

EUTERM

Техническое руководство

инфракрасные термопанели

СОДЕРЖАНИЕ

1. ХАРАКТЕРИСТИКИ

- 1.1. Преимущества инфракрасных термопанелей EUTERM
- 1.2. Составные элементы EUTERM
- 1.3. Технические характеристики. Модельный ряд
- 1.4. Эффективность излучения. Перепады давления
- 1.5. Лучистая система кондиционирования
- 1.6. Перепады давления и температура поверхности

2. ПРОЕКТИРОВАНИЕ

- 2.1. Теплорасчет
- 2.2. Определение температуры теплоносителя и перепадов температуры в термопанелях
- 2.3. Выбор системы движения теплоносителя
- 2.4. Определение длины линий панелей
- 2.5. Выбор модели и определение количества линий
- 2.6. Определение расстояния между панелями
- 2.7. Вычисление перепадов температуры и средней температуры
- 2.8. Вычисление расхода воды и перепадов давления
- 2.9. Пример проектирования
 - 2.9.1. Теплорасчет
 - 2.9.2. Определение температуры теплоносителя и перепадов температуры в термопанелях
 - 2.9.3. Выбор системы движения теплоносителя
 - 2.9.4. Определение длины линий панелей
 - 2.9.5. Выбор модели и определение количества линий
 - 2.9.6. Определение расстояний между панелями
 - 2.9.7. Вычисление перепадов температуры и средней температуры
 - 2.9.8. Вычисление расхода воды и перепадов давления

₡ 3. МОНТАЖ

- 3.1. Поддерживающий профиль
 - 3.1.1. Ширина поддерживающего профиля
 - 3.1.2. Расстояние между профилями
 - 3.1.3. Количество цепей
 - 3.1.4. Длина цепей
- 3.2. Расположение линий и типы коллекторов
- 3.3. Соединение коллекторов
- 3.4. Установка покрытий коллектора
- 3.5. Монтаж инфракрасных термопанелей
- 3.6. Соединение термопанелей с помощью пресс-фитингов
- 3.7. Установка покрытия панелей в области соединений
- 3.8. Крепление изоляции
- 3.9. Установка антиконвекционного профиля
- 3.10. Установка покрытий для спортивных залов (стандартная панель)
- 3.11. Наполнение панелей водой и слив

(с антиконвективным профилем)

3.12. Наполнение панелей водой и слив

4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1. ХАРАКТЕРИСТИКИ

EUTERM – это лучистая система отопления, состоящая из инфракрасных термопанелей с подводом горячей воды или пара. Высокое качество системы EUTERM достигается использованием в производстве высококачественных материалов, специальной обработкой поверхности панелей, определяющей высокую эффективность излучения в течение долгого времени, а также особым подходом к производственному процессу. Специфическая форма панели разработана специально для максимального контакта с трубами и снижения конвективных теплопотерь к потолку, увеличивая излучение в зону обогрева.

EUTERM - простая и бесшумная система отопления, потому что передача тепла от теплоносителя к панелям и от панелей - в помещение не требует дополнительных механических или электрических элементов. Для получения теплоносителя могут использоваться любые источники энергии.

Модели EUTERM изготавливаются разной длины, ширины и с различным количеством труб, что позволяет использовать их в малых, средних и больших помещениях промышленного, коммерческого и спортивного назначения, а также в пожароопасных помещениях. Монтаж оборудования заключается в креплении панелей к потолку и соединении труб с помощью пресс-фитингов. Термопанели не требуют технического обслуживания и практически неподвержены износу благодаря использованию в производстве высококачественных материалов, а также статичности системы в целом (отсутствие механических или электрических частей). Это предотвращает нежелательные простои оборудования и гарантирует значительную экономию по сравнению с другими системами отопления.

Рисунок 1.1 Инфракрасная термопанель EUTERM

1.1.Преимущества инфракрасных термопанелей EUTERM

БОЛЬШИЙ КОМФОРТ ПРИ МЕНЬШЕЙ ТЕМПЕРАТУРЕ

Ощущение комфорта в помещении зависит не только от температуры воздуха (как принято думать), но и от температур окружающих нас поверхностей (средняя температура излучения). В помещении, обогреваемом инфракрасными термопанелями EUTERM, повышается средняя температура излучения, и поэтому ощущается комфорт при не очень высокой температуре воздуха, за счет лучистой добавки. Так уменьшается термическая нагрузка на оборудование, т.к. отпадает необходимость нагревания больших объёмов воздуха.

ОТСУТСТВИЕ ТЕМПЕРАТУРНОГО ГРАДИЕНТА – УМЕНЬШЕНИЕ ТЕПЛОПОТЕРЬ

В помещениях, обогреваемых инфракрасными термопанелями EUTERM, отсутствие значительного температурного градиента уменьшает нагрузку, необходимую для отопления помещения. В помещении, обогреваемом конвективным способом, температурный градиент ведёт к скоплению теплого воздуха под потолком помещения, что значительно увеличивает теплопотери кровли.

ОТСУТСТВИЕ ПЕРЕМЕЩЕНИЯ ВОЗДУШНЫХ МАСС И ПЫЛИ

При использовании воздушной системы отопления существует проблема постоянной циркуляции пыли и других вредных частиц в воздухе. Использование оборудования EUTERM позволяет избежать движений воздуха и пыли в нем, что позволяет использовать данную систему отопления в помещениях различного назначения.

АБСОЛЮТНАЯ БЕСШУМНОСТЬ

EUTERM – статичное оборудование, без механических или электрических компонентов. Это гарантирует абсолютную тишину в помещениях, где оно установлено.

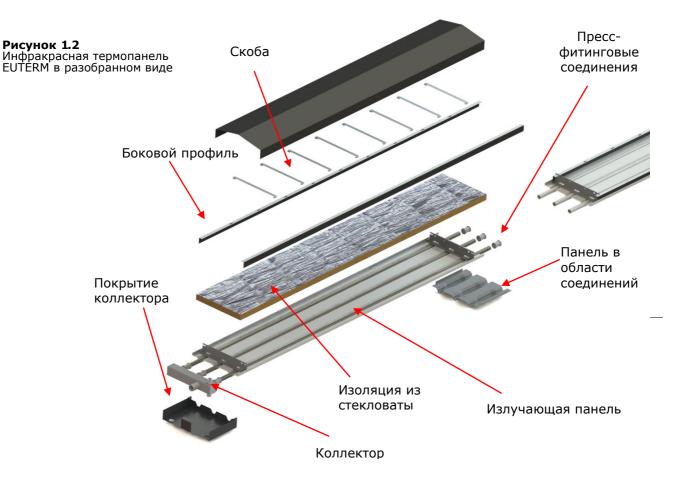
БЕЗОПАСНОСТЬ

В инфракрасных термопанелях EUTERM система нагрева воды (образование пара) может размещаться на большом расстоянии от панелей. Так сами панели являются абсолютно безопасной системой обогрева для помещений, где находятся легковоспламеняющиеся или взрывоопасные вещества.

ВОЗМОЖНОСТЬ ЛОКАЛЬНОГО ОБОГРЕВА

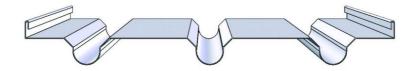
Существует возможность обогрева отдельных зон или рабочих мест, если нет необходимости отопления всего помещения, а также возможность регулирования температуры помещения в каждой зоне.

ЭКОНОМИЯ ЭНЕРГИИ И ЗАБОТА ОБ ОКРУЖАЮЩЕЙ СРЕДЕ

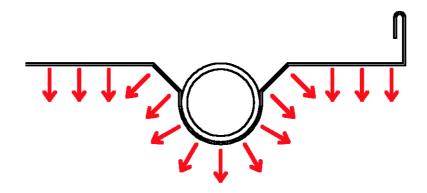

Одно из преимуществ инфракрасного отопления заключается в большей эффективности по сравнению с другими системами отопления с одинаковой мощностью. Экономия образуется в результате:

- снижения теплопотерь благодаря более низкой температуре воздуха;

Скорость запуска в работу оборудования даже после долгих простоев и несравнимо низкая стоимость техобслуживания – дополняют список преимуществ термопанелей EUTERM.


1.2. Составные элементы EUTERM

Ниже указаны составные элементы инфракрасной термопанели EUTERM.



Инфракрасные панели длинной 2, 4 или 6 метров и шириной 300, 600, 900 или 1200 мм, изготовлены из стали. Специфическая полукруглая форма панелей с интервалом 100 мм создана специально для размещения труб Ø21,3 мм. Это позволяет использовать большую площадь поверхности трубы, которая соприкасаясь с панелью, передает ей тепло. Данная форма также препятствует естественным конвективным процессам, направляющим теплый воздух наверх. Форма излучающей поверхности панелей, вмещающих трубы, показана на Рисунке 1.4. Данная форма позволяет направлять инфракрасные лучи под углом 45°, а не горизонтально, что максимально увеличивает излучение в рабочую зону помещения.

Рисунок 1.3 Излучающая панель

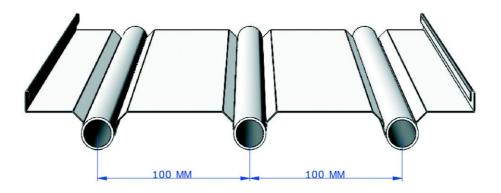
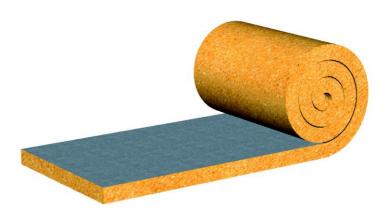


Рисунок 1.4 Форма поверхности излучающей панели

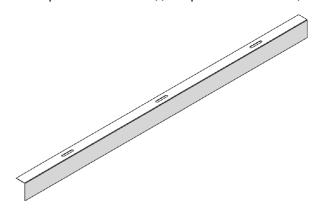
Стандартные трубы из стали Ø21,3 мм проходят необходымые тесты на давление и герметичность в области сварки. Края труб гладкие, специально для соединений пресс-фитингами. Панели со стандартными трубами используют для рабочего давления до 6 бар при максимальной температуре теплоносителя 120°С. Информация о трубах для других видов теплоносителя или для других температур или давления доступна в техотделе компании CARLIEUKLIMA.

Рисунок 1.5 Излучающая панель и трубы


Термопанель, после процесса обезжиривания, покрывается сверху и снизу специальным полиэфирным эпоксидным порошком и обрабатывается в промышленной печи при температуре 180°С. Стандартный цвет - белый (RAL 9010). Другие цвета возможны по заказу.

Слой изоляции из стекловаты стандартной толщиной 40 мм. Другие варианты толщины возможны по заказу.

Рисунок	1.6
Изоляция	


Толщина	40 мм
Теплопроводность при 50°C (DIN 52612)	0.038 Вт/мК
Плотность	20 кг/м³
Тепловое сопротивление	1.05 м ² K/Вт

Огнеупорность: А1

Боковой профиль из окрашенной стали для крепления изоляции.

Рисунок 1.7 Боковой профиль

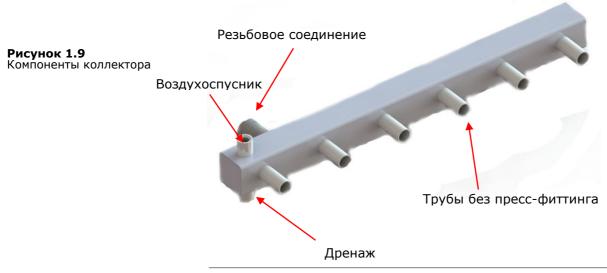
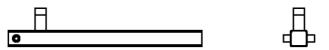

Поперечная скоба из окрашенной стали для крепления изоляционного слоя.

Рисунок 1.8 Скоба

Коллектор размерами 50 х 50 мм с одной стороны соединяет (соединение с резьбой 1" (по заказу 1"1/4)) излучающие панели с сетью движения

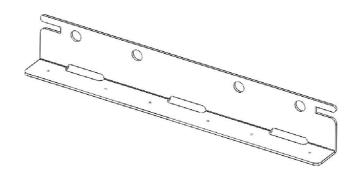

теплоносителя, а с другой стороны коллектора подходят трубы. В коллекторах предусмотрены также отверстия для спуска воды и выхода воздуха/пара. Коллектор соединяется с трубами сваркой и проходит тестирование на заводе.

В зависимости от системы подачи теплоносителя к панелям, различают три типа коллекторов:

Рисунок 1.10 Типы коллекторов

Стандартный коллектор, с единственным соединением - используется в панелях, в которых подача и выход горячей воды/пара расположены с разных сторон.

Коллектор с перегородкой, имеет два соединения и внутреннюю перегородку и используется в панелях с входом-выходом с одной стороны.



Закрытый коллектор, не имеет соединений, используется в панелях, имеющих с другой стороны коллектор с перегородкой.

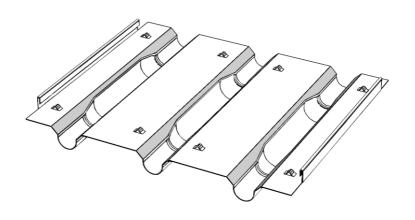

Поддерживающий стальной профиль для монтажа термопанелей.

Рисунок 1.11 Поддерживающий профиль

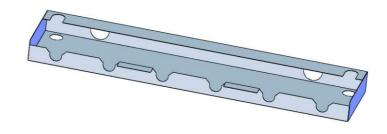

Стальная окрашенная панель в области соединений труб.

Рисунок 1.12 Форма панели в области соединения труб



Покрытие коллектора (по заказу).

Рисунок 1.13 Покрытие коллектора

Боковой антиконвекционный профиль (по заказу).

Стальной лист специальной формы для покрытия панелей, установленных в спортивных залах или очень пыльных помещениях (по заказу).

