LJA / LJAH

СОДЕРЖАНИЕ

Введение	4
Прием оборудования	4
Идентификация оборудования	4
Гарантия	4
Рекомендации по безопасности	5
Выбор места расположения устройства	5
Погрузочно-разгрузочные работы и установка	6
Виброизоляторы	8
Гидравлические соединения	9
Теплоизоляция	12
Подсоединение воздуховодов	13
Клапан регулирования горячим газом	14
Электрические подсоединения	15
Регулировка	16
Регулировка устройств управления и безопасности	17
Расположение терморезисторов и предохранительных устройств	18
Пуск	19
Расположение контуров хладагента и главных компонентов	21
Технические и электротехнические характеристики	22
Регулировка устройств управления и безопасности	26
Приспособление для круглогодичной работы	26
Регистрация работы	27
Подключение клиентом дистанционно- управляемых функций	28

ВВЕДЕНИЕ

Оборудование **CIATCOOLER** моделей **LJA - LJAH** представляет собой установки приготовления холодной воды с воздушным охлаждением конденсатора(центробежные вентиляторы) для установки в технических комнатах. Возможен вариант наружного монтажа установки с дополнительной крышей.

Все оборудование прошло испытания и проверку на заводе-изготовителе. Оборудование поставляется с заполненным хладагентом.

ПРИЕМ ОБОРУДОВАНИЯ

- Проверить целостность и комплектацию оборудования сразу после его прибытия на объект.
- В случае, если оборудование имеет повреждения или имеется недостаток каких-то компонентов, на бланке документа на поставку необходимо сделать соответствующие отметки.

Внимание: Упомянутые выше отметки должны быть подтверждены заказным письмом на имя транспортного предприятия в течении трех дней после получения груза.

ИДЕНТИФИКАЦИЯ ОБОРУДОВАНИЯ

Каждый комплект оборудования имеет идентификационную табличку с регистрационным номером завода-изготовителя.

- Этот номер должен всегда указываться в корреспонденции.

ГАРАНТИЯ

Гарантийный срок составляет 12 месяцев со дня пуска, осуществленного специалистами фирмы CIAT в течение 3 месяцев со дня изготовления.

В любом случае, он составляет 15 месяц со дня изготовления.

В случае, если процедура включения производилась специалистами фирмы CIAT или специалистами, имеющими разрешение фирмы CIAT, гарантия полностью покрывает запасные части, хладагент и электрические цепи, расходы на оплату труда и проезда специалистов в случае неисправностей, возникших по вине фирмы CIAT или ее оборудования.

В случае, если процедура включения не производилась специалистами фирмы СІАТ, гарантия распространяется только на неисправные запасные части, хладагент и электрические цепи, собранные на заводе-изготовителе, за исключением неисправностей, возникших вследствие технологической ошибки.

Примечание: Для дополнительной информации смотри условия гарантии фирмы СІАТ, поставленной вместе с документацией на оборудование.

РЕКОМЕНДАЦИИ ПО БЕЗОПАСНОСТИ

Чтобы предотвратить угрозу несчастных случаев во время монтажа и пуско-наладочных работ, необходимо принять во внимание следующие особые характеристики оборудования, такие как:

- наличие контуров сжатого под давлением хладагента
- наличие жидкого холодильного агента
- наличие напряжения

С таким оборудованием могут работать только опытные и квалифицированные специалисты, особенно в контурах электроснабжения и хладагента.

При работе с оборудованием необходимо следовать рекомендациям и инструкциям, содержащимся в руководствах по техническому обслуживанию, на табличках, а также особым инструкциям.

Необходимо следовать действующим стандартам и правилам.

Внимание: Перед тем как приступить к каким-либо работам с оборудованием, необходимо проверить отключение электроэнергии от установки.

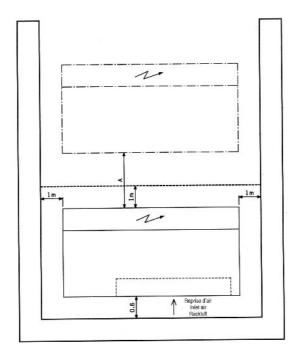
ВЫБОР МЕСТА РАСПОЛОЖЕНИЯ ОБОРУДОВАНИЯ

Перед проведением погрузочно-разгрузочных работ, монтажом и подключением оборудования, необходимо принять во внимание следующее:

- холодильные установки такого типа должны располагаться внутри помещения и должны быть защищены от неблагоприятных погодных условий и охлаждения;
- поверхность пола или несущей конструкции должна быть достаточно прочная, чтобы выдержать вес холодильной установки;
- холодильная установка должна быть идеально выровнена;
- холодильная установка должна быть расположена таким образом, чтобы обеспечить простоту доступа к компонентам оборудования для целей проведения работ по техническому обслуживанию;
- свободная циркуляция воздуха в воздушном конденсаторе не должна иметь препятствий (всасывание воздуха и выходное отверстие).

Меры предосторожности при рециркуляции воздуха:

- уровень шума. Наше оборудование обеспечивает работу с пониженным уровнем шума по сравнению с аналогичными образцами других производителей аналогичного оборудования.


Однако, начиная со стадии проектирования установки, необходимо принимать во внимание условия эксплуатации в отношении исходящего от установки шума и специфику зданий в отношении шума, проходящего через воздух и твердые материалы (вибрации).

В связи с этим, может возникнуть необходимость привлечения инженера-акустика для проведения необходимых исследований.

МОНТАЖ (допускаемые отклонения)

При установке оборудования необходимо оставить достаточно свободного места:

- Чтобы предотвратить рециркуляцию выпускного воздуха из конденсатора на его всасывание.
- Для целей технического обслуживания.

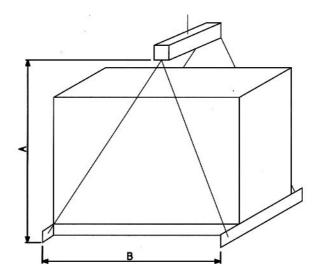
- 2 холодильные установки: А= 2 м
- 3 холодильные установки и более: А= 3 м

Габариты, вес, точка крепления и центр тяжести смотри в чертежах, входящих в поставку оборудования.

ПОГРУЗОЧНО-РАЗГРУЗОЧНЫЕ РАБОТЫ И УСТАНОВКА

После выбора места расположения оборудования, приступить к размещению оборудования в заданном месте.

До того как приступить к перемещению оборудования, проверьте, чтобы все съемные панели установки были закреплены.


Для подъема оборудования закрепите стропы в монтажных отверстиях, предназначенных для этой цели. Стропы необходимо расставить с помощью распорок, чтобы не повредить корпус.

