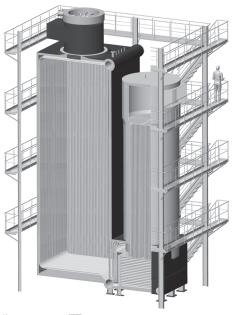
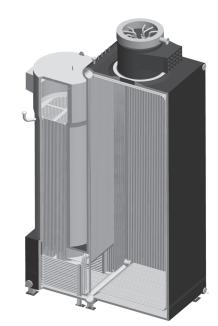
TEPMOTEXHUK TT300

20-60 МВт; 160 °C; 16 бар


Назначение котла ТТ300

Водогрейные водотрубные котлы ТЕРМОТЕХНИК ТТ300 производятся серийно в диапазоне номинальной теплопроизводительности от 20 до 60 МВт с рабочим давлением воды до 1,6 МПа (16 кгс/см² изб.) и максимальной температурой воды на выходе из котла 160 °С. Котлы ТТ300 изготавливаются в соответствии с требованиями Технических регламентов Таможенного союза:


- «О безопасности оборудования, работающего под избыточным давлением»,
- «О безопасности машин и оборудования».

Котлы предназначены для использования в системах отопления, вентиляции и горячего водоснабжения промышленного и бытового назначения, а также для обеспечения различных технологических процессов.

Производитель гарантирует надежную и безопасную работу котла в течение 36 месяцев со дня ввода в эксплуатацию, но не более 42 месяцев со дня отгрузки котла с предприятия-изготовителя при соблюдении потребителем условий хранения, транспортирования, монтажа и эксплуатации.

Общий вид котла TT300 с лестницами и площадками обслуживания (*площадки обслуживания являются дополнительной опцией и заказываются отдельно по запросу)

Общий вид котла ТТ300

Работа котла TT300

Водогрейный котел ТТ300 представляет собой газоплотную комбинированную водотрубно-дымогарную конструкцию, работающую с избыточным давлением продуктов горения и принудительной циркуляцией теплоносителя.

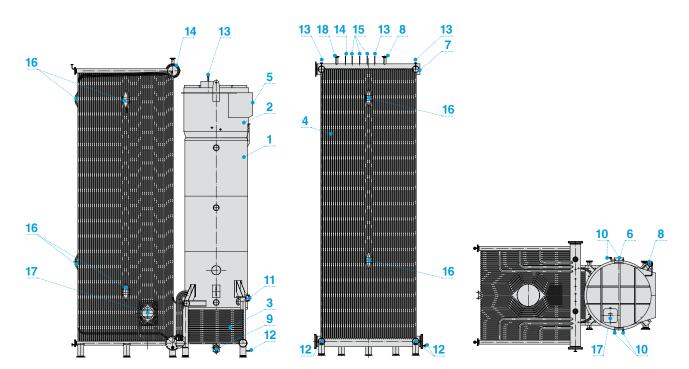
Котел проектируется и изготавливается в блочном исполнении. Конструкция котла

обеспечивает полное опорожнение от воды и шлама, а также удаление воздуха из всех элементов, в которых могут образовываться воздушные пробки при заполнении и пуске.

Котлы снабжены люками обслуживания

18 и смотровыми лючками 11, 17, обеспечивающими осмотр, очистку, безопасность

работ по защите от коррозии, монтаж и демонтаж разборных внутренних устройств, ремонт и контроль котлов.

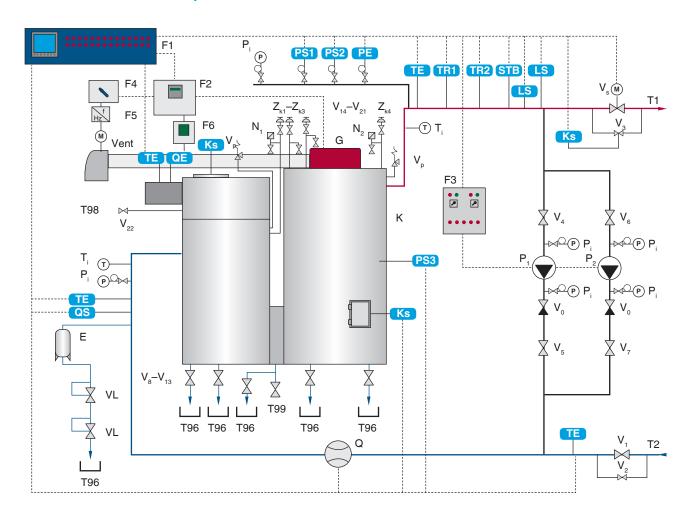

Вертикальная топка котла состоит из мембранных трубных газоплотных панелей. Продукты горения из топки 4 переходят в конвективную дымогарную часть с большим водяным объемом, также выполненную вертикально.