Рисунок 1.15 Покрытие для спортивных залов

1.3. Технические характеристики. Модельный ряд

Широкий ассортимент моделей EUTERM даёт возможность эффективно обогревать любые типы помещений независимо от высоты, величины теплопотерь, типа активности в данном помещении и вида теплоносителя. В Таблицах 1.1 и 1.2, а также на Рисунках 1.16 и 1.17 приведены технические характеристики моделей термопанелей и различных коллекторов.

Таблица 1.1 Технические данные различных моделей термопанелей EUTERM

Модель	Длина [мм]	Ширина [мм]	Кол-во труб	Вес без теплоносителя [кг/м]	Расход воды [л/м]
				Толщина трубы 1.5 мм	Толщина трубы 1.5 мм
300/3/2000	2000				
300/3/4000	4000	300	3	5.7	0.8
300/3/6000	6000				
600/6/2000	2000				
600/6/4000	4000	600	6	10.2	1.6
600/6/6000	6000				
900/9/2000	2000				
900/9/4000	4000	900	9	14.7	2.4
900/9/6000	6000				
1200/12/2000	2000				
1200/12/4000	4000	1200	12	18.0	3.2
1200/12/6000	6000				
Макс.	рабочее давлен	ние 6 бар		Макс. температура	воды 120°С
300/2/2000	2000				_
300/2/4000	4000	300	2	4.9	0.5
300/2/6000	6000				
600/4/2000	2000				
600/4/4000	4000	600	4	8.7	1.1
600/4/6000	6000				
900/6/2000	2000				
900/6/4000	4000	900	6	12.5	1.6
900/6/6000	6000				
1200/8/2000	2000				
1200/8/4000	4000	1200	8	17.0	2.1
1200/8/6000	6000				

Макс. рабочее давление 6 бар

Макс. температура воды 120°C

EUTERM AVH

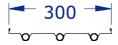

EUTERM AVL

Таблица 1.2 Технические данные различных моделей коллекторов EUTERM

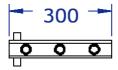
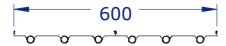
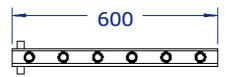
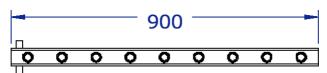

	Длина [мм]	Количество труб	Кол-во соед-й вход/выход теплоносителя	Кол-во выходов дренаж/воздух	Перегородка	Вес пустой панели [кг]	Расход воды [л]
Коллектор стандартный ST. Н 300/3	300	3	1	2	-	1.3	0.7
Коллектор стандартный ST. H 600/6	600	6	1	2	-	2.2	1.3
Коллектор стандартный ST. H 900/9	900	9	1	2	-	3.2	1.9
Коллектор стандартный ST. H 1200/12	1200	12	1	2	-	4.1	2.6
Коллектор стандартный ST. L 300/2	300	2	1	2	-	1.3	0.7
Коллектор стандартный ST. L 600/4	600	4	1	2	-	2.1	1.3
Коллектор стандартный ST. L 900/6	900	6	1	2	-	3.1	1.9
Коллектор стандартный ST. L 1200/8	1200	8	1	2	-	4.0	2.6
Коллектор с перегородкой DI. Н 300/3	300	3	2	4	+	1.6	0.8
Коллектор с перегородкой DI. H 600/6	600	6	2	4	+	2.5	1.4
Коллектор с перегородкой DI. Н 900/9	900	9	2	4	+	3.5	2.0
Коллектор с перегородкой DI. H 1200/12	1200	12	2	4	+	4.4	2.6
Коллектор с перегородкой DI. L 300/2	300	2	2	4	+	1.6	0.8
Коллектор с перегородкой DI. L 600/4	600	4	2	4	+	2.5	1.4
Коллектор с перегородкой DI. L 900/6	900	6	2	4	+	3.4	2.0
Коллектор с перегородкой DI. L 1200/8	1200	8	2	4	+	4.3	2.6
Коллектор закрытый CI.H 300/3	300	3	-	2	-	1.1	0.6
Коллектор закрытый СІ. Н 600/6	600	6	-	2	-	2.0	1.3
Коллектор закрытый СІ. Н 900/9	900	9	-	2	-	2.9	1.9
Коллектор закрытый CI. Н 1200/12	1200	12	-	2	-	3.9	2.5
Коллектор закрытый CI. L 300/2	300	2	-	2	-	1.1	0.6
Коллектор закрытый CI. L 600/4	600	4	-	2	-	1.9	1.3
Коллектор закрытый CI. L 900/6	900	6	-	2	-	2.9	1.9
Коллектор закрытый CI. L 1200/8	1200	8	-	2	-	3.8	2.5

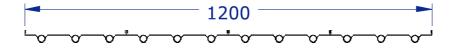
Рисунок 1.16 Модели EUTERM AVH и совместимые коллекторы

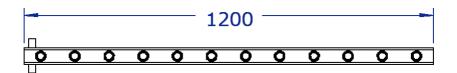

EUTERM AVH 300/3/2000, AVH 300/3/4000, AVH 300/3/6000


СТ. Н 300/3, С ПЕР. Н 300/3, ЗАК. Н 300/3

EUTERM AVH 600/6/2000, AVH 600/6/4000, AVH 600/6/6000


СТ. Н 600/6, С ПЕР. Н 600/6, ЗАК. Н 600/6


EUTERM AVH 900/9/2000, AVH 900/9/4000, AVH 900/9/6000


СТ. Н 900/9, С ПЕР. Н 900/9, ЗАК. Н 900/9

EUTERM AVH 1200/12/2000, AVH 1200/12/4000, AVH 1200/12/6000

СТ. Н 1200/12, С ПЕР. Н 1200/12, ЗАК. Н 1200/12

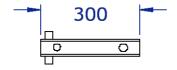
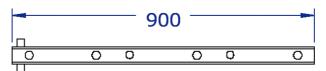


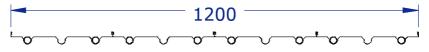
Рисунок 1.17 Модели EUTERM AVL и совместимые коллекторы

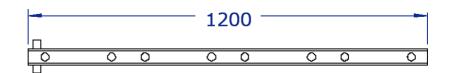
EUTERM AVL 300/2/2000, AVL 300/2/4000, AVL 300/2/6000

СТ. L 300/2, С ПЕР. L 300/2, ЗАК. L 300/2

EUTERM AVL 600/4/2000, AVL 600/4/4000, AVL 600/4/6000


СТ. L 600/4, С ПЕР. L 600/4, ЗАК. L 600/4


EUTERM AVL 900/6/2000, AVL 900/6/4000, AVL 900/6/6000


СТ. L 900/6, С ПЕР. L 900/6, ЗАК. L 900/6

EUTERM AVL 1200/8/2000, AVL 1200/8/4000, AVL 1200/8/6000

СТ. L 1200/8, С ПЕР. L 1200/8, ЗАК. L 1200/8

1.4. Эффективность излучения. Перепады давления

На Рисунках 1.18 и 1.20 показаны величины теплового излучения термопанелей EUTERM, работающих на горячей воде. Они монтируются к потолку в горизонтальном положении, включают слой изоляции сверху. Рекомендуемая высота монтажа в стандартных зданиях без механической вентиляции (с естественной вентиляцией) и без значительных вентиляционных отверстий в крыше - 5 метров.

Обозначения, используемые в формулах:

 ${f T_M}={f C}$ редняя температура теплоносителя (средняя между температурой на входе коллектора и на входе) [°C]

 T_{o} = Рабочая температура в помещении, измеренная датчиком температуры [°C]

$$\Delta T = T_M - T_O$$

Тепловое излучение инфракрасных термопанелей было протестировано и сертифицировано в известной лаборатории HLK Университета Штутгарта в соответствии с Европейской нормой EN14037.

Формула, используемая для вычисления теплового излучения следующая:

$$\Phi = K * \Delta T^n$$

 Φ = тепловое излучение

К = коэффициент теплоносителя п = экспонента теплоносителя

 ΔT = разница между средней температурой теплоносителя и рабочей температурой в помещении

Информация, представленная ниже в таблицах и графиках показывает тепловое излучение в различных рабочих состояниях, определяемых разницей между средней температурой теплоносителя и рабочей температурой в помещении (ΔT).

Основные показатели, полученные лабораторией HLK при $\Delta T = 55K$

Инфракрасные термопанели:

Модель	Тепловое излучение (Вт/м)	Коэффициент К	Экспонента n
AVH 300	201	1,7846	1,1835
AVH 600	373	3,1016	1,1951
AVH 900	519	4,392	1,191
AVH 1200	665	5,7245	1,1867

Коллекторы:

Модель	Тепловое излучение (Вт/м)	Коэффициент К	Экспонента п
AVH 300	32	6,0994	0,4135
AVH 600	58	11,2602	0,4103
AVH 900	89	17,1289	0,4121
AVH 1200	119	22,7281	0,4140

Таблица 1.3 Тепловое излучение [Вт/м] моделей EUTERM AVH

Δт	Модель AVH 300	Модель AVH 600	Модель AVH 900	Модель AVH 120
[K]	[Вт/м]	[Вт/м]	[Вт/м]	[Вт/м]
30	98	181	252	324
32	106	195	272	350
34	114	210	293	376
36	121	225	313	402
38	130	240	334	429
40	138	255	355	456
42	146	270	377	483
44	154	286	398	511
46	162	301	420	538
48	171	317	442	566
50	179	333	464	594
52	188	349	486	622
54	196	365	508	651
55	201	373	519	665
56	205	381	531	680
58	214	397	553	709
60 62	222	414	<u>576</u> 599	738 767
	231	430		
64	240	447	622	796
66	249 258	464 480	645 669	826 856
68 70		497		
72	<u>267</u> 276	514	692 716	886 916
74	285	532	739	946
76	294	549	763	977
78	303	566	787	1007
80	313	583	811	1038
82	322	601	836	1069
84	331	618	860	1100
86	341	636	884	1131
88	350	654	909	1162
90	359	672	934	1194
92	369	689	958	1225
94	378	707	983	1257
96	388	725	1008	1289
98	397	744	1033	1320
100	407	762	1058	1353
102	417	780	1084	1385
104	426	798	1109	1417
106	436	817	1134	1449
108	446	835	1160	1482
110	456	854	1186	1514
112	466	872	1211	1547
114	475	891	1237	1580
116	485	910	1263	1613
118	495	928	1289	1646
120	505	947	1315	1679
122	515	966	1341	1712
124	525	985	1368	1746
126	535	1004	1394	1779
128	545	1023	1420	1813
130	<u>555</u>	1042	1447	1847
132	565 576	1061	1473	1880
134	576 596	1081	1500	1914
136	586 506	1100	1527	1948
138	596 606	1119	1553	1982
140	606	1139	1580	2016
142 144	616	1158	1607	2050
	627 637	1178 1197	1634 1661	2085
146 148	637 647	1217	1661	2119 2154
140	04/	121/	1688	Z13 4

В соответствии с EN 14037 -1,-2,-3

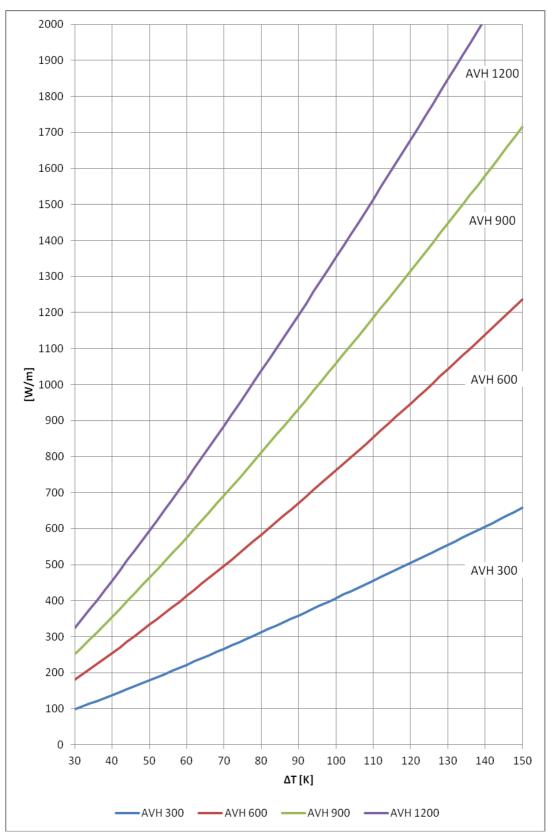
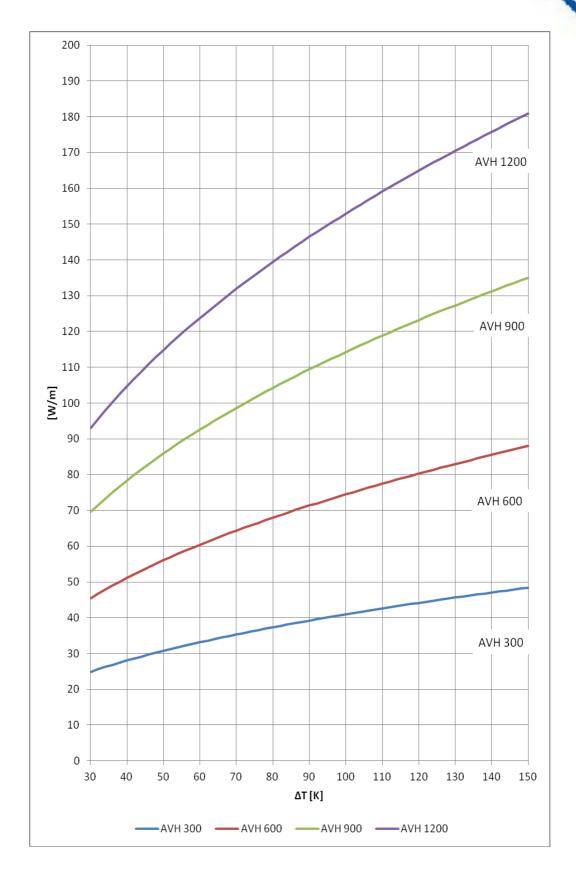



