
Руководство монтаж-

NIBE™ F1145

Геотермальный тепловой насос

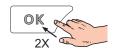
Краткое руководство

Навигация

Кнопка "Ок" (подтвердить/выбрать)

Кнопка "Назад"

(назад/отменить/выход) Рукоятка управления


(переместить/увеличить/уменьшить)

Подробное описание функций кнопок находится на стр. 33.

Инструкции по прокрутке меню и различным установкам описаны на стр. 35.

Установка температуры в помещении

Включение режима установки внутрикомнатной температуры осуществляется в режиме запуска в главном меню двойным нажатием кнопки "ОК". Подробная информация об уставках находится на стр. 37.

Увеличение объема горячей воды

Для временного увеличения количества горячей воды (если нагреватель горячей воды установлен на F1145) сначала поверните рукоятку управления, чтобы отметить меню 2 (капля воды), а затем дважды нажмите кнопку "ОК". Подробная информация об уставках находится на стр. 45.

В случае сбоя климат-контроля

При любом сбое климат-контроля можно принять некоторые меры до обращения в организацию, осуществившую монтаж вашей установки. См. стр. 64 с инструкциями.

Содержание

1	Важная информация	_ 2
	Информация по технике безопасности	2
2	Доставка и обращение	_ 5
	Транспортировка	5
	Сборка	5
	Поставляемые компоненты	6
	Снятие крышек	6
3	Конструкция теплового насоса	_ 7
	Общие сведения	7
	Электрошкафы	8
	Секция охлаждения	_ 10
4	Соединения трубопровода	11
	Общие сведения	_ 11
	Размеры и трубные соединения	_ 12
	Сторона рассола	_ 12
	Сторона теплоносителя	_ 13
	Нагреватель горячей воды	_ 14
	Варианты стыковки	_ 14
5	Электрические соединения	17
	Общие сведения	_ 17
	Соединения	_ 19
	Уставки	_ 22
	Дополнительные соединения	_ 24
	Соединение дополнительного оборудования	_ 27
6		
6	Ввод в эксплуатацию и наладка	
	Подготовка	_ 28

	Заполнение и вентиляция	28
	Руководство по началу работы	
	Последующая регулировка и вентиля- ция	30
7	Управление - введение	33
	Дисплей	33
	Система меню	34
8	Управление - меню	37
	Меню 1 - ТЕМПЕРАТУРА В ПОМЕЩЕ- НИИ	37
	Меню 2 - ГОРЯЧАЯ ВОДА	
	Меню 3 - ИНФО	
	Меню 4 – ТЕПЛОВОЙ НАСОС	48
	Меню 5 - СЕРВИС	52
9	Обслуживание	58
	Действия по обслуживанию	58
10	Сбой климат-контроля	_ 64
	Меню информации	64
	Управление аварийной сигнализацией	64
	Поиск и устранение неисправностей	64
11	Аксессуары	66
12	? Технические данные	68
	Габариты и расположение	68
	Технические характеристики	69
	Огларланиа	75

1 Важная информация

Информация по технике безопасности

В данном руководстве описываются процедуры установки и обслуживания, осуществляемые специалистами.

Это устройство запрещается использовать взрослым и детям с ограниченными физическими, сенсорными или умственными способностями, либо недостаточным опытом и знаниями, за исключением случаев, в которых они находятся под контролем или получили инструкции относительно использования устройства от лица, ответственного за их безопасность.

За детьми нужно следить, чтобы убедиться, что они не играют с устройством.

Права на изменения защищены.

©NIBE 2012.

Символы

ПРИМЕЧАНИЕ

Этот символ обозначает опасность для машины или человека.

ВНИМАНИЕ!

Этот символ обозначает важную информацию о правилах, которые следует соблюдать во время установки.

COBET!

Этот символ обозначает советы по упрощению эксплуатации изделия.

Маркировка


F1145 имеет маркировку СЕ и соответствует степени защиты IP21.

Маркировка СЕ означает, что компания NIBE гарантирует соответствие изделия всем нормативным положениям соответствующих директив ЕС. Маркировка СЕ обязательна для большинства изделий, продаваемых в ЕС, независимо от места их изготовления.

Степень защиты IP21 означает, что до изделия можно дотрагиваться рукой, что предметы с диаметром более или равным 12,5 мм не могут проникнуть внутрь изделия и повредить его, и что изделие защищено от вертикально падающих капель.

Серийный номер

Серийный номер находится в нижней правой части передней крышки и в меню информации (меню3.1).

ВНИМАНИЕ!

Сообщая о неисправности, всегда указывайте серийный номер изделия (14 цифр).

Информация по отдельным странам

Руководство монтажника

Данное руководство монтажника должно оставаться у клиента.

Контроль в процессе монтажа оборудования

Действующие нормы требуют проведения проверки отопительной установки перед вводом в эксплуатацию. Проверка должна выполняться лицом, обладающим соответствующей квалификацией. Заполните информационную страницу о данных установки в руководстве пользователя.

/	Описание	Примечания	Подпись	Дата
Pac	сол (стр. 12)			
	Система промыта			
	Система проветрена			
	Антифриз			
	Уравнительный сосуд/расширительный бак			
	Фильтр твердых частиц			
	Предохранительный клапан			
	Запорные клапаны			
	Настройка циркуляционного насоса			
Теп	лоноситель (стр. 13)			
	Система промыта			
	Система проветрена			
	Расширительный бак			
	Фильтр твердых частиц			
	Предохранительный клапан			
	Запорные клапаны			
	Настройка циркуляционного насоса			
Элє	ктричество (стр. 17)			
	Предохранители теплового насоса			
	Предохранители здания			
	Наружный датчик			
	Комнатный датчик			
	Датчик тока			
	Прерыватель-предохранитель			
	Прерыватель цепи заземления			
	Установка термостата аварийного режима			
Раз	HOE			
	Гарантия предоставлена			

Контактная информация

AT KNV Energietechnik GmbH, Gahberggasse 11, 4861 Schörfling

Tel: +43 (0)7662 8963-0 Fax: +43 (0)7662 8963-44 E-mail: mail@knv.at www.knv.at

CH NIBE Wärmetechnik AG, Winterthurerstrasse 710, CH-8247 Flurlingen

Tel: (52) 647 00 30 Fax: (52) 647 00 31 E-mail: info@nibe.ch www.nibe.ch

CZ Druzstevni zavody Drazice s.r.o, Drazice 69, CZ - 294 71 Benatky nad Jizerou

Tel: +420 326 373 801 Fax: +420 326 373 803 E-mail: nibe@nibe.cz www.nibe.cz

DE NIBE Systemtechnik GmbH, Am Reiherpfahl 3, 29223 Celle

Tel: 05141/7546-0 Fax: 05141/7546-99 E-mail: info@nibe.de www.nibe.de

DK Vølund Varmeteknik A/S, Member of the Nibe Group, Brogårdsvej 7, 6920 Videbæk

Tel: 97 17 20 33 Fax: 97 17 29 33 E-mail: info@volundvt.dk www.volundvt.dk

FI NIBE Energy Systems OY, Juurakkotie 3, 01510 Vantaa

Puh: 09-274 697 0 Fax: 09-274 697 40 E-mail: info@nibe.fi www.nibe.fi

FR AIT France, 10 rue des Moines, 67000 Haguenau

Tel: 03 88 06 24 10 Fax: 03 88 06 90 15 E-mail: info@nibe.fr www.nibe.fr

GB NIBE Energy Systems Ltd, 3C Broom Business Park, Bridge Way, Chesterfield S41 9QG

Tel: 0845 095 1200 Fax: 0845 095 1201 E-mail: info@nibe.co.uk www.nibe.co.uk

NL NIBE Energietechniek B.V., Postbus 2, NL-4797 ZG WILLEMSTAD (NB)

Tel: 0168 477722 Fax: 0168 476998 E-mail: info@nibenl.nl www.nibenl.nl

NO ABK AS, Brobekkveien 80, 0582 Oslo, Postadresse: Postboks 64 Vollebekk, 0516 Oslo

Tel. sentralbord: +47 02320 E-mail: post@abkklima.no www.nibeenergysystems.no

PL NIBE-BIAWAR Sp. z o. o. Aleja Jana Pawła II 57, 15-703 BIAŁYSTOK

Tel: 085 662 84 90 Fax: 085 662 84 14 E-mail: sekretariat@biawar.com.pl www.biawar.com.pl

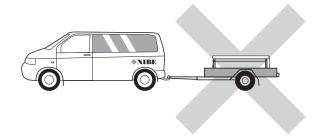
RU © "EVAN" 17, per. Boynovskiy, Nizhny Novgorod

Tel./fax +7 831 419 57 06 E-mail: info@evan.ru www.nibe-evan.ru

SE NIBE AB Sweden, Box 14, Hannabadsvägen 5, SE-285 21 Markaryd

Tel: +46-(0)433-73 000 Fax: +46-(0)433-73 190 E-mail: info@nibe.se www.nibe.se

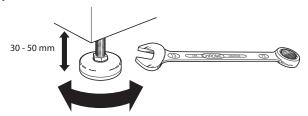
Относительно стран, не упомянутых в этом списке, свяжитесь с компанией Nibe в Швеции или см. дополнительную информацию на веб-сайте www.nibe.eu.


2 Доставка и обращение

Транспортировка

Транспортировку и хранение F1145 следует осуществлять вертикально в сухом месте. При перемещении в здание допускается наклон F1145 назад на 45°. Примечание! Возможна перетяжелённая задняя часть.

Если снять компрессорный модуль и транспортировать его вертикально, F1145 можно перевозить горизонтально задней частью вниз.

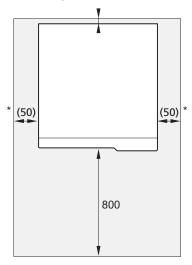

Снятие компрессорного модуля

Для упрощения транспортировки и обслуживания можно отделить тепловой насос путем извлечения модуля охлаждения из шкафа.

См. стр. 60 с инструкциями по отделению.

Сборка

 Поместите F1145 на прочное основание, способное выдержать его вес, предпочтительно на бетонном полу или фундаменте. С помощью регулируемых ножек изделия добейтесь горизонтального и устойчивого положения.



- Зона размещения F1145 должна быть оборудована напольной дренажной системой.
- Установите изделие задней частью к наружной стене, предпочтительно в комнате, где шум не имеет значения, с целью устранения проблем с шумом. Если это невозможно, избегайте установки изделия у стены, смежной со спальней или другой комнатой, где шум может стать проблемой.

- Независимо от места расположения изделия следует снабдить звуковой изоляцией комнаты, чувствительные к звукам.
- Трубы прокладываются таким образом, чтобы они не крепились к внутренним стенам, примыкающим к спальне или гостиной.

Зона установки

Оставьте пространство 800 мм спереди изделия. Для открытия боковых люков требуется свободное пространство прибл. 50 мм. Во время обслуживания не требуется открывать люки, так как все операции по обслуживанию F1145 выполняются спереди. Во избежание передачи вибрации оставьте свободное пространство между тепловым насосом и стенкой позади насоса (а также между прокладкой кабелей электропитания и трубами).

** Требуемое расстояние при обычной установке составляет 300-400 мм (со всех сторон) для подключения оборудования, т. е. уравнительного сосуда, клапанов и электрооборудования.

Поставляемые компоненты

Наружный датчик Датчик тока (не 1-Комнатный датчик фазный)

ный клапан (0,3 МПа) (3 бар)

Предохранитель- Уплотнительные кольца

Фильтр твердых частиц

Алюминиевая лента

Соединительные муфты Conex

5-10 kW

2 x (ø28 x G25)

3 x (ø22 x G20)

12-15 kW

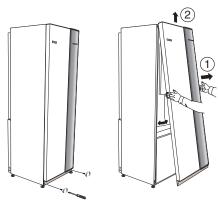
5 x (ø28 x G25)

17 kW

3 x (ø28 x G25)

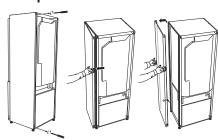
2 x (ø35 x G32)

Датчик температу- Трубы для датчиры КОВ


Изоляционная лента

Расположение

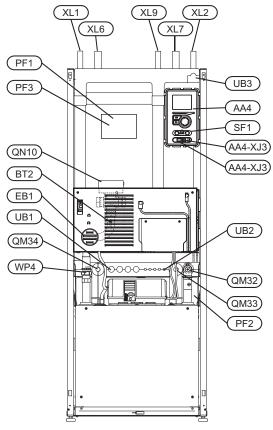
Комплект поставляемых деталей находится в упаковке в верхней части теплового насоса.


Снятие крышек

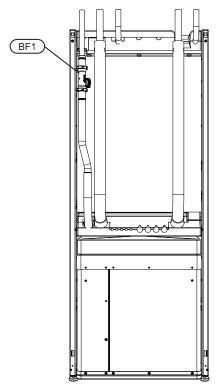
Передняя крышка

- 1. Снимите винты с нижнего края передней крышки.
- 2. Приподнимите крышку за нижнюю кромку и поднимите её вверх.

Боковые крышки



Боковые панели можно снять для облегчения установ-


- 1. Снимите винты с верхнего и нижнего краев.
- Слегка поверните крышку наружу.
- 3. Переместите крышку назад и немного в сторону.
- Потяните крышку в одну сторону.
- Потяните крышку вперед.

3 Конструкция теплового насоса

Общие сведения

Вид сзади

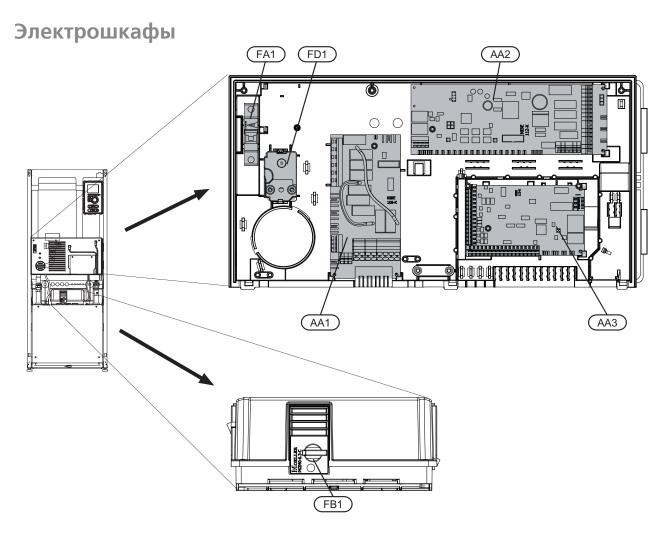
Соединения трубопровода

XL 1	Подключение, подача теплоносителя
XL 2	Подключение, возврат теплоносителя
XL 6	Подключение, вход рассола
XL 7	Подключение, подача рассола
XL 9	Подключение, нагреватель горячей воды

Компоненты системы отопления, вентиляции и кондиционирования воздуха

) -	
ля/водонагреватель	

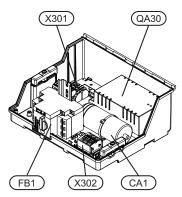
Датчики и т. д.

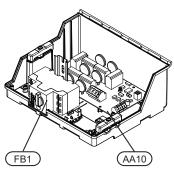

BF 1	Расходомер (только для рынков Германии,
	Швейцарии и Австрии)
BT 1	Наружный датчик
BT 2	Датчики температуры, поток теплоносителя

Электрические компоненты				
AA 4	Дисплей			
	AA4-XJ3 Разъём USB (без функции)			
	АА4-XJ4 Сервисный разъём (без функции)			
EB 1	Погружной нагреватель			
SF 1	Переключатель			

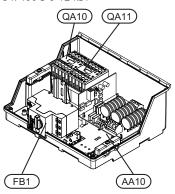
Разное

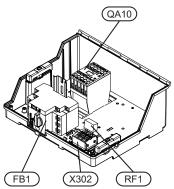
PF 1	Паспортная табличка
PF 2	Шильдик, секция охлаждения
PF 3	Табличка с серийным номером
UB 1	Уплотнение кабеля, электропитание
UB 2	Уплотнение кабеля
UB 3	Уплотнение кабеля, задняя сторона, датчик

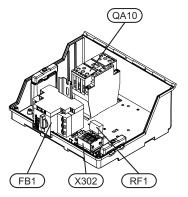

Обозначения размещения компонентов по стандарту IEC 81346-1 и 81346-2.

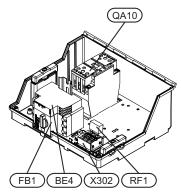

Электрические компоненты

- АА 1 Плата погружного нагревателя
- АА 2 Базовая плата
- АА 3 Печатная плата обработки и настройки входящих сигналов
- FA 1 Микровыключатель
- FB 1 Выключатель двигателя*
- FD 1 Ограничитель температуры/термостат аварийного режима
- * 1 х 230 В, 3 х 230 В 6-10 кВт, 3 х 400 В 5 кВт со вспомогательным переключателем для выключателя двигателя.


Обозначения размещения компонентов по стандарту IEC 81346-1 и 81346-2.


1 x 230 B 5-12 кВт 3 x 400 B 5 кВт


3 х 400 В 6-12 кВт


3 х 400 В 15-17 кВт

3 х 230 В 6-8 кВт

3 х 230 В 10 кВт

3 х 230 В 12-17 кВт

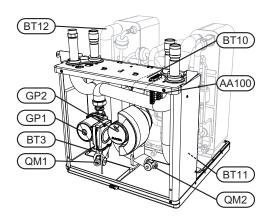
Электрические компоненты

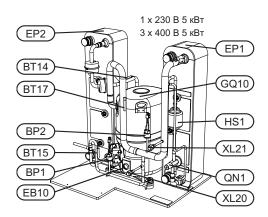
АА 10 Плата плавного пуска

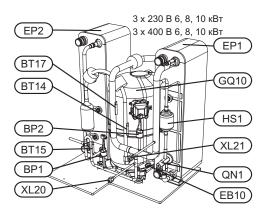
ВЕ 4 Прибор контроля порядка чередования фаз (3фазный)

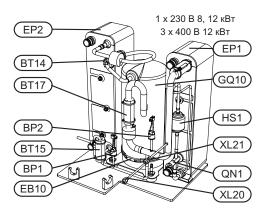
СА 1 Конденсатор

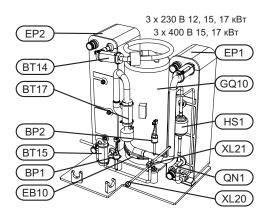
FB 1 Выключатель двигателя*
QA 10 Контактор, компрессор
QA 11 Контактор, компрессор
QA 30 Устройство плавного пуска


RF 1 Помехоподавляющий конденсатор


X 301 Клеммная колодка X 302 Клеммная колодка


* 1 х 230 В, 3 х 230 В 6-10 кВт, 3 х 400 В 5 кВт со вспомогательным переключателем для выключателя двигателя.


Обозначения размещения компонентов по стандарту IEC 81346-1 и 81346-2.


Секция охлаждения

Соединения трубопровода

XL 20 Сервисное соединение, высокое давление XL 21 Сервисное соединение, низкое давление

Компоненты системы отопления, вентиляции и кондиционирования воздуха

GP 1 Циркуляционный насос

GP 2 Насос для рассола

QM 1 Дренаж, система климат-контроля

QM 2 Дренаж, сторона рассола

Датчики и т. д.

ВР 1 Реле высокого давления

ВР 2 Реле низкого давления

ВТ 3 Датчики температуры, возврат теплоносителя

ВТ 10 Датчик температуры, рассол на входе

ВТ 11 Датчик температуры, рассол на выходе

BT 12 Датчик температуры, подводящий трубопровод конденсатора

ВТ 14 Датчик температуры, нагретый газ

BT 15 Датчик температуры, трубопровод жидкого хладагента

ВТ 17 Датчик температуры, всасываемый газ

Электрические компоненты

АА 100 Плата соединительной линии связи

ЕВ 10 Нагреватель компрессора

Компоненты охлаждения

ЕР 1 Испаритель

ЕР 2 Конденсатор

GQ 10 Компрессор

HS 1 Сухой газоочиститель

QN 1 Расширительный клапан

Обозначения размещения компонентов по стандарту IEC 81346-1 и 81346-2.

4 Соединения трубопровода

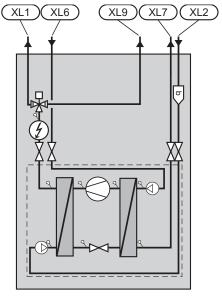
Общие сведения

Установку труб следует выполнять в соответствии с действующими нормами и директивами. F1145 может работать при температуре до 58°C в обратном трубопроводе и 70 на выходе теплового насоса (65°C только с компрессором).

Поскольку F1145 не оснащен внешними запорными клапанами, их необходимо установить для упрощения дальнейшего техобслуживания.

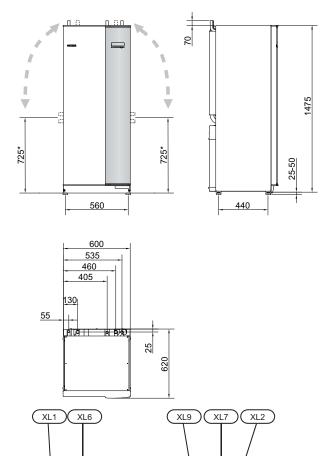
ПРИМЕЧАНИЕ

Во избежание повреждения составных частей из-за засорения мусором, перед подключением теплового насоса следует промыть сеть трубопроводов.


Основные символы

Сим-	Значение
Î	Выпускной клапан
X	Запорный клапан
X	Обратный клапан
	Трехходовой клапан
X-	Предохранительный клапан
Σŀ	Регулировочный клапан
٩	Датчик температуры
0	Уравнительный сосуд
\ominus	Расширительный бак
P	Манометр
0	Циркуляционный насос
	Фильтр твердых частиц
-	Вспомогательное реле
P	Расходомер (только для рынков Германии, Швейцарии и Австрии)
0	Компрессор
	Теплообменник

Схема системы


F1145 состоит из теплового насоса, погружного нагревателя, циркуляционных насосов и системы управления. F1145 подключается к контурам рассола и теплоносителя

В испарителе теплового насоса рассол (смесь воды с антифризом, гликолем или этанолом) передает свою энергию хладагенту, который превращается в пар и подвергается сжатию в компрессоре. Хладагент (температура которого повысилась) поступает в конденсатор, где отдает свою энергию в контур теплоносителя и, при необходимости, состыкованного водонагревателя. Если требуется больше тепла/горячей воды, чем может обеспечить компрессор, имеется встроенный погружной нагреватель.

- XL 1 Подключение, подача теплоносителя
- XL 2 Подключение, возврат теплоносителя
- XL 6 Подключение, вход рассола
- XL 7 Подключение, подача рассола
- XL 9 Подключение, нагреватель горячей воды

Размеры и трубные соединения

Размеры труб

!↓!

Подключение		5-10 кВт	12 кВт	15 кВт	17 кВт
(XL6)/(XL7) Вход/вы- ход рассола, внеш. Ø	(мм)		28		35
(XL1)/(XL2) Пода- ча/возврат теплоно- сителя, внеш. Ø	(мм)	22		28	
(XL9) Подключение, нагреватель горя- чей воды, внеш. Ø	(мм)	22		28	

1

!**↑**!

Сторона рассола

Коллектор

Тип	Тепло верхнего слоя почвы, рекомендованная длина коллектора (м)	Тепло скважин, ре- комендованная глубина бурения (м)
5 кВт	200-300	70-90
6 кВт	250-400	90-110
8 кВт	325-2x250	120-145
10 кВт	400-2x300	150-180
12 кВт	2x250-2x350	180-210
15 кВт	2x300-2x400	2x100-2x140
17 кВт	2x350-3x300	2x110-2x150

Применяется к шлангу PEM 40 x 2,4 PN 6,3.

Это приблизительные примерные значения. При установке следует сделать правильные расчеты в соответствии с местными условиями.

ВНИМАНИЕ!

Длина шланга коллектора зависит от состава и водонасыщенности породы/почвы, климатической зоны и системы климат-контроля (радиаторов или системы подогрева пола).

Максимальная длина одной ветви для коллектора не должна превышать 400 м.

В тех случаях, когда необходимо иметь несколько коллекторов, они должны быть подключены параллельно с возможностью регулировки потока соответствующей ветви.