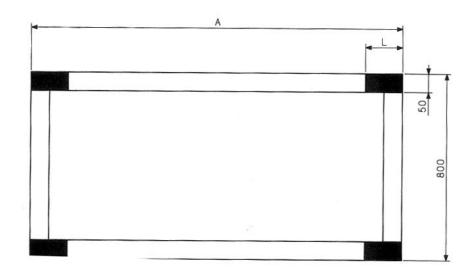
Погрузочно-разгрузочные работы с данным оборудованием могут выполняться с помощью автопогрузчика.

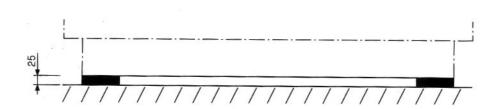
Внимание: при погрузочно-разгрузочных работах необходимо быть чрезвычайно осторожным и держать оборудование только в вертикальном положении.

Погрузочно-разгрузочные работы должны выполнятся с соблюдением правил техники безопасности. Для целей подъема могут использоваться только те точки подъема, которые помечены идентификационными наклейками.

Чертеж предоставлен для наглядности. Во всех случаях обращайтесь к пиктограммам, расположенным на оборудовании, а также в брошюрах, которые поставляются вместе с оборудованием.

	Вес в кг									
No		LJA			LJAH					
	Пустой	в работе	A	В	Пустой	в работе	A	В		
100	581	591	3490	1630	896	1254	3490	2630		
150	610	620	3490	1630	925	1283	3490	2630		
200	771	785	3490	2180	1122	1482	3490	3180		
250	832	846	3490	2180	1153	1513	3490	3180		
300	859	873	3490	2180	1180	1540	3490	3180		
350	1165	1179	3490	2830	1490	1853	3490	3830		
400	1220	1234	3490	2830	1560	1924	3490	3830		
450	1261	1275	3490	2830	1617	1981	3490	3830		
500	1462	1476	3490	3460	1785	2159	3490	4460		
600	1517	1531	3490	3460	1850	2214	3490	4460		


_								
₹	9	M	PI	u	2	н	M	a


ВИБРОИЗОЛЯТОРЫ (по дополнительному заказу)

Для снижения уровня вибраций от оборудования, необходимо установить под оборудованием антивибрационные опоры.

Расстановка опор должна соответствовать схемам расположения, приведенным ниже.

⇒ Разместите пластины SYLOMER по четырем углам.

	LJA		LJAH			
Модель	A	L	A	L		
100	1532	100	2532	200		
150	1532	100	2532	200		
200	2082	120	3082	250		
250	2082	150	3082	250		
300	2082	150	3082	250		
350	2732	200	3732	300		
400	2732	200	3732	300		
450	2732	200	3732	300		
500	3362	250	3732	350		
600	3362	250	3732	350		

ГИДРАВЛИЧЕСКИЕ СОЕДИНЕНИЯ

Диаметры трубопроводов холодной воды должны рассчитываться, исходя из условий работы системы (расход холодной воды - перепад давления). Диаметры трубопроводов не обязательно должны быть такими же, как на холодильной установке.

Диаметры соединительных компонентов для воды Испаритель

LJA-LJAH	100	150	200	250	300	350	400	450	500	600
Диаметр впускного/ выпускного отверстия	вт _. диам	ая резьба улки иетром дюйма	втулк	жная р и диам 2 дюйм	етром		наружная диаметро		-	

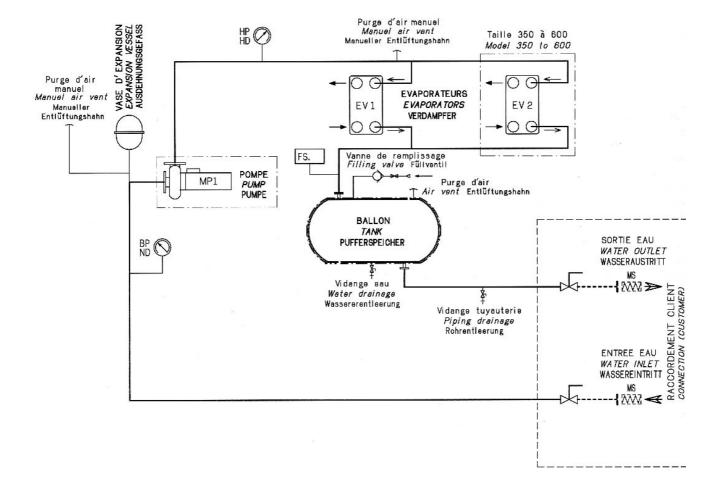
LJA: штуцер с наружной резьбой LJAH: штуцер с внутренней резьбой

- Необходимо соблюдать правильность подключения трубопроводов (вход-выход), указанное на оборудовании.
- На каждом гидравлическом контуре должно быть предусмотрено следующее:
- 2 запорных вентиля, используемых для закрытия каждого теплообменника.
- Важнейшие вспомогательные устройства для всех гидравлических контуров (балансировочный вентиль, воздухозаборники, соединения в низших точках для дренажа, расширительный бак, термоизмерительные бобышки и т.д.).
- Трубы должны быть тщательно изолированы, чтобы избежать потерь тепла и конденсации влаги.
- Трубы не должны передавать какое-либо механическое напряжение или вибрацию испарителю или водяному конденсатору.
- Вода должна быть тщательно проанализирована, и, в соответствии с результатами такого анализа, должна быть создана возможная схема умягчения воды (обратиться к специалисту по обработке воды).
- Фильтрация жидкостей должна быть менее 0,25 мм (250 µm).
- Гидравлические контуры должны иметь защиту от угрозы мороза (вариант с защитой от замерзания, зимним дренажом, с использованием гликоля).
- Для того, чтобы максимально снизить передачу вибрации зданию, для соединения водопроводных труб к теплообменникам рекомендуется использовать гибкие подводки (вставки).

Гибкие подводки должны быть установлены обязательно, когда оборудование устанавливается на упругих опорах (вибрационных изоляторах).

Примечание: Максимальное рабочее давление (со стороны воды) должно составлять:

- 10 бар модель LJA
- 4 бара (буферный танк безопасный вентиль на 4 бара) модель LJAH


ОБОРУДОВАНИЯ МОДЕЛИ LJAH

Основная комплектация для холодильных установок модели CIATCOOLER LJAH такая же как и у модели CIATCOOLER LJA. Эти модели снабжены гидромодулем стандартной сборки:

- металлический буферный танк, покрытой теплоизоляцией.
- Однокамерный центробежный гидравлический насос с манометрами давления (одиночный или сдвоенный насос).
- расширительный бак
- автоматический воздухоотводчик
- предохранительный клапан
- сливное отверстие с клапаном
- комплект запорной арматуры
- контактор (контакторы) и защитные устройства гидравлического насоса.