Рисунок 1.18 Тепловое излучение EUTERM AVH в соответствии с EN 14037-1 ,-2,-3

Таблица

Δτ	Коллектор AVH 300	Коллектор AVH 600	Коллектор AVH 900	Коллектор AVH 1200
[K]	[Вт]	[Вт]	[Вт]	[Вт]
30	25	45	70	93
32	26	47	71	95
34	26	48	73	98
36	27	49	75	100
38	27	50	77	102
40	28	51	78	105
42	29	52	80	107
44 46	29 30	<u>53</u> 54	81 83	109 111
48	30	55	84	113
50	31	56	86	115
52	31	57	87	117
54	32	58	89	119
55	32	58	89	119
56	32	59	90	120
58	33	60	91	122
60	33	60	93	124
62	34	61	94	125
64	34	62	95	127
66	34	63	96	129
68	35	64	97	130
70	35	64	99	132
72	36	65	100	134
74	36	66	101	135
76	37	67	102	137
78	37	67	103	138
80 82	37 38	<u>68</u> 69	104 105	139 141
84	38	69	105	142
86	38	70	107	144
88	39	71	108	145
90	39	71	109	146
92	40	72	110	148
94	40	73	111	149
96	40	73	112	150
98	41	74	113	152
100	41	74	114	153
102	41	75	115	154
104	42	76	116	155
106	42	76	117	157
108	42	77	118	158
110	43	77	119	159
112	43	78	120	160
114	43	79	121	161
116	44	79	121	163
118 120	44 44	<u>80</u> 80	122 123	164 165
120	44	80 81	123	166
124	45	81	125	167
126	45	82	126	168
128	45	82	127	169
130	46	83	127	171
132	46	83	128	172
134	46	84	129	173
136	47	85	130	174
138	47	85	130	175
140	47	86	131	176
142	47	86	132	177
144	48	87	133	178
146	48	87	134	179
148	48	87	134	180
150	48	88	135	181

Тепловое излучение [Вт/м] коллекторов EUTERM AVH

Рисунок 1.19 Тепловое излучение коллекторов EUTERM AVH в соответствии с *В соответствии с EN 14037 -1,-2,-3*

Таблица 1.5 Тепловое излучение [Вт/м] EUTERM AVL

Δτ	Модель AVL 300	Модель AVL 600	Модель AVL 900	Модель AVL 1200
[K]	[W/m]	[W/m]	[W/m]	[W/m]
30	82	151	210	270
32	88	163	227	292
34	95	175	244	313
36	101	187	261	335
38	108	200	279	358
40 42	115 122	212 225	296 314	380 403
44	128	238	332	425
46	135	251	350	448
48	142	264	368	472
50	149	277	386	495
52	156	291	405	519
54	164	304	423	542
55	167	311	433	554
56	171	317	442	566
58	178	331	461	590
60 62	185 193	345 359	480 499	615 639
64	200	372	518	664
66	207	386	538	688
68	215	400	557	713
70	222	414	577	738
72	230	429	596	763
74	238	443	616	788
76	245	457	636	814
78	253	472	656	839
80	261	486	676	865
82	268	501	696	891
84 86	276 284	515 530	717 737	916 942
88	292	545	757	968
90	299	560	778	995
92	307	575	799	1021
94	315	590	819	1047
96	323	605	840	1074
98	331	620	861	1100
100	339	635	882	1127
102	347	650	903	1154
104	355	665	924	1181
106 108	363 372	681 696	945 967	1208 1235
110	380	711	988	1262
112	388	727	1009	1289
114	396	742	1031	1317
116	404	758	1053	1344
118	413	774	1074	1372
120	421	789	1096	1399
122	429	805	1118	1427
124	438	821	1140	1455
126 128	446 454	837 853	1162 1183	1483 1511
130	463	869	1206	1539
132	471	885	1228	1567
134	480	901	1250	1595
136	488	917	1272	1623
138	497	933	1294	1652
140	505	949	1317	1680
142	514	965	1339	1709
144	522	981	1362	1737
146	531	998	1384	1766
148 150	540 548	1014 1031	1407 1430	1795 1824
130	340	1031	1430	1024

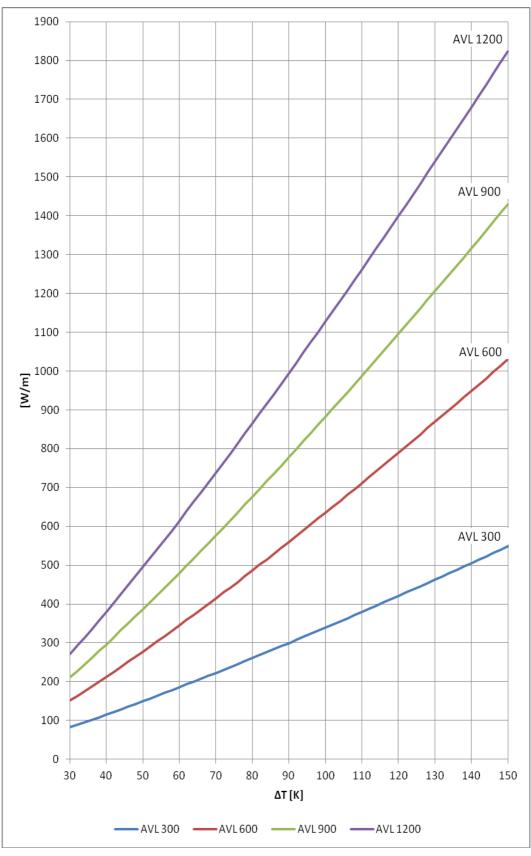
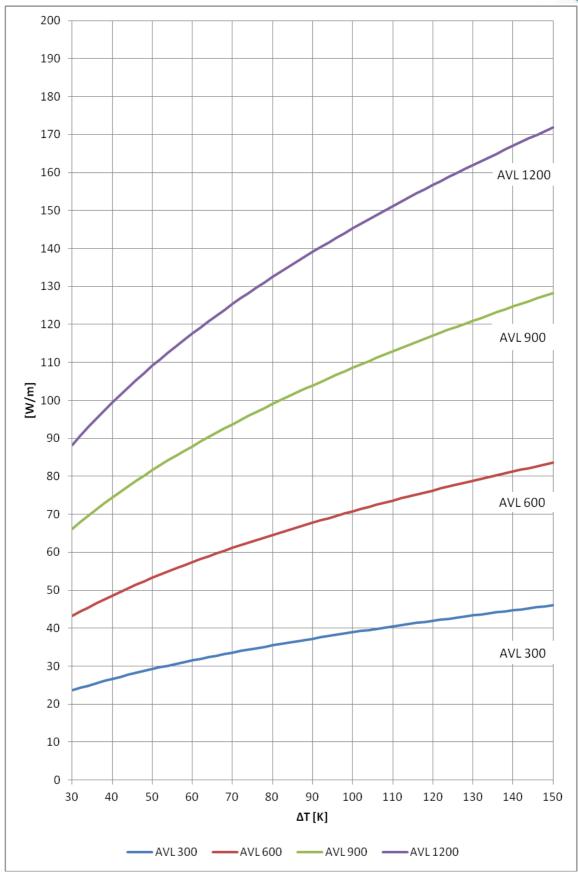



Рисунок 1.20 Тепловое излучение EUTERM AVL

Таблица 1.6 Тепловое излучение [Вт/м] коллекторов EUTERM AVL

Δτ	Коллектор AVL 300	Коллектор AVL 600	Коллектор AVL 900	Коллектор AVL 1200
[K]	[w]	[W]	[W]	[W]
30	24	43	66	88
32	24	44	68	91
34	25	45	70	93
36	26	47	71	95
38	26	48	73	97
<u>40</u> 42	27 27	49 50	74 76	99 101
44	28	50 51		101
46	28	51	79	105
48	29	52	80	107
50	29	53	82	109
52	30	54	83	111
54	30	55	84	113
55	30	55	85	113
<u>56</u>	31	<u>56</u>	85	114
<u>58</u> 60	31 31	<u>57</u> 57	<u>87</u> 88	116 118
62	32	58	89	119
64	32	59	90	121
66	33	60	91	122
68	33	60	93	124
70	34	61	94	125
72	34	62	95	127
74	34	63	96	128
76 78	35 35	63 64	97 98	130 131
80	35	65	99	132
82	36	65	100	134
84	36	66	101	135
86	37	67	102	137
88	37	67	103	138
90	37	68	104	139
92	38	68	105	140
94 96	38 38	69 70	106 107	142 143
98	39	70	108	144
100	39	71	109	145
102	39	71	109	147
104	40	72	110	148
106	40	72	111	149
108	40	73	112	150
110	40	74	113	151
112 114	41 41	74 75	114 115	152 153
116	41	75 75	115	155
118	42	76	116	156
120	42	76	117	157
122	42	77	118	158
124	43	77	119	159
126	43	78	119	160
128	43 43	78 79	120 121	161 162
130 132	43		122	163
134	44	80	122	164
136	44	80	123	165
138	44	81	124	166
140	45	81	125	167
142	45	82	125	168
144	45	82	126	169
146	45	83	127	170
148 150	<u>46</u> 46	83 84	128 128	171 172
130	40	04	120	1/2

Рисунок 1.21 Тепловое излучение коллекторов EUTERM AVL

1.5 Лучистая система кондиционирования

Для улучшения условий жизни и труда существуют современные системы кондиционирования. Очевидно, что неблагоприятные окружающие условия, связанные с высокой влажностью и перепадом температур сильно влияют на результаты трудовой деятельности человека. Неблагоприятные окружающие условия могут ухудшить трудовую деятельность человека на 10 - 20%. Инфракрасные термопанели EUTERM производства CARLIEUKLIMA помимо отопления зимой могут быть использованы как система кондиционирования в летний период.

Использование принципа излучения в кондиционировании несёт в себе те же основные преимущества, что и отопление. По сравнению с классической системой кондиционирования, термопанели EUTERM создают комфортные условия и позволяют экономить энергию.

Преимущества использования EUTERM как системы кондиционирования

Поддержание более высокой температуры воздуха

Исходя из того, что рабочая температура (T_o) - это разница между температурой воздуха (T_a) и температурой ограждающих конструкций (T_p) , мы получаем следующее соотношение:

Например, получить температуру 25°C (по проекту) Вы можете двумя способами:

$$T_o$$
 при 25°C = $\frac{Ta(23^{\circ}C) + Tp(27^{\circ}C)}{2}$

(При использовании традиционной системы кондиционирования)

$$T_o$$
 при 25°C = $\frac{\text{Ta}(27 \, ^{\circ}\text{C}) + \text{Tp}(23 \, ^{\circ}\text{C})}{2}$

(При использовании лучистой системы кондиционирования)

Использование лучистой системы кондиционирования позволяет получить требуемую рабочую температуру, сохраняя при этом температуру воздуха выше, чем при использовании традиционной системы кондиционирования, что в свою очередь значительно повышает ощущение комфорта.

Никакая подвижность воздуха и пыли, здоровая среда

EUTERM: Руководство по эксплуатации

Как уже говорилось в разделе отопления, при применении лучистых систем, в том числе в кондиционировании, не происходит движение воздушных потоков, так как конвекция практически отсутствует. В действительности, в помещениях, где применяются системы кондиционирования EUTERM, перемещение воздушных масс ограничивается только естественной инфильтрацией. Отсутствие воздушных потоков и пыли создаёт более здоровые и чистые условия в помещении.

Бесшумность

Так как в термопанелях не происходит никаких механических процессов, эта система работает абсолютно бесшумно.

Основные положения системы кондиционирования

Одним из важных условий подобных систем является необходимость поддерживать температуру системы выше точки росы, для того, чтобы избежать конденсации на излучающей поверхности.

Необходимо учитывать, что если в помещениях отсутствует система кондиционирования, точка росы внутри совпадает с соответствующей величиной наружи помещения. В этом случае рекомендуется поддерживать температуру воды на подачу в термопанель на 1°С выше точки росы кондиционируемого воздуха.

Охлаждение термопанелями EUTERM

Лучистая система кондиционирования EUTHERM была протестирована и сертифицирована в лаборатории HLK Университета Штутгарта в соответствии с Европейской нормой EN14240.

Формула, используемая для вычисления величины охлаждения, выглядит следующим образом:

$$\Phi = K * \Delta T^n$$

 Φ = Охлаждение

К = Коэффициент охлаждения

n = Экспонента охлаждения

 ΔT = Разница между средней температурой охлаждающей жидкости и рабочей температурой.

Информация, представленная в таблицах и графиках ниже, показывает разницу между температурой воды и рабочей температурой в помещении (ΔT) .