Для отбора тепла верхнего слоя почвы шланг следует прокладывать на глубине, соответствующей местным условиям, а расстояние между шлангами должно составлять как минимум 1 метр.

В случае бурения нескольких скважин расстояние между ними должно соответствовать местным условиям.

Необходимо обеспечить равномерный подъем шланга коллектора в направлении теплового насоса во избежание образования воздушных карманов. Если это невозможно, следует использовать вентиляционные отверстия.

Поскольку температура в системе рассола может падать ниже 0° С, ее следует защитить от промерзания до температуры -15°С. При расчете объема в качестве ориентировочного значения применяется соотношение 1 литр готового смешанного рассола на метр шланга коллектора (при использовании шланга PEM $40 \times 2,4$ PN 6,3).

Боковое соединение

Можно расположить соединения рассола под углом для соединения сбоку вместо верхнего соединения.

Для соединения под углом:

1. Отсоедините трубу в верхнем соединении.

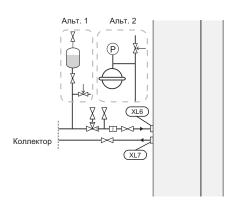
^{*} Может быть под углом для бокового соединения.

- Расположите трубу под углом в нужном направлении.
- При необходимости отрежьте трубу на требуемую длину.

Соединение стороны рассола

- Изолируйте все внутренние трубы рассола для защиты от конденсации.
- Следует установить уравнительный сосуд в качестве высшей точки в системе рассола на подводящем трубопроводе перед насосом для рассола (Альт. 1).

Если невозможно установить уравнительный сосуд в высшей точке, необходимо использовать расширительный бак (Альт. 2).

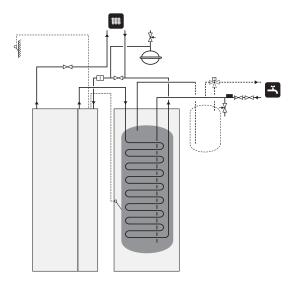


ПРИМЕЧАНИЕ

Обратите внимание, что с уравнительного сосуда могут падать капли конденсата. Установите сосуд таким образом, чтобы это не привело к повреждению другого оборудования.

- Объем антрифриза должен быть виден в уравнительном сосуде.
- Установите поставляемый предохранительный клапан под уравнительным сосудом, как показано на рисунке. Весь трубопровод сброса воды от предохранительных клапанов прокладывается под наклоном во избежание образования водяных карманов и должен иметь защиту от замерзания.
- Установите запорные клапаны как можно ближе к тепловому насосу.
- Поставляемый фильтр для частиц устанавливается на подводящем трубопроводе.

При подключении к открытой системе грунтовых вод следует установить промежуточный теплоизоляционный контур во избежание загрязнения и промерзания испарителя. Для этого требуется установка дополнительного теплообменника.



Сторона теплоносителя

Соединение системы климат-контроля

Система климат-контроля регулирует температуру в помещении с помощью системы управления в F1145 и, например, радиаторов, системы подогрева/охлаждения пола, вентиляторных конвекторов и т. д.

- Установите все требуемые предохранительные устройства, запорные клапаны (как можно ближе к тепловому насосу) и поставляемый фильтр для частиц.
- Предохранительный клапан должен иметь давление открытия максимум 0,25 МПа (2,5 бар) и быть установлен на возвратном трубопроводе теплоносителя, как показано на рисунке. Весь трубопровод сброса воды от предохранительных клапанов прокладывается под наклоном во избежание образования воздушных карманов и должен иметь защиту от замерзания.
- При подключении к системе с термостатами, установленными на всех радиаторах, для обеспечения достаточного количества подаваемого теплоносителя требуется установка предохранительного клапана или удаление некоторых термостатов.

Нагреватель горячей воды

Соединение нагревателя горячей воды

ПРИМЕЧАНИЕ

Если F1145 не состыкован с водонагревателем или должен работать в режиме фиксированной конденсации, следует установить заглушку на соединение водонагревателя (XL9).

- Любой состыкованный нагреватель горячей воды должен быть оснащен необходимым набором клапанов.
- Если изменена уставка, следует установить смесительный клапан, чтобы температура могла превышать 60°С.
- Значение для горячей воды устанавливается в меню 5.1.1.
- Предохранительный клапан должен иметь давление открытия максимум 1,0 МПа (10,0 бар) и устанавливаться на подводящем водопроводе, как показано на рисунке. Весь трубопровод сброса воды от предохранительных клапанов прокладывается под наклоном во избежание образования водяных карманов и должен иметь защиту от замерзания.

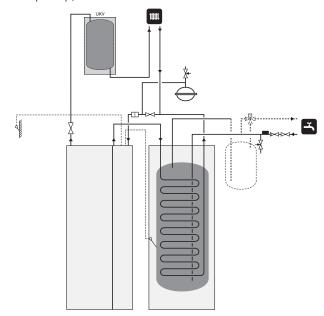
ВНИМАНИЕ!

Подача горячей воды активируется в меню 5.2 или в руководстве по началу работы.

Фиксированная конденсация

Если F1145 будет использоваться в сочетании с водонагревателем с фиксированной конденсацией, необходимо подключить внешний датчик потока (ВТ25) в соответствии с описанием на стр. 21. Кроме того, необходимо выполнить следующие настройки в меню.

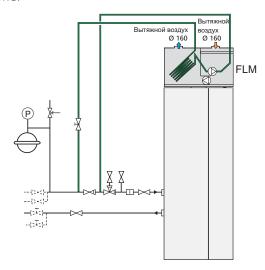
Меню	Настройка меню (могут потребоваться локальные изменения)
1.9.3 - Мин. тем-ра под.	Требуемая температура в
труб-да	баке.
5.1.2 - макс. тем-ра под.	Требуемая температура в
труб.	баке.
5.1.10 - оп. реж. нас. тепло-	непостоян.
HOC.	
4.2 - раб. режим	ручной


Варианты стыковки

F1145 можно подключать несколькими различными способами, некоторые из которых описаны ниже.

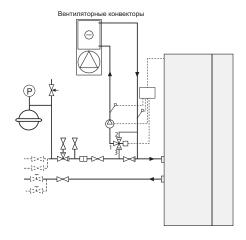
Дальнейшая информация о вариантах доступна в www.nibe.eu и соответствующих инструкциях по сборке используемого дополнительного оборудования. См. стр. 66 со списком дополнительного оборудования, используемого с F1145.

Буферный резервуар


Если объем системы климат-контроля слишком незначителен для обеспечения выходной мощности теплового насоса, радиаторную систему можно дополнительно оборудовать буферным резервуаром, например, NIBE UKV.

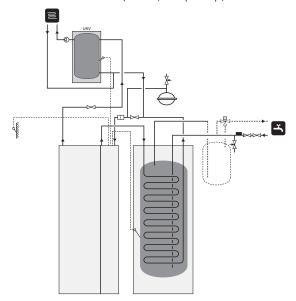
Рекуперация воздухообмена

Установку можно дополнительно оснащать модулем вытяжного воздуха FLM для рекуперации воздухообмена


- Во избежание конденсации трубопроводы и другие холодные поверхности изолируются гидроизоляционным материалом.
- Систему рассола следует снабдить расширительным баком для компенсации давления (СМЗ). При наличии уравнительного сосуда (СМ2) его следует заменить.

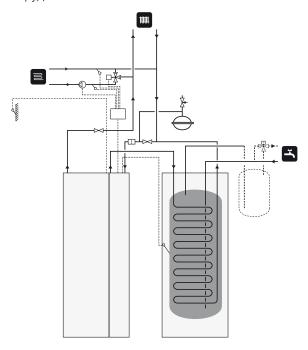
Естественное охлаждение

Установку можно дополнительно снабдить вентиляторными конвекторами, например, для создания соединений естественного охлаждения (PCS 44).

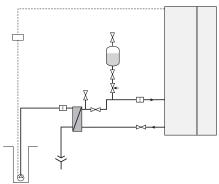

- Во избежание конденсации трубопроводы и другие холодные поверхности изолируются гидроизоляционным материалом.
- При повышенной потребности в охлаждении, требуется установка вентиляторных конвекторов с поддонами для сбора конденсата и сточным трубопроводом.
- Систему рассола следует снабдить расширительным баком для компенсации давления (СМЗ). При наличии уравнительного сосуда (СМ2) его следует заменить.

Системы подогрева пола

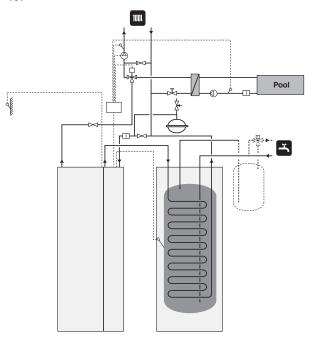
Внешний циркуляционный насос спроектирован в соответствии с требованиями системы подогрева пола.


Если объем системы климат-контроля недостаточен для обеспечения выходной мощности теплового насоса, установленную систему отопления нужно дополнительно оборудовать буферным резервуаром из расчета 20л\1кВт мощности, например, NIBE UKV.

Более двух систем климат-контроля


Если требуется нагреть более чем одну систему климат-контроля с более низкой температурой, можно использовать следующее соединение. Шунтирующий вентиль снижает температуру, например, для системы подогрева пола.

Для этого соединения требуется дополнительное оборудование ECS 40/ECS 41.


Система грунтовых вод

Для защиты теплообменника теплового насоса от грязи используется промежуточный теплообменник. Вода поступает в подземную фильтровальную установку или пробуренную скважину. См. стр. 26 с дополнительной информацией о подключении насоса грунтовых вод.

Бассейн

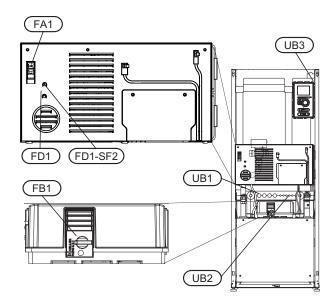
Подача воды в бассейн контролируется датчиком бассейна. В случае низкой температуры бассейна трехходовой клапан меняет направление и подключается к теплообменнику бассейна. Для этого соединения требуется дополнительное оборудование POOL 40.

5 Электрические соединения

Общие сведения

Всё электрооборудование, кроме наружных датчиков, комнатных датчиков и датчиков тока, уже подключено на заводе.

- Отсоедините тепловой насос перед проверкой изоляции внутренней электропроводки.
- Переключение F1145 между одно- и трехфазным электропитанием, а также между 3 x 230 B и 3 x 400 B невозможно.
- Если в здании имеется автоматический выключатель замыкания на землю, F1145 должен быть оборудован отдельным автоматическим выключателем замыкания на землю.
- В случае использования микровыключателя он должен иметь как минимум моторную характеристику "С". См. стр. 69 с характеристиками номинального тока предохранителя.
- Принципиальные электрические схемы теплового насоса см. в отдельном соответствующем руководстве по установке.
- Кабели связи и кабели датчиков для внешних подключений не следует прокладывать рядом с силовыми кабелями.
- Минимальная площадь сечения кабелей связи и кабелей датчиков для внешних подключений должна быть 0,5 мм² до 50 м, например, ЕККХ или LiYY, либо эквивалент.
- При прокладке кабеля в F1145 следует использовать уплотнительные втулки кабеля (напр., UB1-UB3, отмеченные на изображении). В UB1-UB3 кабели введены через тепловой насос от задней части к передней.


ПРИМЕЧАНИЕ

Переключатель (SF1) следует переводить в положение "I" или " Δ " только после заполнения бойлера водой. В противном случае возможно повреждение ограничителя температуры, термостата, компрессора и погружного нагревателя.

ПРИМЕЧАНИЕ

Установку и техобслуживание электрооборудования следует выполнять под контролем квалифицированного электрика. Перед проведением любых работ по техобслуживанию отключите ток прерывателем цепи. Установку электрооборудования и электропроводку следует выполнять в соответствии с действующими нормативами.

Микровыключатель

Рабочий контур теплового насоса и большая часть его внутренних компонентов оснащены внутренними плавкими предохранителями с микровыключателем (FA1)

Ограничитель температуры

Ограничитель температуры (FD1) отключает электропитание дополнительной мощности, если температура поднимается до 90-100°С, и обнуляется вручную.

Обнуление

Ограничитель температуры (FD1) находится за передней крышкой. Обнуление ограничителя температуры осуществляется нажатием кнопки (FD1-SF2) с помощью небольшой отвертки.

Выключатель двигателя

Защитный прерыватель двигателя (FB1) отключает электропитание компрессора в случае слишком высокой силы тока.

Обнуление

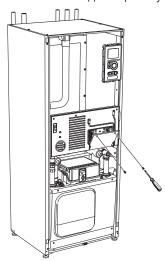
Защитный прерыватель двигателя (FB1) находится за передней крышкой. Прерыватель обнуляется поворотом рукоятки управления в горизонтальное положение.

ВНИМАНИЕ!

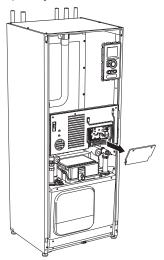
Проверьте микровыключатель, ограничитель температуры и защитный прерыватель двигателя. Во время транспортировки они могли сработать.

Доступ к электрическому соединению

Пластмассовая крышка распределительных шкафов открывается с помощью отвертки.



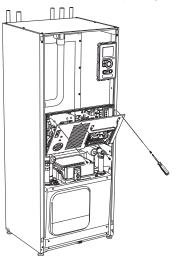
ПРИМЕЧАНИЕ


Дверца печатной платы обработки и настройки входящих сигналов открывается с помощью отвертки Torx 20.

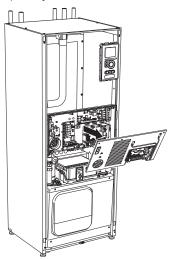
Снятие крышки, печатная плата обработки и настройки входящих сигналов

1. Отвинтите винты и отведите крышку в сторону.

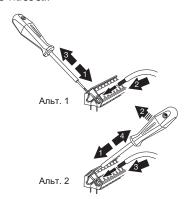
2. Снимите крышку.



Снятие люка, электрошкаф


1. Отсоедините контакты.

2. Отвинтите винты и отведите крышку в сторону.



3. Снимите крышку.

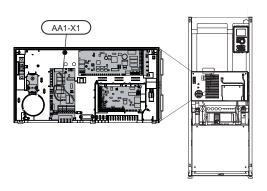
Фиксатор кабеля

Используйте подходящий инструмент для освобождения/блокировки кабелей в клеммных колодках теплового насоса.

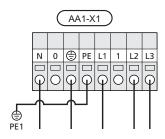
Соединения

ПРИМЕЧАНИЕ

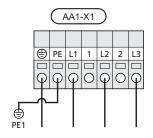
Во избежание интерференции не следует прокладывать неэкранированные кабели связи и/или кабели датчиков для внешних подключений на расстоянии менее 20 см от кабеля высокого напряжения.

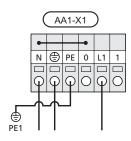

Соединение электропитания

F1145 следует устанавливать через блокировочный выключатель с минимальным размыкающим зазором 3 мм. Минимальная площадь кабеля рассчитывается в соответствии с используемым номиналом предохранителя. Поставляемый кабель электропитания подключен к клеммной колодке X1 на плате погружного нагревателя (AA1).



ПРИМЕЧАНИЕ


Переключение F1145 между одно- и трехфазным электропитанием, а также между 3 х 230 В и 3 х 400 В невозможно.


Соединение 3 х 400 В

Соединение 3 х 230 В

Соединение 1 х 230 В

ПРИМЕЧАНИЕ

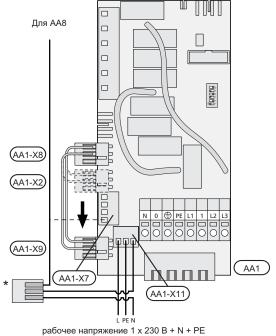
F1145-12, 15, 17 содержит спиральный компрессор, что предусматривает важность выполнения электрических соединений с правильным порядком чередования фаз. При неправильном порядке чередования фаз не запускается компрессор и отображается аварийный сигнал.

Если требуется отдельное электропитание компрессора и погружного нагревателя, см. раздел "Переключатель для внешней блокировки дополнительной мощности и/или компрессора" на стр. 25.

Соединение внешнего рабочего напряжения для системы управления

ПРИМЕЧАНИЕ

Применимо только к соединению электропитания 3 х 400 В.

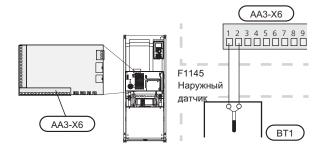

ПРИМЕЧАНИЕ

Снабдите все распределительные коробки предупреждающими табличками о внешнем напряжении.

Если требуется подключить внешнее рабочее напряжение для системы управления к F1145 на печатной плате погружного нагревателя (АА1), следует сдвинуть торцевой разъём на АА1:Х2 к АА1:Х9 (как показано на рисунке).

При подключении внешнего рабочего напряжения для системы управления с отдельным автоматическим выключателем замыкания на землю отсоедините синий кабель от клеммной колодки X7:24 на печатной плате погружного нагревателя (АА1) и подсоедините прилагаемый верхний зажим вместе с рабочим нулём на входе. Подсоедините синий кабель (мин. 0,75 мм²) между верхним зажимом и X11:N на печатной плате погружного нагревателя (как показано на рисунке).

Рабочее напряжение (1 x 230 B + N + PE) подключено к АА1:Х11 (как показано на рисунке).

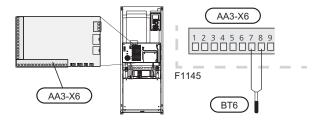


Наружный датчик

Установите датчик наружной температуры (ВТ1) в тени на стене, обращенной на север или северо-запад, таким образом, чтобы на него не светило утреннее солнце.

Подключите датчик к клеммной колодке X6:1 и X6:2 на плате обработки и настройки входящих сигналов (ААЗ). Используйте 2-жильный кабель с площадью сечения не менее 0,5 мм².

Если используется кабелепровод, его следует покрыть герметиком для предотвращения конденсации в капсуле датчика.



Датчик температуры, подача горячей воды

Датчик температуры подачи горячей воды (ВТ6) установлен в погружной трубе на водонагревателе.

Подключите датчик к клеммной колодке X6:7 и X6:8 на плате обработки и настройки входящих сигналов (ААЗ). Используйте 2-жильный кабель с площадью сечения не менее 0,5 мм².

Подача горячей воды активируется в меню 5.2 или в руководстве по началу работы.

Датчик температуры, верх бака горячей


Датчик температуры верха бака горячей воды (ВТ7) можно подключать к F1145 посредством мягких входов для отображения температуры воды в верхней части бака.

См. стр. 25 для ознакомления с информацией о подключении датчика.

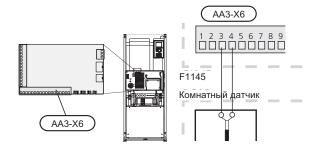
^{*} Только с отдельным автоматическим выключателем замыкания на землю

Датчик температуры, внешний подающий трубопровод

Если необходимо использовать датчик температуры внешнего подающего трубопровода (ВТ25), подключите его к клеммной колодке X6:5 и X6:6 на плате обработки и настройки входящих сигналов (ААЗ). Используйте 2-жильный кабель с площадью сечения не менее 0,5 мм².

Комнатный датчик

F1145 поставляется с комнатным датчиком (ВТ50). Датчик комнатной температуры выполняет до трех функций:

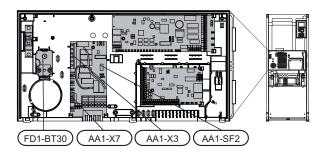

- 1. Показывает текущую комнатную температуру на дисплее теплового насоса.
- 2. Предоставляет варианты изменения комнатной температуры в °C.
- 3. Позволяет изменять/стабилизировать комнатную температуру.

Установите датчик в нейтральном положении там, где требуется заданная температура. Подходящее место находится на свободной внутренней стене зала прибл. в 1,5 м над полом. Важно, чтобы на правильное измерение комнатной температуры датчиком не влияло его месторасположение, например, в нише, между полками, за занавеской, над или рядом с источником тепла, на сквозняке от внешней двери или в месте воздействия прямых солнечных лучей. Закрытые термостаты радиаторов тоже могут вызвать проблемы.

Тепловой насос работает без датчика, но если необходимо считывать внутрикомнатную температуру помещения на дисплее F1145, следует установить этот датчик. Подключите комнатный датчик к X6:3 и X6:4 на печатной плате обработки и настройки входящих сигналов (AA3).

Если необходимо использовать датчик для измерения комнатной температуры в °С и/или изменения/стабилизации комнатной температуры, датчик должен быть активирован в меню 1.9.4.

Если комнатный датчик используется в комнате с подогревом пола, он должен выполнять только функцию указания, а не контроля комнатной температуры.



ВНИМАНИЕ!

Для изменения температуры в помещении требуется время. Например, короткие периоды времени в сочетании с подогревом пола не приведут к заметным изменениям комнатной температуры.

Уставки

Дополнительная мощность - максимальная мощность

При поставке погружной нагреватель подключен к максимальной мощности 7 кВт (3 х 400 В и 1 х 230 В) или 9 кВт (3 х 230 В). Для 3 х 400 В погружной нагреватель можно переключить на 9 кВт.

Мощность погружного нагревателя разделена на семь ступеней (четыре ступени при 3 х 230 В или если для 3 х 400 В погружной насос переключен на максимальную мощность 9 кВт) в соответствии с приведенной ниже таблицей.

Установка максимальной электрической мощности

Установка максимальной электрической мощности в дополнительной мощности осуществляется в меню 5.1.12.

В таблицах показан полный фазный ток для погружного нагревателя.

Переключение на максимальную электрическую мощность

ПРИМЕЧАНИЕ

Данное переключение применимо только к 3 \times 400 B.

Если необходима более высокая мощность, чем максимальная мощность погружного нагревателя, подключенная при доставке, можно переключить тепловой насос на максимальную мощность 9 кВт.

Отсоедините белый кабель от клеммной колодки X7:23 и подсоедините его к клеммной колодке X3:13 (следует сломать пломбу на клеммной колодке) на плате погружного нагревателя (AA1).

3 x 400 В (максимальная электрическая мощность, подключенная при доставке 7 кВт)

Макс. до- полнитель- ная мощ- ность (кВт)	Макс. фаз- ный ток L1(A)	Макс. фаз- ный ток L2(A)	Макс. фаз- ный ток L3(A)
0	0	0	0
1	0	0	4,3
2	0	8,7	0
3	0	8,7	4,3
4	0	8,7	8,7
5	8,7	8,7	4,3
6	8,7	8,7	8,7
7	8,7	8,7	13

3 x 400 В (максимальная электрическая мощность, переключенная на 9 кВт)

Макс. до- полнитель- ная мощ- ность (кВт)	Макс. фаз- ный ток L1(A)	Макс. фаз- ный ток L2(A)	Макс. фаз- ный ток L3(A)
0	0	0	0
2	0	8,7	0
4	0	8,7	8,7
6	8,7	8,7	8,7
9	8,7	16,2	16,2

3 x 230 B

Макс. до- полнитель- ная мощ- ность (кВт)	Макс. фаз- ный ток L1(A)	Макс. фаз- ный ток L2(A)	Макс. фаз- ный ток L3(A)
0	0	0	0
2	9,4	9,4	0
4	9,5	15,6	8,7
6	15,6	15,6	15,6
9	15,6	27,4	25,6

1 x 230 B

Макс. до- полни- тельная мощ- ность (кВт)	Макс. фазный ток L1(A)
0	0
1	4,3
2	8,7
3	13
4	17,4
5	21,7
6	26,1
7	30,4

Если подключены датчики тока, тепловой насос контролирует фазные токи и автоматически назначает электрические ступени наименее загруженной фазе.

Аварийный режим

Если тепловой насос установлен в аварийный режим (SF1 установлен на Δ), работают только самые необходимые функции.

- Компрессор выключен, а отопление управляется погружным нагревателем.
- Горячая вода не вырабатывается.
- Блок контроля нагрузки не подключен.