Гидравлический контур

Блок-схема

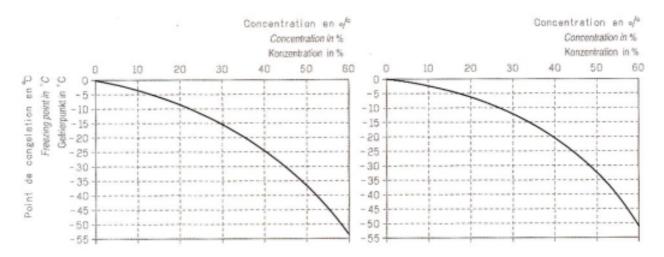
	LJAH			200	250	300	350	400	450	500	600
Буферный та	анк (в литрах)	350									
Расширителн	ьный бак (в литрах)					3	35				
Давление пр	и заполнении (в барах)					1	.5				
Максимальная емкость потребителя в литрах (1)											
Чистая	Макс. температура воды 36° С (2)	1163									
вода	а Макс. температура воды 46° С (2)			530							
Раствор	Макс. температура воды 36° С (2)	457									
гликоля	Макс. температура воды 46° С (2)					2.	55				

- (1) Как было описано в вышеуказанных разделах, возможная емкость смонтированной системы потребителя холодной воды (в литрах) зависит от емкости расширительного бака гидромодуля. При этом емкость буферного танка уже учтена в расчете емкости расширительного бака. Если емкость системы потребителя превышает значение, отмеченное в вышеуказанной таблицы, необходимо увеличить емкость расширительного бака.
- (2) Температура воды определяется как температура, достигнутая при остановки машины.

Примечания

ГИДРАВЛИЧЕСКИЕ НАСОСЫ Одиночный насос

Насос	38	39	3a	4	5
Мощность в кВт	0.55	0.95	2.2	3	4
Номинальный 230 В	2.8	4.7	8.5	1.1	14.7
эл.ток в амперах 400В	1.6	2.7	4.9	6.25	8.45


Сдвоенный насос

Мощность в кВт	0.75	1.1	1.5	2.2	3	3	4	5
Номинальный 230 В	3.3	4.6	6	8.5	11.5	11.5	15.2	20.5
эл.ток в амперах 400В	1.9	2.7	3.5	4.9	6.5	6.5	8.8	11.8

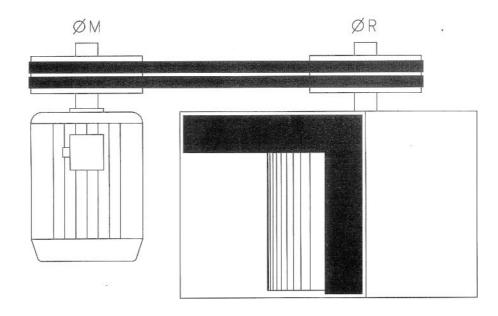
ЗАЩИТА ОТ ЗАМЕРЗАНИЯ С РАСТВОРОМ ГЛИКОЛЯ

Необходимо использовать специальную незамерзающую жидкость (гликоль), в случае монтажа установок моделей LJA или LJAH в местах, имеющих отрицательную температуру наружного воздуха. Нижеприведенная таблица дает минимальное процентное содержание гликоля в воде как функция точки замерзания раствора.

Концентрация %		10	20	30	40
Моноэтиленгликоль C°	0	-3.8	-8.3	-14.5	-23.3
Монопропиленгликоль C°	0	-2.7	-6.5	-11.4	-20

Внимание: Смесь гликоля и воды может позволить снизить температуру раствора на выходе из испарителя, по крайней мере, на $12~^{0}$ С ниже прогнозируемой при настройке регулятора давления испарителя.

ПОДСОЕДИНЕНИЕ ВОЗДУХОВОДОВ


До подсоединения воздуховодов необходимо проверить следующее:

- направление воздушного потока,
- скорость воздушного потока (зависит от поперечных сечений воздуховодов на входе и выходе, смотри контурную схему),
- расположение воздуховодов в сети,
- целесообразность жесткого подключения воздуховодов, либо использования гибких вставок (по дополнительному заказу),
- акустическую характеристику центробежного вентилятора (уровень шума смотри в "Руководстве по техническому обслуживанию"),
- герметичность воздуховодов.
- По дополнительному заказу возможна поставка:
- - воздуховода на всасывании,
- - фильтра на всасывании,
- антивибрационных пластин,
- - воздушного клапана и др.

Оборудование CIATCOOLER моделей LJA-LJAH от 100 до 300 укомплектовано электродвигателем и приводом, создающие необходимое давление в 15 мм водяного столба в сети воздуховодов.

Для получения другого требуемого статического давления, необходимо модифицировать двигатель и шкив привода вентилятора. На нижеприведенной таблице показано соотношение между необходимым давлением, приводами и ремнями.

ТАБЛИЦА ИЗМЕНЕНИЯ СТАТИЧЕСКОГО ДАВЛЕНИЯ ВЕНТИЛЯТОРОВ ДЛЯ МОДЕЛЕЙ LJA-LJAH ОТ 100 ДО 300


- Dp = 15 mm вод. столба при комбинации стандартного электродвигателя и шкива привода.
- Для выбора необходимого давления Dp, подберите соответствующую комбинацию диаметров шкивов вентилятора, электродвигателя и типа ремней.

Модели	Скорость	Пригодное	Двигатель	Шкивы		Ремни	число
	потока	давление Dp	в кВт				оборот/мин
	в м ³ /ч	в тт		Ø шкив	\emptyset шкив		_
		вод.столба.		мотора	вент-ра		
		10		90	250	1XSPZ 1650	515
		15		90	224	1XSPZ 1600	575
		20		95	224	1XSPZ 1600	606
100	8500	25	2.2	95	200	1XSPZ 1600	679
		30		125	250	2XSPZ 1700	715
		35		118	224	2XSPZ 1650	753
		10		106	250	2XSPZ 1700	604
		15		118	250	2XSPZ 1700	673
150	12000	20	4	125	250	2XSPZ 1750	712
		25		118	224	2XSPZ 1700	751
		30		100	180	2XSPZ 1550	792
		35		106	180	2XSPZ 1600	839
		10		100	250	2XSPZ 1700	570
		15		106	250	2XSPZ 1700	604
		20	4	100	224	2XSPZ 1650	636
200	14500	25		112	224	2XSPZ 1650	712
		30		118	224	2XSPZ 1700	751
		35		106	200	2XSPZ 1600	755
		10		112	250	2XSPA 1750	641
		15		118	250	2XSPA 1750	675
250	16000	20	5.5	118	236	2XSPA 1750	715
		25		118	225	2XSPA 1700	750
		30		140	250	2XSPA 1600	801
		35		114	200	2XSPA 1700	844
		10		118	250	2XSPA 1750	682
		15		125	250	2XSPA 1750	722
300	18000	20	7.5	125	236	2XSPA 1750	765
		25		132	236	2XSPA 1750	808
		30		132	225	2XSPA 1750	848
		35		150	250	2XSPA 1800	867

КЛАПАН РЕГУЛИРОВАНИЯ ГОРЯЧИМ ГАЗОМ

Для избежания любой угрозы замерзания жидкости в пластинчатом теплообменнике испарителя, установки LJA и LJAH имеют клапан регулирования горячим газом, который уже отрегулирован на заводе-производителе для случая использования чистой воды.

