Документация для проектирования

R600

Содержание

Газовый напольный		
конденсационный котел R600	Исполнение и мощность	4
	Область применения	4
	Отличительные особенности	4
Техническое описание	Общие данные	4
	Технические характеристики	5
	Габаритные размеры	6
	Заявление производителя о соответствии изделия требованиям норм	E9C 7
	Комплект поставки	8
	Транспортировка котла в котельную	8
	Помещение котельной	8
Предписания и условия	Предписания	9
	Сервисное обслуживание	10
	Топливо	10
	Воздух для горения	10
	Качество воды	10
	Защита от шума	
	Антифризы	
Дымовые трубы	Требования и предписания	12
	Материал дымовых труб	12
	Параметры отходящих газов	12
	Расчет дымовой трубы	13
Нейтрализация конденсата	Общие положения	
	Устройства нейтрализации конденсата	14
Гидравлическая система	Сопротивление в гидравлической системе	15
	Измерение ДТ	
	Измерение ∆р	
	Обвязка котла с системой отопления	
	Стандартная гидравлическая схема	16
	Гидравлическая схема с байпасом	16
	Сплит-система	17
Устройства регулирования	Базовый котловой контроллер и подключения	
	Система управления DDC	
	Разрешение на запуск	
	Предварительное программирование температуры или мощности	
	Сигнал обратной связи о мощности	
	Сигнал нормальной работы / сигнал неисправности	
	Погодозависимое устройство регулирования ВМ8ВМ8	
	Устройство регулирования Е8	
	Менеджер управления каскадом ККМ8	21

Содержание

Принадлежности	Выбор системы	22
•	Комплекты принадлежностей Комплект А: 2 реле макс. давления	
	воды + 1 защитный ограничитель температуры	23
	Комплект В: Реле макс. давления газа	
	Комплект С: Защитный ограничитель температуры (STB)	
	Комплект D: Устройство контроля герметичности газового клапана	
	Комплект Е: Байпас	
	Комплект F: Подключение внешнего газового клапана / комнатного	
	вентилятора	23
	Комплект G: Пластинчатый теплообменник + комплект подключения	
	Комплект Н: Гидравлический разделитель + комплект подключения	
	Комплект І: Устройство регулирования ВМ8	
	Комплект К: Устройство регулирования Е8	
	Комплект L: 3-х ступенчатый насос	
	Комплект М: Насос с регулируемым числом оборотов	
	Комплект 15-N/O/P/Q: Предохранительный клапан (3-4-5-6 бар)	
	сертифицированный TÜV + манометр + клапан удаления воздуха	28
	Комплект R: Газовый фильтр	
	Комплект S: Устройство регулирования LOGON В	
	Варианты подключения	
	Гидравлический разделитель	30
	Пластинчатый теплообменник	
Примеры гидравлических схем	2-А-С: 1 отопительный конур + гидравлический разделитель	32
	2-5-А-С: 1 отопительный конур и ГВС + гидравлический разделитель	
	4-А-С: 2 отопительных конура + гидравлический разделитель	34
	4-5-А-С: 2 отопительных конура и ГВС + гидравлический разделитель	
	А-С: система управления 0-10 В= + гидравлический разделитель	36
	2-В-С: 1 отопительный конур + пластинчатый теплообменник	37
	2-5-В-С: 2 отопительных конура и ГВС + пластинчатый теплообменник	38
	4-В-С: 2 отопительных конура + пластинчатый теплообменник	39
	4-5-В-С: 2 отопительных конура и ГВС + пластинчатый теплообменник	
	В-С: система управления 0-10 В= + пластинчатый теплообменник	41
	4-5-А-С-Е: 2 отопительных конура и ГВС + каскад через	
	гидравлический разделитель	42
	Расширение системы отопления на 2 отопительных контура	
Нормы		44

Газовый напольный конденсационный котел R600

Исполнение и мощность Область применения Отличительные особенности

Техническое описание

Исполнение и мощность

Фирма Rendamax BV производит газовые конденсационные котлы мощностью от 8,3 до 1189 кВт, которые широко применяются в промышленных, коммерческих зданиях и сооружениях, а также в жилых домах.

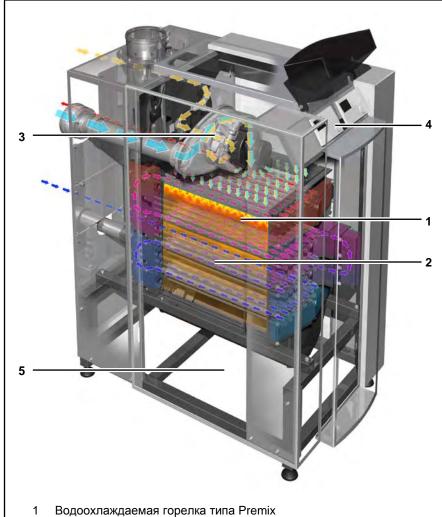
Напольные газовые конденсационные котлы серии R600 поставляется в диапазоне мощности от 142 до 539 кВт.

Область применения

магазинов, гостиниц и т.д.

Газовый конденсационный котел R600 в соответствии с требованиями EN12828 может использоваться для различных систем отопления и горячего водоснабжения. При подключении в каскад (макс. 8 котлов в комбинации с менеджером управления каскадом ККМ8) система отопления на базе котлов R600 может закрыть потребность по тепловой мощности до 4300 кВт. Данные котлы оптимально подходят для отопления и горячего водоснабжения многоквартирных домов, административных зданий,

Отличительные особенности


- Высокая надежность Усовершенствованная техника непревзойденного качества
- Высокая гибкость системы Простое проектирование и монтаж благодаря готовым комплектам принадлежностей
- Простое обслуживание Наиболее удобная для сервисного обслуживания конструкция
- Стабильно высокий КПД Стойкие к коррозии теплообменники, изготовленные из нержавеющей стали
- Экологически безопасный Низкий уровень вредных веществ в выбросах

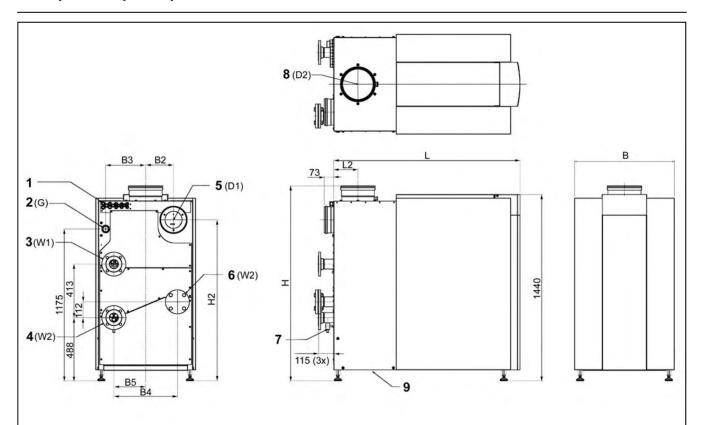
R600 — газовый конденсационный котел с модулируемой горелкой. Контроллер котла автоматически корректирует степень модуляции, в зависимости от тепловой нагрузки (запроса на тепло).

При этом контроллер непрерывно корректирует и число оборотов вентилятора. В зависимости от числа оборотов вентилятора подается соответствующий объем газа и воздуха, чтобы обеспечить оптимальный процесс сжигания. Как следствие достигается наибольшая эффективность. Отходящие газы отводятся вниз, через котел, и в задней части котла выводятся через штуцер подключения в дымовую трубу.

Подключение обратной линии системы отопления находится нижней точке котла там, где температура отходящих газов и обратной воды самая низкая. Именно в этой зоне котла происходит конденсация. Вода из обратной линии, по принципу поперечного потока, подается снизу вверх, проходя через ряды теплообменников нагревается, и подается в подающую линию. Такой принцип обеспечивает максимальную теплопередачу и максимальный КПД.

- 2 3-х уровневый теплообменник из нержавеющей стали
- 3 Управляемая система смешивания газ/воздух
- 4 Котловая автоматика КМ 628
- 5 Место установки для нейтрализатора конденсата (см. стр. 14)

Техническое описание


Технические характеристики

		R601	R602	R603	R604	R605	R606	R607
Ном. мощность при 80-60 °C макс./мин.	кВт	142.1/23.3	190.1/39.5	237.2/39.5	285.2/39.5	380.2/76.6	475.3/76.6	539.0/76.6
Ном. мощность при 75-60 °C макс./мин.	кВт	142.2/23.5	190.3/39.5	237.4/39.5	285.5/39.5	380.6/76.6	475.8/76.6	539.6/76.6
Ном. мощность при 40-30 °C макс./мин.	кВт	150.7/26.7	201.6/45.2	251.4/45.1	302.3/45.2	403.1/87.7	503.9/87.7	571.5/87.7
Ном. нагрузка макс./мин.	кВт	145.0/24.5	194.0/41.5	242.0/41.5	291.0/41.5	388.0/80.5	485.0/80.5	550.0/80.5
КПД при 80/60 °C	%				98.0			l.
КПД при 40/30 °C	%				103.9			
Нормативный КПД при 75/60 °C	%				106.8			
Нормативный КПД при 40/30 °C	%				110.4			
Теплопотери (Т воды = 70 °C)	%	0.21	0.18	0.17	0.16	0.15	0.14	0.13
Макс. объем конденсата	л/час	11	15	19	22	30	37	42
Расход газа ВД макс./мин. (10.9 кВтч/м³)	м ³ /час	13.3/2.3	17.8/3.8	22.2/3.8	26.7/3.8	35.6/7.4	44.5/7.4	50.5/7.4
Расход газа НД макс./мин. (8,34 кВтч/м³)	м ³ /час	17.4/2.9	23.2/5.0	29.0/5.0	34.9/5.0	46.5/9.7	58.2/9.7	66.0/9.7
Расход газа СНД макс./мин. (8,34 кВтч/м ³)	м ³ /час	17.4/2.9	23.2/5.8	29.0/5.8	34.9/5.8	46.5/11.2		66.0/11.2
Расход газа (пропан) макс./мин. (12,8 кВтч/кг)	кг/час	11.3/1.9	15.2/3.2	18.9/3.2	22.7/3.2	30.3/6.3	37.9/6.3	43.0/6.3
Давление природного газа (G20)	мбар	1110/110	.0.2,0.2	.0.0,0.2	20	0010/010	0.10,010	1010/010
Давление природного газа НД/СНД (G25)	мбар				25			
Давление сжиженного газа (G31)	мбар				30/50			
Максимальное давление газа	мбар				100			
Температура отходящих газов при 80/60 °C макс./					78/61			
мин.					70/01			
Температура отходящих газов при 40/30 °C	°C				56/30			
макс./мин.								
Объем отходящих газов макс./мин.	м ³ /час	238/40	318/69	397/69	477/69	636/134	795/134	901/134
Уровень CO₂ для природного газа макс./мин.	%				10.2/9.4			
Уровень CO ₂ для сжиженного газа макс./мин.	%				11.9/10.0			
Значение NOx макс./мин.	мг/кВтч				35/15			
Значение СО макс./мин.	мг/кВтч				14/8			
Напор вентилятора макс./мин.	Па	160/10	160/10	200/10	200/10	200/10	250/10	250/10
Объем воды в котле	л.	27	31	35	61	68	75	82
Давление воды макс./мин.	бар				8/1			·
Защитный термостат (предел срабатывания)	°C				100			
Макс. температура воды в подающей линии	°C				90			
Ном. расход воды через котел при ∆T=20K	м ³ /час	6.1	8.1	10.2	12.2	16.3	20.4	23.1
Потери давления котла	кПа	10	18	28	15	27	42	55
Подключение к электросети	В		ı		230/400	ı	ı	ı
Частота	Гц				50			
Предохранитель	A				10			
ІР класс	-				IP20			
Потребл мощность котла (без насоса) макс./мин.	Вт	158/43	200/35	230/35	260/35	470/61	650/61	770/61
Потребл. мощность 3-х ступ. насосов макс./мин.	Вт	170/90	190/120	380/210	380/210	530/300	720/380	1150/600
Потребл. мощность модулир. насосов макс./мин.	Вт	180/10	180/10	435/25	435/25	450/25	800/35	800/35
Потребл. мощность насосов на байпасе макс./мин.	Вт	55/35	85/65	170/90	170/90	190/120	460/225	470/280
Вес (без принадлежностей)	КГ	295	345	400	465	535	590	650
Уровень шума на расстоянии 1м	дБ(А)		0.0		59	000	000	000
Мин. ток ионизации	μА				6			
рН-уровень конденсата	μA	3.2						
от гуровень конденсата Идентификационный номер СЕ								
Подключение по воде	- -		R2"	OI.	_ 00000000	DN65	PN16	
		R3/4"	R1"	R1"	R1"	R1.1/2"	R1.1/2"	R1.1/2"
Подключение газа Подключение дымохода	NANA	150	150	200	200	250	250	250
	MM			150	150			
Подключение воздуховода (режим подачи воздуха для горения из атмосферы)	ММ	130	150			200	200	200
Подключение для слива конденсата	MM	22	22	22	22	22	22	22

 $^{^*}$ мин. загрузка газов ВД/НД/П. Для моделей R602–R607на газах СПД, мин. значение на15 % больше.