Основные параметры, полученные лабораторией HLK при $\Delta T = 8K$

Модель	Охлаждение	Коэффициент	Экспонента
	(Вт/м²)	K	n
AVH 600	27	2.7414	1.0967

Таблица 1.7 Охлаждение от EUTERM AVH с коллекторами [Вт/м]

	Модель AVH 300	Модель AVH 600	Модель AVH 900	Модель AVH 1200
Δт				
[K]	[Вт/м]	[Вт/м]	[Вт/м]	[Вт/м]
1	3	6	8	10
2	6	11	16	20
3	9	17	23	30
4	13	24	34	43
5	16	30	41	53
6	20	37	52	66
7	23	43	60	76
8	27	50	70	89
9	31	57	80	102
10	34	63	88	112
11	38	70	98	125
12	42	78	109	139
13	46	85	119	152
14	50	93	130	165
15	53	98	137	175

В соответствии с EN 14240

Таблица 1.8 Охлаждение от EUTERM AVL коллекторами [Вт/м]

	Модель AVL 300	Модель AVL 600	Модель AVL 900	Модель AVL 1200		
Δт						
[K]	[Вт/м]	[Вт/м]	[Вт/м]	[Вт/м]		
1	2	4	5	7		
2	5	9	13	17		
3	8	15	21	26		
4	10	19	26	33		
5	13	24	34	43		
6	16	30	41	53		
7	19	35	49	63		
8	22	41	57	73		
9	25	46	65	83		
10	29	54	75	96		
11	32	59	83	106		
12	35	65	91	116		
13	38	70	98	125		
14	41	76	106	135		
15	45	83	117	149		

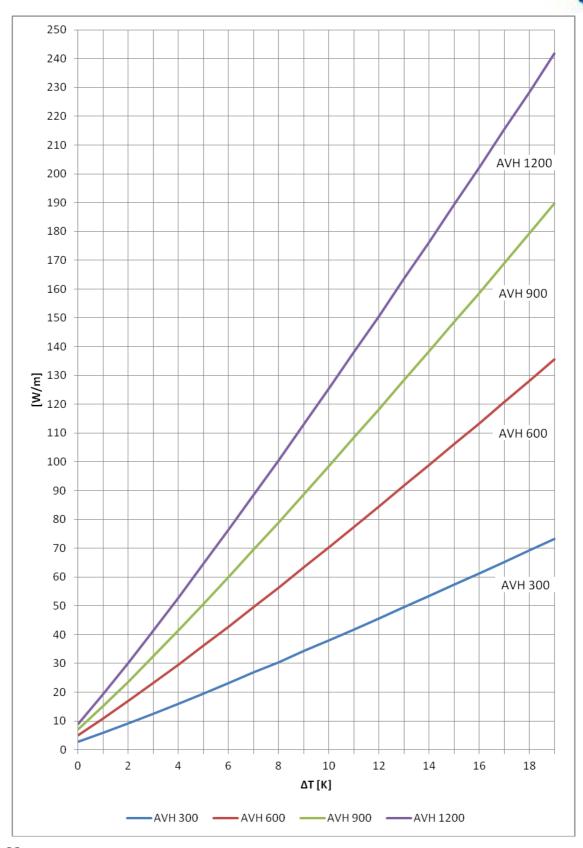


Рисунок 1.22 Охлаждение от инфракрасной термопанели EUTERM AVH в соответствии с EN 14240

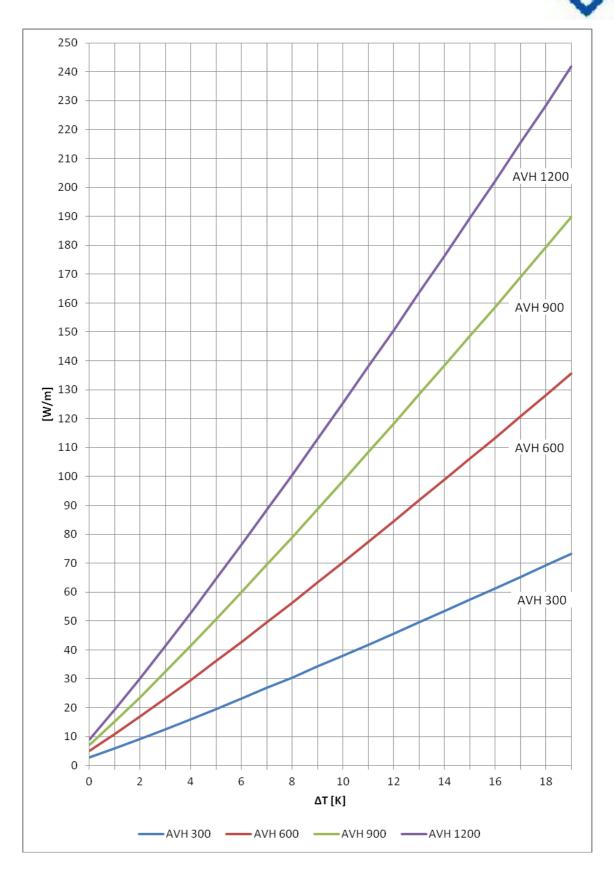
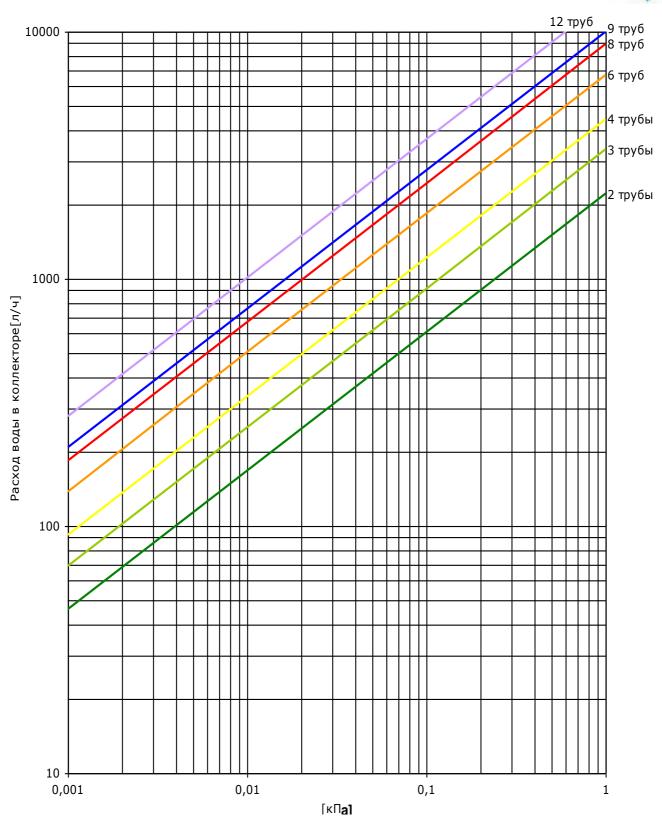


Рисунок 1.23 Охлаждение от инфракрасной термопанели EUTERM AVL

1.6 Перепады давления и температура поверхности

В графиках, показывающих перепады давления для инфракрасных термопанелей EUTERM средняя температура теплоносителя $T_{\rm M}$ принята на уровне 80° C; для других температур используется поправочный коэффициент β , который увеличивает суммарное давления, указанное в графиках (Рисунки 1.24, 1.25, 1.26, 1.27, 1.28). Рисунок 1.29 показывает среднюю температуру на поверхности инфракрасной термопанели.


Таблица 1.9 Поправочный коэффициент для различной средней температуры воды

T _M [°C]	60	80	100	120	140	160
Коэффициент В	1.08	1.00	0.95	0.90	0.86	0.82

Для инфракрасных термопанелей EUTERM рекомендуется расчитывать расход воды 200 - 400 л/ч на каждую трубу (D = 21.3 мм). Таблица 1.10 показывает минимальный уровень расхода воды. Настоятельно рекомендуется не нарушать минимальные табличные показатели для того, чтобы сохранить турбулентное движение воды в трубе, обеспечивающее высокий коэффициент излучения.

Таблица 1.10 Минимальный расход воды в различных видах коллекторов и температура обратного потока [л/ч]

	Обратная температура [°C]	L 300/2	L 600/4	L 900/6	L 1200/8	H 300/3	H 600/6	H 900/9	H 1200/12
		Минимальный расход воды [л/ч]				Минимальный расход воды [л/ч]			
	30	241	482	724	965	362	724	1085	1447
Коллектор стандартный	40	197	395	592	789	296	592	888	1184
	50	165	329	494	659	247	494	741	988
	60	140	279	419	558	209	419	628	838
	70	120	240	360	480	180	360	540	720
	80	104	209	313	417	156	313	469	626
	90	92	183	275	366	137	275	412	549
	100	81	162	243	324	122	243	365	486
	110	72	144	217	289	108	217	325	433
	120	65	130	194	259	97	194	292	389
	130	58	117	175	234	88	175	263	351
	140	53	106	159	212	80	159	239	318
	150	48	97	145	193	72	145	217	290
	30	121	241	362	482	241	362	603	724
	40	99	197	296	395	197	296	493	592
перегородкой	50	82	165	247	329	165	247	412	494
00	60	70	140	209	279	140	209	349	419
6	70	60	120	180	240	120	180	300	360
be	80	52	104	156	209	104	156	261	313
	90	46	92	137	183	92	137	229	275
ō	100	41	81	122	162	81	122	203	243
Ĕ	110	36	72	108	144	72	108	181	217
Коллектор	120	32	65	97	130	65	97	162	194
5	130	29	58	88	117	58	88	146	175
-	140	27	53	80	106	53	80	133	159
	150	24	48	72	97	48	72	121	145

Перепады давления на линейный метр инфракрасной термопанели со стандартными трубами и стандартным коллектором (средняя температура 80°C)

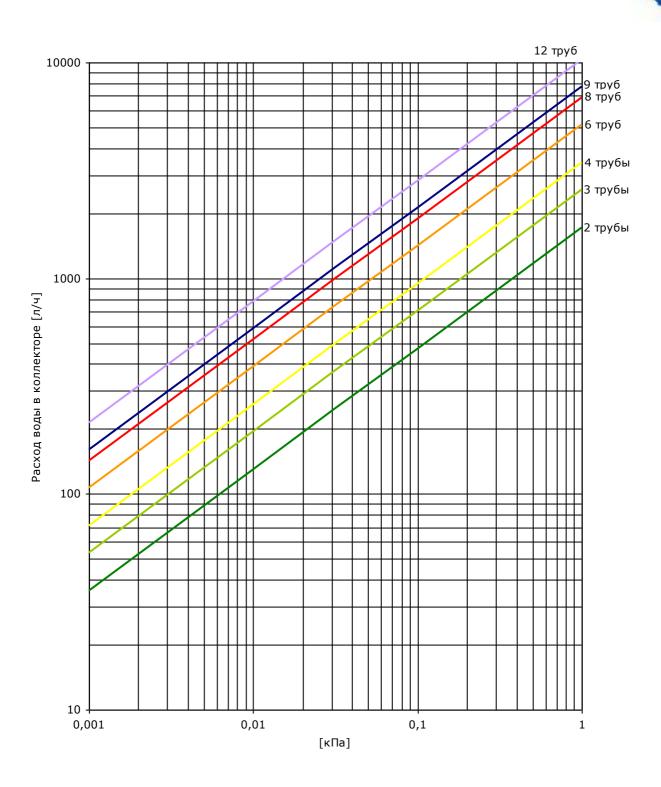
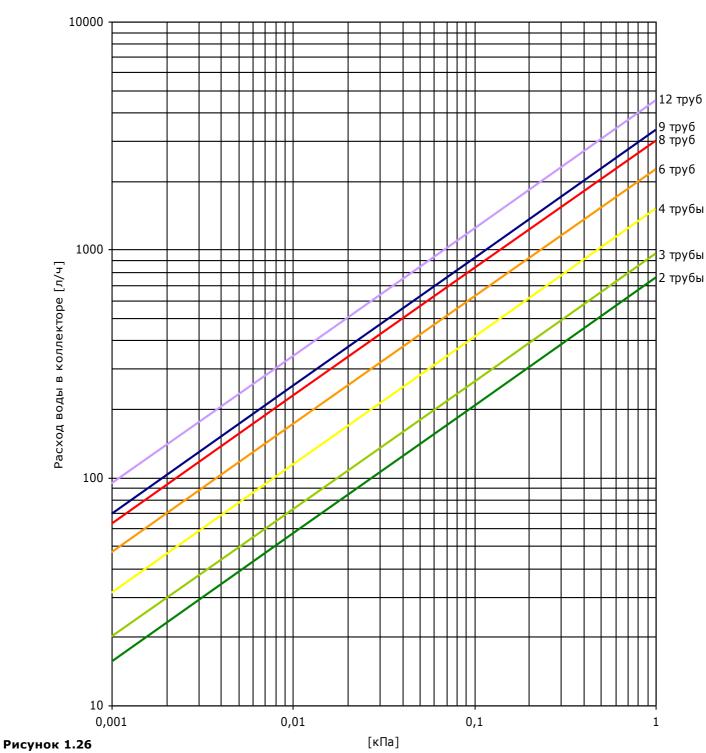
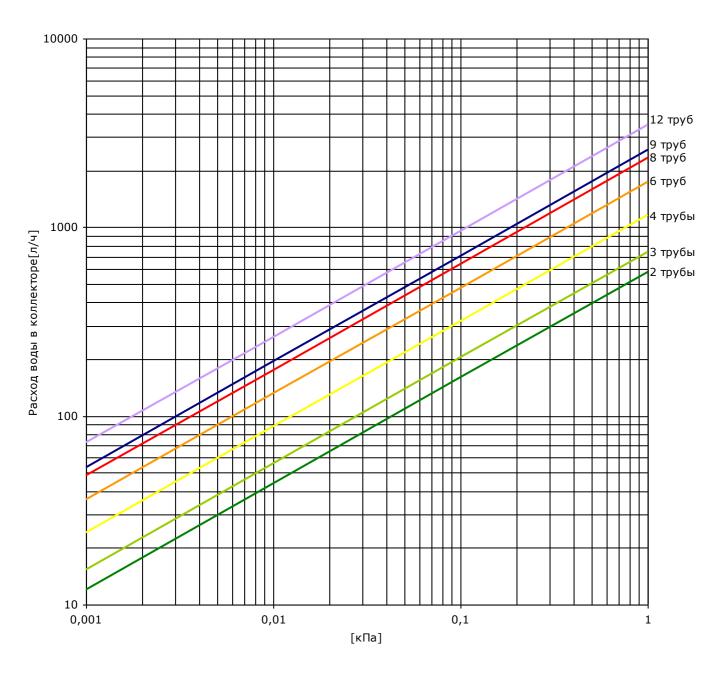



Рисунок 1.25

1 кПа =10 гПа = 10 мбар= 100 мм H₂O

EUTERM: Руководство по эксплуатации


Перепады давления на линейный метр инфракрасной термопанели с нестандартными трубами и стандартным коллектором (средняя температура 80°C)

1 кПа =10 гПа = 10 мбар = 100 мм H₂O

EUTERM: Руководство по эксплуатации

Перепады давления на линейный метр термопанели для стандартной трубы и коллектора с перегородкой (средняя температура 80°C)