В зависимости от используемого типа хладагента и точки замерзания жидкости, нижеприведенная таблица показывает регулировку клапана, которую необходимо сделать на месте монтажа установки.

ЭЛЕКТРИЧЕСКИЕ ПОДСОЕДИНЕНИЯ

- Оборудование сконструировано в соответствии с европейским стандартом EN 60204-1.
- Оборудование соответствует директивам в отношении машин и электромагнитной совместимости.
- Вся проводка должна быть выполнена в соответствии с нормами, применимыми к электрооборудованию (Франция, NF C 15100).
- В любом случае, обращайтесь к электрическим схемам, которые прилагаются к оборудованию.
- Необходимо соблюдать характеристики подаваемой электроэнергии, указанные на идентификационной табличке.
- Необходимо соблюдать напряжение в следующих диапазонах:
- Цепь питания:

(* Электрооборудование соответствует нормам, принятым во Франции).

Необходимо убедиться, что подаваемая электроэнергия не имеет перекоса по фазам и не слишком высокая (>2%). В случае, если указанные условия не соблюдены, гарантии фирмы СІАТ будут автоматически аннулированы. В этом случае, необходимо обращаться к поставщику электроэнергии.

- Сечение проводов должно быть тщательно подобрано в соответствии с:
- максимальным номинальным током (см. характеристики на странице 24);
- расстоянием, разделяющем оборудование от источника электроэнергии;
- защитой, предусмотренной на источнике;
- нейтральным рабочим режимом;
- электрическими подсоединениями (смотри электрическую схему, которая входит в поставку оборудования).
- характеристиками электрооборудования и применимыми нормами.
- Электрические подсоединения должны быть выполнены следующим образом:
- подсоединить цепь питания;
- подсоединить защитный заземляющий провод к клемме заземления;
- подсоединить сухой контакт, подающий сигнал общей неисправности, и устройство автоматического контроля;
- управление компрессорами осуществлять, используя для этой цели сигнал от работающих циркуляционных насосов (кроме LJAH).
- Устройство автоматического регулирования должно быть подсоединено с помощью сухого контакта с нулевым потенциалом.
- Прерыватели цепи питания имеют мощность отключения 10 кА (стандартная версия).
- Электроснабжение установки обеспечивается через отверстие, находящиеся в верхней части установки.

ЭЛЕКТРОННЫЙ КОНТРОЛЬ И МОДУЛЬ ПОДАЧИ СИГНАЛА

Все модели LJA оборудованы микропроцессором MRS, обеспечивающим электронный контроль и модуль подачи сигнала.

Для моделей LJA/LJAH от 100 до 300 MRS 4-2.A Для моделей LJA/LJAH от 350 до 600 MRS 1-4.A

Основные функции

- Регулирование температуры воды:
- Возможны три типа регулирования:
- по температуре входящей воды
- по температуре уходящей воды по закону PIDT
- регулирование заданной температуры в соответствии с внешней температурой.

Оборудование стандартной конфигурации обеспечивает регулирование по температуре входящей воды.

Установку регулирования по закону PIDT на выходящем трубопроводе, см. «Руководство по техническому обслуживанию MRS 4 - 2.A и MRS 1 - 4.A».

- Проверка эксплуатационных параметров.
- Диагностика неисправностей.
- Хранение неисправностей в памяти, даже в случае сбоя подачи электроэнергии.
- Управление и автоматическая коррекции времени нахождения в работе компрессоров (при наличие в установке более одного компрессора).
- Возможность дистанционного управления (Вкл./Выкл., изменение заданных параметров температуры, рабочих состояний, общей неисправности) с использованием средств дистанционного управления.
- Возможность дистанционной передачи данных рабочих состояний и неисправностей, используя для этой цели модуль интерфейса.
- Возможность дистанционного управления системой регулирования.

Более подробное описание всех упомянутых выше функций приведено в «Руководстве по техническому обслуживанию MRS 4-2.А или MRS 1-4.А».

РЕГУЛИРОВКА

- Работа компрессоров выполняется командами электронного модуля. В зависимости от температуры воды, электронный модуль дает сигнал пуска или остановки компрессоров группы.

В стандартной конфигурации оборудования на трубопровод входящей воды к испарителю устанавливается датчик контроля холодной воды.

РЕГУЛИРОВКА УСТРОЙСТВ УПРАВЛЕНИЯ И БЕЗОПАСНОСТИ

Все защитные приспособления на оборудование управляются электронной панелью в модуле MRS. В случаях, когда защитное устройство включается или останавливает работу оборудования, необходимо выявить неисправность, при необходимости осуществить сброс защитных приспособлений и состояния неисправности с помощью клавиши «RESET» на панели отображения данных.

Оборудование снова включится после того, как истечет минимальное время, заданное циклом «anti-short».

Для настройки защитных устройств см. обзорную таблицу на странице 26.

Выключатель низкого давления

Выключатель низкого давления имеет защитную функцию. Он соединен с всасывающим трубопроводом компрессора отслеживает низкое давление в трубопроводе. Если это давление упадет ниже заданной величины, питание к компрессору(ам) в соответствующей охлаждающей цепи прерывается и на табло дисплея загорается светодиодный индикатор.

Настройка: 1.4 бар ± 0.1 (R 22 и R407 c).

Сброс: 2 бара.

Выключатель давления имеет автоматическую систему сброса. Сбросить состояние неисправности на дисплее можно, нажав клавишу «RESET» на панели дисплея.

Выключатель высокого давления

Выключатель высокого давления имеет защитную функцию. Он соединен с нагнетательным трубопроводом компрессора и отслеживает высокое давление в трубопроводе. Если это давление превысит заданную величину, питание к компрессору(ам) в соответствующей охлаждающей цепи прерывается и на табло дисплея загорается светодиодный индикатор.