Техническое описание

Габаритные размеры

Размеры		R601	R602	R603	R604	R605	R606	R607	
L	mm	1105	1260	1470	1220	1435	1585	1735	
L2	mm	127.5	127.5	137.5	137.5	187.5	187.5	187.5	
Н	mm	1480	1480	1500	1500	1500	1500	1500	
H2	mm	1120	1130	1130	1150	1245	1245	1245	
В	mm	670	670	670	770	770	770	770	
B2	mm	225	235	235	235	215	215	215	
В3	mm	260	260	260	310	310	310	310	
B4	mm	260	260	260	490	490	490	490	
B5	mm	130	130	130	245	245	245	245	
D1	mm	130	150	150	150	200	200	200	
D2	mm	150	150	200	200	250	250	250	
W1	R" / DN	R2"	R2"	R2"	DN65 PN16				
W2	R" / DN	R2"	R2"	R2"	DN65 PN16				
G	R	R 3/4"	R 1"	R 1"	R 1"		R 1 1/2"		

- Электрические разъемы
- Подвод газа 2
- 3 Подвод воды
- Обратная магистраль (холодная вода)
- Воздухозаборник Обратная магистраль (горячая вода)
- Сливной клапан котла 1/2"
- Выход дымовых газов (дымоход)
- Гибкий шланг отвода конденсата диаметром 25 мм

Декларация соответствия

Декларация соответствия

Компания Rendamax BV, Hamstraat 76, 6465 AG Kerkrade (NL), заявляет, что продукция

R600

соответствует следующим стандартам:

EN 298 EN 50165 EN 55014-1 / -2 EN 60 335-2

и согласуется с рекомендациями директив:

92/42/EEC (Директива о производительности котла отопления) 90/396/EEC (Директива о газовом оборудовании) 73/23/EEC (Директива о низком напряжении) 89/336/EEC (Директива EMC)

Данный продукт сертифицирован СЕ №:

CE - 0063BS3840

Kerkrade, 29-08-2007

инж. G.A.A. Jacobs (Якобс) Директор завода

Техническое описание

Стандартный вариант исполнения Транспортировка котла в котельную Помещение котельной

Стандартный вариант исполнения

Комплект поставки одного котла включает следующие компоненты:

Компоненты		Способ упаковки
Котел полностью смонтирована и испытан	1	На деревянном поддоне с деревянной рамой, упакован в полиэтиленовую пленку
Регулируемые по высоте опорные ножки	4	Смонтированы на раме котла
Сифон для слива конденсата	1	В отдельной коробке на теплообменнике
Комплект переоснащения котла для эксплуатации с сжиженным газом, включая инструкцию	1	В отдельной коробке на теплообменнике
Инструкция по монтажу и эксплуатации	1	В кармашке с документацией (на задней стенке котла)
Перечень запчастей	1	В кармашке с документацией (на задней стенке котла)
Электрическая схема	1	В кармашке с документацией (на задней стенке котла)
Опция: интегрируемое устройство регулирования системы отопления, включая все датчики и штекеры	1	Встроено в панель управления котла. Датчики и штекеры в отдельной коробке на теплообменнике

		1		1	1	1		
		R601	R602	R603	R604	R605	R606	R607
Горелка / части 1-го	вес [кг]	86	100	112	135	158	181	198
теплообменника	длина [мм]	735	885	1035	735	885	1035	1185
	ширина [мм]	400	400	400	680	680	680	680
	высота [мм]	321	321	321	321	321	321	321
Части 2-го и 3-го	вес [кг]	90	103	116	150	170	198	219
теплообменников	длина [мм]	735	885	1035	735	885	1035	1185
	ширина [мм]	400	400	400	680	680	680	680
	высота [мм]	244	244	244	244	244	244	244
Ванна для сбора	вес [кг]	7	9	10	11	12	13	15
конденсата	длина [мм]	589	739	889	589	739	889	1039
	ширина [мм]	385	385	385	665	665	665	665
	высота [мм]	225	225	225	225	225	225	225
Несущая	вес [кг]	15	16	17	17	18	19	21
конструкция	длина [мм]	990	1140	1350	1100	1320	1470	1620
	ширина [мм]	624	624	624	724	724	724	724
	высота [мм]	335	335	335	335	335	335	335
Передняя панель	вес [кг]	11	11	11	12	12	12	12
с электрической	длина [мм]	628	628	628	728	728	728	728
частью	ширина [мм]	1304	1304	1304	1304	1304	1304	1304
	высота [мм]	202	202	202	202	202	202	202

450

Транспортировка котла в котельную

В случае необходимости, для облегчения проноса котла в помещение котельной, котел может быть разобран на отдельные компоненты. В таблице ниже приведены основные разборные компоненты, их вес и размеры.

Помещение котельной

Котел должен быть установлен в морозостойкой котельной. Если котельная находится на крыше, то сам котел ни в коем случае не должен быть наивысшей точкой всей установки. При установке котла обратите, пожалуйста, внимание на минимальные рекомендуемые промежутки, изображенные на рисунке ниже. Если при установке котла будет оставлено меньше свободного места, техническое обслуживание будет затруднено. Необходимо соблюдать международные, а также национальные и местные нормы и правила по проектированию и монтажу систем отопления.

Предписания и условия

Котел R600 одобрен СЕ и соответствует следующим европейским стандартам:

- 92 / 42 / EEC Директива о производительности котла отопления
- 90 / 396 / EEC Директива о газовом оборудовании
- 73 / 23 / EEC Директива о низком напряжении
- 89 / 336 / EEC Директива EMC
- EN 656
 Газовые котлы центрального отопления котлы типа В с номинальной подводимой теплотой, превышающей 70 кВт, но не больше 300 кВт
- EN 15420
 Газовые котлы центрального отопления котлы типа С с номинальной подводимой теплотой, превышающей 70 кВт, но не больше 1000 кВт
- EN 15417
 Газовые котлы центрального отопления Специфические требования для конденсирующих котлов с номинальной подводимой теплотой более 70 кВт, но не превышающей 1000 кВт
- EN 13836
 Газовые котлы центрального отопления котлы типа В с номинальной подводимой теплотой, превышающей 300 кВт, но не больше 1000 кВт
- EN 15502-1
 Газовые котлы центрального отопления Часть 1: Общие требования и испытания
- EN 55014-1
 Электромагнитная совместимость
 Требования к домашней
 бытовой технике,
 электроинструментам и
 подобным аппаратам Часть 1:
 Выброс
- EN 55014-2
 Электромагнитная совместимость
 Требования к бытовой
 технике, электроинструментам и
 подобным аппаратам Часть 2:
 Защищённость Стандарт линии
 товаров

- EN 61000-3-2
 Электромагнитная
 совместимость (EMC) Часть
 3-2: Ограничения Ограничения
 на гармонический поток выбросов
 (подводимый ток для
 оборудования 16 А на фазу)
 - EN 61000-3-3
 Электромагнитная совместимость (EMC) Часть 3-3: Ограничения на изменение напряжения и замыканий в общественных системах электроснабжения низкого напряжения, для оборудования с номинальным током 16 А на фазу и не может подвергаться условному соединению
- EN 60335-1
 Бытовая техника и подобные
 электроприборы Безопасность
 Часть 1: Общие требования
- EN 50165
 Бытовая техника и подобные электроприборы – Безопасность – Часть 2-102: Особые требования для приборов горения газа, жидкого и твердого топлива, имеющие электрические соединения

Дополнительные национальные стандарты:

Германия:

- RAL - UZ 61 / DIN 4702-8

Швейцария:

- SVGW

Нидерланды:

- NOx staatsblad 344 (1994)
- GASKEUR BASIS
- GASKEUR SV
- GASKEUR HR107

Бельгия:

HR TOP

Нормы и положения

При установке и эксплуатации котла необходимо соблюдать все применяемые нормы (европейские и местные):

- Местные положения об установке в зданиях систем с воздухом для горения и дымовым газом;
- Положения о подключении котла к электрическим приборам;
- Положения о подключении котла к местному газопроводу;
- Нормы и положения, относящиеся к оборудованию, обеспечивающему безопасность работы систем отопления;
- Любые дополнительные местные законы/положения об установке и эксплуатации систем отопления.

Перечень наиболее важных норм для различных стран см. В разделе «Нормы».

Предписания и условия

Сервисное обслуживание Топливо Воздух для горения Wasserqualität

Сервисное обслуживание

Проведение регулярных сервисных работ – залог надежной и экономичной работы системы отопления.

Необходимо обязательное ежегодное сервисное обслуживание котлов серии R600. При этом вся система отопления также должна проверяться на нормальную работу. Фирма Rendamax рекомендует заключить сервисный договор с уполномоченными ею сервисными центрами.

Топливо

Газовый напольный конденсационный котел R600 предназначен для эксплуатации исключительно на природном газе (H) и сжиженном газе (F). При поставке с завода-изготовителя котлы R600 всегда настроены для эксплуатации с природным газом. При необходимости эксплуатации котла со сжиженным газом, следует заменить сопло (входит в комплект поставки) и отрегулировать комбинированный газовый клапан.

Котел R600 может эксплуатироваться с давлением подключения газа 100 мбар. При давление подключения газа выше 100 мбар, перед котлом необходимо дополнительно поставить регулятор давления газа.

Расход газа, а также давления подключения природного и сжиженного газа см. в разделе «Технические характеристики».

Воздух для горения

Газовый напольный конденсационный котел R600 может эксплуатироваться с подачей воздуха для горения как из помещения, так и из атмосферы.

Необходимо обратить внимание на то, что воздух, подаваемый для горения, должен быть чистым, без пыли и галоидных соединений. Высокая концентрация пыли, а также галоидные соединения могут повредить теплообменники. Особое внимание следует уделить, если в здании, в котором находится котельная, используются химические вещества. На стадии проектирования подачу воздуха необходимо обеспечить таким образом, чтобы в котел не попали эти вещества.

Различные варианты подключения (при подаче воздуха из атмосферы) даны в разделе «Дымовые трубы».

Качество воды

Качество воды влияет на срок службы всей системы отопления. Дополнительные затраты, связанные с водоподготовкой для системы отопления, всегда значительно ниже затрат на устранение неисправностей в системе отопления.

Соблюдение приведенных ниже требований, является условием соблюдения гарантийных обязательств со стороны фирмыпроизводителя. Гарантия производителя не распространяется на любые повреждения котла, вызванные несоблюдением требований по качеству воды.

Мощность котла,	Макс. сумма щелочно-	Макс. общая
кВт	земельных металлов,	жесткость
	моль/м ³	dºH
50 - 200	2.0	11.2
200 - 600	1.5	8.4

Концентрац. Са(НСО ₃) ₂		Мощность системы Q (кВт)								
Ca(IIC	,03)2	150	200	250	300	400	500	600		
моль/м ³	dºH	Макс. об	Макс. объем воды для подпитки $V_{\text{макс.}} [\text{м}^3]$							
≤0.5	≤2.8	-								
1.0	5.6	-	•	•	•	ı	-	•		
1.5	8.4	3	4	5	6	8	10	12		
2.0	11.2	3	4	5	6	6.3	7.8	9.4		
2.5	14.0	1.9	2.5	3.1	3.8	5.0	6.3	7.5		
≥3.0	≥16.8	1.6	2.1	2.6	3.1	4.2	5.2	6.3		

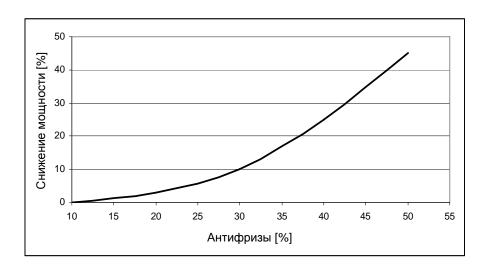
Система должна наполняться водой со значением РН от 8,0 до 9,5. Содержание хлора не должно превышать 50 мг/л. Следует полностью предотвратить попадание кислорода при диффузии. Повреждения теплообменника, вызванные кислородной диффузией, не подлежат гарантийному обслуживанию.

