуказанный диффузор с односторонним распределением воздуха должен применяться для создания комфортных условий в помещениях с высотой потолков > 3,20 м

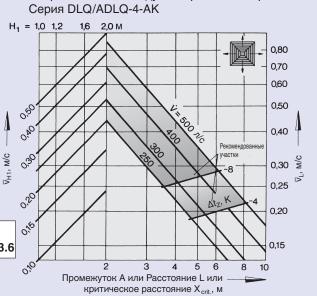
20 Скорость потока воздуха и критическое расстояние Серия DLQ/ADLQ-1 and 2-AK



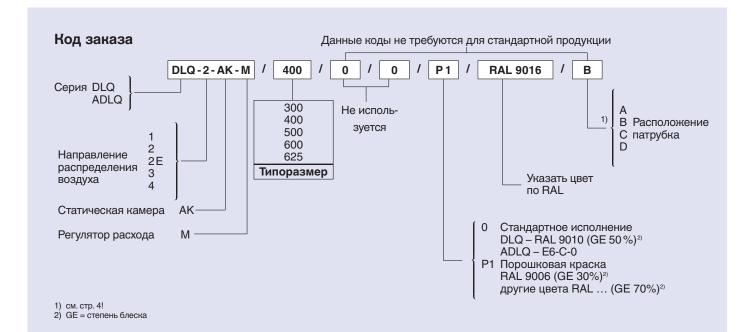
Поправки к графику 20: Серия DLQ/ADLQ-2E-AK (приточный воздух)

$\Delta t_L/\Delta t_Z$	\overline{V}_{H1}	\overline{V}_L
x 1.09	0.95	x 0.95

График 20 действителен для конструкций с 1 или 2 сторонним распределением воздуха. Для угловой 2-х сторонней раздачи приведённые данные для 2-х стороннего воздуха распределения должны быть скорректированы с использованием поправочных коэффициентов указанных в таблице.


21 Скорость потока воздуха и критическое расстояние **22** Серия DLQ/ADLQ-3-AK

Промежуток A или Расстояние L или


критическое расстояние Х сгіt., м

Скорость потока воздуха и критическое расстояние Серия DI Q/ADI Q-4-AK

Design changes reserved · All rights reserved © TROX GmbH (8/2010)

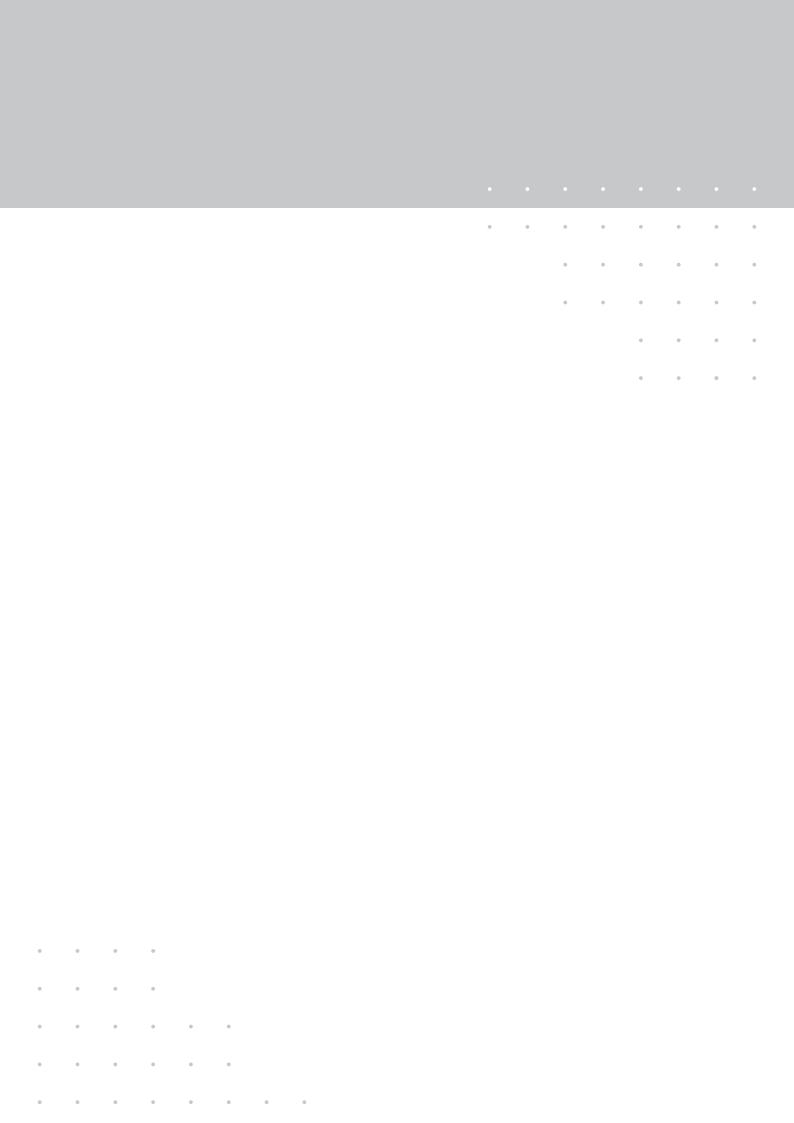
Информация для заказа оборудования

Описание для спецификации

Потолочный диффузор квадратной формы для скрытого монтажа в потолок, подходит для 1 – 4-х стороннего распределения воздуха; имеет скошенную рамку с уплотнением по внутреннему контуру, неподвижные ламели, статическую камеру с боковым присоединительным патрубком и дополнительным регулятором расхода; внешняя панель диффузора имеет неразъемное крепление со статической камерой. В комплекте также имеются подвесные скобы для крепления к потолку.

Материалы DLQ:

Внешняя панель диффузора изготовлена из профилированной листовой стали. Поверхность предварительно обработана и обладает высокой коррозионной стойкости, не менее 100 часов воздействия без ухудшения физических свойств (согласно DIN 50017). Поверхность имеет порошковую окраску белого цвета (RAL9010). Статическая камера изготовлена из оцинкованной листовой стали.


Материалы ADLQ:

Внешняя панель диффузора изготовлена из экструдированных алюминиевых профилей с анодированным покрытием по Е6-С-0. Статическая камера изготовлена из оцинкованной листовой стали.

Пример заказа

Производитель: ТВОХ

Серия: DLQ-2-AK-M/400/P1/RAL 9016/B