1 кПа=10 гПа = 10 мбар = 100 мм H₂O

Рисунок 1.27

Перепады давления на линейный метр для нестандартной трубы и коллектора с перегородкой (температура 80°)

Рисунок 1.28 Средний уровень перепада давления на 2 коллектора (средняя температура 80°C)

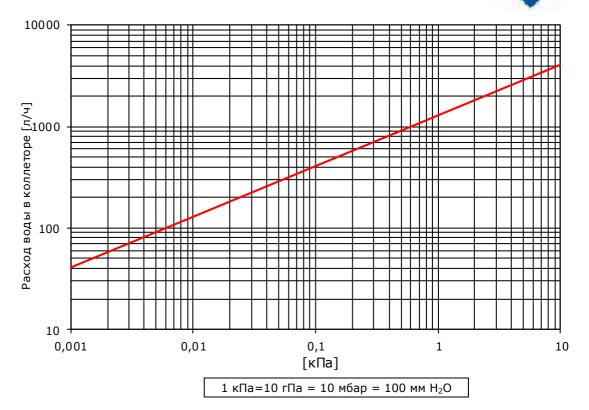
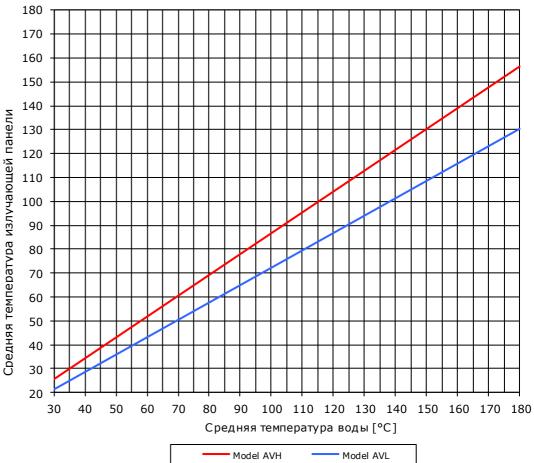



Рисунок 1.29 Средняя температура поверхности инфракрасных термопанелей

2. ПРОЕКТИРОВАНИЕ

Данный раздел описывает процедуры, рекомендованные компанией CARLIEUKLIMA для грамотного проектирования систем отопления инфракрасными термопанелями EUTERM.

2.1. Теплорасчет

Первый шаг проектирования системы отопления EUTERM – определение тепловой мощности, необходимой для обогрева данного помещения. Можно использовать упрощённый метод расчета, предложенный компанией CARLIEUKLIMA (объяснения в разделе 4.3 Технического руководства по проектированию). Чтобы произвести теплорасчет, проектировщик должен определить высоту монтажа инфракрасных термопанелей EUTERM. Желательно устанавливать панели на более низкой высоте, так как выше 5 м происходит увеличение теплопотерь и, соответственно, требуется большая мощность оборудования. В то же время необходимо учитывать и характеристики помещения (наличие кран-балки, ферм перекрытия и т. д.).

2.2. Определение температуры теплоносителя и перепадов температуры в термопанелях

Учитывая температуру теплоносителя на входе, определяется перепад температуры ΔТ_{СР} между входом и выходом панели. Величины перепада температуры обычно различны для горячей воды - от 5 до 20°C.

$$\Delta T_{CP} = T_{I} - T_{UP}$$
 [°C]

где:

$$T_{\rm I}$$
 = температура теплоносителя на входе [°C]

$$T_{UP} =$$
 температура теплоносителя на выходе [°C]

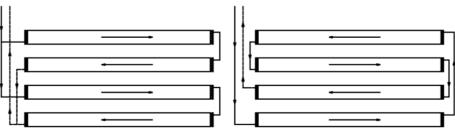
 T_{UP} определяется так:

$$T_{IIP} = T_I - \Delta T_{CP}$$
 [°C]

Можно рассчитать среднюю температуру теплоносителя Тмр:

$$T_{MP} = \frac{(T_I + T_{UP})}{2}$$
 [°C]

Далее можно рассчитать разницу ΔT_P между средней температурой теплоносителя T_{MP} и температурой в помещении T_O :


$$\Delta T_{P} = T_{MP} - T_{O}$$
 [°C]

где:

$$T_{O} =$$
 рабочая температура в помещении [°C]

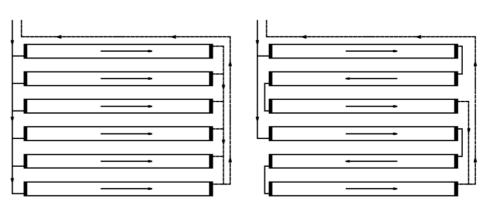
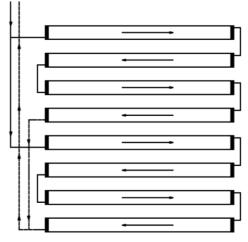
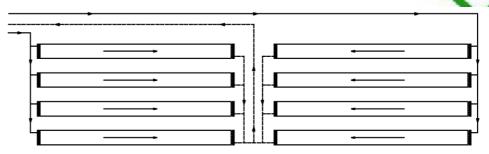

2.3. Выбор системы движения теплоносителя

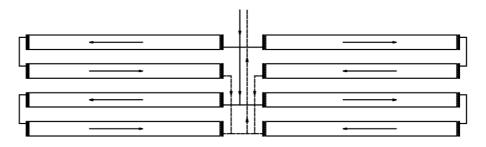
Рисунок 2.1 Примеры систем движения теплоносителя компенсаторного типа


Вход и выход с одной стороны - по 2 панели

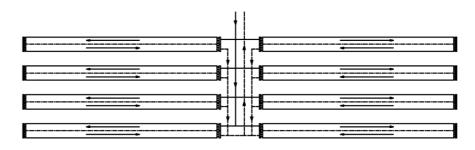
Вход и выход с одной стороны - по 4 панели


Вход и выход с противоположенных сторон панели

Вход и выход с противоположенных сторон – по 3 панели



Вход и выход с одной стороны - по 4 панели


Рисунок 2.2 Примеры систем движения теплоносителя компенсаторного типа

Вход и выход с противоположенных сторон панели

Вход и выход с одной стороны - по 2 панели

Вход и выход с одной стороны панели

При выборе типа системы движения теплоносителя и размещения оборудования в помещении, необходимо учитывать следующие особенности:

гидравлическая система должна быть максимально сбалансирована для избежания установки клапанов и/или стабилизаторов и балансировки системы с их помощью;

при размещении панелей в помещении необходимо учитывать расположение сети подвода теплоносителя (иногда система подвода стоит дороже самих термопанелей);

рекомендуется использовать коллекторы с перегородкой только в случаях необходимости (для поддержания равномерной температуры).

2. ПРОЕКТИРОВАНИЕ

2.4. Определение длины линии термопанелей

Длина линии термопанелей L [м] устанавливается с учетом минимальной длины термопанели (2 метра) и не превышая максимально допустимой длины 40 метров (для избежания сильных перепадов давления и неравномерности температур).

2.5. Выбор модели и определение количества линий

Для определения количества линий термопанелей, необходимо выбрать модель EUTERM. Рекомендуется отдавать приоритет моделям с максимальным количеством труб (модели AVH) и максимальной шириной (насколько позволяют крепления и высота монтажа). В Таблице 2.1 указаны минимальные высоты установки, которые необходимо учитывать при выборе модели термопанелей и температуры теплоносителя.

Таблица 2.1 Рекомендуемая минимальная высота монтажа (в метрах от пола)

	EUTE	RM AV	/H		EUTE						
Средняя температура	Ширина термопанели [мм]										
воды[°С]	300	600	900	1200	300	600	900	1200			
Tmp	Минимальная высота монтажа [м]										
60	2.9	3.0	3.0	3.0	2.8	2.9	2.9	2.9			
70	3.1	3.2	3.2	3.3	3.0	3.1	3.1	3.1			
80	3.2	3.4	3.5	3.5	3.1	3.2	3.4	3.4			
90	3.4	3.6	3.7	3.8	3.3	3.4	3.6	3.6			
100	3.6	3.7	4.0	4.0	3.5	3.6	3.8	3.9			
110	3.8	3.9	4.2	4.3	3.7	3.8	4.0	4.1			
120	3.9	4.1	4.5	4.5	3.8	3.9	4.3	4.4			
130	4.1	4.3	4.7	4.8	4.0	4.1	4.5	4.6			

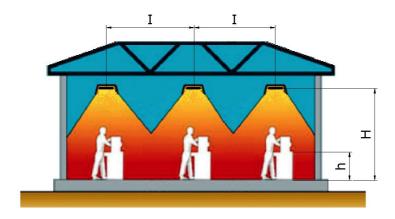
Из Таблиц 1.3 - 1.6. для выбранной модели получаем величину теплового излучения панели RT [BT/M] для разницы температуры Δ T, которая сравнивается с величиной Δ Tp, вычисленной ранее. С помощью следующей формулы можно определить количество линий термопанелей, необходимых для получения требуемой тепловой мощности.

$$N = \frac{\Phi}{L \cdot R_T}$$

где:

2.6. Определение расстояния между панелями

Чтобы гарантировать равномерность тепла по всему обогреваемому помещению, панели не должны быть чрезмерно отдалены друг от друга. Максимальный интервал между панелями определяется с учетом высоты монтажа и высоты рабочих поверхностей (Рисунок 2.3) с помощью следующей формулы:


$$I_{MAX} = 1.5 \text{ (H-h)}$$

где:

 I_{MAX} = расстояние между центрами двух смежных панелей [м]

h = высота рабочих поверхностей [м]

Рисунок 2.3 Высота монтажа термопанелей

В Таблице 2.2 указаны максимальные интервалы для высоты рабочих поверхностей 1,5 м.

Таблица 2.2. Максимальные интервалы между панелями с учетом высоты монтажа

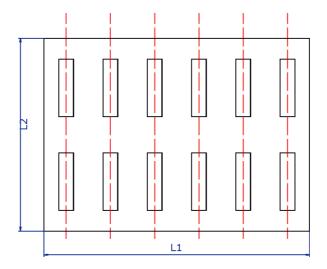
H[M]	3.5	4.0	4.5	5.0	5.5	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0
I*[M]	3.0	3.8	4.5	5.3	6.0	6.8	8.3	9.8	11.3	12.8	14.3	15.8	17.3	18.8	20.3

^{*} С высотой рабочих поверхностей равной 1,5 м.

Величины, полученные из формулы и из предыдущей таблицы, должны быть уменьшены, если панель установлена рядом со стеной помещения. Это уменьшение может быть от 10% до 50% в зависимости от особенностей помещения (средняя теплопередача стен). Интервал между панелями I_{p} рассчитывается следующей формулой:

$$I_{P} = \frac{L_{1}}{(N^* + 1)}$$
 [M]

где:


$$I_{P} =$$
интервал между панелями [м]

 $N^* = количество продольных осей панелей$

 $L_1 =$ длина стены перпендикулярной поперечным осям панелей [м]

На Рисунке 2.4 показана стена L1 и 6 продольных осей N^* термопанелей (выделены красным).

Рисунок 2.4 Здание с выделенными поперечными осями термопанелей

В данном расчете могут возникнуть две ситуации:

если интервал I_{P} меньше величины максимального интервала I_{MAX} , то интервал выбран верно и можно продолжать расчеты;

если интервал $I_{\rm p}$ больше величины максимального интервала $I_{\rm MAX}$ необходимо возвратиться к пункту 2.5 расчетов и поменять модель термопанели, выбранную ранее. Необходимо подобрать модель с более низким тепловым излучением (с меньшим количеством труб или меньшей шириной). Подбор следует продолжать до тех пор, пока интервал $I_{\rm p}$ не будет меньше максимальной величины $I_{\rm MAX}$. Далее можно продолжить расчеты.

2.7. Вычисление перепадов температуры и средней температуры

Если для выбранной модели, перепад температуры $\Delta T_{tabella}$ полученный из Таблиц 1.3 - 1.6, отличается от рассчитанной величины ΔT_{P} , определите фактический перепад температуры ΔT и фактическую среднюю температуру теплоносителя T_{M} по следующим формулам:

$$\Delta T = T_I - T_{IJ} = 2 (T_I - \Delta T_{tabella} - T_O)$$
 [°C]

где:

$$\Gamma_{U}$$
 = фактическая температура теплоносителя на выходе [°C]

Можно также вычислить фактическую среднюю температуру теплоносителя.

$$T_{M} = \Delta T_{tabella} + T_{O}$$
 [°C]

2.8. Вычисление расхода воды и перепадов давления

Общий расход воды Р для данного оборудования вычисляется по следующей формуле:

$$P = \frac{\Phi}{1.163 \bullet (T_I - T_{UE})}$$
 [л/ч]

(Для упрощения расчетов принимаем плотность воды равную 1 кг/дм 3 и удельную теплоемкость воды - 4,186 кДж/(кгК).

где:

$$\Phi$$
 = необходимая тепловая мощность, рассчитанная в пункте 2.1 [BT] $T_{\rm I}$ = температура теплоносителя на входе [°C] $T_{\rm U}$ = фактическая температура теплоносителя выходе

Расход воды на каждую линию Р₁:

$$P_{L} = \frac{P}{N_{S}}$$
 [л/ч]

где:

 N_{S} = количество систем, состоящих из одной или более линий (термопанелей).

Расход воды на одну трубу:

$$P_T = \frac{P_L}{N_{TP}}$$
 [л/ч]

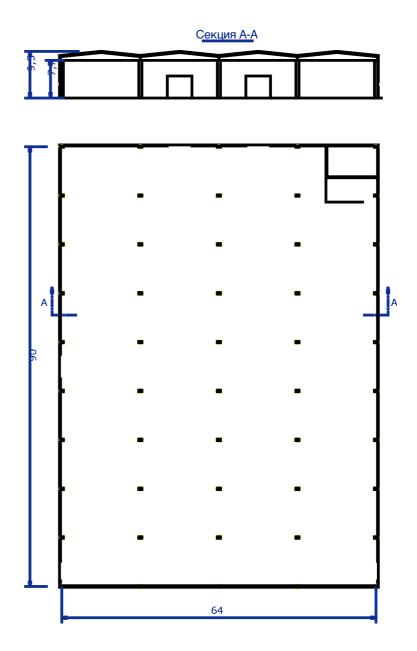
где:

 N_{TP} = количество труб в панели

Эта величина должна входить в интервал, предложенный в пункте 1.4.