Дымогарные трубы оснащены турбулизаторами (при работе на газе и дизельном топливе).

Теплоноситель подается в нижнюю зону конвективной части 1 и, пройдя через конвективную и переходную часть 3, поступает в газоплотные панели топки 4, протекает по водотрубным газоплотным панелям топки от нижнего коллектора к верхнему, где выходит из котла.

Таким образом обеспечивается эффективная противоточная циркуляция во всех частях котла. Топка и конвективная часть поставляются в готовых транспортных блоках, соединяемых между собой на месте установки.

Схема котла



- 1 Конвективная часть
- 2 Дымовая коробка
- 3 Переходная часть
- 4 Топка
- 5 Выход дымовых газов
- 6 Вход воды

- 7 Выход воды
- 8 Предохранительные клапаны
- 9 Слив конденсата
- 10 Подвод реагентов
- 11 Люк смотровой
- 12 Слив воды

- 13 Воздушник
- 14 Датчик температуры
- 15 Манометры
- 16 Смотровой глазок
- 17 Люк обслуживания
- 18 Патрубок системы безопасности

Схема котлоагрегата ТТ300

Основное оборудование

К — водотрубный котел ТЕРМОТЕХНИК ТТ300,

G — штатная горелка котла,

Ven — вентилятор горелки,

Р — циркуляционные насосы.

Щиты управления

F1 — автоматика котла ЭНТРОМАТИК 300,

F2 — щит управления горелкой,

F3 — силовой щит насосов,

F4 — силовой щит вентилятора,

F5 — частотный преобразователь,

F6 — анализатор кислорода.

Арматура

 V_s — клапан с эл. приводом,

V — запорный клапан,

V_○ — обратный клапан,

Z — автоматический воздухоотводчик,

N — прерыватель вакуума,

V_в — предохранительный клапан,

 $V_3 - V_9$ — разгрузочный клапан,

VL — клапан прямого действия,

Е — расширительный бак.

КИП

ТЕ — датчик температуры 4-20 мА,

РЕ — датчик давления 4-20 мА,

QS — датчик расхода воды,

LS — датчик защиты от выкипания,

Q — расходомер,

PS1 — прессостат минимального давления,

PS2 — прессостат максимального давления,

PS3 — прессостат максимального давления в топке,

TR1 — ограничительный термостат первой ступени,

TR2 — ограничительный термостат второй ступени,

STB — аварийный термостат,

LS — датчик защиты от выкипания,

Т, — термометр,

Р_і — манометр,

QE — датчик кислорода,

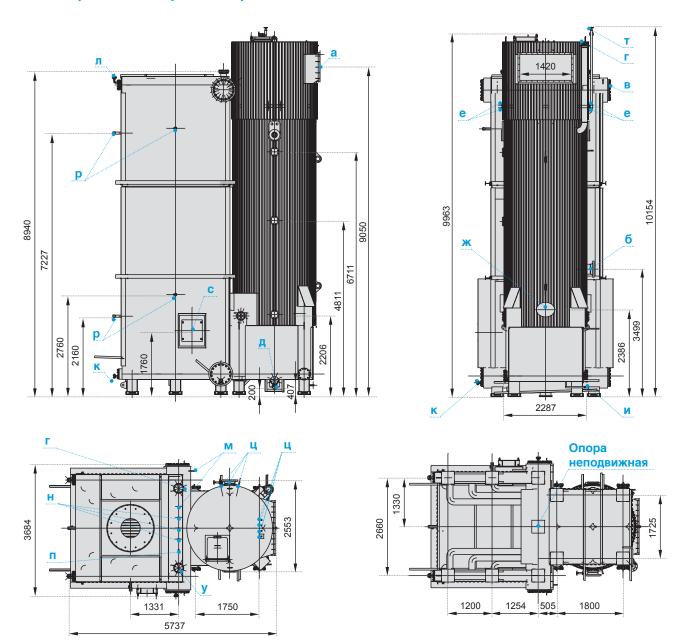
Ks — концевой выключатель.