В установках с большими объемами воды необходимо учитывать максимальные объемы заполняемой и дополнительной воды с соответствующими значениями прочности, отмеченными в немецком стандарте VDI2035. В таблице, представленной ниже, Вы можете увидеть номинальные объемы заполняемой и дополнительной воды для R600 в соответствии со стандартом VDI2035.

В таблице, представленной ниже, дается показатель отношения качества воды и максимального объема заполняемой воды в течение срока службы котла. Для более подробной информации обратитесь к оригиналу VDI2035.

Необходимо предотвратить возможность постоянного попадания в систему отопления кислорода. Для этого давление воды в любой точке системе отопления должно быть всегда выше окружающего атмосферного давления. Кроме того, необходимо предотвратить использование пластиковых пористых труб для системы теплого пола. Если такие трубы все же используются, то необходимо разделить систему, например с помощью пластинчатого теплообменника.

Предписания и условия


Защита от шума Антифризы

Защита от шума

Газовый напольный котел R600 оснащен запатентованной горелкой предварительного смешивания Premix. По сравнению с обычными газовыми надувными горелками, уровень шума, создаваемый данной горелкой, очень низок. Поэтому дополнительные мероприятия по шумоизоляции в котельной не требуются.

R600 поставляется с опорными ножками, которые предотвращают корпусный шум.

Механический шум от компонентов системы отопления (например насосов), в случае повышенных требований) может быть устранен дополнительными мерами.

Антифризы

Допускается эксплуатация котла R600 с антифризом Shell Antifreeze Concentrate. Концентрация антифриза в сетевой воде влияет на мощность котла. Зависимость между концентрацией антифриза и снижением мощности котла приведена на графике.

Дымовые трубы

Требования и предписания Материал дымовых труб Параметры отходящих газов

Требования и предписания

В разных странах существуют разные нормы и предписания по конструкции и исполнению дымовых труб. Необходимо соблюдать местные нормы и правила. В разделе «Нормы» приведены важные национальные нормы для некоторых стран.

При расчете системы дымоудаления (дымовых труб) соблюдайте следующие общие указания:

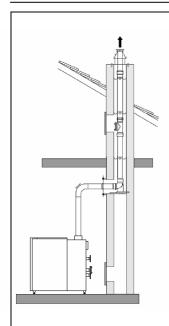
- Использовать только сертифицированные дымовые трубы.
- Для надежной работы котла необходимо правильно подобрать (рассчитать) дымовые трубы.
- Необходимо спроектировать систему дымоудаления таким образом, чтобы в случае необходимости отдельные компоненты дымовой трубы можно было бы легко заменить.
- Горизонтальные участи дымовой трубы должны иметь небольшой наклон, как мин. 3°.

На дымовой трубе не требуется предусматривать дополнительный элемент для отвода конденсата, поскольку возможный конденсат стекает обратно в котел (в ванну) и отводится через сифон.

Газовый напольный конденсационный котел R600 сертифицирован для вариантов подключения дымовых труб B23 (B23P для Франции), C33, C53 и C63.

Материал дымовых труб

Для дымовых труб рекомендуется использовать жароупорные материалы, стойкие к воздействию отходящих газов и агрессивного конденсата. Рекомендованными материалами являются пластик (PPS, категория T120) или нержавеющая сталь. В случае использования дымовых труб из алюминия, такие трубы должны быть толстостенными. Необходимо дополнительно согласовать использование алюминиевых дымовых труб.

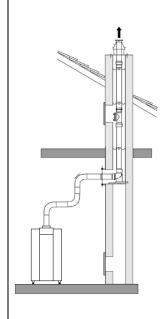

Котел R600 оснащен защитным ограничитель температуры отходящих газов. Данный ограничитель отключает горелку при достижении отходящими газами температуры 100°С. Таким образом, дополнительная защита от превышения температуры отходящих газов не требуется.

Параметры отходящих газов

Тип котла	Но мощн		Тепловая нагрузка		Штуцер подключе ния дымовой трубы		Содержание СО₂		Температура отходящих газов		Массовый поток отходящих газов		Напор котла	
	кВт		кВт		ММ	9,	% °C		КГ	-/c	П	а		
	макс.	мин.	макс.	мин.		макс	мин.	макс	мин.	макс.	мин.	макс	мин.	
R601	142.1	23.3	145.0	24.5	150				30	0.070	0.013	160	10	
R602	190.1	39.5	194.0	41.5	150					0.093	0.022	160	10	
R603	237.2	39.5	242.0	41.5	200					0.116	0.022	200	10	
R604	285.2	39.5	291.0	41.5	200	10.2	9.4	9.4 78		0.140	0.022	200	10	
R605	380.2	76.6	388.0	80.5	250					0.186	0.043	200	10	
R606	475.3	76.6	485.0	80.5	250					0.233	0.043	250	10	
R607	539.0	76.6	550.0	80.5	250					0.264	0.043	250	10	

Дымовые трубы

Расчет дымовой трубы



Вариант 1

Расчетные данные: Общая длина дымохода в котельной ≤ 1.5 m; Отводы-2x 87°

Максимально разрешенная высота дымохода в метрах

Тип котла	Ø 110 [mm]	Ø 130 [mm]	Ø 150 [mm]	Ø 200 [mm]	Ø 250 [mm]
R601	10	35	50		
R602		17	34	50	
R603			26	50	
R604			16	50	
R605				50	50
R606				39	50
R607				29	50

Вариант 2

Расчетные данные: Общая длина дымохода в котельной ≤ 3 m; Отводы-4x 87°

Максимально разрешенная высота дымохода в метрах

Тип котла	Ø 110 [mm]	Ø 130 [mm]	Ø 150 [mm]	Ø 200 [mm]	Ø 250 [mm]
R601	5	29	50		
R602		11	27	50	
R603			19	50	
R604			9	50	
R605				43	50
R606				31	50
R607				20	50

Расчет дымовой трубы

При проектировании системы отопления необходимо также выполнить расчет и сделать проект для системы дымоудаления (дымовой трубы).

В таблице ниже приведены два возможных варианты исполнения дымовой трубы, а также дана максимально допустимая общая длина дымовых труб. Данный пример является лишь ориентиром, какая общая длина дымовой трубы возможна в зависимости от диаметра.

Для каждой системы дымоудаления должен быть выполнен свой расчет (сделан проект)!

Макс. разряжение, при котором диапазон модуляции остается неизменным, составляет 30 Па. Более высокое разряжение ведет к ограничению диапазона модуляции.

Макс. допустимая длина горизонтального участка составляет 20 м. При более длинном горизонтальном участке дымовой трубы производитель котла не гарантирует его нормальную работу, особенно при низких наружных температурах.

Нейтрализация конденсата

Общие положения

Устройства нейтрализации конденсата

Устройство нейтрализации проточного типа (безнапорное) (DN)

Устройство нейтрализации с насосом для отвода конденсата (HN)

Общие положения

Конденсат из газового напольного конденсационного котла R600 в соответствии с европейскими нормами должен отводиться в общую канализацию. Уровень pH конденсата составляет от 3.0 до 3.5.

Необходимо проверить, требуется ли в соответствии с национальными и местными нормами нейтрализация конденсата перед его отводом в общую канализацию. Максимальный объем конденсата, который вырабатывется каждым котлом дан в технических характеристиках.

DN2

450

420

300

240

[kW]

[mm]

[mm]

[mm]

DN3

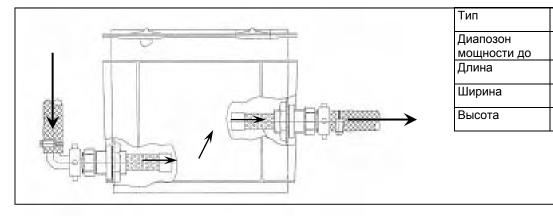
1500

640

400

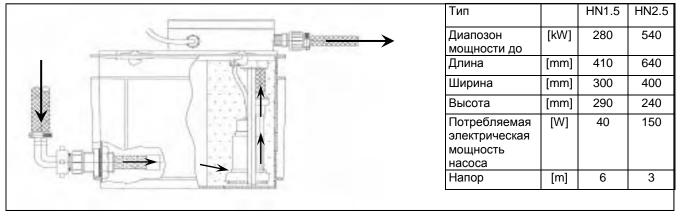
240

Устройства нейтрализации конденсата

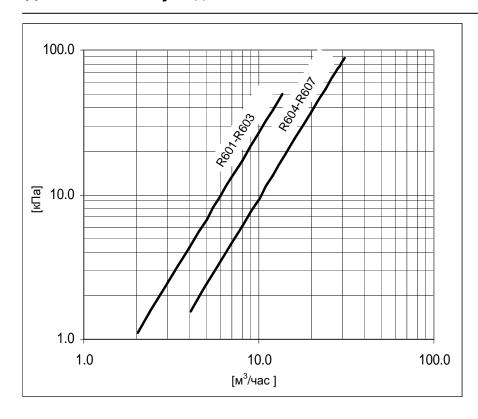

Внизу котла предусмотрено место для установки устройства нейтрализации конденсата. При заказе устройства нейтрализации в комплекте поставляются:

- Гранулат для первой засыпки
- Подающий и сливной шланг
- Адаптер котла

Для нейтрализации конденсата поставляются 2 типа устройств.


Устройство нейтрализации проточного типа (безнапорное) (DN)

Данное устройство применяется, если подключение к общей канализации расположено ниже отвода для слива конденсата из котла.


Устройство нейтрализации с насосом для отвода конденсата (HN)

Данное устройство используется если подключение к общей канализации расположено выше отвода для слива конденсата из котла. Поэтому необходим насос, чтобы поднять конденсат на нужный уровень. Поэтому данная версия устройств поставляется в комплекте с насосом.

Гидравлическая система

Сопротивление гидравлической системы Измерение ∆Т Измерение ∆р Данные по потоку воды

Сопротивление гидравлической системы

Сопротивление гидравлической системы зависит от расхода воды в системе и типа котла. На графике отображено сопротивлении гидравл. системы при различном расходе.

Котел R600 позволяет управлять числом оборотов котлового насоса от сигнала 0 -10 В=, при этом расход может снижаться вместе со снижением мощности R600. Мин. расход воды через котел, при котором котел может надежно работать, составляет 30% от номинального расхода.

Расход воды через котел можно проверить также расчетным путем. Для этого потребуется измерение ΔT или Δp .