ПРИМЕЧАНИЕ

Переключатель (SF1) следует переводить в положение "I" или " Δ " только после заполнения F1145 водой. В противном случае возможно повреждение ограничителя температуры, термостата, компрессора и погружного нагревателя.

Мощность в аварийном режиме

В аварийном режиме мощность погружного нагревателя устанавливается с помощью переключателя в корпусе типа DIP (S2) на печатной плате погружного нагревателя (AA1) в соответствии с приведенной ниже таблицей. Заводская установка: 6 кВт.

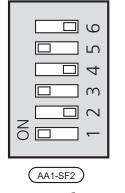
3 x 400 В (максимальная электрическая мощность, подключенная при доставке 7 кВт)

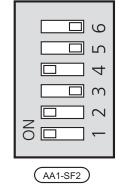
	reers, require remiess rijes geereste r na i,					
	1	2	3	4	5	6
1 кВт	выкл.	выкл.	выкл.	выкл.	выкл.	вкл.
2 кВт	выкл.	выкл.	вкл.	выкл.	выкл.	выкл.
3 кВт	выкл.	выкл.	вкл.	выкл.	выкл.	вкл.
4 кВт	выкл.	выкл.	вкл.	выкл.	вкл.	выкл.
5 кВт	вкл.	выкл.	вкл.	выкл.	выкл.	вкл.
6 кВт	вкл.	выкл.	вкл.	выкл.	вкл.	выкл.
7 кВт	вкл.	выкл.	вкл.	выкл.	вкл.	вкл.

3 x 400 В (максимальная электрическая мощность, переключенная на 9 кВт)

	1	2	3	4	5	6
2 кВт	выкл.	выкл.	выкл.	выкл.	вкл.	выкл.
4 кВт	выкл.	выкл.	вкл.	выкл.	вкл.	выкл.
6 кВт	вкл.	выкл.	вкл.	выкл.	вкл.	выкл.
9 кВт	вкл.	выкл.	вкл.	вкл.	вкл.	вкл.

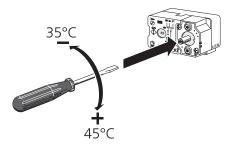
3 x 230 B


	1	2	3	4	5	6
2 кВт	выкл.	выкл.	выкл.	вкл.	выкл.	выкл.
4 кВт	выкл.	выкл.	вкл.	вкл.	выкл.	выкл.
6 кВт	вкл.	вкл.	выкл.	вкл.	выкл.	выкл.
9 кВт	вкл.	вкл.	вкл.	вкл.	выкл.	выкл.


1 x 230 B

1 A Z.	JUD					
	1	2	3	4	5	6
1 кВт	выкл.	выкл.	выкл.	выкл.	выкл.	вкл.
2 кВт	выкл.	выкл.	вкл.	выкл.	выкл.	выкл.
3 кВт	выкл.	выкл.	вкл.	выкл.	выкл.	вкл.
4 кВт	выкл.	выкл.	вкл.	выкл.	вкл.	выкл.
5 кВт	вкл.	выкл.	вкл.	выкл.	выкл.	вкл.
6 кВт	вкл.	выкл.	вкл.	выкл.	вкл.	выкл.
7 кВт	вкл.	выкл.	вкл.	выкл.	вкл.	вкл.

3 x 400 B/1 x 230 B



На рисунке изображена заводская установка переключателя в корпусе типа DIP (AA1-SF2), то есть 6 кВт.

Температура срабатывания аварийного режима термостата

Температура подачи устанавливается в аварийный режим с помощью термостата (FD1-BT30). Её можно установить на 35°С (предварительная настройка, например, для системы подогрева пола) или на 45°С (например, для радиаторов).

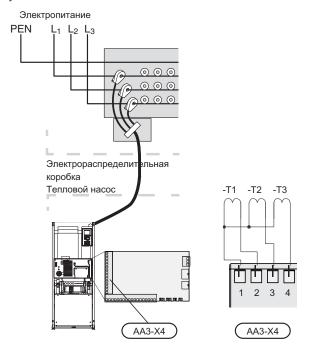
Дополнительные соединения

Блок контроля нагрузки

ПРИМЕЧАНИЕ

Блок контроля нагрузки не функционирует в однофазной установке.

При одновременном подключении в здании множества потребителей энергии во время работы дополнительной мощности существует риск срабатывания основного предохранителя здания. Тепловой насос оснащен встроенными блоками контроля нагрузки, которые управляют электрическими ступенями дополнительной мощности путем перераспределения мощности между различными фазами или отключениями в случае перегрузки определенной фазы. Повторное подключение происходит при снижении текущего потребления.


Соединение датчиков тока

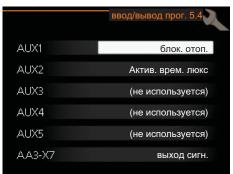
Датчик тока следует установить на каждом входящем фазовом проводе в распределительной коробке для измерения тока. Распределительная коробка является наиболее подходящей точкой установки.

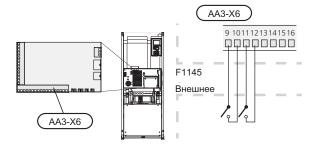
Подключите датчики тока к многожильному кабелю в камере рядом с распределительной коробкой. Используйте многожильный кабель минимум 0,5 мм2 от камеры к тепловому насосу.

Подсоедините кабель к плате обработки и настройки входящих сигналов (ААЗ) на клеммной колодке X4:1-4, где X4:1 является общей клеммной колодкой для трех датчиков тока.

Номинальный ток основного предохранителя здания устанавливается в меню 5.1.12.

Варианты внешнего соединения


F1145 имеет программно-управляемые входы и выходы на плате обработки и настройки входящих сигналов (ААЗ) для подключения внешнего переключателя режимов или датчика. Это означает, что, когда внешний переключатель режимов или датчик подключен к одному из шести специальных соединений, следует выбрать правильный режим функционирования для соответствующего соединения программного обеспечения в F1145.



ВНИМАНИЕ!

Если внешний переключатель режимов или датчик подключен к F1145, режим функционирования для использования входа или выхода следует выбирать в меню 5.4, см. стр. 56

Выбираемыми входами на плате обработки и настройки входящих сигналов для этих режимов функционирования являются AUX1 (X6:9-10), AUX2 (X6:11-12), AUX3 (X6:13-14), AUX4 (X6:15-16) и AUX5 (X6:17-18). Выбираемым выходом является AA3:X7.

В вышеприведенном примере используются выходы AUX1 (X6:9-10) иAUX2 (X6:11-12) на клеммной колодке (AA3).

ВНИМАНИЕ!

Некоторые из следующих функций можно также активировать и запланировать с помощью настроек меню.

Возможный выбор для вспомогательных входов AUX

Датчик температуры, верх бака горячей воды

Датчик температуры верха бака горячей воды можно подключать к F1145 для отображения температуры воды в верхней части бака.

Датчик температуры верха бака горячей воды (ВТ7) подключен к выбранному входу (меню 5.4, см. стр. 56) на клеммной колодке Х6 платы обработки и настройки входящих сигналов (ААЗ), которая расположена за передней панелью и в погружной трубе на водонагревателе.

Используйте 2-жильный кабель с площадью сечения не менее $0,5\,\,\mathrm{mm}^2.$

Переключатель для внешней блокировки дополнительной мощности и/или компрессора

В тех случаях, когда требуется внешняя блокировка дополнительной мощности и/или компрессора, её можно подключить к клеммной колодке X6 на плате обработки и настройки входящих сигналов (AA3), которая расположена за передней крышкой.

Дополнительное тепло и/или компрессор отключаются путем подсоединения беспотенциального переключателя режимов ко входу, выбранному в меню 5.4, см. стр. 56.

Внешнюю блокировку дополнительной мощности и компрессора можно комбинировать.

При замыкании контакта происходит отключение электрической мощности.

Переключатель для внешней блокировки отопления

В тех случаях, когда используется внешняя блокировка отопления, её можно подключить к клеммной колодке X6 на плате обработки и настройки входящих сигналов (AA3), расположенной за передней крышкой.

Функция отопления отключаются путем подсоединения беспотенциального переключателя режимов ко входу, выбранному в меню 5.4, см. стр. 56.

При замыкании переключателя происходит блокировка функции отопления.

Переключатель для внешнего принудительного управления насосом для рассола

В тех случаях, когда используется внешнее принудительного управления насосом для рассола, его можно подключить к клеммной колодке X6 на плате обработки и настройки входящих сигналов (AA3), расположенной за передней крышкой.

Принудительное управление насосом для рассола осуществляется путем подсоединения беспотенциального переключателя режимов ко входу, выбранному в меню 5.4, см. стр. 56.

При замыкании переключателя происходит включение насоса для рассола.

Контакт для активизации "временный люкс"

К F1145 можно подключить внешний контакт для активизации функции подачи горячей воды "временный люкс". Переключатель должен быть беспотенциальным и подключаться к выбранному входу (меню 5.4, см. стр. 56) на клеммной колодке X6 печатной платы обработки и настройки входящих сигналов (ДДЗ)

"временный люкс" активируется на время подключения контакта.

Контакт для активизации "Внешняя регулировка"

К F1145 можно подключить внешний контакт для изменения температуры подачи и комнатной температуры.

При замыкании переключателя температура изменяется в °С (если комнатный датчика подключен и активирован). Если комнатный датчик не подключен или не активирован, требуемое смещение "температура" (смещение кривой нагрева) устанавливается с определенным количеством выбранных ступеней. Это значение регулируется в интервале от -10 до +10.

система климат-контроля 1

Переключатель должен быть беспотенциальным и подключаться к выбранному входу (меню 5.4, см. стр. 56) на клеммной колодке X6 печатной платы обработки и настройки входящих сигналов (AA3).

Значение для изменения устанавливается в меню 1.9.2 "Внешняя регулировка".

■ система климат-контроля 2-4

Для внешней регулировки систем климат-контроля 2-4 требуется дополнительное оборудование (ECS 40).

Инструкции по установке дополнительного оборудования см. в соответствующем руководстве организации, осуществляющей монтаж.

Контакт для активизации скорости вентилятора

ВНИМАНИЕ!

Внешний контакт функционирует только после установки и активизации дополнительного оборудования FLM.

К F1145 можно подключить внешний контакт для активизации одной из четырех скоростей вентилятора. Переключатель должен быть беспотенциальным и подключаться к выбранному входу (меню 5.4, см. стр. 56) на клеммной колодке X6 печатной платы обработки и настройки входящих сигналов (AA3). При замыкании переключателя происходит включение выбранной скорости вентилятора. Нормальная скорость возобновляется после размыкания контакта.

NV 10, блок контроля давления/уровня/расхода рассола

Если для установки рассола требуется датчик уровня (дополнительное оборудование NV10), его можно подключить к выбранному входу (меню 5.4, см. стр. 56) на клеммной колодке Х6 печатной платы обработки и настройки входящих сигналов (ААЗ).

К этому входу также можно подключать датчики давления и расхода.

Для функционирования вход следует подключать в обычном режиме.

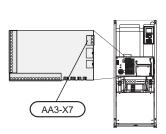
Возможный выбор для вспомогательного выхода AUX (беспотенциального переменного реле)

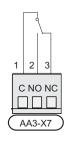
Возможно внешнее соединение через беспотенциальное переменное реле (макс. 2 A) на печатной плате

обработки и настройки входящих сигналов (ААЗ), на клеммной колодке X7.

Дополнительные функции для внешнего соединения:

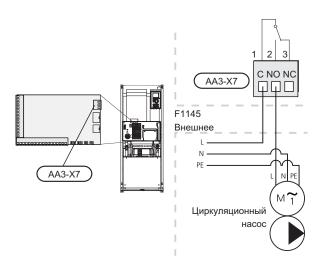
- Индикация устройства звуковой аварийной сигнализации
- Управление насосом грунтовых вод
- Индикация режима охлаждения (применима только при наличии дополнительного оборудования для охлаждения или встроенной функции охлаждения теплового насоса).
- Управление циркуляционным насосом для циркуляции горячей воды
- Внешний циркуляционный насос (для теплоносителя)
- Внешний реверсивный клапан для горячей воды


Если любое из вышеперечисленных устройств подключено к клеммной колодке X7, его следует выбрать в меню 5.4, см. стр. 56.


Общая аварийная сигнализация предварительно выбрана на заводе.

ПРИМЕЧАНИЕ

Если одновременно с активизацией устройства звуковой аварийной сигнализации к клеммной колодке X7 подключены несколько функций, требуется вспомогательная плата (см. стр. 66).


На рисунке изображено реле в аварийном положении.

Внешний циркуляционный насос, насос грунтовых вод или циркуляционный насос горячей воды подключаются к реле устройства звуковой аварийной сигнализации, как показано на рисунке ниже.

ПРИМЕЧАНИЕ

Снабдите все распределительные коробки предупреждающими табличками о внешнем напряжении.

ВНИМАНИЕ!

Общая макс. нагрузка релейных выходов может составлять 2 А (230 В перем. тока).

Соединение дополнительного оборудования

Инструкции по соединению дополнительного оборудования приведены в инструкции по установке соответствующего оборудования. См. стр. 66 со списком дополнительного оборудования, используемого с F1145.

6 Ввод в эксплуатацию и наладка

Подготовка

- 1. Убедитесь, что F1145 не повредился во время транспортировки.
- 2. Убедитесь, что переключатель (SF1) находится в положении " **Ů**".
- 3. Проверьте наличие воды во всех нагревателях горячей воды и системах климат-контроля.

ВНИМАНИЕ!

Проверьте микровыключатель и защитные прерыватели двигателя. Во время транспортировки они могли сработать.

Заполнение и вентиляция

Заполнение системы климат-контроля и отвод воздуха

Заполнение

- Откройте заправочный клапан (внешний, не поставляемый с изделием). Заполните систему климат-контроля водой.
- 2. Откройте выпускной клапан.
- 3. Когда из выпускного клапана перестанет вытекать вода, смешанная с воздухом, закройте клапан. Через некоторое время начнет повышаться давление.
- 4. После достижения правильного давления закройте заправочный клапан.

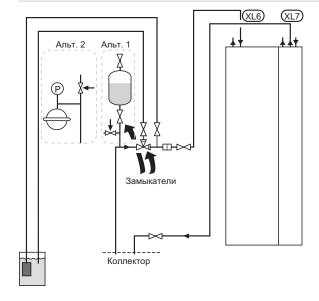
Вентиляция

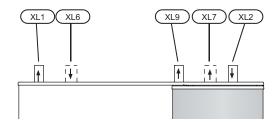
- 1. Стравите воздух из теплового насоса посредством воздуховыпускного клапана, а из остальной системы климат-контроля— с помощью соответствующих воздуховыпускных клапанов.
- 2. Продолжайте доливку и вентиляцию до полного удаления воздуха и достижения правильного давления.

COBET!

Если во время вентиляции должен работать насос теплоносителя (GP1), его можно запустить с помощью руководства по началу работы.

Заполнение и вентиляция системы рассола


Заполняя систему рассола, смешайте воду и антифриз в открытом контейнере. Смесь должна быть защищена от замерзания примерно до -15°C. Рассол заливается путем подключения заливного насоса.


- 1. Проверьте систему рассола на предмет утечек.
- Подключите заливной насос и возвратный трубопровод на заправочном штуцере системы рассола, как показано на рисунке.
- 3. Если применяется альтернатива 1 (уравнительный сосуд), закройте клапан под уравнительным сосудом (СМ2).
- 4. Закройте трехходовой клапан в заправочном штуцере (дополнительное оборудование).
- 5. Откройте клапаны на заправочном штуцере.
- 6. Запустите заливной насос.
- 7. Заливайте жидкость до тех пор, пока она не начнет поступать в возвратный трубопровод.
- 8. Провентилируйте систему рассола с помощью выпускного клапана на F1145.
- 9. Закройте клапаны на заправочном штуцере.
- 10. Откройте трехходовой клапан в заправочном штуцере.
- 11. Если применяется альтернатива 1 (уравнительный сосуд), откройте клапан под уравнительным сосудом (СМ2).

COBET!

Если во время вентиляции должен работать насос для рассола (GP2), его можно запустить с помощью руководства по началу работы.

XL 1 Подключение, подача теплоносителя
 XL 2 Подключение, возврат теплоносителя
 XL 6 Подключение, вход рассола
 XL 7 Подключение, подача рассола

Подключение, нагреватель горячей воды

Основные символы

XL9

Сим-	Значение
X	Запорный клапан
∑ +	Предохранительный клапан
0	Уравнительный сосуд
\ominus	Расширительный бак
P	Манометр
	Фильтр твердых частиц

Руководство по началу работы

ПРИМЕЧАНИЕ

Перед установкой переключателя в положение " I" следует залить воду в систему климат-контроля.

- 1. Поверните переключатель теплового насоса (SF1) в положение " \mathbf{I} ".
- 2. Следуйте инструкциям в руководство по началу работы на дисплее теплового насоса. Если руководство по началу работы не запускается при запуске теплового насоса, запустите его вручную в меню 5.7.

COBET!

См. стр. 33 с более исчерпывающим введением в систему управления тепловым насосом (эксплуатация, меню и др.).

Ввод в эксплуатацию

При первом запуске теплового насоса запускается руководство по началу работы. В инструкциях руководства по началу работы указывается, какие операции необходимо выполнить при первом запуске, а также какие основные уставки теплового насоса следует выбрать.

Руководство по началу работы обеспечивает правильное выполнение запуска и не может быть отменено. Руководство по началу работы можно запустить позже в меню 5.7.

ВНИМАНИЕ!

Пока отображается руководство, авт. пуск функций теплового насоса выключен.

Руководство отображается при каждом перезапуске теплового насоса, если не отключено на последней странице.

Операции в руководстве по началу работы

А. Стр.

Здесь вы можете увидеть, как далеко вы продвинулись в руководстве по началу работы.

Прокрутка страниц в руководстве по началу работы:

- Вращайте рукоятку управления до тех пор, пока не выделится одна из стрелок в верхнем левом углу (возле номера страницы).
- 2. Нажмите кнопку "ОК" для перемещения между страницами руководства по началу работы.

В. Имя и номер меню

Прочитайте, какое меню в системе управления является основным для этой страницы руководства по началу работы. Цифры в скобках относятся к номеру меню в системе управления.

Если вы хотите узнать больше о меню, прочитайте эту информацию в подменю или в руководстве по эксплуатации на стр. 37.

С. Опция / настройка

Здесь задаются уставки для системы.

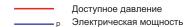
D. Меню справки

Во многих меню имеется символ, указывающий на наличие дополнительной справки.

Для доступа к справочному тексту:

- Используйте рукоятку управления, чтобы выбрать символ справки.
- 2. Нажмите кнопку "ОК".

Справочный текст часто состоит из нескольких окон, которые можно прокручивать с помощью рукоятки управления.

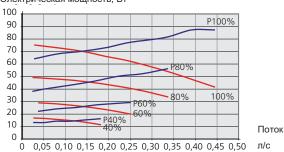

Последующая регулировка и вентиляция

Диаграммы подачи насоса, сторона коллектора

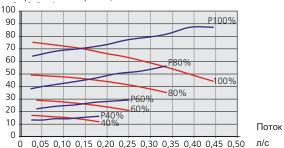
Для установки правильного потока в системе рассола следует установить правильную скорость насоса для рассола.

Между потоками рассола на выходе (ВТ11) и рассолом на входе (ВТ10) должна быть разность температур 2-5°С при сбалансированной системе (соответственно через 5 минут после запуска компрессора). Проверьте эти температуры в меню 3.1 "служебная инфо" и регулируйте скорость насоса для рассола (GP2) до тех пор, пока не будет достигнута разность температур. Высокая разность указывает на низкий поток рассола, низкая разность — на высокий поток рассола.

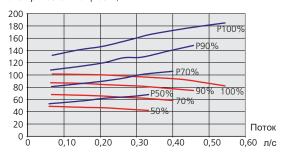
На нижеприведенных диаграммах считайте требуемую скорость насоса для рассола.


F1145 5 кВт

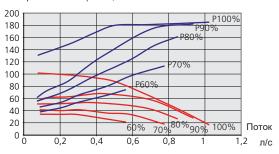
Доступное давление, кПа Электрическая мощность, Вт


F1145 6 кВт

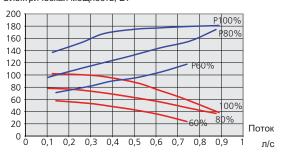
Доступное давление, кПа Электрическая мощность, Вт


F1145 8 кВт

Доступное давление, кПа Электрическая мощность, Вт


F1145 10 кВт

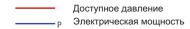
Доступное давление, кПа Электрическая мощность, Вт


F1145 12 кВт

Доступное давление, кПа Электрическая мощность, Вт

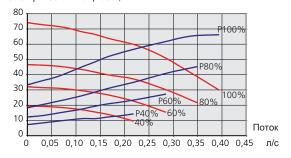
F1145 15 и 17 кВт

Доступное давление, кПа Электрическая мощность, Вт

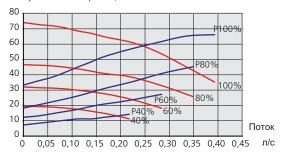

Диаграммы подачи насоса, сторона теплоносителя

Для установки правильного потока в системе климатконтроля следует установить правильную скорость насоса для теплоносителя в разных режимах работы.

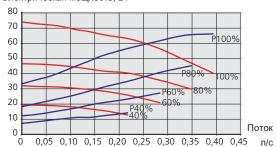
Для работы следует обеспечить подходящую разность температур потока (для отопления: 5-10°С, рекуперация горячей воды: 8-10°С, обогрев бассейна: прибл. 15°С) между температурой подаваемого теплоносителя (ВТ2) и температурой возврата (ВТ3). Проверьте эти температуры в меню 3.1 "служебная инфо" и регулируйте скорость насоса теплоносителя (GP1) до тех пор, пока не будет достигнута разность температур. Высокая разность указывает на низкий поток теплоносителя, низкая разность — на высокий поток теплоносителя.


Установите скорость насоса теплоносителя в меню 5.1.11, см. стр. 54.

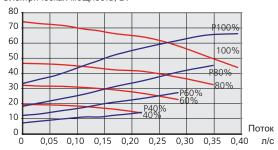
На нижеприведенных диаграммах считайте требуемую скорость насоса теплоносителя.


F1145 5 кВт

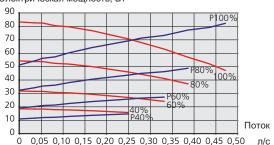
Доступное давление, кПа Электрическая мощность, Вт


F1145 6 кВт

Доступное давление, кПа Электрическая мощность, Вт


F1145 8 и 12 кВт

Доступное давление, кПа Электрическая мощность, Вт

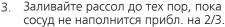

F1145 10 кВт

Доступное давление, кПа Электрическая мошность. Вт

F1145 15 и 17 кВт

Доступное давление, кПа Электрическая мощность, Вт

Повторная регулировка, вентиляция, сторона теплоносителя


На начальном этапе из горячей воды выделяется воздух, поэтому может понадобиться вентиляция. Если из теплового насоса или системы климат-контроля слышится бульканье, требуется дополнительная вентиляция всей системы.

Повторная регулировка, вентиляция, сторона коллектора

Уравнительный сосуд

Проверьте уровень жидкости в уравнительном сосуде (СМ2). Если уровень жидкости снизился, заполните систему.

- 1. Закройте клапан под сосудом.
- 2. Отсоедините соединение наверху сосуда.

Если при работающем насосе для рассола (GP2) и открытом уравнительном сосуде (CM2) закрыть клапан на главном подводящем трубопроводе, тогда повысится давление и жидкость будет вытекать из сосуда.

Расширительный бак

Если вместо уравнительного сосуда используется расширительный бак для компенсации давления (СМЗ), уровень давления контролируется. Если давление падает, следует заполнить систему.

Последующая регулировка комнатной температуры

Если необходимой комнатной температуры достичь не удается, может понадобиться повторная регулировка.

Холодные погодные условия

- Если комнатная температура слишком низкая, увеличьте "кривая отопления" в меню 1.9.1, одна ступень.
- Если комнатная температура слишком высокая, уменьшите "кривая отопления" в меню 1.9.1, одна ступень.