Трубопровод

Т1 — подающий контур потребителя,

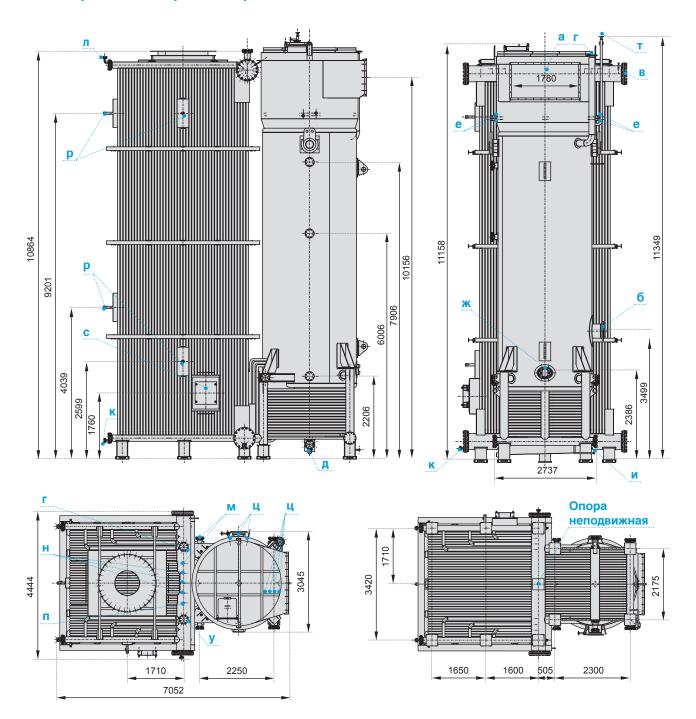
Т2 — обратная линия потребителя,

Т96 — дренажный трубопровод,

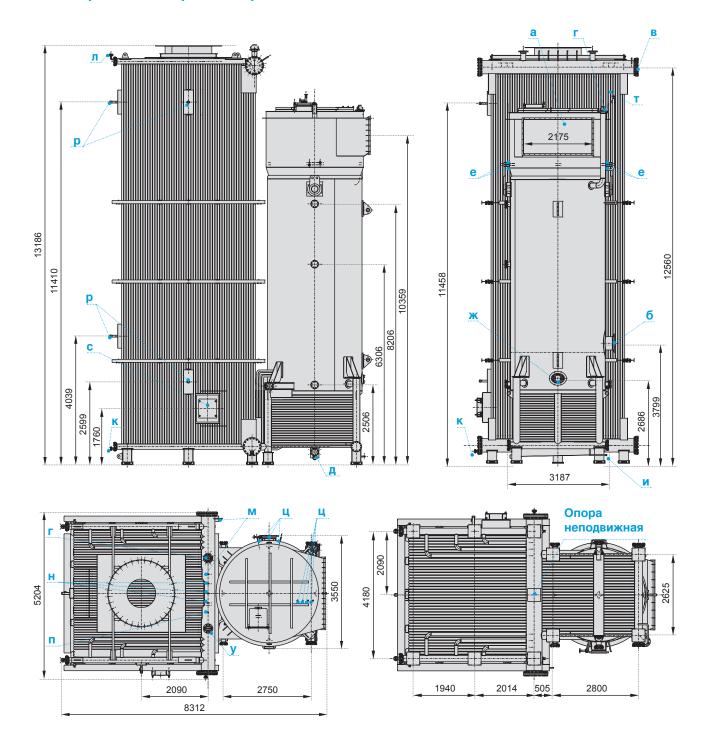

Т98, Т99 — прямая/обратная линия контура промывки.

Технические характеристики

Наименование показателя		Численное значен и	ie		
Номинальная теплопроизводительность, МВт	20	40	60		
Рабочее давление (изб.) воды в котле, МПа (кгс/см²), не более	1,6 (16)				
Давление воды на выходе из котла, МПа (кгс/см²) на номинальном режиме, не менее	0,9 (9)				
Температура воды на входе в котел, °С, не менее	70				
Температура воды на выходе из котла, °С, не более	160				
Перепад температуры воды на входе и выходе из котла, °С, не более		80			
Гидравлическое сопротивление, кПа, не более	1,91*	5,57*	12,4*		
Аэродинамическое сопротивление, Па	2610*	3260*	3210*		
Диапазон регулирования теплопроизводительности по отношению к номинальной, %		30–100			
Расход воды через котел (dT = 80 K), м³/ч	221	443	665		
Суммарные теплопотери в окружающую среду, кВт, не более	20	40	60		
Водяной объем котла, м³	17,1	30,3	41,4		
Масса сухого котла (допуск на массу 4,5 %), кг	43586 69733 989		98936		
Коэффициент полезного действ	ия, %				
- при работе на природном газе - при работе на дизельном топливе - при работе на мазуте Не менее 93* Не менее 93*					
Температура уходящих газов на номиналы	ной нагрузке, °С				
- при работе на природном газе - при работе на дизельном топливе - при работе на мазуте	130* 130* 140*				
Выбросы вредных веществ (NOx), мг/м³, не более					
- при работе на природном газе - при работе на дизельном топливе - при работе на мазуте	130* 230* 340*				
Выбросы вредных веществ (CO), мг/м³, не более	50				
Назначенный срок службы, лет, не менее	25				
Назначенный ресурс, ч, не менее	150000				
Назначенный срок хранения, месяцев	36				
Время непрерывной работы между плановыми техническими обслуживаниями, связанными с необходимостью вывода котла из действия, ч, не менее		5000			