Данные по потоку воды											
		R601	R602	R603	R604	R605	R606	R607			
Ном. расход	[м ³ /час]	6,1	8,1	10,2	12,2	16,3	20,4	23,1			
ΔТ при ном. расходе	[K]	20									
∆р при ном. расходе	[кПа]	10	18	28	15	27	42	55			

Измерение ДТ

При работе котла на полной нагрузке проверьте разницу между температурой в подающей линии и температурой воды в обратной линии ($\Delta T =$ подача - обратка). Номинальная ΔT соответствует 20К и для надежной работы котла должна находиться в диапазоне от 15К до 25К (при полной нагрузке). Факт. расход можно рассчитать по следующей формуле (см. таблицу номинальных параметров):

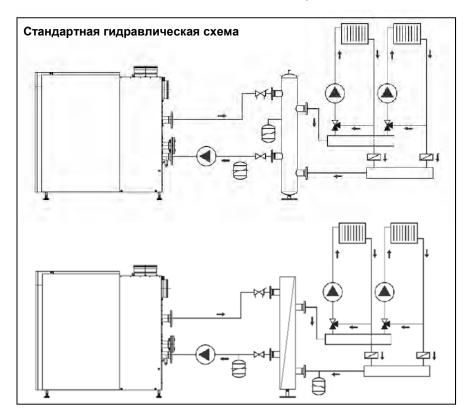
Qфакт. = (Δ Тном / Δ Тизмер.) * qном [м³/час]

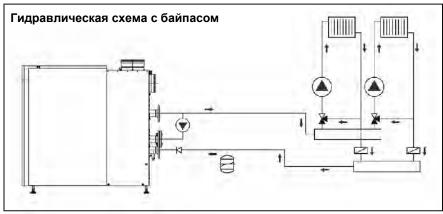
Измерение Др

Когда работает котловой насос. проверьте разницу между температурой в подающей линии и температурой воды в обратной линии $(\Delta T = подача - обратка), при этом$ горелка не обязательно должна быть включенной. Номинальная Др для соответствующего типа котла приведена в таблице ниже, фактическая Др при работе наноса на 100% его мощности должна находиться в диапазоне: $0.35^*\Delta p_{\text{ном}}. \le \Delta p \le 1.75^*\Delta p$ ном. Фактический расход можно рассчитать по следующей формуле (см. таблицу номинальных параметров):

Qфакт. = $\sqrt{(\Delta \text{ризмер.} / \Delta \text{рном.})} * \text{ qном. [м}^3/\text{час]}$

Гидравлическая система


Обвязка котла с системой отопления Стандартная гидравлическая схема Гидравлическая схема с байпасом


Обвязка котла с системой отопления

Гидравлическая схема (в части обвязки газового напольного конденсационного котла R600с системой отопления) должна быть реализована таким образом, чтобы гарантировать мин. расход через котел, равный 30% от ном. расхода, независимо от расхода в системе отопления. Это можно достичь 3-мя способами:

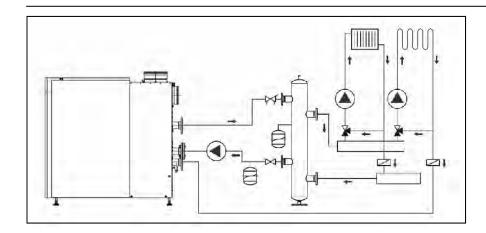
- Стандартный: через гидравлический разделитель или пластинчатый теплообменник
- Байпасом: с интегрированной функцией мин. расхода через насос на байпасе *
- Сплит-системой: с 2-мя
 обратными линиями для
 оптимального использования
 конденсации
 (низкотемпературная и
 высокотемпературная обратные
 линии)

Пояснения к отдельным вариантам гидравлических схем даны в следующих раздела, вкл. важные указания.

Стандартная гидравлическая схема

Данный вариант гидравлической схемы используется чаще всего и является более простым для реализации. Благодаря использованию гидравлического разделителя или пластинчатого теплообменника обеспечивается необходимый мин. расход воды через котел. не зависимо от расхода в системе отопления. Котловой насос поставляется как 3-х ступенчатый, так и с плавной регулировкой оборотов. Использование насоса с плавной регулировкой числа оборотов позволяет скорректировать расход воды в первичном контуре, если мощность котла снижается. При этом можно отказаться от устройства повышения температуры обратной воды.

Гидравлическая схема с байпасом

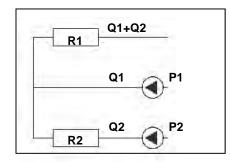

Если в системе отопления используется только один котел серии R600, то не обязательно использовать гидравлический разделитель или пластинчатый теплообменник. Для такого простого варианта гидравлической схемы поставляется комплект принадлежностей с байпасом. Байпас подключается между подающей и 2-ой обратной линией. При высоком расходе воды в системе отопления, мощность насоса на байпасе является незначительной, при снижении расхода воды в системе мощность насоса увеличивается до такого уровня, чтобы гарантировать необходимый минимальный расход воды через котел.

Насос на байпасе не создает остат. напор для системы отопления. Насос системы отопления должен преодолеть сопротивление котла при ном. расходе воды.

В разделе «Принадлежности» дана доп. информация о поставляемых комплектах принадлежностей с байпасом.

Гидравлическая система

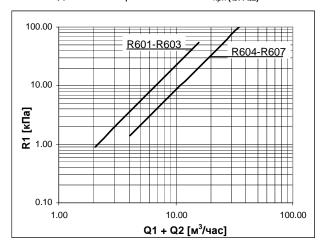
Сплит-система

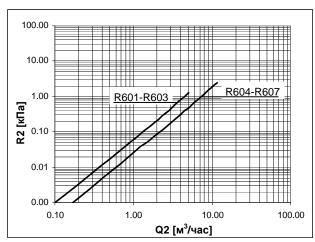

Сплит-система

Сплит-система позволяет подключить две обратные линии: высокотемпературную и низкотемпературную. В обход гидравлического разделителя самая холодная обратная вода напрямую подается в нижний теплообменник (обеспечивающий конденсацию), при этом не происходит подмешивание более теплой обратной воды (например от контура вентиляции). Это гидравлическое разделение высокой и низкой температуры обратной воды повышает КПД.

Котел управляет котловым насосом, обеспечивает необходимый мин. расход воды через котел, кроме нижнего теплообменника. Насос самого холодного контура отопления должен быть подобран таким образом, чтобы он смог преодолеть сопротивление котла.

Ном. расход воды в самом теплом контуре должен составлять 50% от всего расхода воды.


Для подбора обоих насосов можно использовать следующие данные:



Минимальный и Максимальный расход Q1-Q2					
	Q _{2, мин.}	Q _{2,макс.}	(Q ₁ +Q ₂) _{мин.}	(Q ₁ +Q ₂) _{макс.}	
	[м³/час]	[м³/час]	[м³/час]	[м³/час]	
R601		3.0	4.9	8.1	
R602		4.0	6.5	10.8	
R603		5.1	8.2	13.6	
R604	0	6.1	9.8	16.3	
R605		8.1	13.0	21.7	
R606		10.2	16.3	27.2	
R607		11.5	18.5	30.8	

Необходимый напор насоса P2: $R_{P2} = R2_{при Q2} + R1_{при (Q1+Q2)} + R_{системы}$

Необходимый напор насоса P1: R1_{при (Q1+Q2)}

Базовый контроллер котла и подключения Система управления DDC

Разрешение на запуск горелки

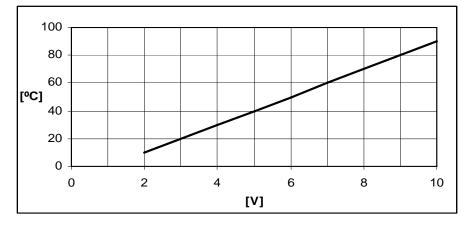
Предварительное программирование температуры или мощности

Базовый контроллер котла и подключения

Котел R600 стандартно оснащается контроллером (менеджером котла) КМ628-R600. Этот контроллер с одной стороны обеспечивает контроль безопасной работы горелки, а с другой стороны является регулятором температуры котла. Контроллер KM628-R600 оснащен следующими функциями:

- Электронный защитный ограничитель температуры (STB)
- Электронный защитный ограничитель температуры отходящих газов
- Управление котловым насосом (через реле)
- Управление насосом загрузки бойлера (через реле)
- Отключающий вход
- Блокирующий вход
- Сигнализация нормальной работы / сигнализация неисправности
- Контакт для внешнего разрешения на запуск горелки
- 0-10 В= предварительное программирование температуры или мощности (программируемый)

- 0-10 В= сигнал обратной связи о мощности или контакт 10 В для внешнего газового клапана (программируемый)
- Управление температурой системы отопления через ПИДрегулятор
- Управление температурой системы ГВС (приоритетное включение)

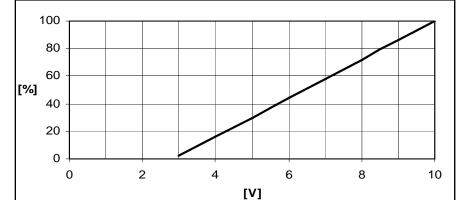

Если требуется управление контурами отопления или системой с каскадом, то котел может быть дополнительно оснащен другими контроллерами и устройствами регулирования. Пояснения к данным контроллерам и устройствам регулирования см. в следующих разделах.

Система управления DDC

Существует возможность подключения к котлу системы управления DDC (для подключения к общей системе управления «умный дом»). Существуют следующие возможности подключения:

Разрешение на запуск горелки, клеммы 22-23 (230B)

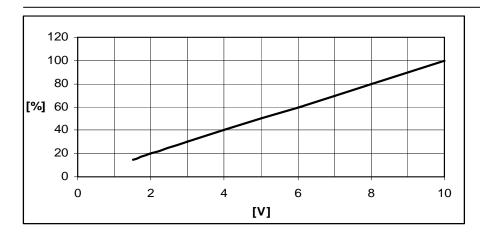
Разрешение на внешний запуск горелки с завода-изготовителя поставляется закрытым перемычкой. При подключении (беспотенциального!!!) внешнего разрешения на запуск горелки необходимо удалить перемычку.


программирование температуры или мощности, клеммы 117-118 (0-10 B=) Котел может управляться по

Предварительное

Котел может управляться по предварительному программированию температуры или мощности. На следующих графиках дана оценка сигнала для обоих вариантов управления.

Задание Температуры котловой воды


При уровне сигнала до 2В автоматика управляет котлом по внутренней температурной уставке – параметр Р1.

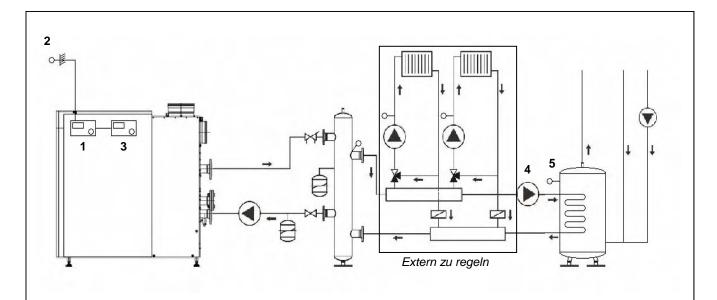
Задание Мощности

При получении сигнала 3В происходит розжиг горелки. Падение сигнала ниже 2.9В приводит к остановке горелки. В случае, когда управление котлом происходит по установленной мощности, настоятельно рекомендуем управлять котловым насосом по внутреннему сигналу управления КМ628 (температурный выбег насоса). Минимальный проток через котел должен быть всегда обеспечен. Номинальное значение ΔT =20К и при максимальной загрузке должно быть в пределах 15К-25К для гарантии правильной работы котла.

Сигнал обратной связи о мощности Сигнал нормальной работы / сигнал неисправности Погодозависимое устройство регулирования ВМ8

Сигнал обратной связи о мощности, клеммы 111-112 (0-10B=)

При работающей горелке на эти клеммы подается сигнал обратной связи о мощности горелки. На графике дана оценка сигнала.


Сигнал нормальной работы / сигнал неисправности, клеммы 25-26-27 (беспотенциальный)

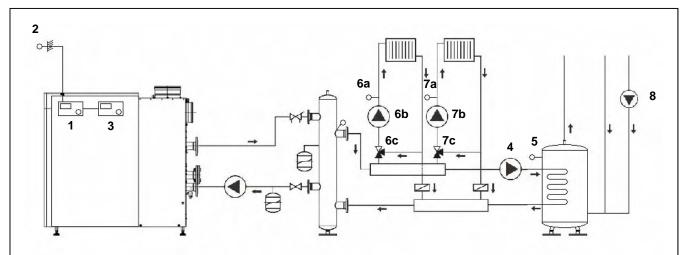
К клемме 25 (COM) можно приложить любое напряжение, макс. 230 В,1А. В зависимости от состояния, в котором находится котел, он посылает сигнал о нормальном режиме работы на клемму 27 или сигнал о неисправности на клемму 26.

Погодозависимое устройство регулирования BM8

Котел R600 может работать в комбинации с погодозависимым устройством регулирования. ВМ8. В этом случае можно дополнительно запрограммировать время включения режимов отопления и ГВС (Программы времени включения режимов). Устройство регулирования ВМ8 не управляет контурами отопления!