Теплые погодные условия

- Если комнатная температура слишком низкая, увеличьте "температура" (смещение кривой нагрева) в меню 1.1, одна ступень.
- Если комнатная температура слишком высокая, уменьшите "температура" (смещение кривой нагрева) в меню 1.1, одна ступень.

7 Управление - введение

Дисплей

Дисплей

На дисплее отображаются инструкции, уставки и оперативная информация. Легко-читаемый дисплей и система меню упрощают навигацию по различным меню и опциям для обеспечения комфорта или получения требуемой информации.

В Лампа состояния

Лампа состояния указывает на состояние теплового насоса. Она:

- горит зеленым светом в обычном режиме.
- горит желтым светом в аварийном режиме
- горит красным светом в случае развернутой аварийной сигнализации.

Кнопка "ОК"

Кнопка "ОК" используется для:

 подтверждения выбора подменю/опций/уставок/страницы в руководстве по началу работы.

Кнопка "Назад"

Кнопка "Назад" используется для:

- возврата в предыдущее меню.
- изменения неподтвержденной установки.

Рукоятка управления

Рукоятка управления вращается направо или налево. Можно:

- прокручивать меню и опции.
- увеличивать и уменьшать значения.
- листать страницы в многостраничных инструкциях (например, справочный текст и информация по обслуживанию).

F Переключатель (SF1)


Переключатель имеет три положения:

- Вкл. (**I**)
- **■** Ожидание (**也**)
- Аварийный режим (Δ)

Аварийный режим следует использовать только в случае неисправности теплового насоса. В этом режиме отключается компрессор и включается погружной нагреватель. Дисплей теплового насоса не светится, и лампа состояния горит желтым светом.

Система меню

Когда дверца теплового насоса открыта, на дисплее отображаются четыре главных меню системы меню, а также некоторые основные сведения.

Меню 1 - ТЕМПЕРАТУРА В ПОМЕЩЕНИИ

Установка и планирование температуры в помещении. См. стр. 37.

Меню 2 - ГОРЯЧАЯ ВОДА

Установка и планирование подачи горячей воды. См. стр. 45.

Это меню появляется только в случае, если водонагреватель состыкован с тепловым насосом.

Меню 3 - ИНФО

Отображение температуры и иной оперативной информации и доступ к журналу аварийной сигнализации. См. стр. 47.

Меню 4 - ТЕПЛОВОЙ НАСОС

Установка времени, даты, языка, отображения, режима работы и т. д. См. стр. 48.

Меню 5 - СЕРВИС

Расширенные настройки. Эти уставки недоступны конечному пользователю. Меню отображается нажатием кнопки "Назад" в течение 7 секунд. См. стр. 52.

Символы на дисплее

Во время работы на дисплее могут отображаться следующие символы.

Символ	Описание
400	Этот символ появляется возле информационного знака при наличии информации в меню 3.1, которую следует принять во внимание.
X	Эти два символа указывают на блокировку компрессора или дополнительного нагрева в F1145. Например, они могут быть заблокированы в зависимости от того, какой режим работы выбран в меню 4.2, а также если блокировка запланирована в меню 4.9.5 или если сработала аварийная сигнализация, блокирующая один из них. Блокировка компрессора. Блокировка дополнительного нагрева.
	Этот символ отображается при активизации режима "люкс" для горячей воды.
%	Этот символ обозначает фактическую скорость вентилятора, если обычная уставка скорости изменилась. Требуется дополнительное оборудование NIBE FLM.
*	Этот символ обозначает статус активности солнечного отопления. Требуется дополнительное оборудование.
	Этот символ указывает на активизацию уставки "уст. на праз." в меню 4.7.

Работа

Для перемещения курсора поверните рукоятку управления влево или вправо. Отмеченное положение выглядит ярче и/или имеет загнутый вверх край.

Выбор меню

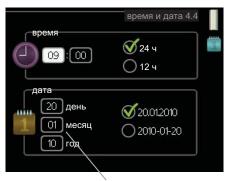
Для перемещения в системе меню выберите главное меню, выделив его и затем нажав кнопку "ОК". Откроется новое окно с несколькими подменю.

Выберите одно из подменю, выделив его и затем нажав кнопку "ОК".

Выбор опций

Альтернатива

В меню опций текущий выбранный вариант обозначен зеленой галочкой.



Для выбора другой опции:

- 1. Выделите подходящую опцию. Одна из опций выбрана предварительно (белый цвет).
- Подтвердите выбранную опцию, нажав на кнопку "ОК". Выбранная опция обозначена зеленой галочкой.

Установка значения

Заменить значения

Для установки значения:

- Рукояткой управления выделите значение, которое требуется установить.
- Нажмите кнопку "ОК". Фон значения становится зеленым, что означает наличие доступа к режиму установки.
- Поверните рукоятку управления вправо для 04 увеличения значения и влево — для его уменьшения.
- Нажмите кнопку "ОК", чтобы подтвердить 04 установку значения. Для изменения и возврата к первоначальному значению нажмите . кнопку "Назад".

Прокрутка окон

Меню может состоять из нескольких окон. Поверните рукоятку управления для прокрутки окон.

Текущее окно меню Количество окон в меню

Прокрутка окон в руководстве по началу работы

Стрелки для прокрутки окон в руководстве по началу работы

- 1. Вращайте рукоятку управления до тех пор, пока не выделится одна из стрелок в верхнем левом углу (возле номера страницы).
- 2. Нажмите кнопку "ОК" для перемещения между шагами руководства по началу работы.

Меню справки

Во многих меню имеется символ, указывающий на наличие дополнительной справки.

Для доступа к справочному тексту:

- 1. Используйте рукоятку управления, чтобы выбрать символ справки.
- 2. Нажмите кнопку "ОК".

Справочный текст часто состоит из нескольких окон, которые можно прокручивать с помощью рукоятки управления.

8 Управление - меню

Меню 1 - ТЕМПЕРАТУРА В ПОМЕЩЕНИИ

Обзор

1 - ТЕМПЕРАТУРА В ПОМЕЩЕНИИ	1.1 - температура	
	1.2 - вентиляция *	
	1.3 - планирование	1.3.1 - отопление
		1.3.2 - охлаждение *
		1.3.3 - вентил. *
	1.9 - расширенный	1.9.1 - кривая отопления
		1.9.2 - Внешняя регулировка
		1.9.3 - Мин. тем-ра под. труб-да
		1.9.4 - уставки комнатного датчика
		1.9.5 - уставки охлаждения *
		1.9.6 - время возврата вентилятора *
		1.9.7 - собственная кривая
		1.9.8 - точечное смещение

^{*} Необходимо дополнительное оборудование.

Подменю

Меню ТЕМПЕРАТУРА В ПОМЕЩЕНИИ состоит из нескольких подменю. Информация о состоянии соответствующего меню находится на дисплее справа от меню.

температура Установка температуры для системы климат-контроля. Информация о состоянии отображает уставки для системы климат-контроля. Вкладка системы охлаждения отображается только при наличии дополнительного оборудования для охлаждения или встроенной функции охлаждения теплового насоса

вентиляция Установка скорости вентилятора. Информация о состоянии отображает выбранную уставку. Данное меню отображается только в случае подключения модуля вытяжного воздуха (дополнительное оборудование).

планирование Планирование отопления, охлаждения и вентиляции. Информация о состоянии "уст." отображается в случае, если расписание задано, но не активно в настоящее время, "уст. на праз." отображается в случае, если расписание отпуска активировано одновременно с расписанием (функция отпуска имеет приоритет), "активен" отображается в случае, если активирована любая часть расписания, в противном случае отображается " выкл.".

расширенный Установка кривой нагрева, регулировка с внешним контактом, минимальное значение температуры подаваемого теплоносителя, комнатный датчик и функция охлаждения.

Меню 1.1 - температура

Если дом оборудован несколькими системами климат-контроля, это указано на дисплее в виде термометра для каждой системы.

Если тепловой насос оснащен дополнительным оборудованием для охлаждения и встроенной функцией

охлаждения, это отображено на дисплее в виде дополнительной вкладки.

Установка температуры (с помощью установленных и активированных комнатных датчиков):

Диапазон уставок: 5-30°C Значение по умолчанию: 20

Значение на дисплее отображается как температура в $^{\circ}$ С, если система отопления контролируется комнатным датчиком.

Для изменения комнатной температуры установите требуемую температуру на дисплее с помощью рукоятки управления. Подтвердите новую уставку, нажав кнопку "ОК". Новая температура отображена с правой стороны символа на дисплее.

Установка температуры (без активированных комнатных датчиков):

Диапазон уставок: -10 - +10 Значение по умолчанию: 0

Дисплей отображает уставки для отопления (смещение кривой). Для увеличения или уменьшения внутрикомнатной температуры увеличьте или уменьшите значение на дисплее.

Используйте рукоятку управления, чтобы задать новое значение. Подтвердите новую уставку, нажав кнопку "ОК".

Количество шагов, на которое должно быть изменено значение для достижения требуемой внутрикомнатной температуры, зависит от отопительного устройства. Для подогрева пола требуется один шаг, а для радиаторов могут потребоваться три шага.

Установка требуемого значения. Новое значение отображено с правой стороны символа на дисплее.

ВНИМАНИЕ!

Повышение комнатной температуры может быть замедлено термостатами радиаторов или системы подогрева пола. Поэтому откройте термостаты полностью, за исключением комнат, где требуется меньшая температура, напр., спален.

COBET!

Задавайте новую уставку через 24 часа, дав комнатной температуре время стабилизироваться

При низкой наружной температуре и слишком низкой комнатной температуре увеличьте наклон кривой на один шаг в меню 1.9.1.

При низкой наружной температуре и слишком высокой комнатной температуре уменьшите наклон кривой на один шаг в меню 1.9.1.

При высокой наружной температуре и слишком низкой комнатной температуре увеличьте значение на один шаг в меню 1.1.

При высокой наружной температуре и слишком высокой комнатной температуре уменьшите значение на один шаг в меню 1.1.

Меню 1.2 - вентиляция (требуется дополнительное оборудование)

Диапазон уставок: обычный и скорость 1-4 Значение по умолчанию: обычный

Здесь можно временно увеличить или уменьшить степень вентиляции в помещении.

После выбора новой скорости часы запускают обратный отсчёт времени. По истечении установленного времени скорость вентиляции возвращается к обычной уставке.

При необходимости разные значения времени обратного хода можно изменить в меню 1.9.6.

Скорость вентилятора показана в квадратных скобках (в процентах) после каждого альтернативного значения скорости.

COBET!

Если требуется задать более длительное время, используйте функцию отпуска или планирование.

Меню 1.3 - планирование

В меню планирование температура в помещении (отопление/охлаждение/вентиляция) планируется для каждого рабочего дня.

Можно также запланировать более длительный период в течение выбранного периода (отпуска) в меню 4.7.

Меню 1.3.1 - отопление

Здесь можно запланировать повышение или снижение температуры в помещении максимум для трех периодов в сутки. Если установлен и активирован комнатный датчик, требуемая комнатная температура (°С) устанавливается в течение периода времени. При отсутствии активированного комнатного датчика задается требуемое изменение (уставки в меню 1.1). Для изменения комнатной температуры на один градус требуется один шаг для подогрева пола и примерно два-три шага для радиаторной системы.

При конфликте двух уставок отображается красный восклицательный знак в конце строки.

Расписание: Здесь выбирается расписание, подлежащее замене.

Активировано: Здесь активируется расписание для выбранного периода. При отключении заданные периоды времени не изменяются.

Система: Здесь выбирается система климат-контроля, для которой задается расписание. Эта альтернатива отображается только при наличии двух и более систем климат-контроля.

День: Здесь можно выбрать день или дни недели, для которых задается расписание. Чтобы удалить расписание для конкретного дня, следует выполнить сброс времени для этого дня, установив одно и то же время запуска и время останова. Если используется строка "все", тогда все дни в указанный период устанавливаются на данное время.

Период времени: Здесь выбирается расписание времени запуска и времени останова для выбранного дня.

Регулировка: Здесь устанавливается степень смещения кривой нагрева в отношении меню 1.1 во время планирования. Если установлен комнатный датчик, требуемая комнатная температура устанавливается в °C.

COBET!

Чтобы задать одинаковое расписание для всех дней недели, установите "все" и затем измените требуемые дни.

ВНИМАНИЕ!

Если время останова установлено ранее времени запуска, это значит, что данный период распространяется за полночь. Расписание всегда начинается в день, для которого задано время запуска.

Для изменения температуры в помещении требуется время. Например, короткие периоды времени в сочетании с подогревом пола не приведут к заметным изменениям комнатной температуры.

Меню 1.3.2 - охлаждение (требуется дополнительное оборудование)

Здесь можно запланировать включение охлаждения в помещении максимум на два разных периода времени в сутки.

При конфликте двух уставок отображается красный восклицательный знак в конце строки.

Расписание: Здесь выбирается расписание, подлежащее замене.

Активировано: Здесь активируется расписание для выбранного периода. При отключении заданные периоды времени не изменяются.

День: Здесь можно выбрать день или дни недели, для которых задается расписание. Чтобы удалить расписание для конкретного дня, следует выполнить сброс времени для этого дня, установив одно и то же время запуска и время останова. Если используется строка "все", тогда все дни в указанный период устанавливаются на данное время.

Период времени: Здесь выбирается расписание времени запуска и времени останова для выбранного дня.

Регулировка: Здесь задается включение или отключение охлаждения во время планирования.

COBET!

Чтобы задать одинаковое расписание для всех дней недели, установите "все" и затем измените требуемые дни.

ВНИМАНИЕ!

Если время останова установлено ранее времени запуска, это значит, что данный период распространяется за полночь.

Расписание всегда начинается в день, для которого задано время запуска.

Меню 1.3.3 - вентил. (требуется дополнительное оборудование)

Здесь можно запланировать увеличение или уменьшение степени вентиляции в помещении максимум для двух периодов времени в сутки.

При конфликте двух уставок отображается красный восклицательный знак в конце строки.

Расписание: Здесь выбирается расписание, подлежащее замене.

Активировано: Здесь активируется расписание для выбранного периода. При отключении заданные периоды времени не изменяются.

День: Здесь можно выбрать день или дни недели, для которых задается расписание. Чтобы удалить расписание для конкретного дня, следует выполнить сброс времени для этого дня, установив одно и то же время запуска и время останова. Если используется строка "все", тогда все дни в указанный период устанавливаются на данное время.

Период времени: Здесь выбирается расписание времени запуска и времени останова для выбранного дня.

Регулировка: Здесь устанавливается требуемая скорость вентилятора.

COBET!

Чтобы задать одинаковое расписание для всех дней недели, установите "все" и затем измените требуемые дни.

ВНИМАНИЕ!

Если время останова установлено ранее времени запуска, это значит, что данный период распространяется за полночь. Расписание всегда начинается в день, для которого задано время запуска.

Существенное изменение в течение более продолжительного периода времени может ухудшить климатическую обстановку в доме и отрицательно сказаться на экономичности эксплуатации.

Меню 1.9 - расширенный

Меню расширенный имеет текст оранжевого цвета и предназначено для опытного пользователя. Это меню состоит из нескольких подменю.

кривая отопления Установка наклона кривой нагрева.

Внешняя регулировка Установка смещения кривой нагрева при подключении внешнего контакта.

Мин. тем-ра под. труб-да Установка минимально допустимой температуры подаваемого теплоносите-

уставки комнатного датчика Уставки комнатного латчика.

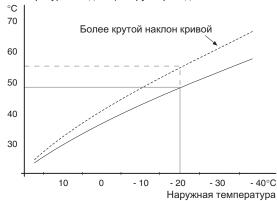
уставки охлаждения Уставки охлаждения.

время возврата вентилятора Уставки времени возврата вентилятора в случае временного изменения скорости вентилятора.

собственная кривая Установка собственной кривой нагрева.

точечное смещение Установка смещения кривой нагрева при специфической наружной температуре.

Меню 1.9.1 - кривая отопления


кривая отопления

Диапазон уставок: 0 - 15 Значение по умолчанию: 9

В меню кривая отопления можно просматривать так называемую кривую нагрева для дома. Кривая нагрева предназначена для обеспечения стабильной внутрикомнатной температуры вне зависимости от наружной температуры и результирующего эффективного использования энергии. С помощью кривой нагрева управляющий компьютер теплового насоса определяет температуру воды для системы отопления, температуру подающего трубопровода и, следовательно, внутрикомнатную температуру. Здесь можно выбрать кривую нагрева и считать степень изменения температуры подающего трубопровода при различной наружной температуре.

Коэффициент кривой

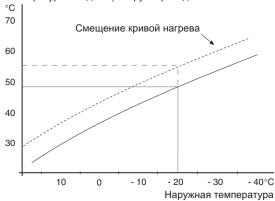
Температура в подающем трубопроводе

Наклон кривой нагрева указывает, на сколько градусов следует увеличить/уменьшить температуру подаваемого теплоносителя при снижении/повышении наружной температуры. Более крутой наклон означает более высокую температуру подаваемого теплоносителя при определенной наружной температуре.

Оптимальный наклон зависит от климатических условий в той или иной местности, наличия в доме радиаторов или подогрева пола и качества теплоизоляции дома.

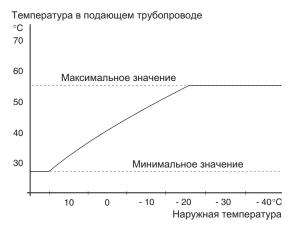
Кривая нагрева задается при установке системы отопления, но может потребоваться её дальнейшая

регулировка. После этого, дальнейшая регулировка кривой нагрева не требуется.



ВНИМАНИЕ!

Для выполнения точной регулировки внутрикомнатной температуры следует, в качестве альтернативы, сместить кривую нагрева вверх или вниз посредством меню 1.1 температура.


Смещение кривой

Температура в подающем трубопроводе

Смещение кривой нагрева означает, что температура подаваемого теплоносителя изменяется в одинаковой степени для любой наружной температуры, напр., смещение кривой на +2 шага повышает температуру подаваемого теплоносителя на 5°C при любой наружной температуре.

Температура подающего трубопровода - максимальные и минимальные значения

Поскольку невозможно рассчитать температуру подающего трубопровода выше максимальной уставки или ниже минимальной уставки, кривая нагрева становится плоской при таких температурах.

ВНИМАНИЕ!

Системы подогрева пола обычно имеют уставку макс. тем-ра под. труб. в диапазоне от 35 до 45°C.

Проверьте макс. температуру пола вместе с организацией, осуществляющей установку пола/поставщиком пола.

Цифра в конце кривой указывает на наклон кривой. Цифра возле термометра показывает смещение кривой. Используйте рукоятку управления, чтобы задать новое значение. Подтвердите новую уставку, нажав кнопку "ОК".

Кривая 0 является собственной кривой нагрева, созданной в меню 1.9.7.

Для выбора другой кривой нагрева (наклона):

ПРИМЕЧАНИЕ

При наличии только одной системы отопления номер кривой уже выделен при открытии окна меню.

- Выберите систему (при наличии двух и более), для которой следует изменить кривую нагрева.
- 2. После подтверждения выбора системы выделяется номер кривой нагрева.
- 3. Нажмите кнопку "ОК" для доступа к режиму установки.
- 4. Выберите новую кривую нагрева. Кривые нагрева нумеруются от 0 до 15. Чем больше номер, тем круче наклон и выше температура подаваемого теплоносителя. Кривая нагрева 0 означает, что используется собственная кривая (меню 1.9.7).
- 5. Нажмите кнопку "ОК" для выхода из режима установки.

Для считывания кривой нагрева:

- 1. Поверните рукоятку управления, чтобы выделить кольцо на валу с наружной температурой.
- 2. Нажмите кнопку "ОК".
- 3. Следуйте по серой линии вверх до кривой нагрева и влево, чтобы считать значение температуры подаваемого теплоносителя при выбранной наружной температуре.
- 4. Теперь можно выбрать показания различных наружных температур, повернув рукоятку управления вправо или влево, и считать соответствующую температуру потока.
- 5. Нажмите кнопку "ОК" или "Назад" для выхода из режима считывания.

COBET!

Задавайте новую уставку через 24 часа, дав комнатной температуре время стабилизироваться.

При низкой наружной температуре и слишком низкой комнатной температуре увеличьте наклон кривой на один шаг.

При низкой наружной температуре и слишком высокой комнатной температуре уменьшите наклон кривой на один шаг.

При теплой наружной температуре и слишком низкой комнатной температуре увеличьте смещение кривой на один шаг.

При теплой наружной температуре и слишком высокой комнатной температуре уменьшите смещение кривой на один шаг.

Меню 1.9.2 - Внешняя регулировка

система климат-контроля

Диапазон уставок: от -10 до +10 или требуемая комнатная температура, если установлен комнатный датчик.

Значение по умолчанию: 0

Подключение внешнего контакта (например, комнатного термостата или таймера) позволяет временно или периодически повышать или понижать комнатную температуру. При замыкании контакта смещение кривой нагрева изменяется на число шагов, выбранное в меню. Если установлен и активирован комнатный датчик, устанавливается требуемая комнатная температура (°C).

При наличии двух и более систем климат-контроля можно задавать уставку отдельно для каждой системы

Меню 1.9.3 - Мин. тем-ра под. труб-да

система климат-контроля

Диапазон уставок: 5-70°C

Значение по умолчанию: 20°C

Установка минимальной температуры подаваемого теплоносителя для системы климат-контроля. Это означает, что F1145 никогда не рассчитывает температуру ниже уставки.

При наличии двух и более систем климат-контроля можно задавать уставку отдельно для каждой системы.

COBET!

Значение можно увеличить, если, например, в доме имеется подвал, который требуется всегда обогревать, даже летом.

Может также потребоваться увеличить это значение в "останов отопления" в меню 4.9.2 "уставка авторежима".

Меню 1.9.4 - уставки комнатного датчика

система коэффициентов

Диапазон уставок: 0,0 - 6,0 Значение по умолчанию: 2,0

Здесь можно активировать комнатные датчики для контроля комнатной температуры.

Здесь задается коэффициент, определяющий, насколько на температуру подаваемого теплоносителя влияет разность между требуемой и реальной комнатной температурой. Чем больше значение, тем больше изменение смещения кривой нагрева.

Если установлено несколько систем климат-контроля, указанные выше уставки можно задавать для соответствующих систем.

Меню 1.9.5 - уставки охлаждения (требуется дополнительное оборудование)

Мин. тем-ра потока охлажд.

Диапазон уставок: 5-50°C Значение по умолчанию: 18

Тем. пот. охл. при +20 °C

Диапазон уставок: 5-50°C Значение по умолчанию: 25

Под. труб. хл. при +40°C

Диапазон уставок: 5-50°C Значение по умолчанию: 18

Вр. меж пер. отоп./ох.

Диапазон уставок: 0-48 ч Значение по умолчанию: 2

от. при комн. тем. ниже

Диапазон уставок: 0,5-10,0°C Значение по умолчанию: 1,0

ох. при комн. тем. св.

Диапазон уставок: 0,5-10,0°C Значение по умолчанию: 1,0

уси. смес. клапана

Диапазон уставок: 0,1 –10,0 Значение по умолчанию: 1,0

зад. шага смес. клап.

Диапазон уставок: 10-300 с Значение по умолчанию: 30 с

F1145 можно использовать для охлаждения дома в жаркие времена года.

Мин. тем-ра потока охлажд.

Установка минимальной температуры подаваемого теплоносителя для системы климат-контроля при охлаждении. Это означает, что F1145 никогда не рассчитывает температуру ниже уставки.

Тем. пот. охл. при +20 °C

Установка требуемой температуры потока для системы климат-контроля при охлаждении, когда температура наружного воздуха составляет +20°С. Затем F1145 обеспечивает температуру, как можно ближе соответствующую уставке.

Под. труб. хл. при +40°C

Установка требуемой температуры потока для системы климат-контроля при охлаждении, когда температура наружного воздуха составляет +40°С. Затем F1145 обеспечивает температуру, как можно ближе соответствующую уставке.

Вр. меж пер. отоп./ох.

Здесь можно установить продолжительность времени ожидания F1145 до возвращения в режим отопления, после того как отпала необходимость в охлаждении, и наоборот.

зак. смес. клап. при охлажд.

Если тепловой насос подключен более чем к одной системе климат-контроля, в них может образоваться конденсация, если они не предназначены для охлаждения.