EUTERM: Руководство по эксплуатации

Из показателей расхода воды на каждую панель, на каждый коллектор и систему движения теплоносителя, используя диаграммы на Рисунках 1.24, 1.25, 1.26, 1.27 и 1.28, вычисляются перепады давления в системе в целом и характеристики насоса.


2.9. Пример проектирования

Рассмотрим пример инфракрасной системы отопления промышленного здания, представленного на Рисунке 2.5.

Размеры здания:

Длина: 90 м Ширина: 64 м Общая высота: 9,5 м

Рисунок 2.5 Система отопления EUTERM промышленного здания

2.9.1. Теплорасчет

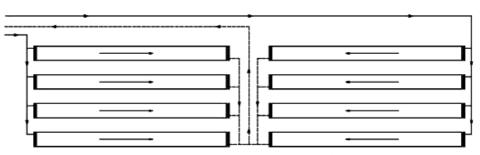
Общие теплопотери рассчитаны с помощью упрощенного метода, предложенного компанией CARLIEUKLIMA (аналитический расчет находится в разделе 4.3 Технического руководства по проектированию). Для высоты монтажа равной 7,7 м и рабочей температуры То помещения равной 18°C, необходимая тепловая мощность Ф равна 876 кВт.

2.9.2. Определение температуры теплоносителя и перепадов температуры в термопанелях

Учитывая температуру теплоносителя на входе T_I равную 84°C, определяется перепад температуры ΔT равный 12,5°C. Также находим температуру воды на выходе T_{II} и среднюю температуру T_{MP}

$$\Delta T_{CP} = T_{I} - T_{U} = 12.5^{\circ}C;$$

$$T_{U} = T_{I} - \Delta T_{CP} = 84 - 12,5 = 71,5$$
°C;

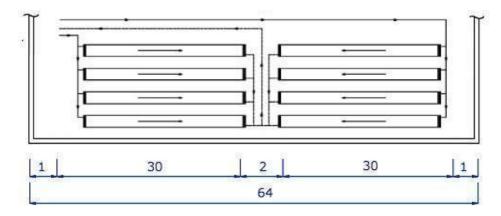

$$T_{MP} = \frac{(T_I + T_U)}{2} = 77.75$$
°C;

$$\Delta T_P = T_{MP} - T_O = 83,75-18 = 59,75$$
°C

2.9.3. Выбор системы движения теплоносителя

Выбирается тип системы движения теплоносителя, показанный на Рисунке 2.6., две объединенные линии термопанелей. Для такой схемы движения используются коллекторы стандартного типа.

Рисунок 2.6 Выбранная система движения теплоносителя



«Туда и обратно» с противоположных сторон - 1 линия

2.9.4. Определение длины линии панелей

Каждая линия термопанелей имеет длину 30 м (состоит из пяти 6-ти метровых панелей). Необходимо оставить достаточно места в начале термопанели для системы подвода теплоносителя.

Рисунок 2.7 Длина линий термопанелей

2.9.5. Выбор модели и определение количества линий

Сначала выбираем модель EUTERM AVH 900. Из Таблицы 1.3 определяется тепловое излучение для рассматриваемых параметров:

$$\Delta T_P = 59,75^{\circ}C$$

 $R_T = 576 \text{ BT/M}$

Можно вычислить количество линий: $N = \frac{\Phi}{L \cdot RT} = 50.95$

На Рисунке 2.8 показано расположение линий термопанелей в помещении.

Рисунок 2.8 Расположение линий внутри здания

Мы установим 50 термопанелей длиной 30 м. Фактическое излучение составит 584 Вт с метра панели.

2.9.6. Определение расстояний между панелями

Максимальный интервал между панелями равен:

$$I_{MAX} = 1.5 (H-h) = 1.5 (7.7 - 1.5) = 9.3 M$$

гле:

H = 7,7 м (высота монтажа)

h = 1,5 м (высота рабочих поверхностей)

Рассчитываем интервал І₀:

$$Ip = \frac{L1}{(N^* + 1)} = \frac{90}{(25 + 1)} = 3.46 \text{ M}$$

где:

 $N^* = 25$ (количество продольных осей панелей)

 $L_1 = 90$ м (длина стены перпендикулярной продольным осям панелей)

Полученная величина меньше максимального интервала. Соответственно, расчет верен.

$$Ip < Imax = 3.46 \text{ M} < 9.3 \text{ M}$$

2.9.7. Вычисление перепадов температуры и средней температуры

Для выбранной модели перепад температуры $\Delta T_{tabella}$ равен рассчитанной величине перепада ΔT_{p} , т.е. температуры, определенные раньше являются фактическими.

Таким образом, потери давления можно вычислить, исходя из формулы, показанной в пункте 2.7.

Пример: Рассчитайте эффективную ΔT , исходя из таблиц 1.3 - 1.6:

$$\Delta T_P = 59.75 \, ^{\circ}C$$

$$\Delta T_{\text{табл}} = 61 \text{ °C}$$

Используя формулу, указанную в пункте 2.7, мы вычислим реальные перепады температуры.

$$\Delta T_{E} = T_{I} - T_{U} = 2 (T_{I} - \Delta T_{Ta6n} - T_{O}) = 10,0$$
°C

$$T_U = T_I - \Delta T_E = 74$$
°C

Как видно, когда ΔT_P соответствует $\Delta T_{\text{табл}}$, разница температур не велика $T_U = 74$ °C / $T_{UP} = 71.5$ °C (см.пункт 2.9.2).

Версия **0714**

2.9.8. Вычисление расхода воды и перепадов давления

Общий расход воды Р для данного оборудования следующий:

$$P = \frac{\Phi}{1.163 \bullet (\text{Ti-Tu})} = \frac{876000}{1.163 \bullet (90-80)} = 75322 \quad \text{[n/4]}$$

(Для упрощения расчета принимаем плотность воды равную 1 кг/дм 3 и удельную теплоемкость воды - 4,186 кДж/(кгК).

где:

$$\Phi$$
 = необходимая тепловая мощность [BT] T_{I} = температура теплоносителя на входе [°C] T_{II} = фактическая температура теплоносителя на выходе [°C]

Расход воды на каждую линию Р равен:

$$PL = \frac{P}{Ns} = \frac{75322}{50} = 1506$$
 [л/ч]

где

 N_S = количество систем, состоящих из одной или более линий (термопанелей).

Эта величина должна быть больше или равна величине, указанной в параграфе 1.6 и, в данном случае, она является приемлемой (минимальный уровень требует $469 [\pi/4]$).

Расход воды на одну трубу:

$$PP = \frac{PL}{NTP} = \frac{1506}{9} = 167.4$$
 [7/4]

где:

 N_{TP} = количество труб в панели

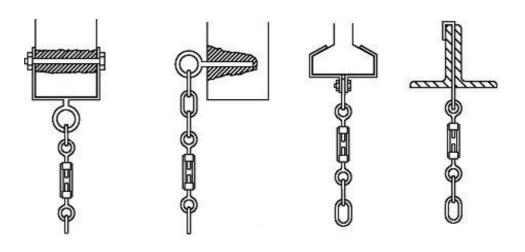
Для панелей и коллекторов из диаграмм 1.24, 1.25, 1.26, 1.27, 1.28, вычисляем потери давления системы движения теплоносителя и характеристики насоса.

Для термопанелей с 9 трубами, расход воды на коллектор равен 1506 [л/час].

Величина потери давления = 0.03~кПа = 0.3~мбар = 3~мм H $_2$ O (график 1.24) Перепад давления для инфракрасной панели 30~м = 0.9~кПа = 9~мбар = 90~ммм H $_2$ O

Перепады давления для пары коллекторов (стандартные) = 1.5 кПа = $15 \text{ мбар} = 150 \text{мм H}_2\text{O}$ (график 1.28 мбар = 150 м

Суммарные потери давления (не включая разводку труб) = $2.4 \text{ к}\Pi a = 24 \text{ мбар} = 240 \text{ мм H}_2\text{O}$ (пара коллекторов +30 м инфракрасной излучающей панели).

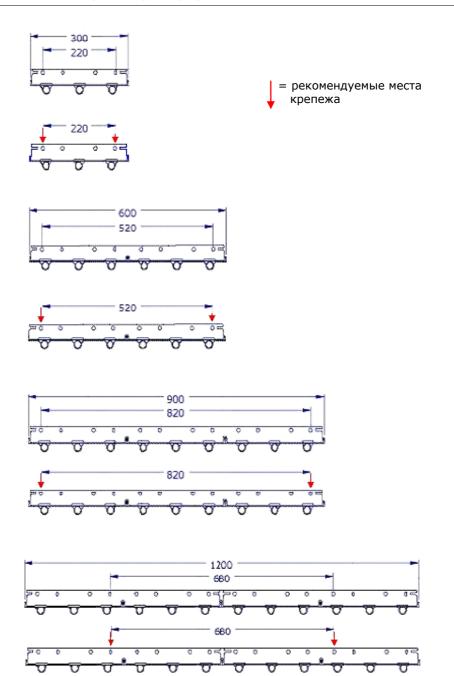

3. МОНТАЖ

В поставку оборудования EUTERM входят термопанели в комплекте с коллекторами, изоляцией, боковыми профилями и скобами. Монтаж инфракрасных термопанелей EUTERM производится просто и достаточно быстро. Опытные монтажники, которые имеют в расположении мобильные подъемники, могут произвести сборку оборудования на полу и потом крепить уже готовые термопанели к потолку. В случае такого монтажа необходимо уделить максимальное внимание горизонтальному положению термопанелей до завершения монтажа.

3.1. Поддерживающий профиль

Инфракрасные панели EUTERM крепятся к структуре здания цепями, которые соединяются с соответствующими отверстиями поддерживающего профиля панелей. Крепление (цепи, стальные тросы или арматурный стержень) к структуре здания производится разжимающими винтами, стальным профилем или стропами по возможности так, чтобы основная нагрузка приходилась на изгиб или откос. Весь крепеж обязательно должен иметь системы регулирования (право/лево) и тальреп для приспособления к особенностям фермы перекрытия. Первый этап монтажа состоит в креплении цепей согласно схеме проекта.

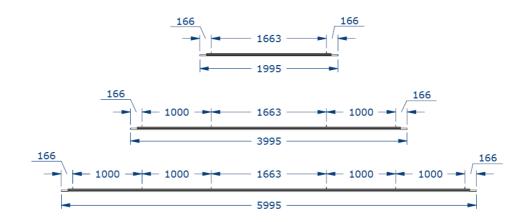
Рисунок 3.1 Типы креплений цепей к структурам зданий


3.1.1. Ширина поддерживающего профиля

В Таблице 3.1 и на Рисунке 3.2 указаны расстояния, рекомендуемые для крепления цепей с учетом ширины панели EUTERM.

Таблица 3.1 Рекомендуемые расстояния [мм] между поддерживающими профилями для различной ширины панелей

Ширина панели [мм]	300	600	900	1200
Реком. расстояние между поддерж. профилями [мм]	220	520	820	680


Рисунок 3.2 Рекомендуемые расстояния [мм] между поддерживающими профилями для различной ширины панелей

3.1.2. Расстояние между профилями

На Рисунке 3.3 показано расположение поддерживающих профилей для линий панелей различной длины. Профиль имеет отверстия диаметром 10 мм, к которым крепятся цепи с помощью анкеров или болтов. Цепи в области коллектора обязательно должны соединяться. Интервалы между точками крепления не должны превышать 2 метра. В случае если панели соединены между собой – интервал может достигать 2,35 м.

Рисунок 3.3 Расстояния между поддерживающими профилями при различной длине панелей [мм]

3.1.3. Количество цепей

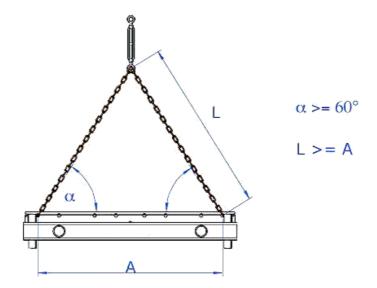

Рекомендуется крепить панели с использованием двух цепей, как указано на Рисунке 3.5. Возможно крепление к структуре здания с помощью одной цепи, как указано на Рисунке 3.6. В этом случае угол, который цепи образуют с панелью (угол α указан на Рисунке 3.6) должен быть более 60°.

Рисунок 3.4 Монтаж термопанели с использованием двух цепей

Рисунок 3.5Монтаж термопанели с использованием одной цепи

3.1.4. Длина цепей

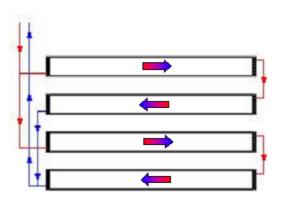

Термопанели, в зависимости от температуры теплоносителя и габаритов, в той или иной степени изменяются в длине, что необходимо учитывать при креплении. В Таблице 3.2 указана минимальная длина цепей для различной средней температуры теплоносителя.