Настройка: $28 \text{ бар} \pm 0.5 \text{ (R } 22 \text{ и } \text{R407 c)}.$

В целях безопасности выключатель высокого давления имеет ручную систему сброса.

Сбросить состояние неисправности можно, нажав клавишу «RESET» на панели дисплея.

Датчик защиты от замерзания испарителя

Этот датчик имеет защитную функцию. Для каждого испарителя предусмотрено по одному датчику защиты от замерзания. Этот датчик расположен на выходном трубопроводе охлажденной воды испарителя и отслеживает выходную температуру жидкости, подлежащую охлаждению. Если эта температура падает ниже величины, заданной на электронном модуле, питание к компрессору(ам), соответствующей охлаждающей цепи, прерывается и на табло дисплея загорается светодиодный индикатор.

- Сбросить состояние неисправности можно, нажав клавишу «RESET» на панели дисплея.

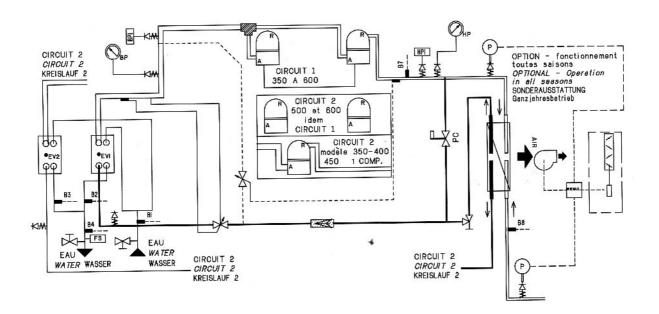
УСТРОЙСТВО ОТСЛЕЖИВАНИЯ ЦИРКУЛЯЦИИ ВОДЫ В ИСПАРИТЕЛЕ

Это устройство имеет защитную функцию. Установлен на выходной трубе охлажденной воды и отслеживает циркуляцию воды в испарителе. В случае, если циркуляция воды недостаточна, питание к компрессору(ам), в соответствующей охлаждающей цепи, прерывается, и на табло дисплея загорается светодиодный индикатор.

Сброс производится автоматически.

ВНУТРЕННЯЯ ЗАЩИТА КОМПРЕССОРА

Каждый компрессор имеет встроенное устройство электронной защитой, которое выполняет защитную функцию. Это устройство защищает электродвигатель от перегрева. В случае неисправности, работа в соответствующей цепи останавливается, и на табло дисплея загорается светодиодный индикатор. Сбросить состояние неисправности можно, нажав клавишу «RESET» на панели дисплея.


Датчик контроля выходной температуры (только для моделей LJA – LJAH от 350 до 600)

Этот датчик имеет защитную функцию.

Он устанавливается на внешнем коллекторе и отслеживает выходную температуру хладагента компрессора.

В случае неисправности работа соответствующей цепи останавливается, и на табло дисплея загорается светодиодный индикатор.

РАСПОЛОЖЕНИЕ ТЕРМОРЕЗИСТОРОВ И ПРЕДОХРАНИТЕЛЬНЫХ УСТРОЙСТВ

ПУСК

Проверка перед пуском

Перед пуском:

- Убедиться в отсутствии течи хладагента.
- Открыть клапана схемы трубопроводов для подачи воды и убедиться, что вода действительно циркулирует в холодильной установке, когда задействован насос.
- Выпустить воздух из системы гидравлического контура.
- Проверить работу устройства слежения за циркуляцией воды и устройства регулирования охлажденной воды.
- Проверить, чтобы все электрические подсоединения были надежно затянуты.
- Убедиться, что подаваемое напряжение соответствует требуемому напряжению холодильной установки и его величина остается в допустимых пределах (+6% 10% в отношении номинального напряжения, перекос фаз
- < 2%
- Проверить направление вращения вентилятора.

Последовательность операций при пуске

- Включить источник выделения тепла и холода для получения тепловой нагрузки, достаточной для работы холодильной установки.
- Включить главную плату.
- Проверить, что конфигурация установки сделана для работы в местном режиме управления (плата центрального процессора).
- Проверить, что все светодиодные индикаторы управляющей платы и платы отображения данных работают надлежащим образом при нажатии на клавишу (светодиодные индикаторы соответствующей конфигурации должны при этом загораться).
- Выбрать режим работы установки с помощью клавиши

(выбрать режим «охлаждения» воды).

• Установить заданную температуру:

охлажденная вода - ограничения по замерзанию.

- Нажать клавишу вкл. / выкл.
- Задействованы внутренние защитные устройства. Если сработало защитное устройство, необходимо выявить неисправность, произвести сброс защитного устройства платы отображения данных (для защитных устройств с ручной системой сброса с помощью клавиши «RESET»).
- Устройство может быть снова включено через две минуты, что соответствует времени считывания для всех защитных устройств. По требованию, этапы контроля могут быть задействованы последовательно.

Примечание: В случае необходимости остановить работу оборудования при отсутствии аварийной ситуации, следует выполнить следующие шаги:

- либо нажать клавишу вкл. / выкл. на панели отображения данных,
- либо воспользоваться сухим контактом в системе автоматического контроля.

Нельзя использовать главный выключатель, так как электрошкаф должен оставаться включенным (защита от замерзания).

ПРОВЕРИТЬ В ПЕРВУЮ ОЧЕРЕДЬ:

- что центробежный вентилятор конденсатора вращается в правильном направлении (если это не так, поменять местами два главных провода питания)
- что нагнетальный трубопровод компрессора нагревается (проверить контактным датчиком)
- что потребление тока соответствует норме (смотри таблицу и значения, указанные на компрессоре)
- проверить работу всех защитных приспособлений (для задания величин смотри таблицу).

Примечание: В начале работы охладителя воды возникает много проблем в связи с недостаточным давлением на

всасывании или чрезмерно высоком давлении нагнетания компрессора:

• Нелостаточное давление на всасывании:

- наличие воздуха в схеме трубопроводов подачи охлажденной воды
- производительность насоса охлажденной воды слишком низка, недостаточный расход воды
- насос охлажденной воды не работает надлежащим образом (вращается в неправильном направлении)
- температура охлажденной воды слишком низкая, недостаточная тепловая нагрузка
- засорился фильтр схемы гидравлических трубопроводов.

• Чрезмерно высокое давление нагнетания

- неправильная вентиляция (препятствие на входе или выходе, вентиляторы вращаются в неправильном направлении)
- воздух на входе слишком горячий (из-за его рециркуляции).