Во избежание образования конденсации проверьте "зак. смес. клап. при охлажд.", что означает, что подчиненные шунтирующие вентили для дополнительных систем климат-контроля закрываются при включении охлаждения.

от. при комн. тем. ниже

ВНИМАНИЕ!

Эта опция установки отображается только в случае, если датчик комнатной температуры подключен к F1145 и активирован.

Здесь можно задать степень понижения комнатной температуры ниже требуемой уставки до того, как F1145 переключится в режим отопления.

ох. при комн. тем. св.

ь внимание!

Эта опция установки отображается только в случае, если датчик комнатной температуры подключен к F1145 и активирован.

Здесь можно задать степень повышения комнатной температуры выше требуемой уставки до того, как F1145 переключится в режим охлаждения.

уси. смес. клапана и зад. шага смес. клап.

Настройки усиления смесительного вентиля и времени ожидания смесительного вентиля для системы охлаждения устанавливаются здесь.

Меню 1.9.6 - время возврата вентилятора (требуется дополнительное оборудование)

скорость 1-4

Диапазон уставок: 1-99 ч Значение по умолчанию: 4 ч

Здесь выбирается время возврата для временного изменения скорости (скорость 1-4) вентиляции в меню 1.2.

Время возврата — это время, которое проходит до возврата скорости вентиляции в обычный режим.

Меню 1.9.7 - собственная кривая

температура подаваемого теплоносителя

Диапазон уставок: 0-80°C

При наличии специальных требований здесь можно создать пользовательскую кривую нагрева, установив требуемые температуры подаваемого теплоносителя для разных наружных температур.

ВНИМАНИЕ!

Для применения данной кривой следует выбрать кривую 0 в меню 1.9.1.

Меню 1.9.8 - точечное смещение

точка наруж. тем.

Диапазон уставок: -40-30°C Значение по умолчанию: 0°C

изм. в кривой

Диапазон уставок: -10-10°C Значение по умолчанию: 0°C

Здесь выбирается изменение кривой нагрева при определенной наружной температуре. Для изменения комнатной температуры на один градус требуется один шаг для подогрева пола и примерно два-три шага для радиаторной системы.

На кривую нагрева влияет разница \pm 5°C по сравнению с уставкой точка наруж. тем..

Важно выбрать правильную кривую нагрева для обеспечения стабильной комнатной температуры.

COBET!

Если в доме холодно, например, при температуре -2°С, "точка наруж. тем." устанавливается на "-2" и "изм. в кривой" увеличивается до тех пор, пока не будет поддерживаться требуемая комнатная температура.

ВНИМАНИЕ!

Задавайте новую уставку через 24 часа, дав комнатной температуре время стабилизироваться.

Меню 2 - ГОРЯЧАЯ ВОДА

Обзор

2 - ГОРЯЧАЯ ВОДА *

2.1 - временный люкс

2.2 - режимы

2.3 - планирование

2.9 - расширенный

2.9.1 - периодические повышения

Подменю

Это меню появляется только в случае, если водонагреватель состыкован с тепловым насосом.

Меню ГОРЯЧАЯ ВОДА состоит из нескольких подменю. Информация о состоянии соответствующего меню находится на дисплее справа от меню.

временный люкс Активизация временного повышения температуры горячей воды. В информации о состоянии отображается "выкл." или остаток времени временного повышения температуры.

режимы Установка комфортного объема горячей воды. В информации о состоянии отображается выбранный режим: "эконом.", "обычный" или "люкс".

планирование Планирование комфортного объема горячей воды. В информации о состоянии отображается "уст." в случае, если в данный момент активирована любая часть расписания, "уст. на праз." — в случае, если выполняется уставка отпуска (меню 4.7), в противном случае отображается "выкл.".

расширенный Установка периодического повышения температуры горячей воды.

Меню 2.1 - временный люкс

Диапазон уставок: 3, 6 и 12 часов и режим "выкл." Значение по умолчанию: "выкл."

Когда потребление горячей воды временно возрастает, данное меню можно использовать для выбора повышения температуры горячей воды до режима "люкс" в течение заданного времени.

ВНИМАНИЕ!

Если комфортный режим "люкс" выбран в меню 2.2, дальнейшее повышение не требуется.

Функция включается немедленно после выбора периода времени и подтверждения с помощью кнопки "ОК". Справа отображается оставшееся время выполнения выбранной уставки.

По истечении времени работы F1145 возвращается в режим, установленный в меню 2.2..

Выберите "выкл." для выключения временный люкс

Меню 2.2 - режимы

Диапазон уставок: эконом., обычный, люкс Значение по умолчанию: обычный

Выбранные режимы отличаются температурой горячей водопроводной воды. Более высокая температура означает, что горячей воды хватит на более длительное время.

эконом.: При данном режиме объем горячей воды меньше, поэтому он более экономный. Данный режим можно использовать в небольших домах, где не требуется большого объема горячей воды.

обычный: При обычном режиме производится больший объем горячей воды, что подходит для большинства потребителей.

люкс: В режиме "люкс" производится максимально возможный объем горячей воды. В данном режиме может частично использоваться погружной нагреватель для нагрева горячей воды, что может увеличивать эксплуатационные расходы.

Меню 2.3 - планирование

Здесь можно запланировать комфортный объем горячей воды, подаваемый тепловым насосом, максимум для двух разных периодов времени в сутки.

Расписание включается/выключается установкой/снятием галочки "активно". При отключении заданные периоды времени не изменяются.

При конфликте двух уставок отображается красный восклицательный знак.

^{*} Требуется дополнительное оборудование.

Расписание: Здесь выбирается расписание, подлежащее изменению.

Активировано: Здесь активируется расписание для выбранного периода. При отключении заданные периоды времени не изменяются.

День: Здесь можно выбрать день или дни недели, для которых задается расписание. Чтобы удалить расписание для конкретного дня, следует выполнить сброс времени для этого дня, установив одно и то же время запуска и время останова. Если используется строка "все", тогда все дни в указанный период устанавливаются на данное время.

Период времени: Здесь выбирается расписание времени запуска и времени останова для выбранного дня.

Регулировка: Здесь устанавливается комфортный объем горячей воды, применяемый при планировании.

COBET!

Чтобы задать одинаковое расписание для всех дней недели, установите "все" и затем измените требуемые дни.

ВНИМАНИЕ!

Если время останова установлено ранее времени запуска, это значит, что данный период распространяется за полночь.

Расписание всегда начинается в день, для которого задано время запуска.

Меню 2.9 - расширенный

Меню расширенный имеет текст оранжевого цвета и предназначено для опытного пользователя. Это меню состоит из нескольких подменю.

Меню 2.9.1 - периодические повышения

период

Диапазон уставок: 1-90 дней Значение по умолчанию: 14 дней

время начала

Диапазон уставок: 00:00 - 23:00 Значение по умолчанию: 00:00

Для предотвращения размножения бактерий в водонагревателе компрессор и погружной нагреватель могут повышать температуру горячей воды через регулярные промежутки времени.

Здесь можно выбрать длительность времени между промежутками повышения температуры. Время устанавливается в диапазоне от 1 до 90 дней. Заводская установка: 14 дней. Снимите галочку "активно" для выключения этой функции.

Меню 3 - ИНФО

Обзор

\sim		1.4	1 1	4	
- ≺	_	1/1	н	Φ	(

- 3.1 служебная инфо
- 3.2 инфо о компр.
- 3.3 Доп. инф. отоп.
- 3.4 журн. сигн.
- 3.5 жур. комн. тем.

Подменю

Меню ИНФО состоит из нескольких подменю. В этих меню уставки не задаются. Здесь просто отображается информация. Информация о состоянии соответствующего меню находится на дисплее справа от меню.

служебная инфо отображает температурные уровни и уставки теплового насоса.

инфо о компр. отображает время работы, количество запусков и т. д. компрессора.

Доп. инф. отоп. отображает информацию о времени работы и т. д. дополнительной мощности.

журн. сигн. отображает последнюю аварийную сигнализацию и информацию о тепловом насосе в момент срабатывания аварийной сигнализации.

жур. комн. тем. отображает среднюю еженедельную температуру в помещении на протяжении прошлого года.

Меню 3.1 - служебная инфо

Здесь можно получить информацию о фактическом рабочем состоянии теплового насоса (напр., текущей температуре и т. д.). Изменения не предполагаются.

Информация размещена на нескольких страницах. Поверните рукоятку управления для прокрутки страниц.

Символы в этом меню:

Компрессор

Отопление

Дополнение

Горячая вода

Насос для рассола (синий)

Насос теплоносителя (оранжевый)

Охлаждение

Бассейн

Вентиляция

Меню 3.2 - инфо о компр.

Здесь можно получить информацию о рабочем состоянии компрессора и статистику. Изменения не предполагаются.

Информация размещена на нескольких страницах. Поверните рукоятку управления для прокрутки страниц.

Меню 3.3 - Доп. инф. отоп.

Здесь можно получить информацию о дополнительных уставках отопления, рабочем состоянии и статистику. Изменения не предполагаются.

Информация размещена на нескольких страницах. Поверните рукоятку управления для прокрутки страниц.

Меню 3.4 - журн. сигн.

Здесь хранится информация о рабочем состоянии теплового насоса в момент срабатывания аварийной сигнализации для облегчения обнаружения неисправности. Отображается информация о 10 последних случаях аварийной сигнализации.

Для просмотра хода работы в случае срабатывания аварийной сигнализации выделите аварийное сообщение и нажмите кнопку "ОК".

Меню 3.5 - жур. комн. тем.

Здесь отображается средняя еженедельная температура в помещении на протяжении прошлого года. Пунктирная линия указывает на среднегодовую температуру.

Средняя наружная температура отображается только в случае установки датчика комнатной температуры/комнатного устройства.

В противном случае, если установлен модуль вытяжного воздуха (NIBE FLM), отображается температура вытяжного воздуха.

Для считывания средней температуры:

- 1. Поверните рукоятку управления, чтобы выделить кольцо на валу с номером недели.
- 2. Нажмите кнопку "ОК".
- 3. Следуйте по серой линии вверх до графика и влево, чтобы считать среднюю внутрикомнатную температуру на выбранной неделе.
- 4. Теперь можно выбрать показания других недель, повернув рукоятку управления вправо или влево, и считать среднюю температуру.
- 5. Нажмите кнопку "ОК" или "Назад" для выхода из режима считывания.

Меню 4 – ТЕПЛОВОЙ НАСОС

4 - ТЕПЛОВОЙ НАСОС	4.1 BOB downsum *	4.1.1 - бассейн *
4 - TETITIOBON HACOC	4.1 - доп. функции *	
		4.1.4 - sms *
	4.2 - раб. режим	
	4.3 - мои значки	
	4.4 - время и дата	
	4.6 - язык	
	4.7 - уст. на праз.	
	4.9 - расширенный	4.9.1 - раб. приоритеты
		4.9.2 - уставка авторежима
		4.9.3 - уставка ТВП
		4.9.4 - сброс заводских на-
		строек
		_

^{*} Требуется дополнительное оборудование.

Подменю

Меню ТЕПЛОВОЙ НАСОС состоит из нескольких подменю. Информация о состоянии соответствующего меню находится на дисплее справа от меню.

доп. функции Уставки, применяемые ко всем установленным дополнительным функциям в системе отопления.

раб. режим Активизация ручного или автоматического режима работы. Информация о состоянии отображает выбранный режим работы.

мои значки Уставки, касающиеся того, какие значки в пользовательском интерфейсе теплового насоса должны отображаться в прорези закрытой дверцы.

время и дата Установка текущих времени и даты.

язык Здесь выбирается язык дисплея. Информация о состоянии отображает выбранный язык.

уст. на праз. Расписание отопления и вентиляции во время отпуска. В информации о состоянии отображается «уст.» в случае, если расписание отпуска задано, но не активно в настоящее время, «активен» отображается в случае, если активна любая часть расписания отпуска, в противном случае отображается « выкл. ".

расширенный Установка режима работы теплового насоса.

Меню 4.1 - доп. функции

В подменю можно задать уставки для всех дополнительных функций, установленных в системе отопления.

Меню 4.1.1 - бассейн (требуется дополнительное оборудование)

тем-ра пуска

4.9.5 - план. блок.

Обзор

Диапазон уставок: 5,0-80,0°C Значение по умолчанию: 22,0°C

тем-ра остановки

Диапазон уставок: 5,0-80,0°C Значение по умолчанию: 24,0°C

Выбор включения или выключения режима управления бассейном, а также диапазона температуры подогрева бассейна (температуры запуска и останова).

Если температура бассейна падает ниже установленной температуры запуска и отсутствуют требования по горячей воде или отоплению, F1145 запускает подогрев бассейна.

Снимите галочку "активно" для выключения подогрева бассейна.

ВНИМАНИЕ!

Невозможно задать значение температуры запуска, превышающее температуру останова.

Меню 4.1.4 - sms

Здесь задаются уставки для дополнительного оборудования SMS 40.

Добавьте номера мобильных телефонов, через которые осуществляется доступ к изменению и получению информации о состоянии от теплового насоса. Номера мобильных телефонов должны включать в себя код страны, напр., +46 XXXXXXXX.

Если требуется получать SMS-сообщения в случае срабатывания аварийной сигнализации, поставьте галочку в поле справа от номера телефона.

ПРИМЕЧАНИЕ

Предоставленные номера телефонов должны иметь возможность получать SMS-сообщения.

Меню 4.2 - раб. режим

раб. режим

Диапазон уставок: авто, ручной, тол. доп. отоп. Значение по умолчанию: авто

функции

Диапазон уставок: компрессор, дополнение, отопление, охлаждение

Рабочий режим теплового насоса обычно установлен на "авто". Также можно установить тепловой насос на "тол. доп. отоп.", но только в случае использования дополнительной мощности, или "ручной" и самостоятельно выбрать разрешенные функции.

Измените рабочий режим, выделив требуемый режим и нажав кнопку "ОК". После выбора режима работы отображаются сведения о функциях, разрешенных в тепловом насосе (зачеркнуто = не разрешено), и выбираемые варианты справа. Для выбора разрешенных или неразрешенных выбираемых функций выделите функцию рукояткой управления и нажмите кнопку "ОК".

Режим работы авто

В этом рабочем режиме нельзя выбирать разрешаемые функции, поскольку они выполняются автоматически тепловым насосом.

Режим работы ручной

В этом рабочем режиме можно выбирать разрешаемые функции. Нельзя отменить выбор "компрессор" в ручном режиме.

Режим работы тол. доп. отоп.

ВНИМАНИЕ!

Если выбран режим "тол. доп. отоп.", отменяется выбор компрессора и увеличиваются эксплуатационные расходы.

В этом рабочем режиме компрессор не активен и используется только дополнительное отопление.

Функции

- "компрессор" обеспечивает отопление и подачу горячей воды для помещений. Если выбор "компрессор" отменен, отображается соответствующий символ в главном меню на символе теплового насоса. Нельзя отменить выбор "компрессор" в ручном режиме.
- "дополнение" помогает компрессору отапливать помещение и/или нагревать горячую воду, когда он не может самостоятельно обеспечить все потребности.
- "отопление" означает отопление помещения. Можно отменить выбор этой функции, если отопление не требуется.

"охлаждение" означает охлаждение помещения в жаркую погоду. Можно отменить выбор этой функции, если охлаждение не требуется. Этот вариант требует наличия дополнительного оборудования для охлаждения или встроенной функции охлаждения теплового насоса.

ВНИМАНИЕ!

Если отменен выбор "дополнение", это может привести к недостаточному отоплению помещения.

Меню 4.3 - мои значки

Можно выбрать значок, отображаемый при закрытой дверце F1145. Можно выбрать максимум 3 значка. При выборе большего количества исчезнут значки, выбранные ранее. Значки отображаются в порядке, выбранном пользователем.

Меню 4.4 - время и дата

Здесь задаются время и дата и режим их отображения.

Меню 4.6 - язык

Выберите язык, требуемый для отображения информации.

Меню 4.7 - уст. на праз.

Для сокращения потребления энергии в течение праздников можно запланировать снижение температуры отопления и горячей воды. Работу охлаждения, вентиляции и бассейна также можно запланировать, если эти функции подключены.

Если установлен и активирован комнатный датчик, требуемая комнатная температура (°С) устанавливается в течение периода времени. Эта уставка применяется ко всем системам климат-контроля с комнатными датчиками.

Если комнатный датчик не активирован, устанавливается требуемое смещение кривой нагрева. Эта уставка применяется ко всем системам климат-контроля без комнатных датчиков. Для изменения комнатной температуры на один градус требуется один шаг для подогрева пола и примерно два-три шага для радиаторной системы.

Расписание отпуска начинается в 00:00 часов дня запуска и заканчивается в 23:59 часов дня останова.

COBET!

Обеспечьте завершение уставки отпуска приблизительно за один день до возвращения домой с тем, чтобы было время для восстановления обычных уровней комнатной температуры и подачи горячей воды.

COBET!

Задайте уставку отпуска заранее и активируйте её непосредственно перед отъездом для поддержания комфортных условий.

⇒ ВНИМАНИЕ!

Если выбрано отключение подачи горячей воды во время отпуска, "периодические повышения" (предотвращение размножения бактерий) заблокированы в течение этого времени. "периодические повышения" запускаются после завершения уставки отпуска.

Меню 4.9 - расширенный

Меню расширенный имеет текст оранжевого цвета и предназначено для опытного пользователя. Это меню состоит из нескольких подменю.

Меню 4.9.1 - раб. приоритеты

раб. приоритеты

Диапазон уставок: 0 с до 180 мин Значение по умолчанию: 20 мин

Здесь выбирается длительность работы теплового насоса по каждому требованию при одновременном наличии нескольких требований. При наличии только одного требования тепловой насос работает только согласно этому требованию.

Индикатор указывает цикл работы теплового насоса.

Если выбрано 0 минут, это означает, что приоритет для требования отсутствует, но будет активирован только при отсутствии другого требования.

Меню 4.9.2 - уставка авторежима

начало охлаждения

Диапазон уставок: -20-40°C Значение по умолчанию: 25

останов отопления

Диапазон уставок: -20-40°C Значение по умолчанию: 20

Останов доп. отопления

Диапазон уставок: -20-40°C Значение по умолчанию: 15

время фильтрации

Диапазон уставок: 0-48 ч Значение по умолчанию: 24 ч

Если рабочий режим установлен на "авто", тепловой насос выбирает время запуска и останова дополнительного отопления и определяет необходимость отопления в зависимости от средней наружной температуры. При наличии дополнительного оборудования для охлаждения или встроенной функции охлаждения теплового насоса можно также выбрать начальную температуру охлаждения.

В данном меню выберите среднюю наружную температуру.

Можно также задать время, в течение которого (время фильтрации) рассчитывается средняя темпе-

ратура. При выборе 0 используется текущая наружная температура.

ВНИМАНИЕ!

Невозможно задать уставку "Останов доп. отопления" выше чем "останов отопления".

ВНИМАНИЕ!

В системах, где для отопления и охлаждения совместно используется один и тот же трубопровод, уставку "останов отопления" невозможно задать выше чем "начало охлаждения".

Меню 4.9.3 - уставка ТВП

текущее значение

Диапазон уставок: -3000 - 3000

вкл. компрессор

Диапазон уставок: -1000 — -30 Значение по умолчанию: -60

вкл. добавление

Диапазон уставок: -2000 — -30 Значение по умолчанию: -400

разница между доп. шагами

Диапазон уставок: 0 – 1000 Значение по умолчанию: 100

Температурно-временной показатель (ТВП) является измерением текущего требования по отоплению дома и определяет время соответствующего запуска/останова дополнительного отопления компрессором.

ВНИМАНИЕ!

При более высоком значении уставки "вкл. компрессор" компрессор запускается чаще, что увеличивает степень износа компрессора. Слишком низкое значение может привести к неравномерной внутрикомнатной температуре.

Меню 4.9.4 - сброс заводских настроек

Здесь можно выполнить сброс всех уставок, доступных пользователю (включая расширенные меню), и восстановить значения по умолчанию.

ВНИМАНИЕ!

После восстановления заводских установок следует выполнить сброс личных уставок, таких как кривые нагрева.

Меню 4.9.5 - план. блок.

Здесь можно запланировать блокировку компрессора максимум для двух разных периодов времени.

При конфликте двух уставок отображается красный восклицательный знак в конце строки.

Если расписание активировано, отображается символ действительной блокировки в главном меню на символе теплового насоса.

Расписание: Здесь выбирается период времени, подлежащий замене.

Активировано: Здесь активируется расписание для выбранного периода. При отключении заданные периоды времени не изменяются.

День: Здесь можно выбрать день или дни недели, для которых задается расписание. Чтобы удалить расписание для конкретного дня, следует выполнить сброс времени для этого дня, установив одно и то же время запуска и время останова. Если используется строка "все", тогда все дни в указанный период устанавливаются на данное время.

Период времени: Здесь выбирается расписание времени запуска и времени останова для выбранного дня.

Блокировка: Здесь выбирается требуемая блокировка.

Блокировка компрессора.

Блокировка дополнительного нагрева.

COBET!

Чтобы задать одинаковое расписание для всех дней недели, установите "все" и затем измените требуемые дни.

ВНИМАНИЕ!

Если время останова установлено ранее времени запуска, это значит, что данный период распространяется за полночь.

Расписание всегда начинается в день, для которого задано время запуска.

ВНИМАНИЕ!

Длительная блокировка может привести к снижению комфортных условий и экономичности эксплуатации.

Меню 5 - СЕРВИС

Обзор

5 - СЕРВИС	5.1 - рабочие уставки	5.1.1 - уставки горячей воды *
		5.1.2 - макс. тем-ра под. труб.
		5.1.3 - макс. р. тем-ры ПТ
		5.1.4 - действия по тревоге
		5.1.5 - ск. вент выт. в. *
		5.1.7 - все уст. рас. нас.
		5.1.8 - раб. режим рас. насоса
		5.1.9 - ск.нас.рас.
		5.1.10 - оп. реж. нас. теплонос.
		5.1.11 - Скорость насоса ТН
		5.1.12 - внутр. доп. мощность
	5.2 - систем. уставки	
	5.3 - уставки аксессуара	5.3.1 - FLM *
		5.3.2 - бл. доп. отоп. с ш. вент. *
		5.3.3 - Доп. система КК *
		5.3.4 - солн. отоп. *
		5.3.6 - бл. доп. от. с шаг. упр. *
	5.4 - ввод/вывод прог.	
	5.5 - Служба заводских настроек:	
	5.6 - принуд. управление	
	5.7 - руко-во	
	5.8 - б. пуск	
	5.9 - функция высушивания пола	
	5.10 - изм. журнал	

^{*} Требуется дополнительное оборудование.

Удерживайте кнопку "Назад" нажатой в течение 7 секунд для доступа к служебному меню.

Подменю

Меню **СЕРВИС** имеет текст оранжевого цвета и предназначено для опытного пользователя. Это меню состоит из нескольких подменю. Информация о состоянии соответствующего меню находится на дисплее справа от меню.

рабочие уставки Рабочие уставки для теплового насоса

систем. уставки Системные уставки для теплового насоса, активизации дополнительного оборудования и т. д.

уставки аксессуара Оперативные уставки для разного дополнительного оборудования.

ввод/вывод прог. Установка программно-управляемых входов и выходов на печатной плате обработки и настройки входящих сигналов (ААЗ).

Служба заводских настроек: Полный сброс всех уставок (включая уставки, доступные пользователю) и восстановление значений по умолчанию.

принуд. управление Принудительное управление разными компонентами теплового насоса.

руко-во Ручной запуск руководства по началу работы, осуществляемый при первом запуске теплового насоса.

б. пуск Быстрый запуск компрессора.

ПРИМЕЧАНИЕ

Неправильные уставки в служебном меню могут привести к повреждению теплового насоса.

Меню 5.1 - рабочие уставки

Рабочие уставки для теплового насоса можно задавать в подменю.