^{*} Данные показатели являются расчетными и уточняются при проектировании и заказе.

Габаритные размеры котла ТТ300 20 МВт


			Проход условный, Ду (axb) Давление условно		словное, Ру
Обозначение	Назначение	Количество	мм	МПа	кгс/см²
а	Выход дымовых газов	1	1420x710	0,01	0,1
б	Вход воды	1	350	1,6	16
В	Выход воды	1	400	1,6	16
г	Предохранительный клапан	2	150	1,6	16
Д	Слив конденсата	1	100	0,1	1
е	Подвод реагентов	4	50	1,6	16
ж	Люк смотровой	1	230x330	1,6	16
И	Слив воды	1	G 1-B	1,6	16
К	Слив воды с нижнего коллектора	3	25	1,6	16
л	Воздушник топки	2	25	1,6	16
М	Датчик температуры	2	G 1/2-B	1,6	16
н	Манометры	3	G 1/2-B	1,6	16
п	Воздушник главного коллектора	1	G 1/2-B-50	1,6	16
р	Смотровой глазок	4	50	0,01	0,1
С	Люк обслуживания	1	400	0,01	0,1
Т	Воздушник конвективной части	1	20	1,6	16
у	Патрубок системы безопасности	1	150	1,6	16
ц	Штуцеры под датчики	7	G 1/2-B	1,6	16

Габаритные размеры котла TT300 40 МВт

Обозначение	Назначение	Количество	Проход условный, Ду (axb)	Давление у МПа	словное, Ру кгс/см²
а	Выход дымовых газов	1	1780x892	0,01	0,1
б	Вход воды	1	350	1,6	16
В	Выход воды	1	400	1,6	16
г	Предохранительный клапан	2	150	1,6	16
Д	Слив конденсата	1	100	0,1	1
е	Подвод реагентов	4	50	1,6	16
ж	Люк смотровой	1	230x330	1,6	16
И	Слив воды	1	G 1-B	1,6	16
К	Слив воды с нижнего коллектора	3	25	1,6	16
л	Воздушник топки	2	25	1,6	16
М	Датчик температуры	2	G 1/2-B	1,6	16
Н	Манометры	3	G 1/2-B	1,6	16
п	Воздушник главного коллектора	1	G 1/2-B-50	1,6	16
р	Смотровой глазок	4	50	0,01	0,1
С	Люк обслуживания	1	400	0,01	0,1
Т	Воздушник конвективной части	1	20	1,6	16
у	Патрубок системы безопасности	1	150	1,6	16
ц	Штуцеры под датчики	3	G 1/2-B	1,6	16

Габаритные размеры котла ТТ300 60 МВт

		Проход условный, Ду (axb)		Давление условное, Ру	
Обозначение	Назначение	Количество	ММ	МПа	кгс/см²
а	Выход дымовых газов	1	2175x1090	-	-
б	Вход воды	1	400	1,6	16
В	Выход воды	1	400	1,6	16
г	Предохранительный клапан	2	150	4	40
Д	Слив конденсата	1	100	-	-
е	Подвод реагентов	4	50	1,6	16
ж	Люк смотровой	1	230x330	1,6	16
И	Слив воды	1	G 1-B	1,6	16
К	Слив воды с нижнего коллектора	3	25	1,6	16
л	Воздушник топки	2	25	1,6	16
М	Датчик температуры	2	G 1/2-B	-	-
н	Манометры	3	G 1/2-B	-	-
п	Воздушник главного коллектора	1	G 1/2-B-50	-	-
р	Смотровой глазок	4	50	-	-
С	Люк обслуживания	1	400	-	-
Т	Воздушник конвективной части	1	20	1,6	16
у	Патрубок системы безопасности	1	150	4	40
ц	Штуцеры под датчики	7	G 1/2-B	-	-

Подбор горелки

Конструкция котла ТЕРМОТЕХНИК ТТ300 обеспечивает возможность работы с современными высокоэффективными автоматизированными вентиляторными горелками, предназначенными для сжигания газообразного и жидкого топлива.