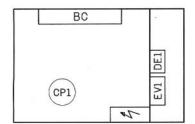
Внимание:

Примечания

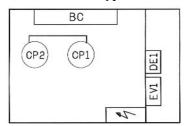
В связи с тем, что компрессоры фирмы SCROLL имеют особое направление вращения, сразу необходимо проверить:

- 1) что температура нагнетательного фреонопровода поднимется сразу
- 2) что давление повышается на манометре НР высокого давления и падает на манометре LP низкого давления

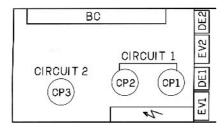
При возникновении данной проблемы, необходимо проверить электроснабжение установки.

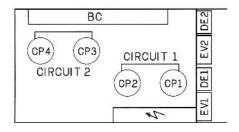

	•

РАСПОЛОЖЕНИЕ КОНТУРОВ ХЛАДАГЕНТА И ГЛАВНЫХ КОМПОНЕНТОВ


CIATCOOLER моделей LJA – LJAD – LJAD – LJADH

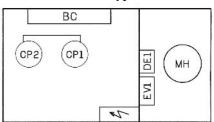
LJA-LJAD 100-150


1 контур

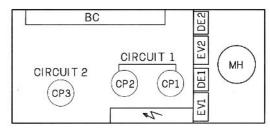

LJA-LJAD 200-250-300 1 контур

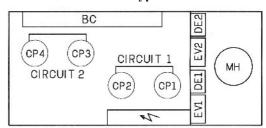
LJA-LJAD 350-400-450 2 контура

LJA-LJAD 500-600 2 контура


СР: компрессор ВС: теплообменник EV: испаритель

DE: дисперстный нагреватель MH: гидравлический модуль


LJAH-LJADH 100-150 1 контур


LJAH-LJADH 200-250-300 1 контур

LJAH-LJADH 350-400-450 2 контура

LJAH-LJADH 500-600 2 контура

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ **CIATCOOLER моделей LJA – LJAH** 1 и 2 компрессора, 1 контур хладагента

	LJA-LJAH	100	150	200	250	300
	Количество		1		2	
КОМПРЕССОР	Тип		герметичный	SCROLL		
	Скорость вращения об/мин			2900		
	Хладагент		R22 или	R 407 C		
Контроль мощности	%	100-0		100-50-0	100-40-0	100-50-0
	Количество			1		
ИСПАРИТЕЛЬ	Тип	co	спаянными	пластинами		
	Количество воды (в литрах)	1.9	2.85	3.39	5.65	
	Количество			1		
	Тип вентилятора		центробежный	-соединение	блока	и ремня
ВОЗДУОХЛАЖДАЕМЫЙ КОНДЕНСАТОР	Число вентиляторов			1		
	Мощность двигателя кВт	2.2	4	4	5.5	7.5
	Скорость общего расхода	8500	1200	14500	16000	18000
	воздуха м ³ /ч					
	Необходимое статическое			15		
	давление мм вод. столба					
	Скорость вращения об/мин	575	673	604	675	722

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ CIATCOOLER моделей LJA – LJAH 3 и 4 компрессора. 2 контура хлалагента

3 и 4 компрессора, 2 ког	нтура хладаген	та					
	LJ	A-LJAH	350	400	450	500	600
	Количество			3		4	
КОМПРЕССОР	Тип			герметичный	SCROLL		
	Скорость вр	ащения об/мин			2900		
	Хладагент			R22 или	R 407 C		
Контроль мощности	%		100-70-	100-63- 37-0	100-66-33-0	100-70-50	100-75-
			30-0			30-0	50-25-0
	Количество				2		
ИСПАРИТЕЛЬ	Тип		co	спаянными	пластинами		
	Количество	воды (в литрах)	6.24	7.55	8.5	9.04	11.3
	Количество				1		
	Тип вентиля	тора		центробежный	-соединение	блока	и ремня
	число	вентиляторов/			2/1		
	двигателей						
		общего расхода	22000	24000	27000	31000	35000
	воздуха м ³ /						
	Необходи	мое статическое	давление				
		мощность	5.5	5.5	9	5.5	9
		двигателя кВт					
	0 мм	скорость					
	вод.столба	вращения	715	796	928	603	766
		об/мин					
		мощность	5.5	5.5	9	5.5	9
		двигателя кВт					
	5 MM	скорость					
	вод.столба	вращения	753	817	967	638	777
		об/мин					
		мощность	5.5	7.5	9	7.5	9
	10	двигателя кВт					
	10 мм	скорость	001	0.5.5	1015	604	020
	вод.столба	вращения	801	855	1015	684	829
		об/мин	5.5	7.5	9	7.5	1.1
		мощность двигателя кВт	3.3	7.5	9	7.5	11
ВОЗДУОХЛАЖДАЕМЫЙ	15 мм						
КОНДЕНСАТОР	15 мм вод.столба	скорость вращения	844	928	1026	737	860
	вод.столба	об/мин	044	920	1020	131	800
	вод.столба	OO/MIIII					
	вод.столоа	мощность	5.5	7.5	11	7.5	11
		двигателя кВт	3.3	7.5	11	7.5	11
	20 мм	скорость					
	вод.столба	вращения	894	954	1068	774	903
	Dog. Cronou	об/мин	0, 1		1000		, , ,
		мощность	7.5	7.5	11	7.5	15
		двигателя кВт					
	25 мм	скорость					
	вод.столба	вращения	928	1012	1126	811	931
		об/мин					
		мощность	7.5	7.5	11	9	15
		двигателя кВт					
	30 мм	скорость					
	вод.столба	вращения	954	1026	1160	870	986
		об/мин		<u> </u>			
Падение давление на фи	ільтре*		6	6	7	7	7
* Еспи изобустим фил					_		

^{*} Если необходим фильтр, это значение следует добавить при расчете необходимого избыточного статистического давления.

ЗАЩИТА ОТ ЗАМЕРЗАНИЯ ДЛЯ НАРУЖНОГО ИСПОЛЬЗОВАНИЯ

	LJA – LJAH	[350	400	450	500	600
Мощность	•	Вт			500		
Ток	230 B*	A	2.17				
	400 B	A			1.25		

Примечание: Эти значения тока необходимо добавить к значению номинального максимума тока для оборудования LJA – LJAH.