Контроллер ВМ8 может быть встроен в панель управления котла, при этом может использоваться в качестве выносного устройства дистанционного управления (со встроенным датчиком комнатной температуры может использоваться для оптимизации температуры внутри помещения). Макс. длина кабеля подключения составляет 100 м. (для доп. информации см. документацию по ВМ8).

- 1 КМ628 (интегрирован в котел)
- 2 Датчик наружной температуры подключить к клеммам 105-106
- 3 ВМ8, подключить к клеммам 102-103
- 4 Насос загрузки бойлера, подключить к клеммам 19-20-21
- 5 Датчик температуры ГВС, подключить к клеммам 114-115 (Удалить перемычку на клеммах 113-114!)


Устройство регулирования Е8

Устройство регулирования Е8

Для расширения возможностей управления контурами отопления и ГВС, к котлу R600 необходимо подключить устройство регулирования E8. Устройство регулирования E8 сочетает погодозависимое управление с управлением двумя контурами отопления и управлением насосом рециркуляции ГВС.

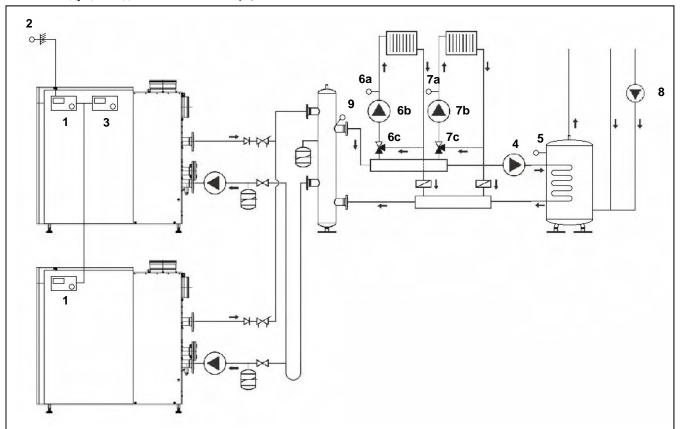
Для оптимизации температуры внутри помещения можно дополнительно подключить по шине устройство дистанционного управления ВМ8. Параметры соответствующего контура отопления можно будет программировать на этом устройстве дистанционного управления.

Для управления более чем 2-мя отопительными контурами поставляются комплекты с E8 в специальном корпусе для крепления на стене. Эти комплекты модульно подключаются к котлу и позволяют управлять до 15 отопительных контуров.

- 1 КМ628 (интегрирован в котел)
- 2 Датчик наружной температуры подключить к клеммам 105-106
- 3 Е8 (интегрирован в котел)
- 4 Насос загрузки бойлера, подключить к клеммам 19-20-21
- 5 Датчик температуры ГВС, подключить к клеммам 114-115 (Удалить перемычку на клеммах 113-114!)
- 6 Контур отопления 1
 - а Датчик температуры в подающей линии, подключить к клеммам 125-126
 - b Насос контура отопления, подключить к клеммам 50-51-53
 - с 3-х ходовой клапан, подключить к клеммам 55-56-57
- 7 Контур отопления 2
 - а Датчик температуры в подающей линии, подключить к клеммам 127-128
 - ь Насос контура отопления, подключить к клеммам 51-52-53
 - с 3-х ходовой клапан, подключить к клеммам 59-60-61
- 8. Насос рециркуляции ГВС, подключить к клеммам 63-64-65

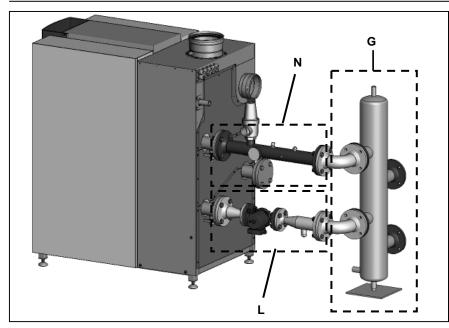
Менеджер управления каскадом ККМ8

Менеджер управления каскадом ккмя

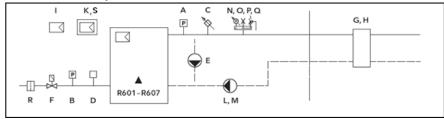

Для управления до 8-ми котлов в каскаде, в комбинации с погодозависимым управлением 2-х контуров отопления и приготовлением ГВС, к котлу R600 необходимо подключить менеджер управления каскадом ККМ8. ККМ8 сочетает в себе функциональность устройства регулирования Е8 с интегрированной функцией управления каскадом. При этом можно запрограммировать последовательность переключения котлов «ведущий-ведомый».

Менеджер управления каскадом ККМ8 может использоваться исключительно как каскадный регулятор, без управления контурами отопления. Для этого предусмотрен вход 0-10В= для внешнего программирования температуры. Движение сигнала свободно программируется.

Для оптимизации температуры внутри помещения можно дополнительно подключить по шине устройство дистанционного управления ВМ8.


Параметры соответствующего контура отопления можно будет программировать на этом устройстве дистанционного управления.

Для управления более чем 2-мя отопительными контурами поставляются комплекты с Е8 в специальном корпусе для крепления на стене. Эти комплекты модульно подключаются к котлу и позволяют управлять до 15 отопительных контуров.


- 1 КМ628 (2х) (интегрирован в котел) Шину, соединяющую котлы, подключить к клеммам 102-103
- 2 Датчик наружной температуры подключить к клеммам 130-131
- 3 ККМ8 (интегрирован в котел)
- 4 Насос загрузки бойлера, подключить к клеммам 53-54-55
- 5 Датчик температуры ГВС, подключить к клеммам 135-136
- 6 Контур отопления 1
 - а Датчик температуры в подающей линии, подключить к клеммам 125-126
 - ь Насос контура отопления, подключить к клеммам 50-51-53
 - с 3-х ходовой клапан, подключить к клеммам 55-56-57
- 7 Контур отопления 2
 - а Датчик температуры в подающей линии, подключить к клеммам 127-128
 - b Насос контура отопления, подключить к клеммам 51-52-53
 - с 3-х ходовой клапан, подключить к клеммам 59-60-61
- 8 Насос рециркуляции ГВС, подключить к клеммам 63-64-65
- 9 Датчик температуры в общей подающей линии (на подаче за стрелкой), подключить к клеммам 132-133

Выбор системы Таблица подбора

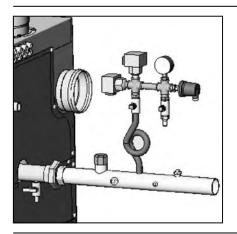
Комплекты принадлежностей представляют собой модули. В таблице подбора комплектов принадлежностей даны различные комплекты, которые позволяют обеспечить комплексное решение для любой системы отопления (см. пример на рисунке сверху).

Таблица подбора

Газовый напольный конденсационный котел поставляется с заводаизготовителя в 3-х вариантах исполнения:

- Стандартный котел со встроенным менеджером котла (контроллером) КМ628
- Котел с погодозависимым устройством регулирования E8 для управления 2-мя контурами отопления
- Котел с менеджером управления каскадом ККМ8 для управления до 8-ми котлов, вкл. погодозависимое управление двумя контурами отопления

Наряду с этими вариантами, специально для котла R600 разработаны и поставляются комплекты принадлежностей, которые позволяют быстро получить комплексное решение.


Выбор системы

С помощью готовых комплектов принадлежностей для котла R600 очень просто реализовать комплексные решения для систем отопления. Комбинация различных комплектов принадлежностей позволяет использовать их в различных системах. Комплекты принадлежностей поставляются предварительно смонтированными, поэтому они очень быстро и просто подключаются на месте.

		№ арт.						
Поз.	Опция:	R601	R602	R603	R604	R605	R606	R607
Α	2 реле макс. давления воды + 1 STB		12082892 12083563					
В	1 реле макс. давления газа				1208290	3		
С	1 STB*		120829	914		1208	3574	
D	1 устройство контроля герметичности газового клапана**	х			1208	32925		
E	Байпас (насос + комплект подключения)	1208	2936	12082947	1208	8238	120	082958
F	1 комплект подключения внешнего газового клапана / комнатного вентилятора				1208296	9		
G	1 пластинчатый теплообменник+ комплект подключения (R601-R603 = Δ T10K, R604-R607 = Δ T15K)	120829 80	12	082991	1208	33002	120	088249
	1 пластинчатый теплообменник + комплект подключения (∆Т20К)		12082980		1208	3002	120	083013
Н	1 гидравлический разделитель + комплект подключения (R601-R603 = Δ T10K, R604-R607 = Δ T15K)		12083024		12083035			
	1 гидравлический разделитель для 2-х котлов (∆Т15К)		12083046		1208	12083057		
l	1 устройство регулирования ВМ8 + комплект подключения				1208306	8		
K	1 устройство регулирования E8 + спец. корпус крепления на стене + комплект подключения + датчики				1208307	9		
L	3-х ступенчатый насос + комплект подключения (R601-604 = 230V, R605-607 = 400V)	1208	3090	12083101	12083585	1208	3112	12083123
М	Модулируемый насос + комплект подключения (230 В)	1208	3134	12083145	12083596	12083156	120	083167
N	Предохранит. клапан 3 бар (сертифиц. TÜV) + манометр + клапан удаления воздуха		120831	78		1208	3189	
0	Предохранит. клапан 4 бар (сертифиц. TÜV) + манометр + клапан удаления воздуха		12083200 120832		3211			
Р	Предохранит. клапан 5 бар (сертифиц. TÜV) + манометр + клапан удаления воздуха		12083222		12083233			
Q	Предохранит. клапан 6 бар (сертифиц. TÜV) + манометр + клапан удаления воздуха		12083244		12083255			
R	Газовый фильтр + комплект подключения	1208	6104		12086115		120	086126
S	LOGON B							

^{*} не комбинируется с комплектом принадлежностей А ** только в комбинации с комплектом принадлежностей F

Комплекты принадлежностей

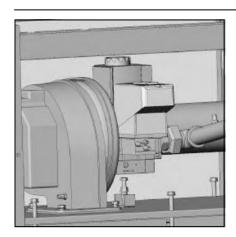
Комплект принадлежностей А: 2 реле макс. давления воды 1 защитный ограничитель температуры (STB)

Комплект включает подключение, которое может быть смонтировано на подающей линии котла. Для гибкого монтажа поставляется отвод 90°, чтобы подключение могло быть выполнено как прямо, так и вправо/влево. (см. раздел "Варианты подключения").

На подключении предварительно смонтированы следующие компоненты:

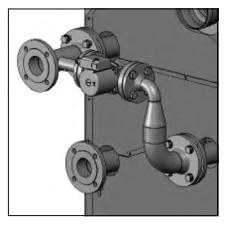
- 2 реле макс. давления воды
- 1 манометр
- 1 STB

На всех компонентах выполнен электромонтаж, и они могут напрямую подключаться к клеммам подключения в котле. Для дополнительной информации см. электрическую схему котла.

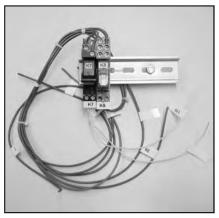

Комплект принадлежностей В: Реле макс. давления газа

Комплект включает реле давления газа, которое может быть смонтировано непосредственно на газопроводе в котле. На реле макс. давления газа выполнен электромонтаж, и оно может напрямую подключаться к клеммам подключения в котле. Для дополнительной информации см. электрическую схему котла.

Комплект принадлежностей С: Защитный ограничитель температуры (STB)

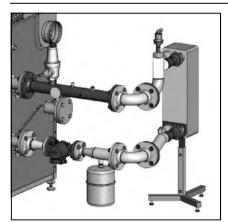

Комплект включает подключение, которое может быть смонтировано на подающей линии котла. Для гибкого монтажа поставляется отвод 90°, для того, чтобы подключение могло быть выполнено как прямо, так и вправо/влево.

На трубе подключения предварительно смонтирован защитный ограничитель температуры (STB). На STB выполнен электромонтаж, и он может напрямую подключаться к клеммам котла. Для дополнительной информации см. электрическую схему котла.


Комплект принадлежностей D: Устройство контроля герметичности газового клапана Комплект включает устройство

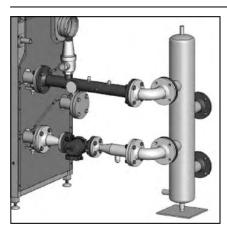
Комплект включает устройство контроля герметичности газового клапана, который может быть смонтирован непосредственно на газовом клапане в котле. На приборе контроля герметичности газового клапана выполнен электромонтаж, и он может напрямую подключаться к клеммам подключения в котле. Для дополнительной информации см. электрическую схему котла.