Таблица 3.2 Минимальная длина цепей [см] для различной температуры теплоносителя

Длина линии термопанели	Средняя температура теплоносителя[°C]									
[M]	45	60	80	100	120	140				
	Длина цепей [см]									
18	15	18	22	28	34	41				
24	17	21	26	33	40	48				
30	20	25	31	39	47	56				
36	24	30	37	46	55	65				
42	29	36	44	54	64	75				

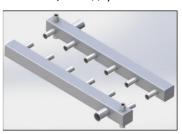
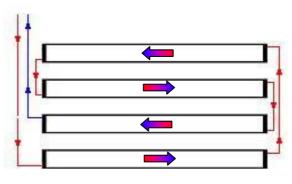
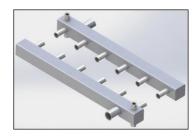
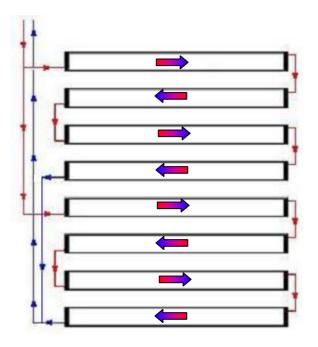

3.2. Расположение линий и типы коллекторов

Рисунок 3.6 Примеры продольных линий со стандартными коллекторами

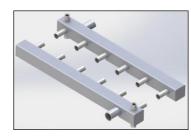

Подача и выход горячей воды/пара с одной стороны

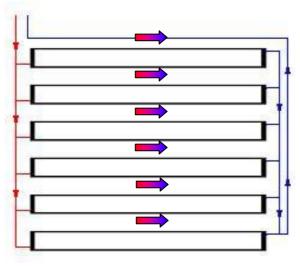

2 панели, стандартный коллектор



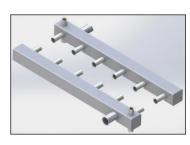
Подача и выход горячей воды/пара с одной стороны

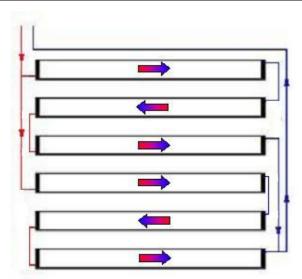
4 панели, стандартный коллектор



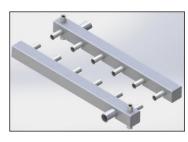


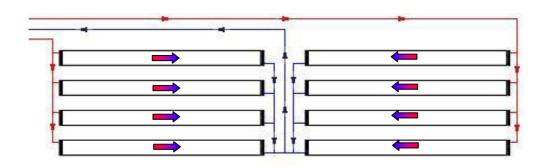
Подача и выход горячей воды/пара с одной стороны


4 панели, стандартный коллектор

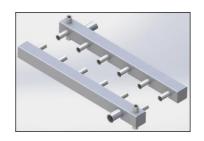


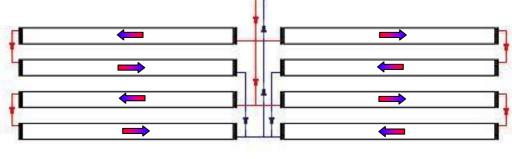
Подача и выход горячей воды/пара с одной стороны


1 панель, стандартный коллектор



Подача и выход горячей воды/пара с одной стороны


3 панели, стандартный коллектор



Подача и выход горячей воды/пара с одной стороны

1 панель, стандартный коллектор

Подача и выход горячей воды/пара с одной стороны

2 панели, стандартный коллектор

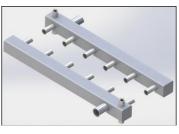
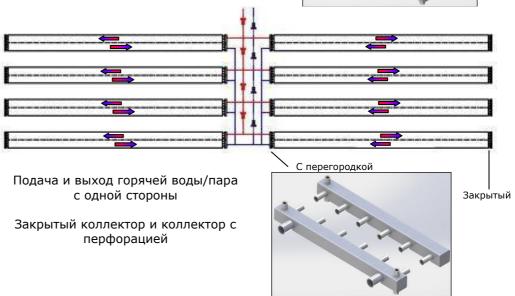



Рисунок 3.7 Примеры продольных линий с закрытым коллектором и коллектором с перегородкой

При выборе расположения оборудования, необходимо обратить внимание на следующие параметры:

гидравлическая сеть должна быть сбалансирована наилучшим образом, что поможет избежать необходимости балансировки с помощью клапанов;

в процессе размещения термопанелей необходимо учитывать разводку труб – в некоторых случаях подводящие и отводящие трубы стоят больше, чем инфракрасные термопанели;

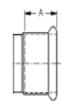
в связи с возможностью изгиба панелей (температурная деформация), коллекторы с перегородкой рекомендуется использовать только там, где это действительно необходимо.

3.3.Соединение коллекторов

Соединение коллекторов с трубами инфракрасных термопанелей производят с помощью пресс-фитингов из нержавеющей стали наружным диаметром 22 мм.

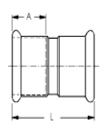
- Если в качестве теплоносителя используется перегретая вода, необходимо использовать имеющие гарантию завода-производителя герметизирующие прокладки из материалов, стойких к высоким температурам.
- В случае если пресс-фитинги трудно одеваются на трубу, рекомендуется использовать в качестве смазки воду или мыльный раствор.

Никогда не используйте для смазки труб и пресс-фитингов масла, смазочные материалы и аэрозоли.


Для более легкого монтажа рекомендуется использовать прессовый аппарат:

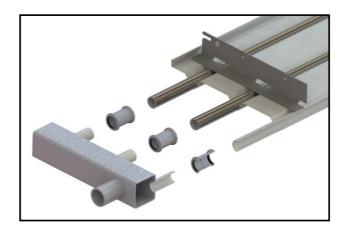
- ◆ CHIBRO PE1 Cod.0100, оснащенный насадками типа CHIBRO D22
 Cod.0145;

Рисунок 3.8 Модель прессфитингового соединения, используемого CARLIEUKLIMA для монтажа инфракрасных панелей


CHIBRO 2507

Manicotto con battuta
Sleeve with stop
Muffe mit Anschlag

CHIBRO pressfitting


CARBON STEEL

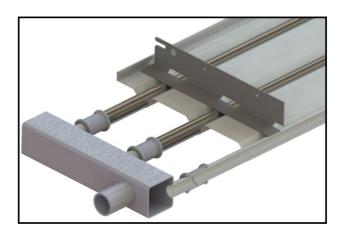

Articolo Article	No	2501	2503	2505	2507	2509	2511	2513	2515	2517	2519	2521
diametro esterno tubo pipe outside diameter	m m	12	15	18	22	28	35	42	54	76,1	88,9	108
dimensione A	m m	18	20	21	22	24	27	32	38	55	64	79
dimensione L	m m	40	56	55	51	56	68	74	94	144	158	184
peso weight	g	25	39	44	56	70	104	138	216	604	800	1250
pezzi per confezione pieces for pack	NΩ	20	20	20	20	20	10	4	4	4	4	2

Рисунок 3.9 Соединение коллектора и труб с помощью прессфитингов. Фиксация коллектора на боковой части термопанели

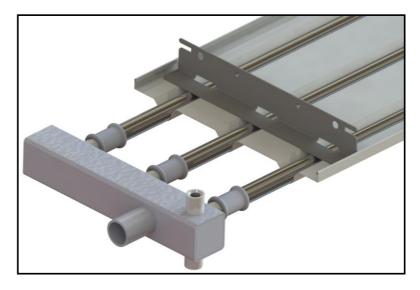

Рисунок 3.9b Соединение труб и коллектора прессфитингами

Рисунок 3.9с Опрессовка пресс-фитинга

Рисунок 3.9d Окончательный вид фитингового соединения коллектора и термопанели

После соединения коллектора с трубами панели нанесите на прессфитинги слой термостойкой краски.

3.4. Установка покрытий коллектора (не входит в стандартную комплектацию)

Рисунок 3.10 Приложите и зафиксируйте покрытие коллектора к нижней стороне термопанели.

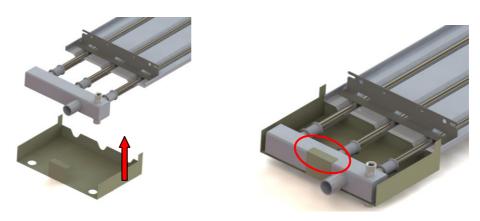
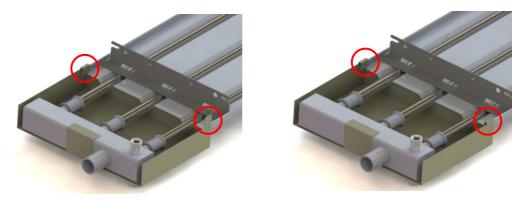
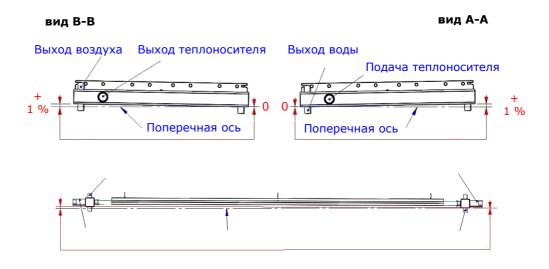



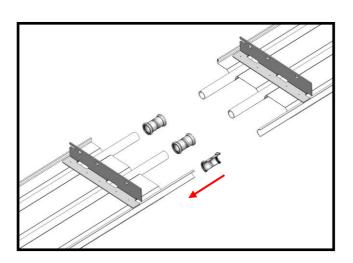
Рисунок 3.10а Закрепите покрытие коллектора к термопанели шайбами.


3.5. Монтаж инфракрасных панелей

Инфракрасные термопанели подвешиваются на цепях за поддерживающий профиль. Для вывода воды и воздуха из термопанелей во время установки системы на желаемой высоте рекомендуется наклонять панели вдоль и поперек, как показано на Рисунках 3.11 и 3.12. Важно, чтобы место подвода теплоносителя, в котором расположен воздушный клапан, находилось в наивысшей точке, а место вывода теплоносителя с дренажным отверстием – в самой нижней.

Рисунок 3.11 Небольшой наклон панели по продольной оси

Рисунок 3.12 Небольшой наклон термопанели по поперечной оси


3.6. Соединение термопанелей с помощью пресс-фитингов

Соединение коллекторов с трубами инфракрасных термопанелей производят с помощью пресс-фитингов из нержавеющей стали наружным диаметром 22 мм.

Если в качестве теплоносителя используется перегретая вода, необходимо использовать имеющие гарантию завода-производителя герметизирующие прокладки из материалов, стойких к высоким температурам.

После соединения коллектора с трубами панели нанесите на пресс-фитинги слой термостойкой краски.

Рисунок 3.13 Соединение труб пресс-фитингами

Рисунок 3.13а Опрессовка пресс-фитингов

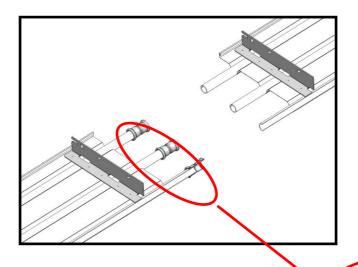
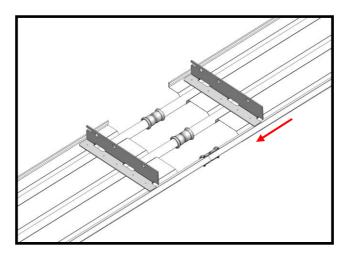
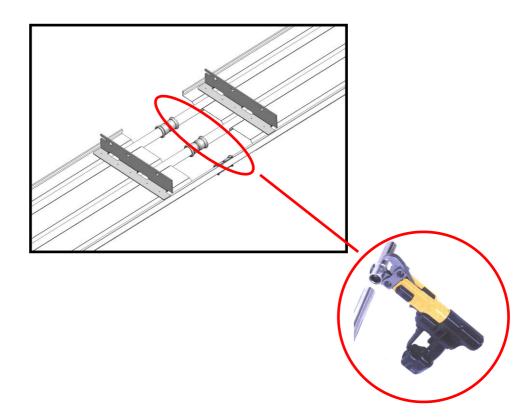
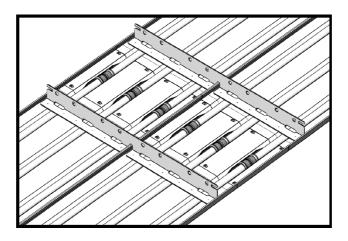




Рисунок 3.13b Присоединение труб двух термопанелей с помощью прессфитингов


Рисунок 3.13с Опрессовка пресс-фитинга

3.7. Установка покрытия панели в области соединений

Панели в области соединений труб соединяются специальными креплениями.

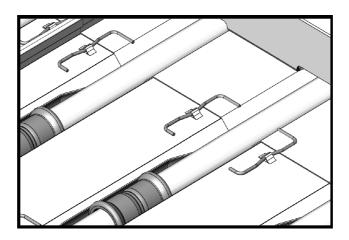
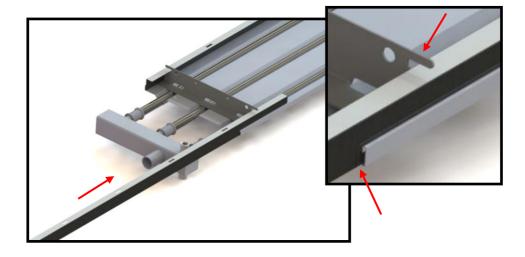

Рисунок 3.14Область соединения труб инфракрасной термопанели

Рисунок 3.15 Крепление панели в области соединений


Рисунок 3.16 Детали крепления панели в области соединений труб

3.8. Крепление изоляции

Используйте для фиксации изоляции боковой профиль, предварительно вставив его в термопанель.

Рисунок 3.17 Размещение бокового профиля для фиксации слоя изоляции

После размещения бокового профиля разложите слой изоляции, сделайте прорези на участках крепления профиля и подведите края изоляционного слоя под боковой профиль.