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ CIATCOOLER моделей LJA – LJAH

1 и 2 компрессора, 1 контур хладагента

LJA-LJAH	Ţ			100	150	200	250	300
2011 20111					прессор (ы)			1 200
	Номинальный	Α	230 B*	34.5	50.5	69	85	101
230/400 B	макс. ток		400 B	20.1	29.4	40.2	49.5	58.8
3 фазы -				Двигато	ель вентилятора			
50 Гц	Номинальный	Α	230 B*	8.9	15.9	15.9	20.7	27.7
+ земля +	ток		400 B	5.2	9.2	9.2	12	16
N				Насос для	охлажденной вод	Ы		
	Номинальный	Α	230 B*	2.8		4.7		8.5
	макс. ток		400 B	1.6		2.7		4.9
				Компрессор (ы)	+ двигатель венти	ілятора		
	Номинальный	Α	230 B*	43.4	66.4	84.9	105.7	128.7
	макс. ток		400 B	25.3	38.6	49.4	61.5	74.8
			Ком	ипрессор (ы) + дв	вигатель вентилят	ора + насос		
	Номинальный	Α	230 B*	46.2	71.1	89.6	110.4	133.6
	макс. ток		400 B	26.9	41.3	52.1	64.2	79.7

^{* 230} В – 3 фазы: использованное напряжение во Франции.

3 и 4 компрессора, 2 контура хладагента

	Ток в зависимости от мощности двигателя вентилятора							
Мощность двигателя в	вентилятора	кВт	5.5	7.5	9	11	15	
Номинальный ток	A	230 B*	20.4	27.7	32.2	38.1	50.8	
		400 B	11.8	16	18.6	22	29.3	

LJA – I	JAH		35	50		400	450		500	600
			К	Сомпресс	оры					
Количе	ество			3				4		
Номинальный ток	A	230 B*	119	9.5	1	135.5	151.5		170	202
		400 B	69	.6		78.9	88.2		99	117.6
Компрессоры + двигатель вентилятора										
		230		140		156		84	190	234
	0 мм	400	В	81		91	1	07	111	136
	вод.столба									
		230		140		156		84	190	234
	5 мм	400	В	81		91	1	07	111	136
	вод.столба									
		230		140		163		84	198	234
Макс. номинальный	10 мм	400	В	91		95	1	07	115	136
ток в амперах	вод.столба									
		230		140		163		84	198	240
	15 мм	400) B	81		95	1	07	115	140
	вод.столба		-	1.10					100	
		230		140		163		90	198	240
	20 мм	400) B	81		95	1	10	115	140
	вод.столба	220	D. di	1.15		1.50		00	100	2.52
	2.5	230		147		163		90	198	253
	25 мм	400) B	86		95	1	10	115	147
	вод.столба	220	D #	1.47		1.00	4	00	202	252
	20	230		147		168		90	202	253
	30 мм	400	B	86		98		10	118	147
	вод.столба									

ГИДРАВЛИЧЕСКИЕ НАСОСЫ (модель LJAH)

Одиночный насос

Ha	coc	38	39	3a	4	5
Ток	кВ	0.55	0.95	2.2	3	4
Номинальный ток	230 B	2.8	4.7	8.5	11	14.7
в амперах	400 B	1.6	2.7	4.9	6.25	8.45

Сдвоенный насос

Нас	ос	200	201	22	23	24	25	26	27
Ток	кВ	0.75	1.1	1.5	2.2	3	3	4	5.5
Номинальный ток	230 B	3.3	4.6	6	8.5	11.5	11.5	15.2	20.5
в амперах	400 B	1.9	2.7	3.5	4.9	6.5	6.5	8.8	11.8

РЕГУЛИРОВКА УСТРОЙСТВ УПРАВЛЕНИЯ И БЕЗОПАСНОСТИ

Устройства управления и	Функция	Электрический	Устанавливаемые
безопасности		символ	параметры на панели
			модуля MRS
Датчик на входе испарителя		B1	Электронный модуль
Датчик на выходе	Контроль +	B2	MRS4-2.A (модели от
испарителя	безопасность		100 до 300)
Внешний пневматический		В6	или MRS1-4.A
датчик			(модели от 350 до 600)
Датчик на выходе		B7	
Выключатель высокого	Ручной сброс +		Срабатывание: 28 бар
давления	клавиша RESET	HP1	±0,5 (R22 и R 407c)
	сброс		
Выключатель низкого	Автом. сброс +	BP1	Срабатывание: 1.4 бар
давления	клавиша RESET		Сброс: 2 бара
	сброс		(R22 и R407С)
Предохранительное	Ручной сброс +	QG1	
устройство компрессора	клавиша RESET	QG2	
(тепловая защита	сброс		
эл.двигателя)			

Различные параметры считывания смотри в технической брошюре MRS4-2.A или MRS1-4.A.

ПРИСПОСОБЛЕНИЕ ДЛЯ КРУГЛОГОДИЧНОЙ РАБОТЫ Смотри О&M, поставляемую вместе с приспособлением.

СЧИТЫВАНИЕ ДАННЫХ ПО ХОДУ РАБОТЫ В МОДЕЛЯХ LJA- LJAH

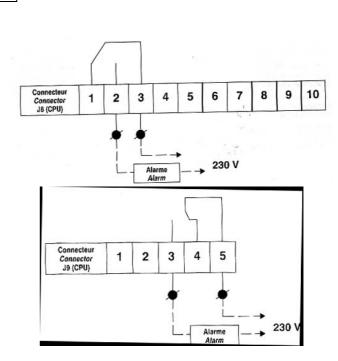
_		
Дата		
Время	T ==	<u> </u>
	Давление во всасывающем	
	трубопроводе Бар	
Компрессор	Температура во всасывающем	
	трубопроводе 0С	
	Давление конденсации Бар	
	Температура конденсации ⁰ С	
	Температура холодильного	
	агента на входе ⁰ С	
Суперперегреватель	Температура холодильного	
	агента на выходе ⁰ С	
	Температура воды на входе ⁰ С	
	Температура воды на выходе ⁰ С	
	Температура газа на входе ⁰ С	
Конденсатор с	Температура жидкости	
воздушным	на выходе ⁰ C	
охлаждением		
	Температура воздуха	
	на входе ⁰ С	
	Температура воздуха на выходе ⁰ С	
	Температура воды на входе ⁰ С	
	Температура воды на выходе ⁰ С	
Испаритель		
	Температура жидкости	
	на входе (хладагент) ⁰ C	
	Температура на выходе	
	(хладагент) ⁰ C	
Номинальное напряжение	В	
Напряжение на клеммах	В	
Электрические ток, потреб	оляемый компрессором А	
Потребление тока электро;	двигателем вентилятора А	
Давление масла	бар	
Стандарт уровня масла		
1 11	гого выключения реле защиты от	
замерзания	°C	
	остояния: трубопровода, подтяжка	
гаек и винтов и т.д.		
	іления электрических контактов	
(подтяжка)		
Чистка внутреннего тепло	обменника конденсатора	
Проверка уставок регулир		
Проверка уставки низкого		
Проверка уставки высоко	1	
Проверка уставки высок	ото давления оар	
търоверка расхода воды		<u> </u>

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

До того как приступить к любым работам по техническому обслуживанию, убедитесь, что установка отключена от электросети.