Комплект принадлежностей E: Байпас


Комплект включает насос байпаса и материалы для подключения. Комплект подключается между подающей и 2-ой обратной линией котла. На насосе байпаса выполнен электромонтаж, и он может напрямую подключаться к клеммам подключения в котле. Для дополнительной информации см. электрическую схему котла.

Комплект принадлежностей F: Подключение внешнего газового клапана / комнатный вентилятор

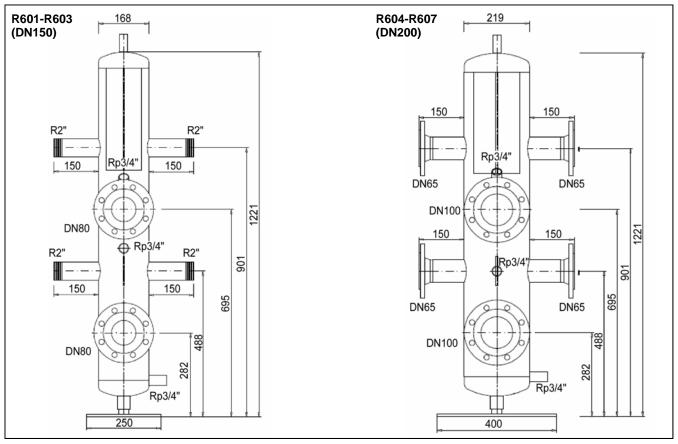
Комплект включает предварительную разводку кабелей для подключения внешнего газового клапана и/или комнатного вентилятора. Блок может быть смонтирован в электрическом блоке котла и подключен к клеммам подключения.


Комплекты принадлежностей

	Вторичный контур отопления Пластинчатые теплообменники					
Тип	ΔT=10K		ΔT=15	ΔT=15K		K
	[м ³ /час]	[кПа]	[м ³ /час]	[кПа]	[м ³ /час]	[кПа]
R601	12.2	30.4	-	-	6.1	8.1
R602	16.2	28.8	-	-	8.1	14.0
R603	20.4	44.0	-	-	10.2	21.5
R604	-	-	16.3	28.8	12.2	16.6
R605	-	-	21.7	48.7	16.3	28.9
R606	-	-	27.2	15.6	20.4	14.3
R607	-	-	30.8	19.7	23.1	18.0

Комплект принадлежностей G: пластинчатый теплообменник + комплект подключения

Комплект включает пластинчатый теплообменник, материалы для подключения, автоматический воздушник и расширительный бак. Для гибкого монтажа поставляются 2 отвода 90°, чтобы подключение могло быть выполнено как прямо, так вправо/влево. (см. раздел "Варианты подключения").


Комплект принадлежностей Н: Гидравлический разделитель + комплект подключения

Гидравлический разделитель для одного котла

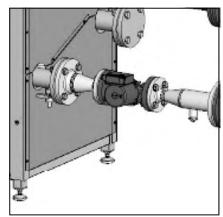
Комплект включает гидравлический разделитель, материалы для подключения и автоматический воздушник. Для гибкого монтажа поставляются 2 отвода 90°, чтобы подключение могло быть выполнено как прямо, так и вправо/влево. (см. раздел "Варианты подключения").

Гидравлический разделитель для двух котлов

Комплект включает предварительно смонтированный гидравлический разделитель, автоматический воздушник, погружную гильзу (для датчика температуры в общей подающей линии (за стрелкой)) и кран КFE для удаления шлама. Для стрелки данного типа не поставляются материалы для монтажа, поскольку варианты подключения каскадной системы могут быть различными. Подключения должны быть выполнены на месте монтажа.

Комплекты принадлежностей

Комплект принадлежностей I: Устройство регулирования ВМ8

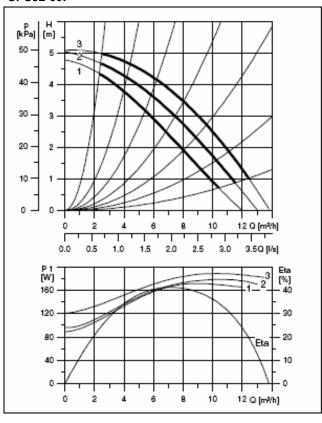

Комплект включает погодозависимое устройство регулирования ВМ8, материалы для монтажа, датчик наружной температуры и датчик температуры бойлера с погружной гильзой. ВМ8 может быть установлен в панель управления котла и подключен напрямую к клеммам подключения в котле.

Датчики температуры подключаются напрямую к клеммам в котле.

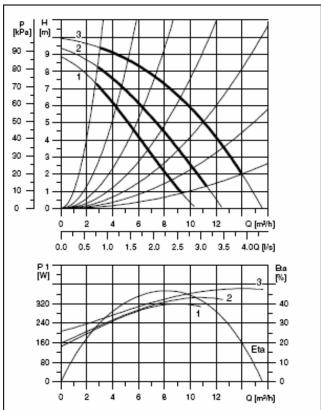
Комплект принадлежностей К: Е8 устройство регулирования (с расширенными возможностями)

Комплект включает погодозависимое устройство регулирования Е8 в специальном корпусе для крепления на стене, датчик наружной температуры, 2 датчика температуры в подающей линии контура отопления и датчик температуры бойлера с погружной гильзой. Это устройство регулирования может использоваться для управления дополнительными контурами отопления, и подключаться к клеммам котла, если в системе уже используются Е8 или ККМ8. Таким образом, возможно управление до 15-ти отопительных контуров.

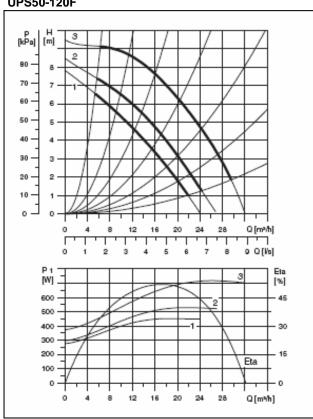
Комплект принадлежностей L: 3-х ступенчатый насос

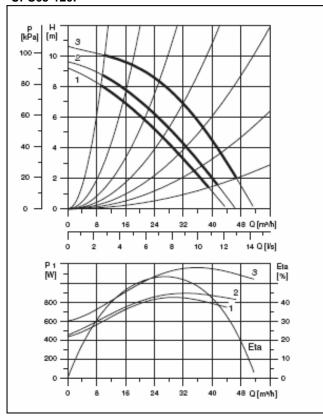

Комплект включает 3-х ступенчатый котловой насос, материалы для подключения, а также предусматривает возможность подключения расширительного бака. В следующей таблице даны характеристики котла по воде, а также характеристики насоса.

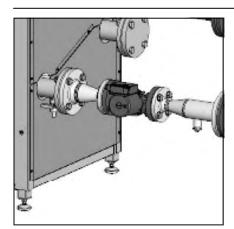
На насосе выполнен электромонтаж, и он может напрямую подключаться к клеммам в котле. Для дополнительной информации см. электрическую схему котла.


Тип котла	ΔT 20	K			Характеристики насосов			
KOIJIa	Ном. расход воды через котел Q _{ном}	Сопротив- ление котла	Тип насоса Grundfos	Положение переключа- теля насоса	Напор насоса при Q _{ном}	Остаточный напор насоса при Q _{ном}	Напряжение	Потребл. мощность макс/мин
	м³/час	кПа			кПа	кПа	В	Вт
R601	6.1	10	UPS32-60F	1	28	18	230	170/90
R602	8.1	18	UPS32-60F	3	34	16	230	190/120
R603	10.2	28	UPS32-120F	3	56	28	230	380/210
R604	12.2	15	UPS32-120F	3	39	24	230	380/210
R605	16.3	27	UPS50-120F	2	45	18	400	530/300
R606	20.4	42	UPS50-120F	3	58	16	400	720/380
R607	23.1	55	UPS65-120F	3	86	31	400	1150/600

Комплекты принадлежностей

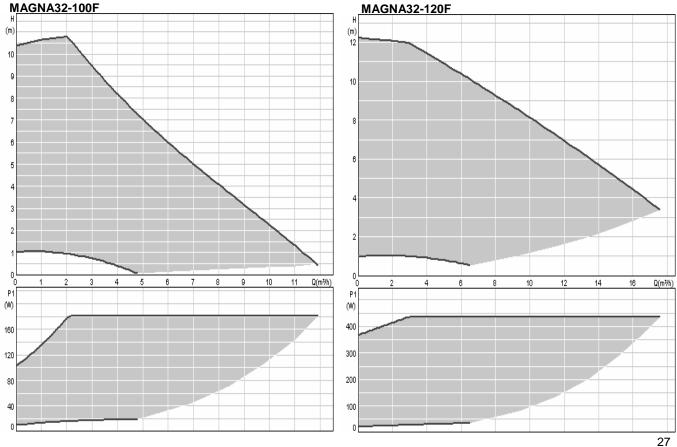

UPS32-60F


UPS32-120F


UPS50-120F

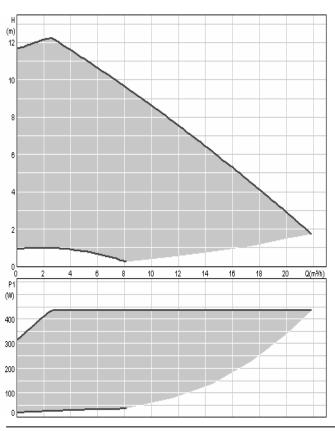
UPS65-120F

Комплекты принадлежностей

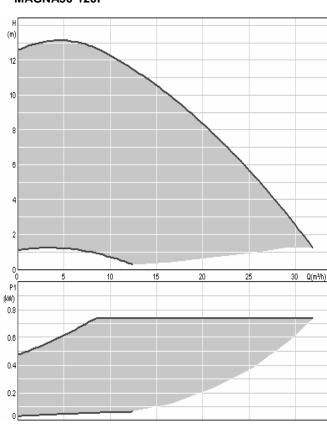


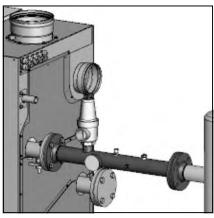
Комплект принадлежностей М: Модулируемый насос

Комплект включает модулируемый котловой насос, материалы для подключения, а также предусматривает возможность подключения расширительного бака. В следующей таблице даны характеристики котла по воде, а также характеристики насоса.


На насосе байпаса выполнен электромонтаж, и он может напрямую подключаться к клеммам подключения в котле. Для дополнительной информации см. электрическую схему котла.

Тип	ΔT 2	ΔТ 20 К Характо		Характеристики			
котла	Ном. расход воды через котел Q _{ном}	Сопротив- ление котла	Тип насоса Grundfos	Напор насоса при Q _{ном}	Остаточный напор насоса при Q _{ном}	Напряжение	Потребл. мощность макс/мин
	м ³ /час	кПа		кПа	кПа	В	Вт
R601	6.1	10	MAGNA 32-100F	58	48	230	180/10
R602	8.1	18	MAGNA 32-100F	40	22	230	180/10
R603	10.2	28	MAGNA 32-120F	78	50	230	435/25
R604	12.2	15	MAGNA 32-120F	68	53	230	435/25
R605	16.3	27	MAGNA 40-120F	50	23	230	450/25
R606	20.4	42	MAGNA 50-120F	82	40	230	800/35
R607	23.1	55	MAGNA 50-120F	68	13	230	800/35




Комплекты принадлежностей

MAGNA40-100F

MAGNA50-120F

Комплект принадлежностей 15-N/O/P/Q: Предохранительный клапан (3-4-5-6 бар) сертифицированный TÜV + манометр + клапан удаления воздуха

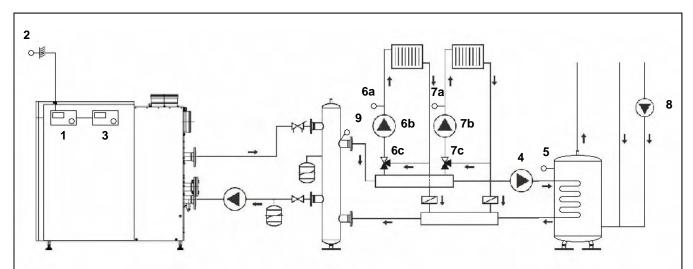
Комплект включает подключение, которое может быть смонтировано на подающей линии котла. Для гибкого монтажа поставляется отвод 90°, чтобы подключение могло быть выполнено как прямо, так и вправо/влево (см. раздел "Варианты подключения").