Меню 5.1.1 - уставки горячей воды

экономный

Диапазон уставок: Пуск врем. эконом.: 5-70°С Заводская установка Пуск врем. эконом.: 38°С Диапазон уставок: Стоп врем. эконом.: 5-70°С Заводская установка Стоп врем. эконом.: 43°С

обычный

Диапазон уставок: Пуск врем. обычн.: 5-70°С Заводская установка Пуск врем. обычн.: 45°С Диапазон уставок: Стоп врем. обычн.: 5-70°С Заводская установка Стоп врем. обычн.: 50°С

люко

Диапазон уставок: Пуск врем. люкс: 5-70°C Заводская установка Пуск врем. люкс: 47°C Диапазон уставок: Стоп врем. люкс: 5-70°C Заводская установка Стоп врем. люкс: 52°C

Стоп врем. пер. повыш.

Диапазон уставок: 55-70°C Значение по умолчанию: 55 °C

Здесь задается температура запуска и останова подачи горячей воды для разных вариантов комфортных условий в меню2.2, а также температура останова для периодического повышения температуры в меню 2.9.1.

Меню 5.1.2 - макс. тем-ра под. труб.

система климат-контроля

Диапазон уставок: 5-70°C Значение по умолчанию: 60°C

Здесь устанавливается максимальная температура подаваемого теплоносителя для системы климат-контроля. Если установка оборудована двумя и более системами климат-контроля, для каждой системы можно задать отдельную максимальную температуру потока.

ВНИМАНИЕ!

Системы подогрева пола обычно имеют уставку макс. тем-ра под. труб. в диапазоне от 35 до 45°C.

Проверьте макс. температуру пола вместе с поставщиком пола.

Меню 5.1.3 - макс. р. тем-ры ПТ

макс. разн. компрес.

Диапазон уставок: 1-25°C Значение по умолчанию: 10°C

макс. разн. доп.

Диапазон уставок: 1-24°C Значение по умолчанию: 7°C

Здесь устанавливается максимально допустимая разность между расчетной и фактической температурой подаваемого теплоносителя при соответствующем режиме дополнительного отопления, запускаемого компрессором.

макс. разн. компрес.

Если текущая температура подаваемого теплоносителя **отличается** от уставки расчетного значения, выполняется принудительный останов теплового насоса независимо от значения температурно-временного показателя.

Если расчетная температура потока **превышает** расчетную уставку потока, значение температурновременного показателя устанавливается на 0. Компрессор останавливается, если требуется только отопление.

макс. разн. доп.

Если уставка "дополнение" выбрана и активирована в меню 4.2, а текущая температура подаваемого теплоносителя **превышает** расчетную уставку, выполняется принудительный останов дополнительного отопления.

Меню 5.1.4 - действия по тревоге

Здесь выбирается способ, с помощью которого тепловой насос предупреждает о наличии аварийной сигнализации на дисплее.

В качестве альтернативы выбирается останов подачи горячей воды (уставка по умолчанию) и/или снижение комнатной температуры тепловым насосом.

ВНИМАНИЕ!

Если не выбрано никакого действия при срабатывании аварийной сигнализации, это может привести к повышенному потреблению энергии в случае аварийной сигнализации.

Меню 5.1.5 - ск. вент. - выт. в. (требуется дополнительное оборудование)

обычный и скорость 1-4

Диапазон уставок: 0 – 100 %

Здесь задаются пять разных выбираемых скоростей для вентилятора.

ВНИМАНИЕ!

Неправильная настройка вентиляционного потока может повредить здание и также привести к увеличению энергопотребления.

Меню 5.1.7 - все уст. рас. нас.

мин. вых. рас.

Диапазон уставок: -12-15°C Значение по умолчанию: -8°C

Макс. вх. рас.

Диапазон уставок: 10-30°C Значение по умолчанию: 20°C

мин. вых. рас.

Установка температуры, при которой тепловой насос должен активировать аварийную сигнализацию при низкой температуре отводимого рассола.

Если выбрана уставка "авт. сброс", аварийная сигнализация сбрасывается после повышения температуры на 1°С ниже уставки.

Макс. вх. рас.

Установка температуры, при которой тепловой насос должен активировать аварийную сигнализацию при высокой температуре входящего рассола.

Выберите "сигн. актив." для активизации аварийной сигнализации.

Меню 5.1.8 - раб. режим рас. насоса

раб. режим

Диапазон уставок: непостоян., непрерыв., 10 дн. неперывно

Значение по умолчанию: непостоян.

Здесь задается режим работы насоса для рассола.

непостоян.: Насос для рассола запускается за 20 секунд до запуска компрессора и останавливается одновременно с компрессором.

непрерыв.: Непрерывная работа.

10 дн. неперывно: Непрерывная работа в течение 10 дней. Затем насос переключается на прерывистый режим работы.

COBET!

Можно использовать уставку "10 дн. неперывно" при запуске для обеспечения непрерывной циркуляции во время запуска, чтобы упростить стравливание воздуха из системы.

Меню 5.1.9 - ск.нас.рас.

ск.нас.рас.

Диапазон уставок: 0 - 100 % Значение по умолчанию: 50 %

Здесь устанавливается скорость насоса для рассола.

Меню 5.1.10 - оп. реж. нас. теплонос.

раб. режим

Диапазон уставок: авто, непостоян., непрерыв.

Значение по умолчанию: авто

Здесь задается режим работы насоса теплоносителя.

авто: Насос для теплоносителя работает в соответствии с текущим рабочим режимом для F1145.

непостоян.: Насос теплоносителя запускается за 20 секунд до запуска компрессора и останавливается одновременно с компрессором.

непрерыв.: Непрерывная работа.

Меню 5.1.11 - Скорость насоса ТН

горячая вода / отопление / бассейн / эконом. / охлаждение

Диапазон уставок: 0 - 100 % Значение по умолчанию: 70 %

Установка скорости, с которой тепловой насос должен работать при текущем режиме работы.

"**горячая вода**" означает режим работы подачи горячей воды для насосов теплоносителя.

"**отопление**" означает режим работы отопления для насосов теплоносителя.

"**бассейн**" означает режим работы обогрева бассейна для насосов теплоносителя.

"эконом." означает режим работы отопления для насосов теплоносителя, но только в том случае, если тепловому насосу не требуется ни работа компрессора, ни дополнительная мощность при снижении скорости теплового насоса.

"охлаждение" означает режим работы охлаждения для насосов теплоносителя.

Меню 5.1.12 - внутр. доп. мощность

макс. п. эл. доп.

Диапазон настройки: 7/9 Значение по умолчанию: 7

з. макс. эл. доп.

Диапазон уставок: 0-9 кВт Значение по умолчанию: 6 кВт

ном. ток предохранителя

Диапазон уставок: 1-200 A Значение по умолчанию: 16 A

Здесь устанавливается макс. электрическая мощность дополнительной мощности в F1145 и номинальный ток предохранителя для установки.

Здесь также можно проверить, какой датчик тока установлен на какой входящей фазе здания (для этого требуется установка датчиков тока, см. стр. 24). Для этого необходимо выделить "обн. черед. фаз" и нажать кнопку "ОК".

Результаты этих проверок появляются чуть ниже того места, где были активированы проверки.

Меню 5.2 - систем. уставки

Здесь задаются разные системные уставки для теплового насоса, напр., по установленному дополнительному оборудованию.

Если к F1145 подключен водонагреватель, здесь следует активировать подачу горячей воды.

Есть два способа активизации подключенного дополнительного оборудования. Можно либо выделить вариант в списке, либо воспользоваться автоматической функцией "поиск уст. акс.".

поиск уст. акс.

Выделите "поиск уст. акс." и нажмите кнопку "ОК" для автоматического поиска подключенного дополнительного оборудования для F1145.

ВНИМАНИЕ!

"датчик уровня" не подлежит автоматическому поиску, а выбирается вручную установкой галочки.

ПРИМЕЧАНИЕ

Если дополнительное оборудование АХС 40 будет использоваться для управления циркуляционным насосом, отметьте только опцию для насоса грунтовых вод.

Меню 5.3 - уставки аксессуара

Рабочие уставки для дополнительного установленного и активированного оборудования задаются в соответствующих подменю.

Меню 5.3.1 - FLM

время между оттаиван.

Диапазон уставок: 1-30 ч Значение по умолчанию: 10 ч

мес. меж. сигн. филь.

Диапазон уставок: 1 – 12 Значение по умолчанию: 3

непрерыв. раб. насоса: Выбор непрерывной работы циркуляционного насоса в модуле вытяжного воздуха.

время между оттаиван.: Установка минимального времени, которое должно пройти между циклами оттаивания теплообменника в модуле вытяжного воздуха.

При работе модуля вытяжного воздуха происходит охлаждение теплообменника, на котором накапливается лёд. При излишнем накоплении льда уменьшается способность теплопередачи теплообменника и требуется оттаивание. При оттаивании теплообменник нагревается, вследствие чего лёд тает и вытекает через шланг для конденсата.

мес. меж. сигн. филь.: Установка количества месяцев, которые должны пройти, прежде чем от теплового насоса поступит предупреждение о том, что пришло время очистить фильтр в модуле вытяжного воздуха.

Очищайте воздушный фильтр в модуле вытяжного воздуха регулярно; частота очистки зависит от количества пыли в вентиляционном воздухе.

Меню 5.3.2 - бл. доп. отоп. с ш. вент.

вкл. добавление

Диапазон уставок: -2000 – -30 GM Значение по умолчанию: -400 GM

мин. время работы

Диапазон уставок: 0-48 ч Значение по умолчанию: 12 ч

мин. тем-ра

Диапазон уставок: 5-90°C Значение по умолчанию: 55°C

уси. смес. клапана

Диапазон уставок: 0,1 –10,0 Значение по умолчанию: 1,0

зад. шага смес. клап.

Диапазон уставок: 10-300 с Значение по умолчанию: 30 с

Здесь устанавливаются время запуска дополнительной мощности, минимальное время работы и минимальная температура для внешней дополнительной мощности с шунтирующим вентилем. Примером внешней дополнительной мощности с шунтирующим

вентилем является твердотопливный/жидкотопливный/газовый/брикетный бойлер.

Для шунтирующего вентиля можно задать коэффициент усиления и время ожидания шунтирования.

Описание функции см. в инструкции по установке дополнительного оборудования.

Меню 5.3.3 - Доп. система КК

уси. смес. клапана

Диапазон уставок: 0,1 –10,0 Значение по умолчанию: 1,0

зад. шага смес. клап.

Диапазон уставок: 10-300 с Значение по умолчанию: 30 с

Установка коэффициента усиления и времени ожидания шунтирования для разных дополнительно установленных систем климат-контроля.

Описание функции см. в инструкции по установке дополнительного оборудования.

Меню 5.3.4 - солн. отоп.

Тдельта пу

Диапазон уставок: 1 - 40°C Значение по умолчанию: 8°C

Тдельта ос

Диапазон уставок: 0 - 40°C Значение по умолчанию: 4°C

макс. тем-ра резерв.

Диапазон уставок: 5 - 110°C Значение по умолчанию: 95°C

Макс. тем. солн. кол.

Диапазон уставок: 80 - 200°C Значение по умолчанию: 125°C

Тем-ра антифриза

Диапазон уставок: -20 - +20°C Значение по умолчанию: 2°C

Начать охл. солн. колл.

Диапазон уставок: 80 - 200°C Значение по умолчанию: 110°C

Тдельта пу, Тдельта ос: Здесь устанавливается разность температур между панелью солнечных батарей и солнечным резервуаром, при которой должен происходить запуск и останов циркуляционного насоса

макс. тем-ра резерв., Макс. тем. солн. кол.: Здесь устанавливаются максимальные температуры в резервуаре соответствующей панели солнечных батарей, при которых должен происходить останов циркуляционного насоса. Это необходимо для защиты от

избыточных температур в солнечном резервуаре и образования пара в солнечном контуре.

Тем-ра антифриза: Здесь устанавливается температура в панели солнечных батарей, при которой должен происходить запуск циркуляционного насоса для предотвращения замерзания.

Начать охл. солн. колл.: Если температура в панели солнечных батарей превышает эту уставку и одновременно температура в солнечном резервуаре поднимается выше заданной максимальной температуры, активируется внешняя функция охлаждения.

Меню 5.3.6 - бл. доп. от. c шаг. упр.

вкл. добавление

Диапазон уставок: -2000 – -30 GM Значение по умолчанию: -400 GM

разница между доп. шагами

Диапазон уставок: 0 – 1000 GM Значение по умолчанию: 100 GM

макс. шаг

Диапазон уставок (бинарные шаги отключены): 0 – 3

Диапазон уставок (бинарные шаги включены): 0 – 7

Значение по умолчанию: 3

Здесь задаются уставки для дополнительной мощности с шаговым управлением. Примером дополнительной мощности с шаговым управлением является внешний электрический бойлер.

Например, для запуска дополнительной мощности можно задать максимальное количество разрешенных шагов и использование бинарных шагов.

Описание функции см. в инструкции по установке дополнительного оборудования.

Меню 5.4 - ввод/вывод прог.

Здесь можно выбрать вход/выход на печатной плате обработки и настройки входящих сигналов (AA3), к которому должен подключаться внешний контакт (стр. 24).

Выбираемые входы на клеммной колодке AUX1-5 (AA3-X6:9-18) и выход AA3-X7 (на печатной плате обработки и настройки входящих сигналов).

Меню 5.5 - Служба заводских настроек:

Здесь можно выполнить сброс всех уставок (включая уставки, доступные пользователю) и восстановить значения по умолчанию.

ПРИМЕЧАНИЕ

После сброса уставок отображается руководство по началу работы при следующем перезапуске теплового насоса.

Меню 5.6 - принуд. управление

Здесь можно выполнить принудительное управление разными компонентами теплового насоса и любого дополнительного оборудования.

Меню 5.7 - руко-во

При первом запуске теплового насоса автоматически запускается руководство по началу работы. Здесь оно запускается вручную.

См. стр. 29 с более подробной информацией о руководстве по началу работы.

Меню 5.8 - б. пуск

Отсюда можно запустить компрессор.

ВНИМАНИЕ!

Для запуска компрессора должен поступить запрос на отопление или подачу горячей воды.

ВНИМАНИЕ!

Не допускайте слишком частого быстрого запуска компрессора через короткие последовательные промежутки времени, так как это может повредить компрессор и его вспомогательное оборудование.

Меню 5.9 - функция высушивания пола

длина периода 1 - 3, 5-7

Диапазон уставок: 0-30 дней Значение по умолчанию: 2 дней

тем-ра периода 1 - 3, 5-7

Диапазон уставок: 15-70°C Значение по умолчанию:

тем-ра периода 1	20 °C
тем-ра периода 2	30 °C
тем-ра периода 3	40 °C
тем-ра периода 5	40 °C
тем-ра периода б	30 °C
тем-ра периода 7	20 °C

длина периода 4

Диапазон уставок: 0-30 дней Значение по умолчанию: 3 дней

тем-ра периода 4

Диапазон уставок: 15-70°C Значение по умолчанию: 45°C

Здесь устанавливается функция высушивания пола.

Можно задать максимум семь периодов времени с разными расчетными температурами потока. Если необходимо использовать менее семи периодов, установите оставшиеся периоды времени на 0 дней.

Выделите активное окно, чтобы активировать функцию высушивания пола. Счетчик внизу показывает количество дней активности функции. Эта функция считает температурно-временной показатель как при обычном отоплении, но для температур потока, которые установлены для соответствующего периода.

ПРИМЕЧАНИЕ

При высушивании пола насос теплоносителя в 100% случаев работает независимо от уставки в меню 5.1.10.

COBET!

Если требуется использовать режим работы "тол. доп. отоп.", выберите его в меню 4.2.

Для достижения более равномерной температуры потока можно запустить дополнительную мощность раньше, задав уставку "запуск для дополнительной мощности" в меню с 4.9.2 по -80. По завершении заданных периодов высушивания пола выполните сброс меню 4.2 и 4.9.2 в соответствии с предыдущими уставками.

Меню 5.10 - изм. журнал

Здесь считываются все предыдущие изменения, внесенные в систему управления.

По каждому изменению отображаются дата, время, идентификационный номер (уникальный для некоторых уставок) и новая уставка.

ПРИМЕЧАНИЕ

Журнал изменений сохраняется при перезапуске и остаётся неизменным после заводской установки.

9 Обслуживание

Действия по обслуживанию

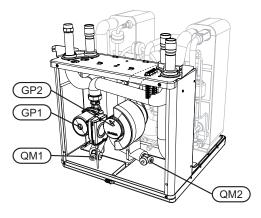
ПРИМЕЧАНИЕ

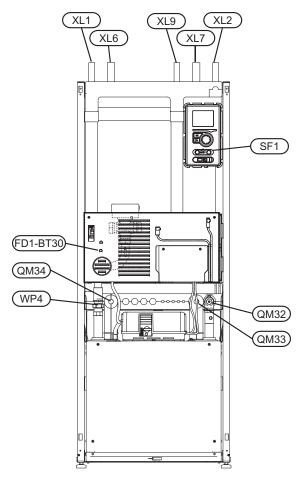
К обслуживанию допускаются только лица, обладающими надлежащей квалификацией.

При замене компонентов на F1145 разрешается использование только запасных частей производства компании NIBE.

Аварийный режим

58


ПРИМЕЧАНИЕ


Переключатель (SF1) следует переводить в положение "I" или " Δ " только после заполнения F1145 водой. В противном случае возможно повреждение ограничителя температуры, термостата, компрессора и погружного нагревателя.

Аварийный режим используется в случае операционного сбоя и в связи с обслуживанием. В этом режиме горячая вода не вырабатывается.

Аварийный режим активируется путем установки переключателя (SF1) в положение " Δ ". Это означает, что:

- Лампа состояния горит желтым светом.
- Дисплей не горит, и управляющий компьютер не подключен.
- Температура в погружном нагревателе контролируется термостатом (FD1-BT30). Его можно установить либо на 35°C, либо на 45°C.
- Компрессор и система рассола отключены; активными остаются только насос теплоносителя и дополнительная мощность. Дополнительная мощность в аварийном режиме устанавливается на плате погружного нагревателя (АА1). См. стр. 23 с инструкциями.

Дренаж водонагревателя (если состыкован)

Для опорожнения нагревателя горячей воды используется принцип сифона. Опорожнение происходит либо через дренажный клапан на входящем трубопроводе холодной воды или шланг, вставленный в соединительный патрубок холодной воды.

Дренаж системы климат-контроля

Для обслуживания системы климат-контроля может быть проще выполнить сначала дренаж системы. Это можно осуществить разными способами в зависимости от того, что необходимо сделать:

ПРИМЕЧАНИЕ

При дренаже стороны теплоносителя/системы климат-контроля может быть некоторое количество горячей воды. Существует риск ошпаривания.

Дренаж стороны теплоносителя в модуле охлаждения

Если, к примеру, требуется заменить насос теплоносителя или обслужить компрессорный модуль, выполните дренаж стороны теплоносителя следующим образом:

1. Закройте запорный клапан для стороны теплоносителя (QM32).

Раздел 9 | Обслуживание NIBE™ F1145

- 2. Подключите шланг к стравливающему клапану (QM1) и откройте клапан. Вытечет некоторое количество жидкости.
- Для вытекания оставшейся жидкости в систему должен поступить воздух. Для этого необходимо слегка ослабить соединение на запорном клапане (QM32) между тепловым насосом и модулем охлаждения.

После дренажа стороны теплоносителя можно выполнять требуемое обслуживание и/или замену любых компонентов.

Дренаж системы теплоносителя в тепловом насосе

Если требуется обслуживание теплового насоса, выполните дренаж стороны теплоносителя следующим образом:

- 1. Закройте запорные клапаны снаружи теплового насоса для стороны теплоносителя (возвратного и подающего трубопроводов).
- 2. Подключите шланг к стравливающему клапану (QM1) и откройте клапан. Вытечет некоторое количество жидкости.
- 3. Для вытекания оставшейся жидкости в систему должен поступить воздух. Для этого необходимо слегка ослабить соединение на запорном клапане между системой климат-контроля и тепловым насосом на соединении (XL2).

После опорожнения стороны теплоносителя можно выполнять требуемое обслуживание.

Дренаж всей системы климат-контроля

Если требуется дренаж всей системы климат-контроля, сделайте это следующим образом:

- Подключите шланг к стравливающему клапану (QM1) и откройте клапан. Вытечет некоторое количество жидкости.
- 2. Для вытекания оставшейся жидкости в систему должен поступить воздух. Для этого необходимо отвинтить стравливающий винт на радиаторе в высшей точке дома.

После опорожнения системы климат-контроля можно выполнять требуемое обслуживание.

Опорожнение системы рассола

Для обслуживания системы рассола может быть проще выполнить сначала дренаж системы. Это можно осуществить разными способами в зависимости от того, что необходимо сделать:

Дренаж системы рассола в модуле охлаждения

Если, к примеру, требуется заменить насос для рассола или обслужить компрессорный модуль, выполните дренаж системы рассола следующим образом:

- 1. Закройте запорные клапаны (QM33) и (QM34) системы рассола.
- 2. Подключите шланг к спускному клапану (QM2), поместите другой конец шланга в контейнер и откройте клапан. В контейнер вытечет небольшое количество рассола.

 Для вытекания оставшегося рассола в систему должен поступить воздух. Для этого необходимо слегка ослабить соединение на запорном клапане (QM33) между тепловым насосом и модулем охлаждения.

После опорожнения стороны рассола можно выполнять требуемое обслуживание.

Дренаж системы рассола в тепловом насосе

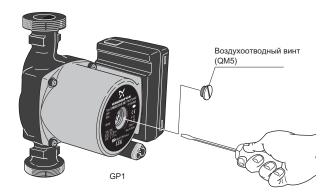
Если требуется обслуживание теплового насоса, выполните дренаж системы рассола следующим образом:

- Закройте запорный клапан снаружи теплового насоса для системы рассола.
- 2. Подключите шланг к спускному клапану (QM2), поместите другой конец шланга в контейнер и откройте клапан. В контейнер вытечет небольшое количество рассола.
- Для вытекания оставшегося рассола в систему должен поступить воздух. Для этого необходимо слегка ослабить соединение на запорном клапане между стороной рассола и тепловым насосом на соединении (XL7).

После опорожнения стороны рассола можно выполнять требуемое обслуживание.

Запуск циркуляционного насоса вручную (GP1)

ПРИМЕЧАНИЕ


Ручной запуск насоса теплоносителя (GP1) применим только к F1145 мощностью от -5 до -12 кВт.

Другие циркуляционные насосы используются при других значениях мощности.

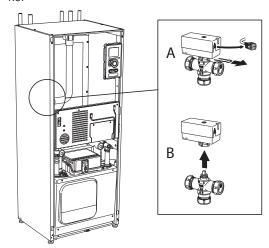
- 1. Выключите F1145, установив переключатель (SF1) в положение "**Ů**".
- 2. Откройте крышку обслуживания.
- 3. Снимите крышку модуля охлаждения.
- С помощью отвертки отпустите воздухоотводный винт (QM5). Оберните лезвие отвертки тканью на случай вытекания небольшого количества воды.
- 5. Вставьте отвертку и проверните двигатель насоса.
- 6. Завинтите воздухоотводный винт (QM5).
- 7. Запустите F1145, установив переключатель (SF1) в положение "I", и убедитесь, что циркуляционный насос работает.

Обычно циркуляционный насос легче запускается при работающем F1145 с переключателем (SF1), установленным в положение "I". Если запуск циркуляционного насоса вручную выполняется при работающем F1145, будьте готовы к тому, что в момент запуска насоса отвертка может сделать резкое движение.

NIBE™ F1145 Раздел 9 | Обслуживание 59

На рисунке показан пример внешнего вида циркуляционного насоса.

Данные датчика температуры


Температура (°C)	Сопротивление (кОм)	Напряжение (В пост. тока)
-40	351,0	3,256
-35	251,6	3,240
-30	182,5	3,218
-25	133,8	3,189
-20	99,22	3,150
-15	74,32	3,105
-10	56,20	3,047
-5	42,89	2,976
0	33,02	2,889
5	25,61	2,789
10	20,02	2,673
15	15,77	2,541
20	12,51	2,399
25	10,00	2,245
30	8,045	2,083
35	6,514	1,916
40	5,306	1,752
45	4,348	1,587
50	3,583	1,426
55	2,968	1,278
60	2,467	1,136
65	2,068	1,007
70	1,739	0,891
75	1,469	0,785
80	1,246	0,691
85	1,061	0,607
90	0,908	0,533
95	0,779	0,469
100	0,672	0,414

60

Снимите двигатель на трехходовом клапане

Двигатель на трехходовом клапане можно снять для облегчения обслуживания.