По крайней мере два раза в год следует выполнять считку оперативных данных и осуществлять проверки в соответствии с указанной выше таблицей. Необходимо выполнять данную процедуру перед каждым пуском оборудования, используемого в сезонном режиме.

Для обеспечения надлежащей работы и возможности воспользоваться гарантией: заключить контракт на техническое обслуживание с монтерами или компанией, занимающейся техническим обслуживанием, имеющей разрешение.

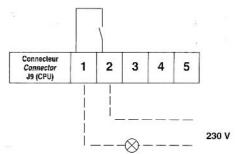

ПОДКЛЮЧЕНИЕ ОБОРУДОВАНИЕ КЛИЕНТА К ФУНКЦИЯМ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ

Модели	LJA - LJAH					
	100 - 300	350 - 750				
MRS	4-2.A	1-4.A				

Аварийный сигнал общей неисправности

$$LJA - LJAH \\ 100 - 150 - 200 - 250 - 300 \\ (MRS4-2.A)$$

$$\begin{array}{c} LJA - LJAH \\ 350 - 400 - 450 - 500 - 600 \\ (MRS1-4.A) \end{array}$$


Соединить индикатор или сигнализатор (аварийный сигнал) общей неисправности установки к клеммам клеммной колодки установки.

(Смотри электросхему).

Рабочий контакт: 8А при 230 В - контакт замкнут по умолчанию.

Отображение данных при работе при полной выходной мощности (350 - 400 - 450 - 500 - 600)

> LJA - LJAH 350-400-450-500-600-750 (MRS1-4.A)

Подсоединить сигнализацию установки, работающую на максимальной мощности на клеммах разъема платы центрального процессора.

Рабочий контакт: 8 А при 230 В

АВТОМАТИЧЕСКИЙ КОНТРОЛЬ

LJA- LJAH 100-150-200-250-300 (MRS4-2.A)

2 3 4 Connector J2 (CPU) Connecteu Connecto. J5 (CPU) 5 10 2 3 6 8 LJA- LJAH 350-400-450-500-600 (MRS1-4.A)

Connecteur

Подсоединить контакт «С2» к клеммам 2 и 4 разъема J2 платы центрального процессора (неполярный и высококачественный контакт)

- контакт разомкнут заданное значение 1
- контакт замкнут \rightarrow заданное значение 2

КОНТРОЛЬ ВЫБОРА ЗАДАННОГО ЗНАЧЕНИЯ 1/ЗАДАННОГО ЗНАЧЕНИЯ 2

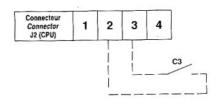
LD- LDH- ILD- ILDH 100-150-200-250-300 (MRS4-2.A)

2 3 1 4 5 6 8 9 J5 (CPU)

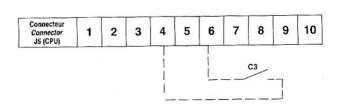
10

1 2 3

J2 (CPU)


LD- LDH 350-400-450-500-600-750 (MRS1-4.A)

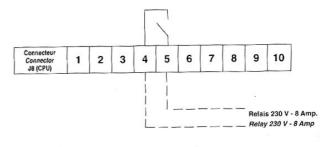
Подсоединить контакт «С2» к клеммам 2 и 4 разъема J2 платы центрального процессора (неполярный и высококачественный контакт)


- контакт разомкнут \rightarrow заданное значение 1
- контакт замкнут \rightarrow заданное значение 2

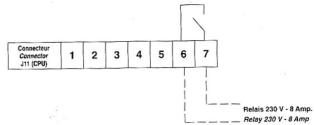
ВЫБОР РЕЖИМА «НАГРЕВАНИЕ / ОХЛАЖДЕНИЕ»

LJA- LJAH 100-150-200-250-300 (MRS4-2.A)

LJA- LJAH 350-400-450-500-600 (MRS1-4.A)


Подсоединить контакт «С3» к клеммам разъема платы центрального процессора (неполярный и высококачественный контакт)

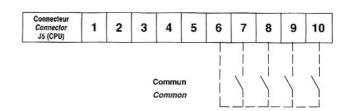
- контакт разомкнут → режим «охлаждения»
- контакт замкнут → режим «нагревания»


Внимание: Работа оборудования должна быть прекращена при переключении режимов «охлаждения» / «нагревания». Максимальная температура на входе в теплообменник для повторного пуска в режиме «охлаждения» должна быть 25°C.

КОНТРОЛЬ РАБОТЫ ВОДЯНОГО НАСОСА

LJA- LJAH 100-150-200-250-300 (MRS4-2.A)

LJA- LJAH 350-400-450-500-600 (MRS1-4.A)



Подсоединить источник питания насоса между клеммами разъема главной панели.

Примечание: Подключение производится клиентом на месте установки.

КОНТРОЛЬ ФУНКЦИИ «РАЗГРУЗКИ» (ТОЛЬКО LJA-LJAH 350-400-450-500-600)

LJA- LJAH 350-400-450-500-600 (MRS1-4.A)

Подсоединить контакты с 1 по 4 на клеммах 6-7-8-9-10 разъема платы центрального процессора J5 в зависимости от количества компрессоров, которые необходимо разгрузить, один контакт на компрессор (неполярный и высококачественный контакт)

- контакт разомкнут \rightarrow обычная работа
- контакт замкнут → разгрузка компрессора

МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ ПОДКЛЮЧЕНИИ

Примечание: все входные сигналы:

- Выбора режимов «нагревания» / «охлаждения»
- Контроля этапа предварительной настройки
- Автоматического контроля
- Контроля выключения питания
- Контроль выбора заданного значения 1 / заданного значения 2 должны быть неполярны и высокого качества.

Дистанция менее 30 метров

Необходимо предусмотреть при соединении, чтобы маршрут экранированного кабеля располагался, по крайней мере, в 30 см от любой линии, которая может вызывать интерференцию. Экран должен быть соединен с землей с обеих сторон. При наличии нескольких экранированных кабелей, каждый экран должен быть подключен отдельно (в случае, если все-таки существует риск интерференции, необходимо предусмотреть передачу различных входных сигналов, используя реле).

Дистанция более 30 метров

Используется релейная схема для различных входов, 1 реле на 1 вход, монтируется рядом с электронной платой (провода сечением 0.5 мм^2).