Рекомендуется применять модулируемые горелки с принудительной подачей воздуха и с регулируемым коэффициентом избытка воздуха.

Образцы горелок должны пройти промышленные испытания и соответствовать требованиям ГОСТ 21204 «Горелки газовые промышленные. Общие технические требования», ГОСТ 27824 «Горелки промышленные на жидком топливе. Общие технические требования», ТР ТС 016/2011 «О безопасности аппаратов, работающих на газообразном топливе».

Подбор горелки осуществляется в зависимости от мощности котла, вида топлива и предъявляемых требований к регулированию мощности.

Горелочные устройства должны обеспечивать надежное воспламенение и устойчивое горение топлива без отрыва и проскока пламени в заданном диапазоне режимов работы, не допускать выпадения капель жидкости топлива на поверхность топки. Аэродинамические характеристики горелок и их размещение должны обеспечивать равномерное заполнение топки факелом без наброса его на стены и исключать образование застойных и плохо вентилируемых зон в объеме топки.

Автоматика горелки должна обеспечивать пуск горелки, продувку камеры сгорания, работу и остановку в автоматическом режиме. Также горелка должна иметь ряд автоматических защит, в результате срабатывания которых прекращается подача топлива к горелочному устройству:

- при повышении или понижении давления газообразного топлива перед горелкой;
- при понижении давления жидкого топлива перед горелками за регулирующей арматурой;
- при понижении давления воздуха перед горелками;
- при уменьшении разрежения и/или повышении давления в топке;
- при погасании факелов горелок, отключение которых при работе котла не допускается;
- при остановке ротора форсунки (при наличии);
- при неисправности автоматики безопасности или аварийной сигнализации, включая исчезновение напряжения на этих устройствах.

В стандартной комплектации котел TT300 может комплектоваться горелкой, соответствующей всем действующим нормам и правилам и оптимально подобранной для работы с котлом.

При желании выбор горелки можно провести самостоятельно. При самостоятельном выборе горелки во время заказа котла следует указать ее модель и технические данные, которые позволят заводу-изготовителю подготовить посадочное место для горелки, правильно определить материал и форму футеровки.

Данные для самостоятельного подбора горелки приведены в таблице ниже.

TT300	20 МВт	40 МВт	60 МВт		
Габариты топки, мм	2660x2660x7590	3420x3420x9650	4180x4180x11960		
Форма и состав материала футеровки определяется по данным от изготовителя горелки					

Качество котловой воды

Эксплуатация котлов без докотловой или внутрикотловой обработки воды запрещается. Особое внимание необходимо уделять качеству котловой воды, которое в большинстве случаев является определяющим фактором, влияющим на срок службы котла и всего котельного оборудования.

Водный режим должен обеспечивать работу котла без повреждения его элементов вследствие отложений накипи и шлама или в результате коррозии металла, прежде всего при отклонении от нормативных показателей качества, приведенных в таблице справа.

Состав воды на входе в котел должен соответствовать указанным величинам показателей.

Способ водоподготовки должен выбираться специализированной организацией. В помещении котельной должен постоянно находиться журнал по

Наименование показателя	Значение < 150 °C	Значение > 150 °C
Прозрачность по шрифту, см, не менее	30	
Карбонатная жесткость (при pH не более 8,5)	700	600
Содержание растворенного кислорода, мкг/кг, не более	50	30
Содержание соединений железа (в пересчете на Fe), мкг/кг, не более	500	400
Значение рН при 25 °C	7–11	
Свободная углекислота, мг/кг	Отсутствует	
Содержание нефтепродуктов, мг/кг, не более	1	

водоподготовке, в который необходимо регулярно заносить информацию по водно-химическому режиму котла.

В качестве теплоносителя допускается использование незамерзающих жидкостей по согласованию с заводом-изготовителем.

Комплект поставки котла

Отдельные части котла и компоненты оптимально подобраны по размерам, техническим характеристикам и собраны в модули, готовые к монтажу на месте эксплуатации.

Каждый блок поставляется в упаковке из защитной пленки, обеспечивающей сохранность при надлежащей транспортировке и правильном хранении. Отверстия штуцеров арматуры и фланцы защищены от попадания влаги и грязи.