Отсоедините кабель от двигателя и снимите двигатель с челночного клапана, как показано на рисунке

Снятие компрессорного модуля

компрессорный модуль можно извлекать для обслуживания и транспортировки.

ВНИМАНИЕ!

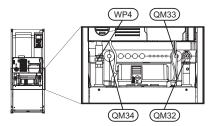
Компрессорный модуль легче извлекать, выполнив сначала его дренаж (см. стр. 58).

Вес модуля охлаждения

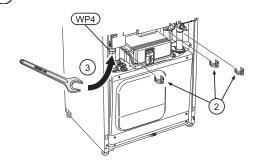
Тип (кВт)	Вес (кг)
5	110
6	115
8	125
10	130
12	135
15	148
17	156

ПРИМЕЧАНИЕ

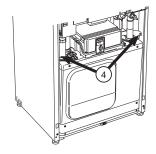
Выключите тепловой насос и отключите ток на прерывателе-предохранителе.

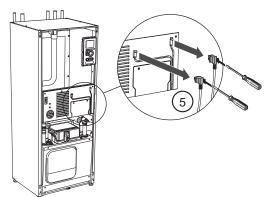


ВНИМАНИЕ!

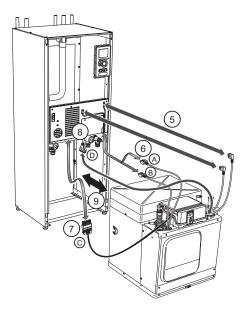

Снимите переднюю панель в соответствии с описанием на стр. 6.

Раздел 9 | Обслуживание NIBE™ F1145


Эакройте запорные клапаны (QM32), (QM33) и (QM34). Выполните дренаж компрессорного модуля в соответствии с инструкцией на стр. 58.


Снимите фиксаторы.

- Э Отсоедините трубное соединение у трубной муфты (WP4).
- 🛕 Снимите два винта.

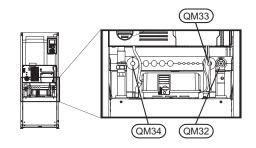


5 С помощью отвертки снимите соединения с базовой платы (AA2).

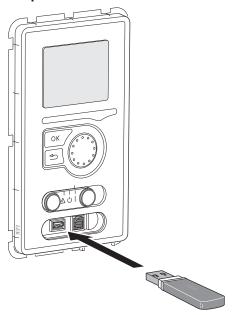
6 Отсоедините разъёмы (A) и (B) от нижней поверхности шкафа базовой платы.

- 7 С помощью отвертки отсоедините разъём (С) от печатной платы погружного нагревателя (АА1).
- 8 Отсоедините разъём (D) от платы соединительной линии связи (AA100).
- ດ Осторожно извлеките компрессорный модуль.

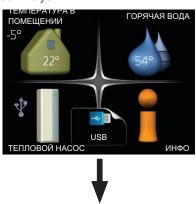
COBET!

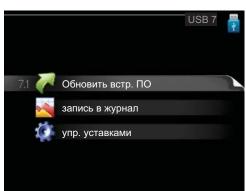

компрессорный модуль устанавливается в обратном порядке.

ПРИМЕЧАНИЕ


При повторной установке следует заменить существующие уплотнительные кольца поставляемыми уплотнительными кольцами на соединениях теплового насоса (см. рисунок).

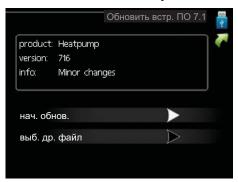
61




NIBE™ F1145 Раздел 9 | Обслуживание

Сервисный разъём USB

F1145 оборудован разъёмом USB в дисплее. Этот разъём USB можно использовать для подключения карты памяти USB для обновления программного обеспечения, сохранения зарегистрированных сведений и работы с уставками в F1145.



При подключении карты памяти USB на дисплее отображается новое меню (меню 7).

62

Меню 7.1 - Обновить встр. ПО

Это позволяет обновлять программное обеспечение в F1145.

ПРИМЕЧАНИЕ

Для обеспечения работы следующих функций карта памяти USB должна содержать файлы с программным обеспечением для F1145 производства компании NIBE.

В поле данных наверху дисплея отображается информация (всегда на английском языке) о наиболее вероятном обновлении, выбранном программным обеспечением на карте памяти USB.

В этой информации содержатся данные о том, для какого изделия предназначено программное обеспечение, версия программного обеспечения и общие сведения. Если требуется выбрать другой файл, правильный файл можно выбрать с помощью опции "выб. др. файл".

нач. обнов.

Выберите "нач. обнов.", если необходимо запустить обновление. Появится вопрос о том, действительно ли требуется обновить программное обеспечение. Ответьте "да", чтобы продолжить, или "нет", чтобы отменить операцию.

При ответе "да" на предыдущий вопрос запускается обновление, и на дисплее можно следить за ходом выполнения обновления. По завершении обновления F1145 перезапускается.

ПРИМЕЧАНИЕ

Обновление программного обеспечения не приводит к сбросу настроек меню в F1145.

ПРИМЕЧАНИЕ

Если обновление прервано до его завершения (например, при отключении электроэнергии), можно выполнить сброс программного обеспечения к предыдущей версии, удерживая кнопку "ОК" нажатой во время запуска до тех пор, пока не загорится зеленая лампа (на это уходит около 10 секунд).

Раздел 9 | Обслуживание NIBE™ F1145

выб. др. файл

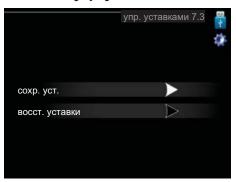
Выберите "выб. др. файл", если не требуется использовать рекомендуемое программное обеспечение. При прокрутке файлов информация о выделенном программном обеспечении отображается в поле данных как и раньше. При выборе файла кнопкой "ОК" осуществляется возврат к предыдущей странице (меню 7.1), где можно запустить обновление.

Меню 7.2 - запись в журнал

Диапазон уставок: 1 с – 60 мин Диапазон настройки по умолчанию: 5 с

Сохранение текущих значений измерения F1145 в журнал на карте памяти USB.

Журнал для более длительных периодов


- 1. Установите требуемый интервал между записями в журнале.
- 2. Отметьте галочкой опцию "активно".
- 3. Выделите "читать уставки журнала" и нажмите кнопку "OK".
- Текущие значения F1145 сохраняются в файл на карте памяти USB на заданный интервал до тех пор, пока не будет снята галочка для опции "активно".

ВНИМАНИЕ!

Снимите галочку "активно" перед извлечением карты памяти USB.

Меню 7.3 - упр. уставками

Здесь можно управлять (сохранять или восстанавливать из памяти) всеми настройками меню (пользовательских и служебных меню) в F1145 с помощью карты памяти USB.

Посредством опции "сохр. уст." сохраняются настройки меню на карту памяти USB для их последующего восстановления или копирования уставок в другой F1145.

ПРИМЕЧАНИЕ

При сохранении настроек меню на карту памяти USB на ней заменяются все предварительно сохраненные настройки.

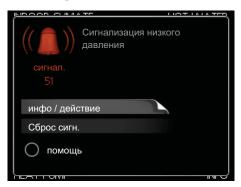
Посредством опции "восст. уставки" можно выполнить сброс настроек меню с карты памяти USB.

ПРИМЕЧАНИЕ

Отмена сброса настроек меню с карты памяти USB невозможна.

63

NIBE™ F1145 Раздел 9 | Обслуживание


10 Сбой климат-контроля

В большинстве случаев тепловой насос обнаруживает операционный сбой (который может привести к сбою климат-контроля), включает аварийную сигнализацию и отображает на дисплее инструкции по выполнению соответствующих действий.

Меню информации

Все значения измерения теплового насоса собраны в меню 3.1 системы меню теплового насоса. Просмотр значений в этом меню зачастую упрощает поиск источника неисправности. См. стр. 47 с более подробной информацией о меню 3.1.

Управление аварийной сигнализацией

Аварийная сигнализация указывает на сбой того или иного типа, о чем свидетельствует состояние лампы, меняющей цвет с непрерывного зеленого на непрерывный красный. Кроме того, в информационном окне отображается сигнальный колокол.

Аварийная сигнализация

Если аварийная сигнализация обозначена красной лампой состояния, это означает неисправность, которую тепловой насос не может устранить автоматически. Повернув рукоятку управления и нажав кнопку "ОК", можно просмотреть на дисплее тип аварийной сигнализации и сбросить её. Также можно установить тепловой насос на помощь.

инфо / действие Здесь можно прочитать значение аварийной сигнализации и получить советы о возможном способе устранения неисправности, вызвавшей срабатывание аварийной сигнализации.

Сброс сигн. В большинстве случаев достаточно выбрать опцию "Сброс сигн.", чтобы устранить неисправность, вызвавшую срабатывание аварийной сигнализации. Если горит зеленый свет после выбора опции "Сброс сигн.", причина аварийной сигнализации устранена. Если по-прежнему горит красный свет, и на дисплее отображается меню аварийной сигнализации, это значит, что причина аварийной сигнализации не устранена. Если аварийная сигнализация исчезает, но затем появляется снова, см. раздел поиска и устранения неисправностей (стр. 64).

помощь "помощь" — тип аварийного режима. Это значит, что тепловой насос производит тепло и/или подает горячую воду несмотря на наличие какой-либо неисправности. Это может означать, что компрессор теплового насоса не работает. В этом случае погруж-

ной нагреватель производит тепло и/или подает горячую воду.

ВНИМАНИЕ!

Выбор опции "помощь" не означает устранение неисправности, вызвавшей срабатывание аварийной сигнализации. Поэтому лампа состояния будет продолжать гореть красным светом.

Поиск и устранение неисправностей

Если на дисплее не отображается операционный сбой, воспользуйтесь следующими подсказками:

Основные действия

Начните с проверки следующих возможных источников неисправности:

- Положение переключателя (SF1) .
- Групповые и основные предохранители помещения.
- Прерыватель заземляющей цепи здания.
- Микровыключатель теплового насоса (FA1).
- Ограничитель температуры теплового насоса (FD1).
- Правильно настроенный блок контроля нагрузки (если установлен).

Низкая температура или отсутствие горячей воды

Данная часть главы поиска неисправностей применяется только в случае, если тепловой насос состыкован с нагревателем горячей воды.

- Закрыт или забился заправочный клапан для нагревателя горячей воды.
 - Откройте клапан.
- Настройки смесительного клапана (если установлен) слишком низкие.
 - Отрегулируйте смесительный клапан.
- Неправильный режим работы теплового насоса.
 - Если выбран режим "ручной", выберите "дополнение".
- Обильное потребление горячей воды.
 - Дождитесь нагрева горячей воды. Временно увеличить объем горячей воды (временный люкс) можно в меню 2.1.
- Слишком низкая уставка горячей воды.
 - Войдите в меню 2.2 и выберите лучший комфортный режим.
- Слишком низкий или нулевой операционный приоритет горячей воды.
 - Войдите в меню 4.9.1 и продлите время приоритета горячей воды.

Низкая комнатная температура

- Закрыты термостаты в нескольких комнатах.
 - Установите термостаты на максимум в как можно большем количестве комнат. Отрегулируйте

- комнатную температуру в меню 1.1 вместо регулировки термостатов.
- Неправильный режим работы теплового насоса.
 - Войдите в меню 4.2. Если выбран режим "авто", выберите большее значение на "останов отопления" в меню 4.9.2.
 - Если выбран режим "ручной", выберите "отопление". Если этого недостаточно, выберите "дополнение".
- Слишком низкая уставка автоматического управления отоплением.
 - Войдите в меню 1.1 (температура) и отрегулируйте смещение кривой нагрева. Если комнатная температура является низкой только в холодную погоду, необходимо увеличить значение наклона кривой в меню 1.9.1 (кривая отопления).
- Слишком низкий или нулевой операционный приоритет отопления.
 - Войдите в меню 4.9.1 и продлите время приоритета отопления.
- В меню 1.3.4 активирован режим праздника.
 - Войдите в меню 1.3.4 и выберите "Выкл".
- Активирован внешний переключатель для изменения отопления помещений.
 - Проверьте все внешние переключатели.
- Остановлен(-ы) циркуляционный(-ые) насос(-ы) (GP1 и/или GP2).
 - См. раздел "Запуск циркуляционного насоса вручную" на стр. 59.
- Воздух в системе климат-контроля.
 - Провентилируйте систему климат-контроля (см. стр. 28).

(см. стр. 64).

- Закрыты клапаны (QM20), (QM32)системы климатконтроля.
 - Откройте клапаны.

Высокая температура в помещении

- Слишком высокая уставка автоматического управления отоплением.
 - Войдите в меню 1.1 (температура) и отрегулируйте смещение кривой нагрева в сторону снижения. Если комнатная температура является высокой только в холодную погоду, необходимо уменьшить значение наклона кривой в меню 1.9.1 (кривая отопления).
- Активирован внешний переключатель для изменения отопления помещений.
 - Проверьте все внешние переключатели.

Низкое давление в системе

- Недостаточно воды в системе климат-контроля.
 - Заполните водой систему климат-контроля (см. стр. 28).

Низкая степень или отсутствие вентиляции

Данная часть главы поиска неисправностей применяется только в случае, если установлено дополнительное оборудование NIBE FLM.

- Засорился фильтр (HQ10).
 - Очистите или замените фильтр.
- Устройство вытяжного воздуха заблокировано или слишком плотно закрыто заслонкой.
 - Проверьте и очистите устройства вытяжного воздуха.
- Сокращенный режим скорости вентилятора.
 - Войдите в меню 1.2 и выберите "обычный".
- Активирован внешний переключатель для изменения скорости вентилятора.
 - Проверьте все внешние переключатели.

Высокая или слишком сильная степень вентиляции

Данная часть главы поиска неисправностей применяется только в случае, если установлено дополнительное оборудование NIBE FLM.

- Вентиляция не отрегулирована.
 - Закажите/осуществите регулировку вентиляции.
- Принудительный режим скорости вентилятора.
 - Войдите в меню 1.2 и выберите "обычный".
- Активирован внешний переключатель для изменения скорости вентилятора.
 - Проверьте все внешние переключатели.
- Засорился фильтр .
 - Очистите или замените фильтр.

Компрессор не запускается

- Отсутствует требование по отоплению.
 - Отсутствует запрос теплового насоса относительно отопления или горячей воды.
- Сработали температурные условия.
 - Дождитесь обнуления температурных условий.
- Не достигнуто минимальное время между циклами запуска компрессора.
 - Подождите 30 минут и убедитесь в возможности запуска компрессора.
- Сработала аварийная сигнализация.
 - Следуйте инструкциям на дисплее.

Булькающий звук

Данная часть главы поиска неисправностей применяется только в случае, если установлено дополнительное оборудование NIBE FLM.

- Недостаточно воды в гидрозатворе.
 - Повторно заполните гидрозатвор водой.
- Забился гидрозатвор.
 - Проверьте и отрегулируйте шланг водного конденсата.

11 Аксессуары

Solar 40

Solar 40 означает, что F1145 (в сочетании с VPAS) можно подключить к солнечному отоплению. Артикул № 067 084

Solar 42

Solar 42 означает, что F1145 (в сочетании с VPBS) можно подключить к солнечному отоплению. Артикул № 067 153

Буферный резервуар UKV

UKV 100

Артикул № 088 207

UKV 200

Артикул № 080 300

Внешняя дополнительная мощность ELK

Для этого дополнительного оборудования требуется вспомогательная плата АХС 40 (дополнительная мощность с шаговым управлением).

ELK 213	ELK 5/8/15				
Артикул № 069 500	ELK 5, Артикул № 069 025				
	ELK 8, Артикул № 069 026				
	ELK 15, Артикул № 069 022				
ELK 26	ELK 42				
Артикул № 067 074	Артикул № 067 075				

Вспомогательная плата АХС 40

Вспомогательная плата требуется в случае подключения дополнительной мощности с шаговым управлением (напр., внешнего электрического бойлера) или дополнительной мощности с шунтовым управлением (напр., твердотопливного/жидкотопливного/газового/брикетного бойлера) к F1145.

Если одновременно с активизацией устройства звуковой аварийной сигнализации к F1145 подключены насос грунтовых вод или внешний циркуляционный насос, требуется также вспомогательная плата.

Артикул № 067 060

Вспомогательное реле HR 10

Артикул № 089 423

Дополнительная группа шунтирующих вентилей ECS 40/ECS 41

Данный аксессуар используется, когда F1145 установлен в домах с двумя или более различными системами климат-контроля, для которых требуются различные температуры подаваемого теплоносителя.

ECS 40 (Макс. 80 м²) Артикул № 067 287 ECS 41 (Мин. 80 м²) Артикул № 067 288

Естественное охлаждение PCS 44

Артикул № 067 296

Коммуникационный модуль MODBUS 40

MODBUS 40 позволяет управлять и отслеживать работу F1145 с помощью DUC (компьютерного подцентра) в здании. Обмен данными осуществляется посредством MODBUS-RTU.

Артикул № 067 144

Коммуникационный модуль SMS 40

SMS 40 обеспечивает работу и контроль над F1145 через модуль GSM с использованием SMS-сообщений, посылаемых по мобильному телефону. Если в мобильном телефоне используется операционная система Android, можно использовать приложение NIBE Mobile App.

Артикул № 067 073

Комнатное устройство RMU 40

RMU 40 предназначен для обеспечения контроля и мониторинга теплового насоса в другой части помещения, где размещен F1145.

Артикул № 067 064

Комплект заправочных клапанов КВ 25/32

Комплект заправочных клапанов для заполнения рассолом шланга коллектора, применяемого в тепловых насосах для горных пород. Включает в себя грязевой фильтр и изоляцию.

КВ 25 (макс. 12 кВт) КВ 32 (макс. 30 кВт) Артикул № 089 368 Артикул № 089 971

Модуль активного/пассивного охлаждения НРАС 40

Артикул № 067 076

Модуль вытяжного воздуха FLM

FLM — модуль вытяжного воздуха, специально предназначенный для обеспечения слаженного процесса механической рекуперации вытяжного воздуха и накопления энергии в скважине коллектора.

FLMАртикул № 067 011

Комплект кронштейнов для модуля FLM
Артикул № 067 083

Нагреватель горячей воды

VPB 200

Медь, Артикул № 088 515 Эмаль, Артикул № 088 517 Нержавеющая сталь, Артикул № 088 518

66 Раздел 11 | Аксессуары NIBE™ F1145

VPB 300

Медь, Артикул № 083 009 Эмаль, Артикул № 083 011 Нержавеющая сталь, Артикул № 083 010

VPBS 300

Медь, Артикул № 083 012 Эмаль, Артикул № 083 015

VPAS 300/450

Медь, Артикул № 087 720 Эмаль, Артикул № 087 710

Обогрев бассейна POOL 40

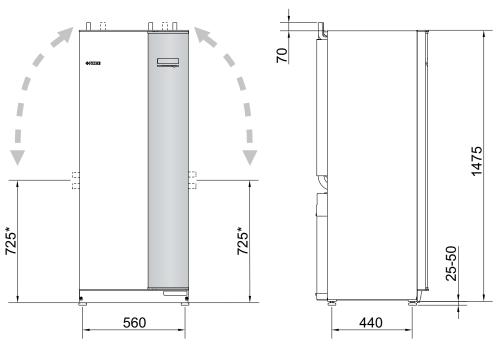
POOL 40 — дополнительное оборудование, обеспечивающее обогрев бассейна с помощью F1145. Артикул № 067 062

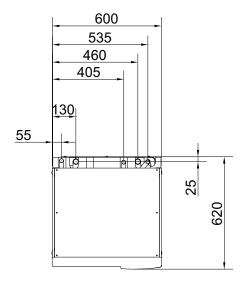
Пассивное охлаждение

PCM 40 PCM 42

Артикул № 067 077 Артикул № 067 078

Прибор контроля уровня NV 10


Артикул № 089 315


NIBE™ F1145 Pаздел 11 | Аксессуары

67

12 Технические данные

Габариты и расположение

 $^{^*}$ Данный размер применяется с учетом угла 90° на трубах подачи рассола (боковое соединение). Отклонение размера может составлять прибл. ± 100 мм по высоте, поскольку некоторая часть труб для подачи рассола является гибкой.

Технические характеристики (€ № 21

1x230 B

1x230 B		5	8	12
Данные выходной мощности при норм. потоке _{Относится к производительности т}	еплового нас	оса. за искл.	ЦИВКУЛЯЦИОНІ	ных насосов
0/35		,		
Номинальная выходная мощность	кВт	4,83	8,33	11,88
Мощность охлаждения	кВт	3,74	6,60	9,30
Электрическая мощность	кВт	1,09	1,73	2,58
Коэффициент теплопроизводительности	-	4,44	4,82	4,60
0/50				
Номинальная выходная мощность	кВт	3,85	7,80	11,25
Мощность охлаждения	кВт	2,62	5,54	7,90
Электрическая мощность	кВт	1,23	2,26	3,35
Коэффициент теплопроизводительности	-	3,13	3,45	3,36
Данные выходной мощности по стандарту EN 14511				
0/35				
Номинальная выходная мощность	кВт	4,65	8,15	11,60
Электрическая мощность	кВт	1,13	1,84	2,72
Коэффициент теплопроизводительности _{EN14511}	-	4,12	4,44	4,27
0/45				
Номинальная выходная мощность	кВт	3,98	7,75	10,99
Электрическая мощность	кВт	1,21	2,18	3,20
Коэффициент теплопроизводительности _{EN14511}	-	3,29	3,55	3,44
Дополнительная мощность	кВт	1	/2/3/4/5/6/	7
Электрические данные				
Номинальное напряжение		2	230 В 50 Г	4
Макс. рабочий ток, компрессор	А _{средне-}	9,5	15	22,5
(включая систему управления и циркуляционные насосы)	квадр.			
Пусковой ток	А _{средне-}	23	32	40
	квадр.			
Макс. допустимое сопротивление в точке соединения ¹⁾	Ом	-	-	-
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 1-2 кВт	А _{средне-}	18(20)	24(25)	31(32)
 (рекомендуемый номинал предохранителя)	квадр.			
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 3-4 кВт	А _{средне-}	27(32)	32(32)	40(40)
рекомендуемый номинал предохранителя)	квадр.	, ,	, ,	, ,
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 5-6 кВт		36(40)	41(50)	49(50)
	А _{средне-}	30(40)	41(50)	45(50)
(рекомендуемый номинал предохранителя)	квадр.	40/40)	46/50)	F2/62\
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 7 кВт	А _{средне-}	40(40)	46(50)	53(63)
(рекомендуемый номинал предохранителя)	квадр.			
Мощность, насос для рассола	Вт	30 – 87	30 – 87	35 – 185
Мощность, насос для теплоносителя	Вт	7 – 67	7 – 67	7 – 67
Класс степени защиты IP			IP 21	
Контур хладагента				
Тип хладагента			R407C	
Объём	КГ	1,4	2,3	2,2
Ообем Значение отсечения для реле высокого давления	МПа		2, <u>з</u> 2,9 (29 бар	
Разность давлений для реле высокого давления	МПа			
	МПа			
Значение отсечения для реле низкого давления	IVIIId	U,	, , ,) Ua	۲/

1x230 B		5	8	12	
Разность давлений для реле низкого давления	МПа	0	0,15 (1,5 бар)		
Контур рассола					
Класс потребления энергии, насос для рассола		энер	энергосберегающий		
Макс. давление в системе рассола	МПа		0,3 (3 бар))	
Мин. поток	л/с	0,19	0,33	0,47	
Номинальный поток	л/с	0,23	0,42	0,65	
Макс. доступ. внешнее давл. при номин. потоке	кПа	62	48	69	
Макс./мин. темп. подаваемого рассола	°C	см. схему			
Мин. темп. отводимого рассола	°C	-10			
Контур теплоносителя					
Класс потребления энергии, цирк. насос		энер	госбереган	ощий	
Макс. давление в системе теплоносителя	МПа	0,4 (4 бар))	
Мин. поток	л/с	0,08	0,13	0,19	
Номинальный поток	л/с	0,10	0,18	0,27	
Макс. доступ. внешнее давл. при номин. потоке	кПа	68	64	58	
Макс./мин. темп. теплоносителя	°C	см. схему			
Выходная мощность шумов(L _{WA}) _{по стандарту EN 12102 при 0/35}	дБ (А)	42	43	43	
Расчетные значения уровня звукового давления (L _{PA}) _{по стандарту EN ISO 11203}	дБ (А)	27	28	28	
при 0/35 на расстоянии 1 м					
Трубные соединения					
Внеш. диам. медн. трубы для рассола	MM		28		
Внеш. диам. медн. трубы для теплоносителя	MM	2	22	28	
Внеш. диам. соединения нагревателя горячей воды	MM	2	22	28	