На подключении предварительно смонтированы следующие компоненты:

- предохранительный клапан (по заказу 3-4-5-6 бар) сертифицированный TÜV
- 1х манометр
- 1х воздушник

Кроме того, предусмотрена возможность подключения комплекта принадлежностей 1 (для использования в комбинации обоих комплектов).

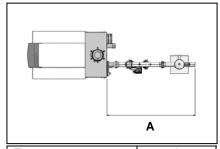
Комплект принадлежностей R: Газовый фильтр

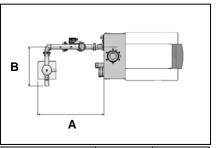

Комплект включает газовый фильтр, который может быть смонтирован непосредственно в газопроводе котла.

Комплекты принадлежностей

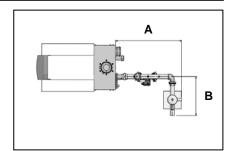
Комплект принадлежностей S: Устройство регулирования LOGON B

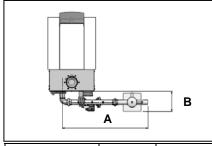
Устройство регулирования с расширенными возможностями управления отопительными контурами и приготовлением горячей воды. Устройство LOGON В сочетает погодозависимое регулирование с управлением 2-мя отопительными контурами, а также управление насосом рециркуляции ГВС.

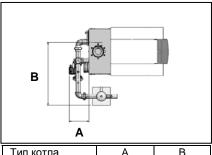

Комплект включает погодозависимое устройство регулирования LOGON B, материалы для встраивания в котел R600 (стандартный вариант исполнения) и датчик наружной температуры.

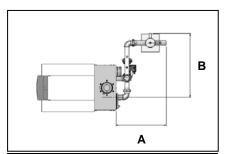

- 1 КМ628 (интегрирован в котел)
- 2 Датчик наружной температуры, подключить на штекер АF, клеммы М-В9
- 3 LOGON В (интегрирован в котел)
- 4 Насос загрузки бойлера, подключить на штекер BW, клеммы N-PE-Q3
- 5 Датчик температуры ГВС, подключить на штекер BWF, клеммы M-B3
- 6 Контур отопления 1
 - а Датчик температуры в подающей линии, подключить на штекер VF1, клеммы M-B1
 - b Насос контура отопления, подключить на штекер НК1, клеммы N-PE-Q2
 - с 3-х ходовой клапан, подключить на штекер MISCHER1, клеммы Y1-N-PE-Y2
- 7 Контур отопления 2
 - а Датчик температуры в подающей линии, подключить на штекер VF2, клеммы M-B12
 - b Насос контура отопления, подключить на штекер НК2, Клеммы N-PE-Q6
 - с 3-х ходовой клапан, подключить на штекер MISCHER2, клеммы Y5-N-PE-Y6
- 8 Насос рециркуляции ГВС, подключить на штекер MFA3, клеммы N-PE-QX3
- 9 Датчик температуры в общей подающей линии (за стрелкой), подключить на штекер MFF2, клеммы M-BX2

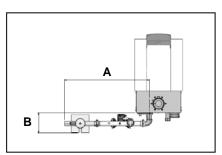
Варианты подключения

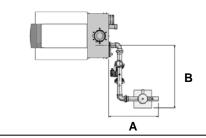

Гидравлический разделитель

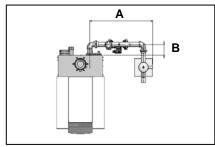

Тип котла	Α
	MM
R601-R603	1233
R604-R605	1299
R606-R607	1299


Тип котла	Α	В
	MM	MM
R601-R603	923	545
R604-R605	1096	611
R606-R607	1096	611

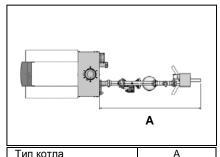

Тип котла	Α	В
	MM	MM
R601-R603	928	545
R604-R605	1119	611
R606-R607	1119	611

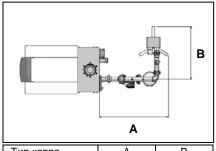

Тип котла	Α	В
	MM	MM
R601-R603	1191	277
R604-R605	1320	388
R606-R607	1320	388


Тип котла	Α	В
	MM	MM
R601-R603	277	881
R604-R605	388	1119
R606-R607	388	1119

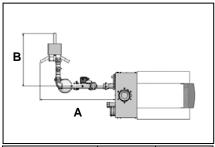

Тип котла	Α	В
	ММ	MM
R601-R603	697	886
R604-R605	873	1138
R606-R607	873	1138

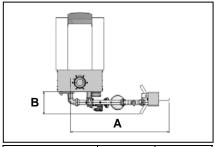
Тип котла	Α	В
	MM	MM
R601-R603	1191	282
R604-R605	1320	406
R606-R607	1320	406

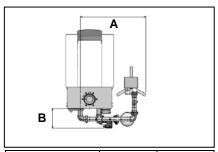

Тип котла	Α	В
	MM	MM
R601-R603	697	881
R604-R605	873	1119
R606-R607	873	1119

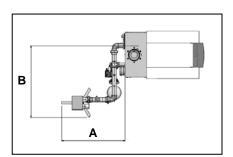

Тип котла	Α	В
	MM	MM
R601-R603	886	152
R604-R605	1119	262
R606-R607	1119	262

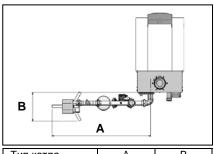
Варианты подключения

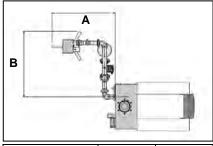

Пластинчатый теплообменник

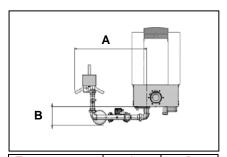

Тип котла	Α
	MM
R601-R603	1421
R604-R605	1667
R606-R607	1542


Тип котла	Α	В
	MM	MM
R601-R603	960	735
R604-R605	1133	981
R606-R607	1073	856


Тип котла	Α	В
	MM	MM
R601-R603	1047	735
R604-R605	1222	981
R606-R607	1278	857


Тип котла	Α	В
	MM	MM
R601-R603	1379	314
R604-R605	1690	424
R606-R607	1566	362


Тип котла	Α	В
	MM	MM
R601-R603	918	278
R604-R605	1156	388
R606-R607	1094	388


Тип котла	Α	В
	MM	MM
R601-R603	887	1005
R604-R605	1243	1243
R606-R607	1119	1299

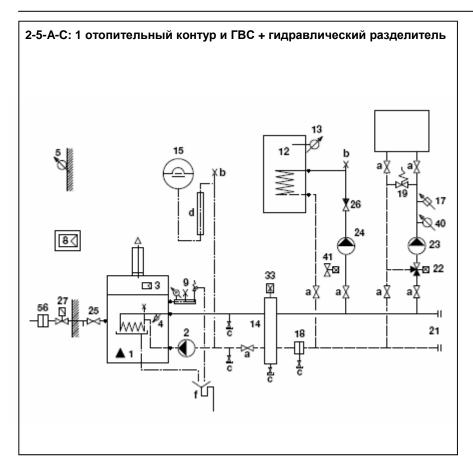
Тип котла	Α	В
	MM	MM
R601-R603	1379	401
R604-R605	1690	511
R606-R607	1566	567



Тип котла	Α	В
	MM	MM
R601-R603	887	918
R604-R605	1243	1156
R606-R607	1119	1094

Тип котла	Α	В
	MM	MM
R601-R603	1005	252
R604-R605	1243	362
R606-R607	1299	361

2-А-С: 1 отопительный контур + гидравлический разделитель

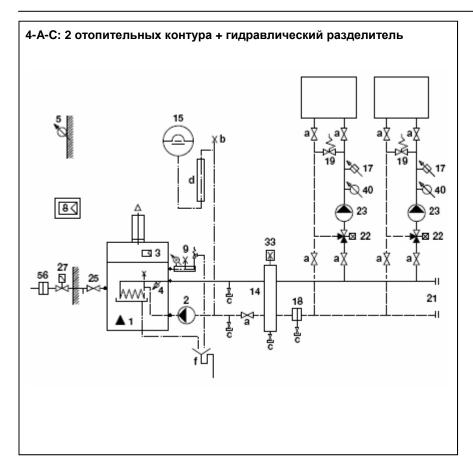


Описание

- R600 с гидравлическим разделителем
- погодозависимое устройство регулирования (E8 или LOGON B)
- 1 контур со смесителем

- Поставляются комплекты принадлежностей с гидравлическим разделителем для области применения ΔT=10-20K (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔТ=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20K, то тогда температура в подающей \$ линии за стрелкой будет ниже, чем температура в подающей линии котлового контура.
 На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

2-5-А-С: 1 отопительный контур и ГВС + гидравлический разделитель

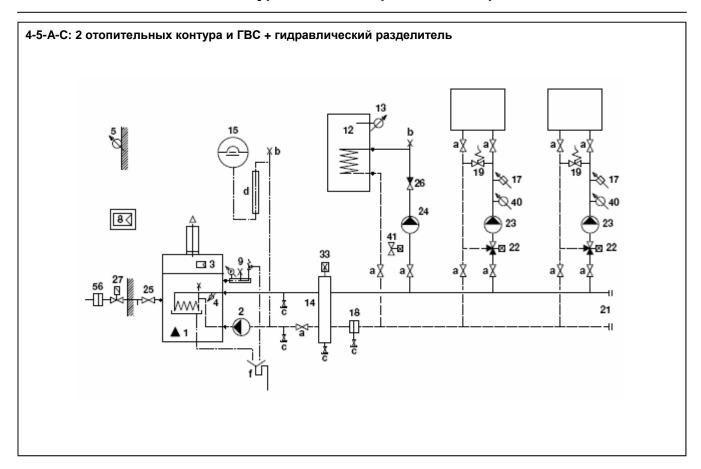


Описание

- R600 с гидравлическим разделителем
- погодозависимое устройство регулирования (E8 или LOGON B)
- 1 контур со смесителем
- ΓΒC

- Поставляются комплекты принадлежностей с гидравлическим разделителем для области применения ΔT=10-20K (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔT=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20K, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

4-А-С: 2 отопительных контура + гидравлический разделитель

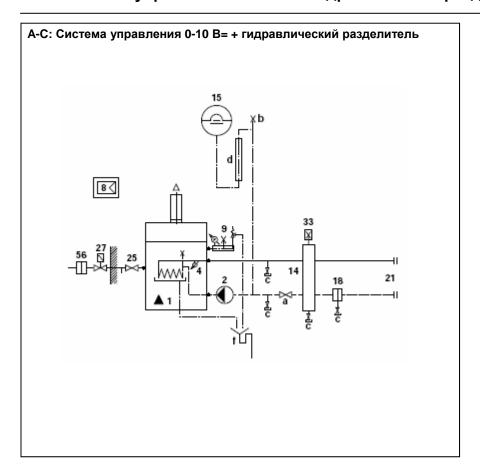


Описание

- R600 с гидравлическим разделителем
- погодозависимое устройство регулирования (E8 или LOGON B)
- 2 контура со смесителем

- Поставляются комплекты принадлежностей с гидравлическим разделителем для области применения ΔT=10-20K (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔT=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20К, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

4-5-А-С: 2 отопительных контура и ГВС + гидравлический разделитель

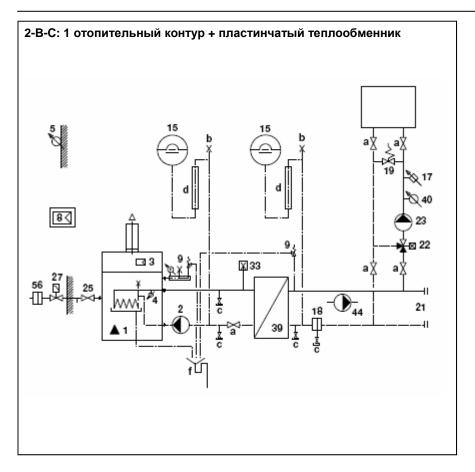


Описание

- R600 с гидравлическим разделителем
- погодозависимое устройство регулирования (E8 или LOGON B)
- 2 контура со смесителем
- ΓΒC