Заводская поставка котла состоит из четырех основных блоков:

- топка,
- переходная часть,
- конвективная часть,
- дымовая коробка с устройством очистки теплообменной поверхности,
- площадки для обслуживания (по запросу).

Размещение котлов

Расстояние от фронта котла до стены котельного помещения должно быть достаточным для обслуживания и ремонта котла, но не менее 3 м, при этом для котлов, работающих на газообразном или жидком топливе, расстояние от выступающих частей горелочных устройств до стены котельного помещения должно быть не менее 1 м. Ширина проходов между котлами и между котлом и стеной помещения должна быть не менее 1 м.

Котел ТТ300 требует бокового обслуживания. Ширина бокового прохода должна быть достаточной для обслуживания и ремонта, но не менее величины, указанной в действующей нормативной документации.

При установке котлов вблизи стен или колонн, изоляция котлов, при отсутствии прохода не должна вплотную примыкать к стене котельного помещения, а расстояние от нее должно быть не менее 70 мм.

Ширина прохода между котлом и задней стеной котельного помещения должна быть достаточной для обслуживания, ремонта и монтажа присоединительного элемента дымовой трубы. При этом ширина прохода должна составлять не менее 1 м.

Допускаются отступления от рекомендованных расстояний, но лишь в рамках указанных в территориальных нормативных документах расстояний.

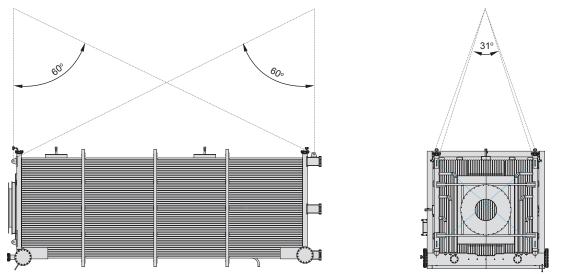
Транспортирование

Транспортирование котла может производиться:

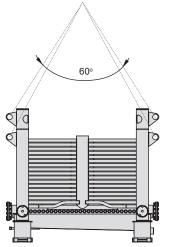
- автомобильным транспортом согласно «Общим правилам перевозок грузов автотранспортом»,
- железнодорожным транспортом согласно «Правилам перевозки грузов», «Техническим условиям перевозки и крепления грузов».

По согласованию с заказчиком и соответствующими ведомствами транспортирование котла может осуществляться другими видами транспорта.

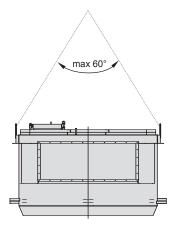
Условия транспортировки котла в части воздействия климатических факторов должны соответствовать группе условий 8 (ОЖЗ) по ГОСТ 15150—69. При транспортировке котла открытые фланцевые и штуцерные соединения, места ввода кабелей должны быть заглушены, все технологические отверстия должны быть герметично закрыты.

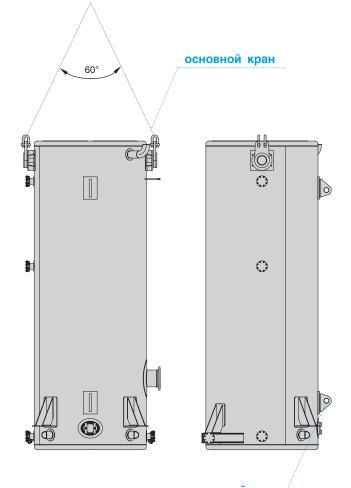

В период транспортирования и хранения необходимо принять меры предосторожности, обеспечивающие сохранность котла от механических повреждений.

Для погрузки, выгрузки и установки в проектное положение котла (блоков, элементов котла) предусмотрены специальные строповочные устройства — обухи. Не допускается строповка котла за иные элементы. Работа подъемных механизмов должна предусматривать исключение возможности скольжения (волочения) какой либо-части по поверхностям площадок хранения, установки и транспортных средств.


Строповка и подъем за другие части котла не допускается!

Погрузка котла на транспортное средство должна производиться крановыми средствами соответствующей грузоподъемности, снабженными траверсами и устройствами для подъема.


Крепление котла к транспортным средствам должно производиться по техническим условиям погрузки и крепления грузов для каждого вида транспорта.


Строповка топки. Перевод из транспортного положения в рабочее двумя кранами (во избежание волочения)

Строповка переходной части

Строповка дымовой коробки

вспомогательный кран

Строповка конвективной части