3x230 B

3x230 B		-	0	10	12	45	47
3x230 B		6	8	10	12	15	17
Данные выходной мощности при норм. поток	е Относит	ся к произво	дительности	геплового нас	соса, за искл.	циркуляцион	ных насосов
0/35							
Номинальная выходная мощность	кВт	6,30	8,18	9,81	11,87	15,68	17,15
Мощность охлаждения	кВт	4,98	6,52	7,83	9,30	12,31	13,30
Электрическая мощность	кВт	1,32	1,66	1,98	2,57	3,37	3,85
Коэффициент теплопроизводительности	-	4,77	4,92	4,95	4,62	4,65	4,45
0/50							
Номинальная выходная мощность	кВт	5,03	6,78	8,26	11,37	15,17	16,50
Мощность охлаждения	кВт	3,52	4,83	5,89	7,95	10,71	11,65
Электрическая мощность	кВт	1,51	1,95	2,37	3,42	4,46	4,85
Коэффициент теплопроизводительности	-	3,34	3,48	3,49	3,31	3,40	3,40
Данные выходной мощности по стандарту EN	14511						
0/35							
Номинальная выходная мощность	кВт	6,05	7,86	9,46	11,74	15,33	16,78
Электрическая мощность	кВт	1,38	1,75	2,15	2,77	3,61	4,08
Коэффициент теплопроизводительности _{EN14511}	-	4,39	4,50	4,40	4,24	4,25	4,11
0/45							
Номинальная выходная мощность	кВт	5,14	6,99	8,47	11,27	14,92	16,17
Электрическая мощность	кВт	1,49	1,92	2,34	3,33	4,26	4,70
Коэффициент теплопроизводительности _{EN14511}	-	3,45	3,63	3,62	3,39	3,50	3,44
Дополнительная мощность	кВт			2/4	/6/9		
Электрические данные							
Номинальное напряжение				230 B 3N	IAC 50 Гц		

3x230 B		6	8	10	12	15	17
Макс. рабочий ток, компрессор	А _{средне-}	8,0	10,4	13,0	14,4	18,8	22,0
(включая систему управления и циркуляционные насосы)	квадр.						
Пусковой ток (при плавном пуске)	А _{средне-}	52(20,3)	57(20,8)	65,5(23)	73,5	82,5	84,5
N.A.	квадр.						0.4
Макс. допустимое сопротивление в точке соединения ¹⁾		-	-	-	-	-	0,4
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 2 кВт	· А _{средне-} квадр.	17,5(20)	20(20)	22(25)	24(25)	28(32)	31(32)
(рекомендуемый номинал предохранителя)							
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 4 кВт	А _{средне-} квадр.	24(25)	26(32)	28(32)	30(32)	35(40)	38(40)
(рекомендуемый номинал предохранителя)							
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 6 кВт	А _{средне-} квадр.	24(25)	26(32)	28(32)	30(32)	35(40)	38(40)
 (рекомендуемый номинал предохранителя)	"						
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 9 кВт	А _{средне-} квадр.	36(40)	38(40)	40(40)	42(50)	46(50)	49(50)
рекомендуемый номинал предохранителя)	квадр.						
Мощность, насос для рассола	Вт	30 – 87	30 – 87	35 – 185	35 – 185	35 – 185	35 – 185
Мощность, насос для теплоносителя	Вт	7 – 67	7 – 67	7 – 67	7 – 67	10 – 87	10 – 87
Класс степени защиты IP		, ,		IP			
Контур хладагента							
Тип хладагента				R40)7C		
Объём	КГ	1,8	2,3	2,5	2,2	2,4	2,4
Значение отсечения для реле высокого давления	МПа						-
Разность давлений для реле высокого давления	МПа			-0,7 (-	7 бар)		
Значение отсечения для реле низкого давления	МПа			0,15 (1	,5 бар)		
Разность давлений для реле низкого давления	МПа			0,15 (1	,5 бар)		
Контур рассола		I					
Класс потребления энергии, насос для рассола				энергосбе	регающий		
Макс. давление в системе рассола	МПа			0,3 (3	В бар)		
Мин. поток	л/с	0,25	0,33	0,39	0,47	0,62	0,67
Номинальный поток	л/с	0,30	0,42	0,51	0,65	0,75	0,82
Макс. доступ. внешнее давл. при номин. потоке	кПа	58	48	85	69	58	48
Макс./мин. темп. подаваемого рассола	°C				хему		
Мин. темп. отводимого рассола	°C			-1	10		
Контур теплоносителя		1					
Класс потребления энергии, цирк. насос				энергосбе	• •		
Макс. давление в системе теплоносителя	МПа				1 бар)	T	T
Мин. поток	л/с	0,10	0,13	0,16	0,19	0,25	0,27
Номинальный поток	л/с	0,13	0,18	0,22	0,27	0,36	0,40
Макс. доступ. внешнее давл. при номин. потоке	кПа	67	64	64	58	60	55
Макс./мин. темп. теплоносителя	°C	42	42		хему	42	42
Выходная мощность шумов(L _{WA}) _{по стандарту EN}	дБ (А)	42	43	43	43	42	42
12102 при 0/35	F (A)	27	20	20	20	27	27
Расчетные значения уровня звукового давления (L _{PA}) по стандарту EN ISO 11203 при 0/35 на расстоянии 1 м	дь (А)	27	28	28	28	27	27
Трубные соединения				20			25
Внеш. диам. медн. трубы для рассола	MM			28			35

3x230 B		6	8	10	12	15	17
Внеш. диам. медн. трубы для теплоносителя	MM	22		28			
Внеш. диам. соединения нагревателя горячей воды	MM		22			28	

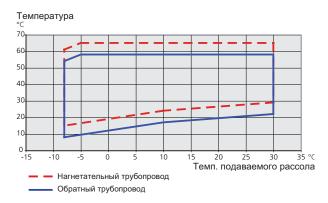
3x400 B

3x400 B		5	6	8	10	12	15	17
Данные выходной мощности при нор	M. ПОТ	оке Относит	CE K EDONSBO	пительности т	OR HOROTO HAC	OC3 33 NCK II I	INDKABILINOHI	IFIX H3COCOB
0/35		ОТНОСИТ	ся к произво,	цительности і	еплового нас	оса, за искл. і	циркуляцион	ных насосов
Номинальная выходная мощность	кВт	4,83	6,31	8,30	9,95	11,82	15,65	17,24
Мощность охлаждения	кВт	3,74	5,03	6,64	7,97	9,35	12,31	13,49
Электрическая мощность	кВт	1,09	1,28	1,66	1,98	2,47	3,34	3,75
Коэффициент теплопроизводительности	-	4,44	4,93	5,01	5,03	4,79	4,69	4,60
0/50								
Номинальная выходная мощность	кВт	3,85	5,10	6,94	8,46	11,15	15,21	16,41
Мощность охлаждения	кВт	2,62	3,63	4,98	6,08	7,86	10,81	11,58
Электрическая мощность	кВт	1,23	1,48	1,96	2,38	3,29	4,40	4,83
Коэффициент теплопроизводительности	-	3,13	3,46	3,54	3,39	3,39	3,46	3,40
Данные выходной мощности по станд	царту Е	N 14511						
0/35								
Номинальная выходная мощность	кВт	4,65	6,10	8,01	9,64	11,42	15,37	16,89
Электрическая мощность	кВт	1,13	1,35	1,74	2,13	2,66	3,50	4,10
Коэффициент теплопроизводительно-	-	4,12	4,51	4,59	4,52	4,30	4,36	4,12
СТИ _{EN14511}								
0/45								
Номинальная выходная мощность	кВт	3,98	5,21	7,07	8,55	10,86	15,04	16,10
Электрическая мощность	кВт	1,21	1,46	1,93	2,36	3,20	4,23	4,68
Коэффициент теплопроизводительно-	-	3,29	3,58	3,66	3,63	3,39	3,53	3,44
СТИ _{EN14511}								
Дополнительная мощность	кВт	1/2	/3/4/5/6/7	(с возмож	ностью пе	реключені	ия на 2/4/6	5/9)
Электрические данные	ı							
Номинальное напряжение					B 3NAC 5			
Макс. рабочий ток, компрессор	А _{средне-}	9,5(1-фа-	4,6	6,6	6,9	9	11	13
(включая систему управления и циркуля-	квадр.	зовый)						
ционные насосы)								
Пусковой ток	А _{средне-}	23	18	23	23	29	43	52
	квадр.							
Макс. допустимое сопротивление в точке соединения $^{1)}$		-	-	-	-	-	-	0,4
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 1-2 кВт		18(20)	13(16)	15(16)	15(16)	18(20)	20(20)	22(25)
(рекомендуемый номинал предохранителя)	квадр.							
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 3-4 кВт	А _{средне-} квадр.	18(20)	13(16)	15(16)	15(16)	18(20)	20(20)	22(25)
(рекомендуемый номинал предохранителя)								
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 5-6 кВт	А _{средне-} квадр.	18(20)	13(16)	15(16)	15(16)	18(20)	20(20)	22(25)
(рекомендуемый номинал предохранителя)								

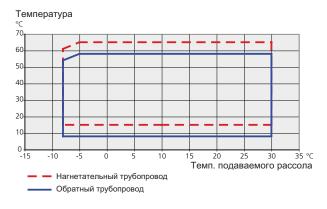
3x400 B		5	6	8	10	12	15	17
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 7 кВт, подключенный при доставке	А _{средне-} квадр.	18(20)	19(20)	21(25)	21(25)	23(25)	24(25)	26(30)
(рекомендуемый номинал предохранителя)								
Макс. рабочий ток теплового насоса, вкл. погружной нагреватель 9 кВт, требуется переключение	А _{средне-} квадр.	24(25)	19(20)	22(25)	22(25)	24(25)	26(30)	28(30)
(рекомендуемый номинал предохранителя)								
Мощность, насос для рассола	Вт	30 – 87	30 – 87	30 – 87	35 – 185	35 – 185	35 – 185	35 – 185
Мощность, насос для теплоносителя	Вт	7 – 67	7 – 67	7 – 67	7 – 67	7 – 67	10 – 87	10 – 87
Класс степени защиты IP			I		IP 21			
Контур хладагента								
Тип хладагента					R407C			
Объём	КГ	1,4	1,8	2,3	2,5	2,2	2,3	2,4
Значение отсечения для реле высокого давления	МПа			2	2,9 (29 бар))		
Разность давлений для реле высокого давления	МПа			-	0,7 (-7 бар))		
Значение отсечения для реле низкого давления	МПа			0,	,15 (1,5 ба	p)		
Разность давлений для реле низкого давления	МПа			0,	,15 (1,5 ба	p)		
Контур рассола								
Класс потребления энергии, насос для рассола		энергосберегающий						
Макс. давление в системе рассола	МПа				0,3 (3 бар))		
Мин. поток	л/с	0,19	0,25	0,33	0,40	0,47	0,62	0,67
Номинальный поток	л/с	0,23	0,30	0,42	0,51	0,65	0,75	0,82
Макс. доступ. внешнее давл. при номин. потоке	кПа	62	58	48	85	69	58	48
Макс./мин. темп. подаваемого рассола	°C				см. схему			
Мин. темп. отводимого рассола	°C				-10			
Контур теплоносителя								
Класс потребления энергии, цирк. насос				энері	осберегак	ощий		
Макс. давление в системе теплоносителя	МПа				0,4 (4 бар))		
Мин. поток	л/с	0,08	0,10	0,13	0,16	0,19	0,25	0,27
Номинальный поток	л/с	0,10	0,13	0,18	0,22	0,27	0,36	0,40
Макс. доступ. внешнее давл. при номин. потоке	кПа	68	67	64	64	58	60	55
Макс./мин. темп. теплоносителя	°C				см. схему		l	
Выходная мощность шумов(L _{WA}) _{по}	дБ (А)	42	42	43	43	43	42	42
стандарту EN 12102 при 0/35								
Расчетные значения уровня звукового		27	27	28	28	28	27	27
давления (L _{PA}) по стандарту EN ISO 11203 при								
0/35 на расстоянии 1 м								
Трубные соединения								
Внеш. диам. медн. трубы для рассола	MM			2	8			35
Внеш. диам. медн. трубы для теплоносителя	ММ		2	2			28	

3x400 B		5	6	8	10	12	15	17
Внеш. диам. соединения нагревателя го-	MM	22			28			
рячей воды								

Разное


Разное		5	6	8	10	12	15	17
Размеры и вес			!			!		
Ширина	MM				600			
Глубина	MM				620			
Высота	MM		1500					
Требуемая высота потолка ²⁾	MM				1670			
Вес укомплектованного теплового насоса	ΚΓ	140	145	165	170	178	191	199
Вес только компрессорного модуля	ΚΓ	110	115	125	130	135	148	156
Артикул №, 1 х 230 В		665 241	-	665 243	-	665 245	-	-
Артикул №, 3 х 230 В		-	665 222	665 223	665 224	665 225	665 227	665 229
Артикул №, 3 х 400 В		-	665 252	665 253	665 254	665 255	665 257	665 259

¹⁾Макс. допустимое сопротивление в точке, подключенной к сети электроснабжения, по стандарту EN 61000-3-11. Пусковые токи могут вызвать падение пробивного напряжения, который может влиять на другое оборудование в неблагоприятных условиях. Если импеданс в точке, подключенной к сети электроснабжения, превышает заданную уставку, возможен сбой. Если импеданс в точке, подключенной к сети электроснабжения, превышает заданную уставку, проконсультируйтесь с поставщиком электроэнергии перед приобретением оборудования.


Рабочий диапазон теплового насоса, работа компрессора

Компрессор обеспечивает температуру потока до 65°С, дальнейшее повышение температуры (до 70°С) обеспечивается с помощью дополнительного тепла.

12 кВт 3х400 В, 8-12 кВт 1х230 В

Другое

²⁾Без ножек высота составляет прибл.1650 мм.

13 Оглавление

Оглавление

N N / 10 6	Лампа состояния, 33
NV 10, блок контроля давления/уровня/расхода рассола, 26	Переключатель, 33 Рукоятка управления, 33
В	Дополнительная мощность - максимальная мощность, 22
Важная информация, 2	Переключение на максимальную электрическую мощ-
Информация по технике безопасности, 2	ность, 22
Варианты внешнего соединения, 25 NV 10, блок контроля давления/уровня/расхода рассола, 26	Установка максимальной электрической мощности, 22
но то, олок контроля давления уровня расхода рассола, 20 Возможный выбор для вспомогательного выхода AUX (бес-	Дополнительное оборудование, 66
потенциального переменного реле), 26	Дополнительные соединения, 24
Возможный выбор для вспомогательных входов AUX, 25	Дополнительный циркуляционный насос, 26
Датчик температуры, верх бака горячей воды, 20, 25	Доставка и обращение, 5 Зона установки, 5
Дополнительный циркуляционный насос, 26	Зона установки, э Извлечение модуля охлаждения, 5
Индикация режима охлаждения, 26	Поставляемые компоненты, 6
Контакт для активизации "Внешняя регулировка", 26	Сборка, 5
Контакт для активизации "временный люкс", 25	Снятие крышек, 6
Контакт для активизации скорости вентилятора, 26	Транспортировка, 5
Переключатель для внешнего принудительного управления насосом для рассола, 25	Доступ к электрическому соединению, 18
Переключатель для внешней блокировки дополнительной	Дренаж нагревателя горячей воды, 58
мощности и/или компрессора, 25	Дренаж системы климат-контроля, 58
Переключатель для внешней блокировки отопления, 25	3
Управление насосом грунтовых вод, 26	Заполнение и вентиляция, 28
Циркуляция горячей воды, 26	Заполнение и вентиляция системы рассола, 28
Варианты стыковки, 14	Заполнение системы климат-контроля и отвод воздуха, 28
Бассейн, 16	Основные символы, 29
Более двух систем климат-контроля, 16	Заполнение и вентиляция системы рассола, 28
Естественное охлаждение, 15 Резервуар нейтрализации, 14	Заполнение системы климат-контроля и отвод воздуха, 28 Запуск циркуляционного насоса вручную, 59
Рекуперация воздухообмена, 15	Зона установки, 5
Система грунтовых вод, 16	•
Системы подогрева пола, 15	N
Ввод в эксплуатацию и регулировка, 28	Извлечение модуля охлаждения, 5, 60
Заполнение и вентиляция, 28	Индикация режима охлаждения, 26 Информация по технике безопасности, 2
Подготовка, 28	Контактная информация, 4
Последующая регулировка и стравливание, 30	Маркировка, 2
Руководство по началу работы, 29 Возможный выбор для вспомогательного выхода AUX (беспо-	Проверка установки, 3
тенциального переменного реле), 26	Серийный номер, 2
Возможный выбор для вспомогательных входов AUX, 25	Символы, 2
Выбор меню, 35	K
Выбор опций, 35	Кнопка "ОК", 33
Выключатель двигателя, 17	Кнопка "Назад", 33
Обнуление, 17	Комнатный датчик, 21
Г	Конструкция теплового насоса, 7
Габариты и расположение, 68	Размещение компонентов, 7
п	Размещение компонентов секции охлаждения, 10
Д Данные датчика температуры, 60	Размещение компонентов электрошкафов, 8 Список компонентов, 7
Датчик температуры, верх бака горячей воды, 20, 25	Список компонентов секции охлаждения, 10
Датчик температуры, внешний подающий трубопровод, 21	Список компонентов электрошкафов, 8
Датчик температуры, подача горячей воды, 20	Контакт для активизации "Внешняя регулировка", 26
Действия по обслуживанию, 58	Контакт для активизации "временный люкс", 25
Данные датчика температуры, 60	Контакт для активизации скорости вентилятора, 26
Дренаж нагревателя горячей воды, 58	Контактная информация, 4
Дренаж системы климат-контроля, 58 Запуск циркуляционного насоса вручную, 59	Л
Запуск циркуляционного насоса вручную, ээ Извлечение модуля охлаждения, 60	Лампа состояния, 33
Опорожнение системы рассола, 59	M
Режим ожидания, 58	м Маркировка, 2
Сервисный разъём USB, 62	Меню 1 - ТЕМПЕРАТУРА В ПОМЕЩЕНИИ, 37
Снимите двигатель на трехходовом клапане, 60	Меню 2 - ГОРЯЧАЯ ВОДА, 45
Диаграммы подачи насоса, сторона коллектора, 30	Меню 3 - ИНФО, 47
Диаграммы подачи насоса, сторона теплоносителя, 31	Меню 4 - ТЕПЛОВОЙ НАСОС, 48
Дисплей, 33	Меню 5 - CEPBИС, 52
Дисплей, 33 Кнопка "ОК", 33	Меню справки, 30, 36
кнопка ОК , 33 Кнопка "Назад", 33	Микровыключатель, 17

NIBE™ F1145 Раздел 13 | Оглавление 75

	5 40
H	Соединения, 19
Нагреватель горячей воды, 14 Соединение нагревателя горячей воды, 14	Сторона рассола, 12 Сторона теплоносителя, 13
Наружный датчик, 20	Соединение системы климат-контроля, 13
	Схема системы, 11
О Обслуживание, 58	Т
Действия по обслуживанию, 58	технические данные, 68–69
Ограничитель температуры, 17	Габариты и расположение, 68
Обнуление, 17	Рабочий диапазон теплового насоса, 74
Опорожнение системы рассола, 59	Технические данные, 69
Основные символы, 11, 29	Транспортировка, 5
П	Трубные соединения, 11
Переключатель, 33	Варианты стыковки, 14
Переключатель для внешнего принудительного управления	Нагреватель горячей воды, 14
насосом для рассола, 25	Общие сведения, 11 Основные символы, 11
Переключатель для внешней блокировки дополнительной	Размеры и трубные соединения, 12
мощности и/или компрессора, 25	Размеры труб, 12
Переключатель для внешней блокировки отопления, 25	Сторона рассола, 12
Повторная регулировка, вентиляция, сторона теплоносителя, 32	Сторона теплоносителя, 13
Подготовка, 28 Поиск и устранение неисправностей, 64	Схема системы, 11
Последующая регулировка и стравливание, 30	у
Диаграммы подачи насоса, сторона коллектора, 30	Управление, 33, 37
Диаграммы подачи насоса, сторона теплоносителя, 31	Управление - введение, 33
Повторная регулировка, вентиляция, сторона теплоносите-	Управление - меню, 37
ля, 32	Управление аварийной сигнализацией, 64
Последующая регулировка комнатной температуры, 32	Управление - введение, 33
Последующая регулировка комнатной температуры, 32	Дисплей, 33
Поставляемые компоненты, 6	Система меню, 34
Проверка установки, 3	Управление - меню, 37
Прокрутка окон, 36	Меню 1 - ТЕМПЕРАТУРА В ПОМЕЩЕНИИ, 37 Меню 2 - ГОРЯЧАЯ ВОДА, 45
P	Меню 3 - ИНФО, 47
Работа, 35	Меню 4 - ТЕПЛОВОЙ НАСОС, 48
Рабочий диапазон теплового насоса, 74	Меню 5 - СЕРВИС, 52
Размеры и трубные соединения, 12 Размеры труб, 12	Управление насосом грунтовых вод, 26
Режим ожидания, 58	Уставки, 22
Мощность в аварийном режиме, 23	Установка значения, 35
Руководство по началу работы, 29	Φ
Рукоятка управления, 33	Фиксатор кабеля, 19
C	
Сбой климат-контроля, 64	Ц Циркуляция горячей воды, 26
Поиск и устранение неисправностей, 64	
Управление аварийной сигнализацией, 64	3
Сборка, 5	Электрические соединения, 17
Секция охлаждения, 10	Блок контроля нагрузки, 24
Сервисный разъём USB, 62	Варианты внешнего соединения, 25 Выключатель двигателя, 17
Серийный номер, 2	Датчик температуры, внешний подающий трубопровод, 21
Символы, 2	Датчик температуры, подача горячей воды, 20
Система меню, 34 Выбор меню, 35	Дополнительная мощность - максимальная мощность, 22
Выбор опций, 35	Дополнительные соединения, 24
Меню справки, 30, 36	Доступ к электрическому соединению, 18
Прокрутка окон, 36	Комнатный датчик, 21
Работа, 35	Микровыключатель, 17
Установка значения, 35	Наружный датчик, 20
Снимите двигатель на трехходовом клапане, 60	Общие сведения, 17 Ограничитель температуры, 17
Снятие крышек, 6	Режим ожидания, 23
Снятие люка, печатная плата обработки и настройки входящих	Снятие люка, печатная плата обработки и настройки входя
сигналов, 18	щих сигналов, 18
Снятие люка, электрошкаф, 18 Соединение внешнего рабочего напряжения для системы	Снятие люка, электрошкаф, 18
управления, 20	Соединение внешнего рабочего напряжения для системы
Соединение датчиков тока, 24	управления, 20
Соединение дополнительного оборудования, 27	Соединение дополнительного оборудования, 27
Соединение нагревателя горячей воды, 14	Соединения 19
Соединение системы климат-контроля, 13	Соединения, 19 Уставки, 22
Соединение электропитания, 19	Фиксатор кабеля, 19
	•

76 Раздел 13 | Оглавление NIBE™ F1145

Электрошкафы, 8

NIBE™ F1145 Раздел 13 | Оглавление 77

78 Раздел 13 | NIBE™ F1145

NIBE™ F1145 Pаздел 13 | 79

80 Раздел 13 | NIBE™ F1145

NIBE AB Sweden Hannabadsvägen 5 Box 14 SE-285 21 Markaryd info@nibe.se www.nibe.eu

231397