Рисунок 3.18 Размещение изоляционного слоя

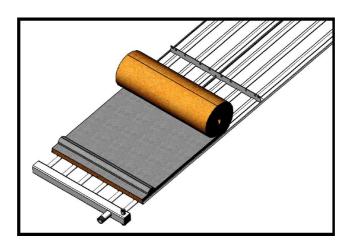
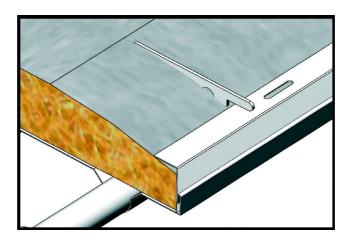
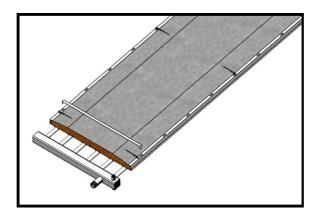
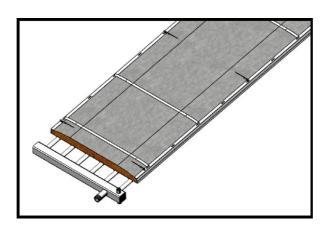




Рисунок 3.19
Правильная позиция изоляционного слоя после наложения бокового профиля



Зафиксируйте изоляционный слой скобами (по одной на каждой метр).

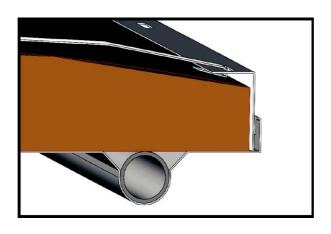
Рисунок 3.20 Расположение скоб

Рисунок 3.21 Размещение скоб

Излучающая панель – длина 2м: Излучающая панель – длина 4м: Излучающая панель – длина 6м:

Необходимо 3 скобы;

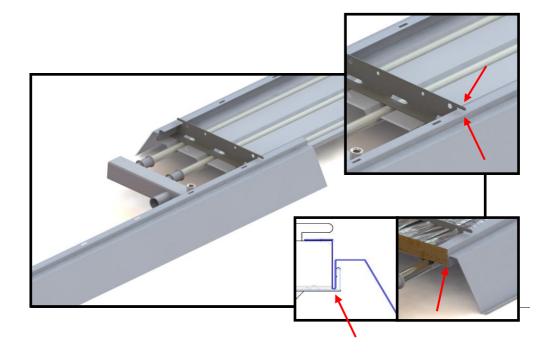
Необходимо 5 скоб;


Необходимо 7 скоб;

- 1 В начале панели
- 1 В середине панели
- 1 В конце панели

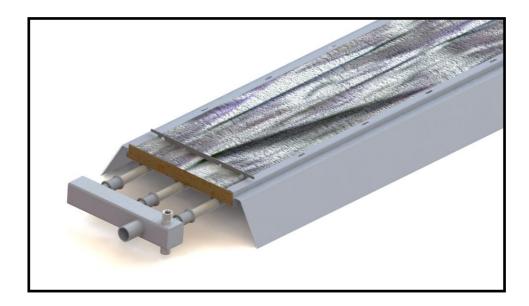
- 1 В начале панели
- 3 В середине (через каждый метр)
- 1 В конце панели

- 1 В начале панели
- 3 В середине (через каждый метр)
- 1 В конце панели


Рисунок 3.22 Способ крепления скоб

3.9. Установка антиконвекционного профиля (не входит в стандартную комплектацию)

Для размещения антиконвекционного профиля требуется отсоединить скобы, закрепляющие слой изоляции и установить зажимы для надёжного крепления профиля.


Рисунок 3.23 установка антиконвекционного профиля на инфракрасную термопанель

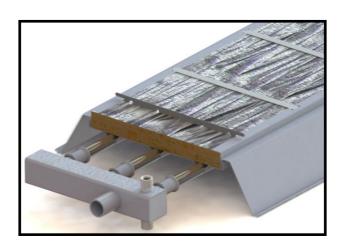
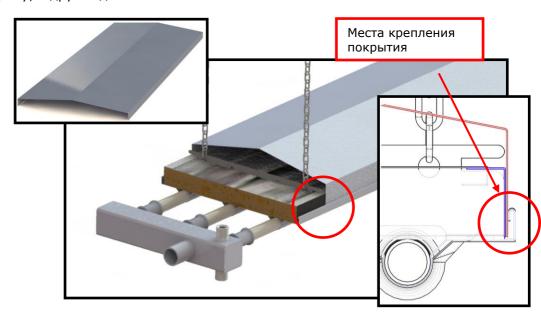
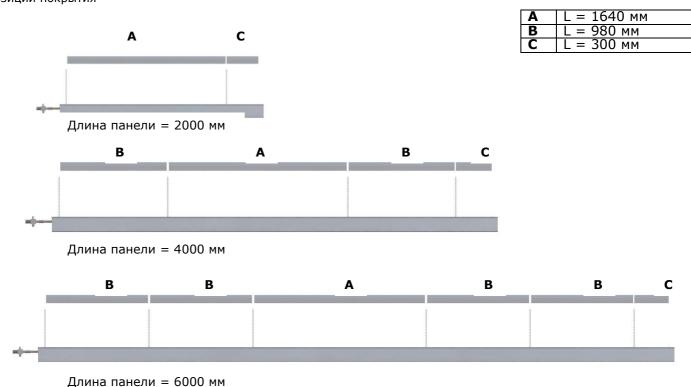

Рисунок 3.24 Соединение Антиконвекционных профилей

Рисунок 3.25 Установите изоляцию Бумажным слоем вверх

Рисунок 3.26 Фиксирование Изоляции скобами


3.10. Установка покрытий для спортивных залов (не входит в стандартную комплектацию) на стандартные панели

После укладки изоляциии и установки бокового поддерживающего профиля, вставьте покрытие для спортзалов.


Внимание: при использовании покрытий для спортзалов, удерживающие скобы не нужны.

Эти меры защиты применяются к излучающим панелям, чтобы избежать скопления пыли или застревание шаров разного рода. Покрытия особенно необходимы для установки в спортивных залах или запыленных помещениях. Есть два типа покрытий: один для панелей 300, 600 и 900 мм в ширину, а другой для панели 1200 мм.

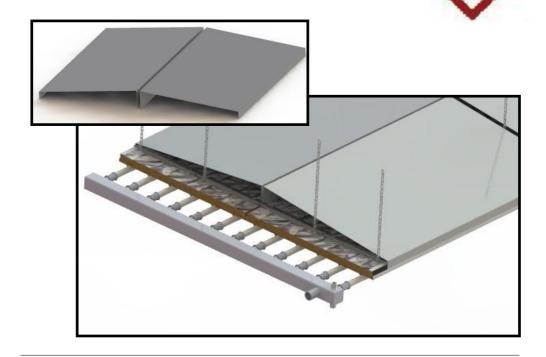
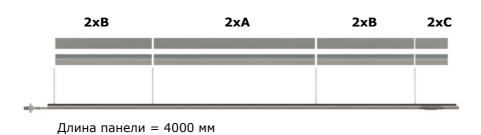

Рисунок 3.27 Покрытие панелей шириной 300,600 и 900 мм

Рисунок 3.28 Позиции покрытия


Рисунок 3.29 Покрытие панелей шириной 1200 мм

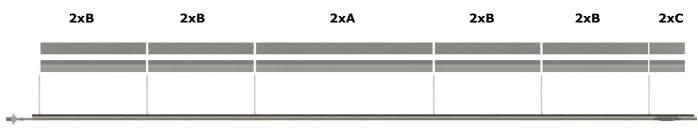


Рисунок 3.30 Позиции покрытия

Α	L = 1640 MM
В	L = 980 мм
С	L = 300 мм

Длина панели = 6000 мм

3.11 Установка покрытий для спортивных залов (не входит в стандартную комплектацию) на панели с антиковективным профилем.

После укладки изоляциии и установки бокового поддерживающего профиля, вставьте покрытие для спортзалов.

Внимание: при использовании покрытий для спортзалов, удерживающие скобы не нужны.

Эти меры защиты применяются к излучающим панелям, чтобы избежать скопления пыли или застревание шаров разного рода. Покрытия особенно необходимы для установки в спортивных залах или запыленных помещениях. Есть два типа покрытий: один для панелей 300, 600 и 900 мм в ширину, а другой для панели 1200 мм.

Рисунок 3.31 Покрытие панелей шириной 300,600 и 900 мм с антиконвективным профилем

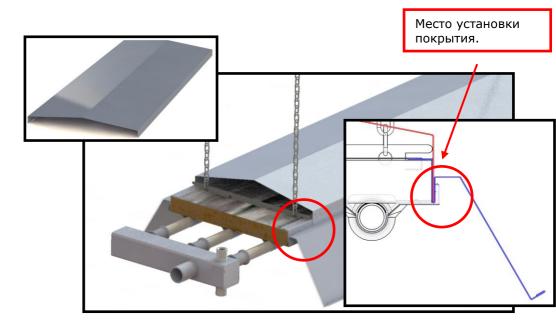
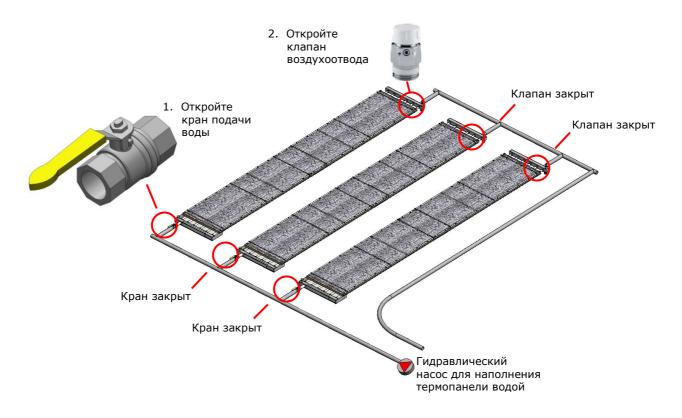


Рисунок 3.32 Покрытие панелей шириной 1200 мм с антиконвективным профилем

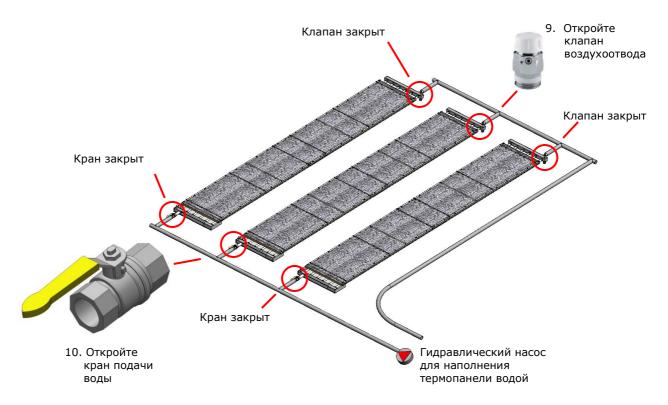
3.12. Наполнение панелей водой и слив

По завершению монтажа отводы коллекторов блокируются заглушками, после чего возможна подача теплоносителя в систему.


Максимальное рабочее давление 6 бар.

ВНИМАНИЕ!

Для правильной работы системы необходимо исключить попадание воздуха в термопанели.


3.12.1 Инструкции по наполнению водой и сливу

- 1. Откройте кран подачи воды в инфракрасные термопанели. Клапан должен находиться на значительном расстоянии от гидравлического насоса.
- 2. Откройте клапан воздухоотвода выбранной термопанели.
- 3. Включите гидравлический насос для наполнения термопанели водой.
- 4. Дождитесь полного выхода воздуха через клапан воздухоотвода.
- 5. Термопанель считается полностью освобожденной от воздуха, когда через клапан воздухоотвода начнет выходить вода.

- 6. По завершению прокачки первой панели закройте клапан воздухоотвода.
- 7. По завершению прокачки первой панели закройте кран подачи воды.

- 8. Перейдите к следующей инфракрасной панели.
- 9. Откройте клапан воздухоотвода.
- 10. Откройте кран подачи воды.

- 11. Повторите этапы 6-10 до последней панели, расположенной в непосредственной близости от гидравлического насоса.
- 12. По выполнению этапа 11 откройте все клапаны системы.

EUTERM: Руководство по эксплуатации

Система готова к работе.

4. Технические характеристики

Технические характеристики инфракрасных термопанелей EUTERM:

- Излучающие панели изготовлены из стали толщиной 0,6 мм с помощью специального оборудования. Стандартные излучающие панели, отвечающие всем техническим требованиям, имеют ширину 300, 600, 900, 1200 мм и длину 2000, 4000, 6000 мм. Полукруглая форма панели с межцентровым расстоянием 100 или 200 мм (в зависимости от модели) плотно вмещает трубы.
- Стальные трубы изготавливаются с помощью электросварки, толщиной 1,5 мм и внутренним диаметром 21,3 мм. Все трубы тестируются на качество сварки герметичность. Максимальное давление - 6 бар, а максимальная температура теплоносителей - 120°C.
- 🐓 Стальные кронштейны, служат для закрепления оборудования и монтажа.
- Коллекторы размерами 50х50 мм резьбовым соединением 1" (по запросу 1"1/4) служат для соединения с сетью движения теплоносителя. С другой стороны располагаются односторонние пресс-фитинги, которые более удобны для соединения труб инфракрасной термопанели. Коллекторы собираются и тестируются на заводе.
- Изоляция из стекловолокна с алюминиевым покрытием на одной стороне, с толщиной 40 и 50 мм и шириной 300, 600, 900 мм. Тепловые характеристики соответствуют DIN 52612.
- Боковой профиль из окрашенной стали, длиной 2050 мм, закрепляющий слои изоляции. Этот профиль крепится по бокам инфракрасной термопанели.
- Стальные поперечные окрашенные скобы, фиксирующиеся на боковом профиле, позволяют поддерживать слой изоляции (на каждый метр панели).
- Окрашенные покрытия соединений труб крепятся специальными крючками.
- Класс огнестойкости A1.
- Максимальное рабочее давление 6 бар.

ОФИЦИАЛЬНЫЙ ДИЛЕР

CARLIEUKLIMA

ООО "Янгаз" 410003 г.Саратов ул.Большая горная,129"Б" Тел: 8(8452)250-880 E-mai: info@yangaz.ru http://

карлиуклима.рф