- Поставляются комплекты принадлежностей с гидравлическим разделителем для области применения ΔT=10-20K (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔT=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20К, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

А-С: Система управления 0-10 В= + гидравлический разделитель

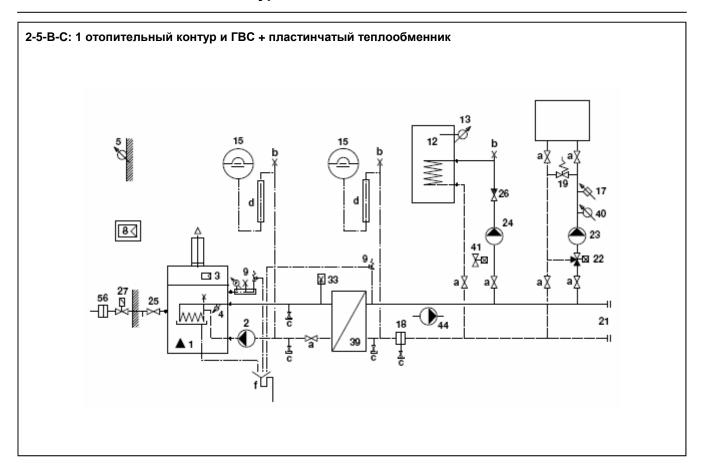


Описание

• R600 с гидравлическим разделителем

- Первичный контур должен быть рассчитан на ΔТ=20К, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20К, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

2-В-С: 1 отопительный контур + пластинчатый теплообменник

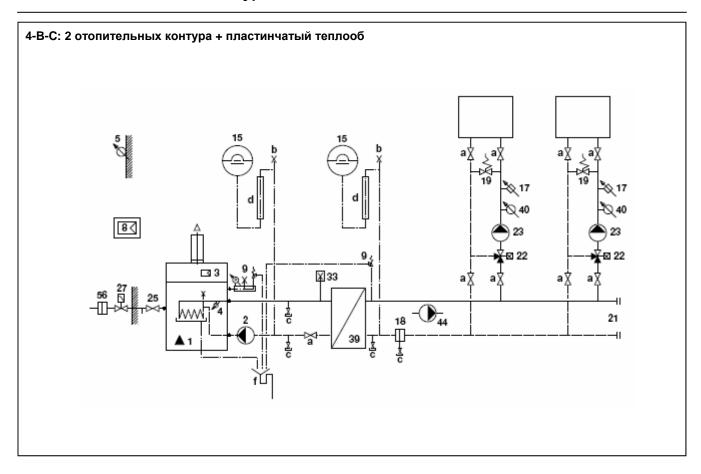


Описание

- R600 с пластинчатым теплообменником
- погодозависимое устройство регулирования (E8 или LOGON B)
- 1 контур со смесителем

- Поставляются комплекты принадлежностей с пластинчатым теплообменником для области применения ΔT=10-20K (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔТ=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20К, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

2-5-В-С: 1 отопительный контур и ГВС + пластинчатый теплообменник

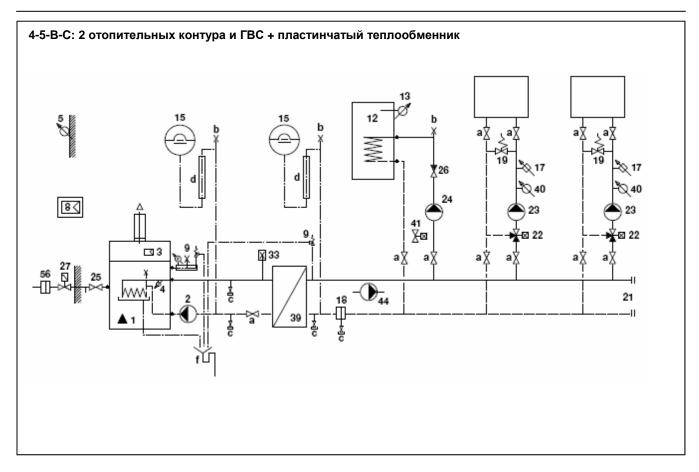


Описание

- R600 с пластинчатым теплообменником
- погодозависимое устройство регулирования (E8 или LOGON B)
- 1 контур со смесителем
- ΓΒC

- Поставляются комплекты принадлежностей с пластинчатым теплообменником для области применения ΔT=10-20K (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔТ=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20K, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

4-В-С: 2 отопительных контура + пластинчатый теплообменник

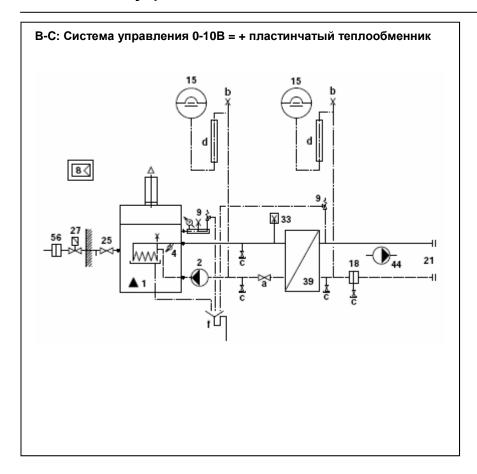


Описание

- R600 с пластинчатым теплообменником
- погодозависимое устройство регулирования (E8 или LOGON B)
- 2 контура со смесителем

- Поставляются комплекты принадлежностей с пластинчатым теплообменником для области применения ΔT=10-20K (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔТ=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20K, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

4-5-В-С: 2 отопительных контура и ГВС + пластинчатый теплообменник

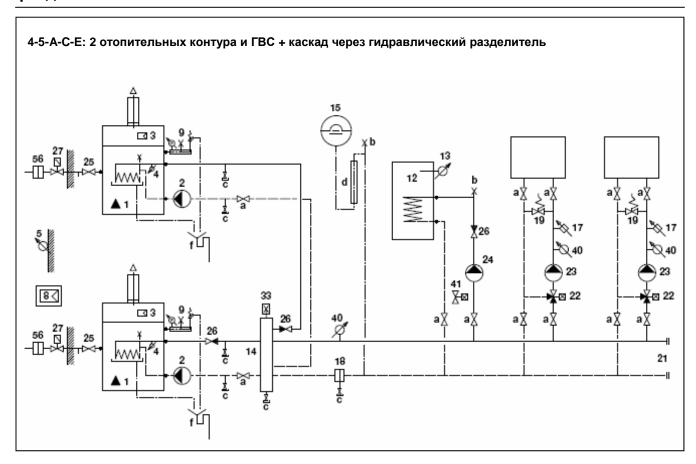


Описание

- R600 с пластинчатым теплообменником
- погодозависимое устройство регулирования (E8 или LOGON B)
- 2 контура со смесителем
- ΓΒC

- Первичный контур должен быть рассчитан на ΔТ=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20К, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

В-С: Система управления 0-10В= + пластинчатый теплообменник

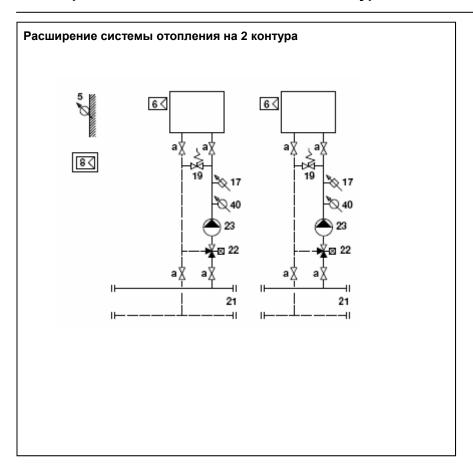


Описание

• R600 с пластинчатым теплообменником

- Первичный контур должен быть рассчитан на ΔT=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20К, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

4-5-A-C-E: 2 отопительных контура и ГВС + каскад через гидравлический разделитель



Описание

- 2 котла R600 с гидравлическим разделителем
- управление каскадом + погодозависимое регулирование (ККМ8)
- 2 контура со смесителем
- ΓΒC

- Поставляются гидравлические разделители для подключения 2-х котлов для области применения ΔТ=10-20К (см. раздел "Принадлежности").
- Первичный контур должен быть рассчитан на ΔT=20K, что обеспечивает хороший режим конденсации.
- Если во вторичном контуре при расчете заложена ΔT < 20K, то тогда температура в подающей линии за стрелкой будет ниже, чем температура в подающей линии котлового контура. На это следует обратить внимание при выполнении расчетов и проекта.
- Гидравлический разделитель должен устанавливаться как можно ближе к котлу, чтобы не оказывалось влияние на качество регулирования.
- При проектировании крышной котельной обратить внимание на то, чтобы котел не являлся самой высокой точкой гидравлической системы.

Расширение системы отопления на 2 контура

Описание

- Погодозависимое устройство регулирования в специальном корпусе для монтажа на стене (Е8 или LOGON B)
- расширение функций + 2 смесительных контура

- Устройства, расширяющее функции регулирования, всегда необходимо использовать в комбинации с базовыми устройствами регулирования (E8/KKM8/LOGON B).
- При расширении функций регулирования можно дополнительно управлять 2-мя отопительными контурами.
- Возможно расширение системы и управление до 15 контуров.

Нормы

Германия:

- DIN EN 483
- DIN EN 677
- DIN EN 13384-1
- DIN EN 13384-2
- DIN EN 12828
- DIN EN 18160-1
- DIN EN 18160-5
- DIN VDE 0100
- DIN VDE 0116
- DWGW Рабочий стандарт G260/1-2
- Предписания по топочным устройствам (FeuVO) соответствующих федеральных земель Федеральные предписания по строительству LBO
- MuFeuVO
- Технические правила по подключению газа DVGW-TRGI 86/96
- VDI 2035

Нидерланды:

- NEN 2757-2 (2006)
- NEN 3028 (2004)
- NEN 1010
- Bouwbesluit (2006)
- SCIOS (voor onderhoud)

Австрия:

- ÖVGW TR газ (G1)
- ÖVGW TR сжиженный газ (G2)
- ÖNORM Н 1552
 конденсационные отопительные котлы указания по проектированию
- ÖNORM M 7443 газовые отопительные котлы с атм. горелками часть 1, 3, 5, 7
- ÖNORM M 7457 Газовые котлы с горелкой с предварительным смешиванием
- ÖNORM M 5195 Стандарт по сетевой воде
- ÖVGW ДирективыG1, G2, G4, G41 (Котел R600 разрешен к применению пар. 15а Предписаний по строительству и согласно VO [FAV 97])

Швейцария:

- PROCAL
- SVGW G1/G2
- EKAS 1942
- BAFU
- VKF Водоподготовка согласно директив
- SWKI № 97-1

Italien:

Sicurezza degli impianti

- -Legge 5 marzo 1990 n. 46
- D.P.R. 6/12/91 n. 447
- D.M. 20/2/92
- D.M. 1 dicembre 1975
- -I.S.P.E.S.L. (ex A.N.C.C.)
- Norma UNI 8065
- Norma Uni 9615

Sicurezza imiego gas

- Norma prEN 656
- -Legge 6 dicembre 1971 n.1083
- D.M. 23/11/72
- Norma UNI 7129-72
- Norma UNI-CIG 7131-72

Risparmio energetico

- -Legge 9 gennaio 1991 n.10
- D.P.R. 26-08-93 n.412
- D.P.R. n.551 del 21 dicembre 1999

Sicurezza antincendio

- Decreto del ministero dell'interno 16 febbraio 1982
- Decreto del ministero dell'interno 12 aprile 1996
- -Norma CEI EN 60079-10
- Norma CEI 64-8 (giugno 1987)

Provvedimenti contro l'inquinamento atmosferico

-D.P.R. 24/5 1988 n.203

Сервис:			

Rendamax by

Hamstraat 76 6465 AG Kerkrade Parkstad nr. 5007

P.O. Box 1035 6460 BA Kerkrade The Netherlands

Tel. (+31) 45 5669 900 Fax (+31) 45 5669 910