Установка, Эксплуатация и Сервисное обслуживание

excellence in hot water

СОДЕРЖАНИЕ

ПРЕДУПРЕЖДЕНИЯ	3
Кто должен прочитать эту инструкцию	3
Символы	3
Рекомендации	3
Стандарты	3
Предупреждения	3
Упаковка	3
ВВЕДЕНИЕ	4
Описание оборудования	
Описание принципов работы	4
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	5
Условия функционирования	5
Электрическая схема	5
УСТАНОВКА	6
Габариты	6
Установка	6
Присоединение системы теплоснабжения	6
Присоединение системы водоснабжения	7
ввод в эксплуатацию	8
Заполнение водонагревателя	8
Проверки перед пуском	8
Настройка термостата	3
ОБСЛУЖИВАНИЕ	g
Периодические проверки пользователем	S
Годовое обслуживание	S
Слив воды	ξ

ЗАПАСНЫЕ ЧАСТИ www.acv.com

ПРЕДУПРЕЖДЕНИЯ

КОМУ НЕОБХОДИМО ПРОЧИТАТЬ ИНСТРУКЦИЮ

Инструкцию должны прочитать :

- инженеры проектировщики
- монтажники и наладчики
- пользователи
- сервисные инженеры

СИМВОЛЫ

Следующие символы использованы в этой инструкции:

Указания, необходимые для безопасной и долговременной работы оборудования.

Существенные требования для безопасности людей и окужающей среды.

Опастность поражения электрическим током.

Опасность ожога

РЕКОМЕНДАЦИИ

- Внимательно прочитайте инструкцию перед установкой и обслуживанием водонагревателя.
- Запрещается изменять самостоятельно конструкцию водонагревателя без разрешения завода изготовителя.
- Изделие должно быть установлено и обслуживаться квалифицированными специалистами с соблюдением местынх правил и норм.
- Установка должна производиться в соответствии с инструкцией и отвечать действующим требованиям и законодательству в отношении систем приготовления горячей воды.
- Любые отступления от инструкции в отношении мер предосторожности, проверок могут привести к ущербу для здоровья и окружающей среды.
- Для гарантии безопасной и долговременной работы оборудования важно проводить ежегодные технические проверки и сервисные работы. Персонал, проводящий работы, должен быть обучен и аттестован.
- В случае возникновения нештатных ситуаций необходимо связаться с сервисным инженером.
- Запасные части для данного оборудования должны заказываться только на заводе-изготовителе.

- Необходимо обесточить электроустановку в случае проведения монтажных и сервисных работ.
- Внутри оборудования нет частей и узлов, к которым необходим доступ пользователя.

СТАНДАРТЫ

Оборудование имеет Сертификат соответствия и Гигиенический серстификат, действующиеми на территории России и выданные уполнимиченными организациями.

ПРЕДУПРЕЖДЕНИЯ

Данный документ должен быть передан пользователю после ввода оборудования в эксплуатацию и храниться им все время использования водонагревателя.

Только обученный персонал допускается к выполнению работ по монтажу, вводу в эксплуатацию и сервисному обслуживанию данного оборудования. Все работы должны выполняться в соответствии с действующими стандартами и правилами.

ACV не принимает претензии в отношении работоспособности оборудования, установленного не в соответствии с указаниями завода изготовителя и с применением компонентов не указанных в инструкции.

Изготовитель оставвляет за собой право на технические изменения без предварительного уведомления.

Возможность поставки различных моделей оборудования и дополнительных компонентов может различаться от региона к региону.

УПАКОВКА

Оборудование поставляется собранным и готовым к эксплуатации в картонной каробке.

Состав при поставке:

- Водонагреватель 1 шт.
- Инструкция 1 шт.

RU • 3

ВВЕДЕНИЕ

ОПИСАНИЕ ОБОРУДОВАНИЯ

Система "бак в баке"

Система "бак в баке" представляет из себя емкостной водонагреватель, который состоит из двух баков, помещенных один в другой: внутренний бак (вторичный) из нержавеющей стали содержит санитарную воду, внешний бак (первичный) содержит теплоноситель системы отопления, который омывает вутренний бак с санитарной водой и нагревает ее.

Теплообменник и аккумулятор горячей воды

Внутренний бак является "сердцем" бойлера: он работает с коррозионоактивной санитарной водой, при высоком давлении и переменной температуре. Бак изготовлен из хромо-никелевой нержавеющей стали (нерж. сталь марки 304), свареным в защитной среде аргона. Перед сборкой, конвективные участки бака упрочняются и пассивируются для увеличения срока службы бака и улучшения практического сопротивления коррозии.

Наружным стенкам бака придается волнообразный профиль. Такая конструкця обеспечивает сопротивление давлению и ограничивает отложение накипи путем циклов удлинения и сжатия бака.

Бак контура отопления

Внешний бак, содержащий теплоноситель системы отопления, изготовлен из углеродистой стали марки STW 22.

Теплоизоляция

Внешний бак утеплен слоем вспененого полиуретана, толщиной 50 мм. При нанесении теплоизоляции на корпус применяется технология без исползования хлорфторуглерода.

Корпус

Корпус изготовлен из полипропилена - пластичного материала, устойчивого к повреждениям, и втоже время, с привлекательным дизайном и цветом.

Электрический нагревательный элемент для SLE (опция) Бойлеры SLE предусматривают возможность дополнительной комплектации электрическим нагревательным элементом со встроенными регулировочным и предохранительным термостатом.

Основной регулировочный термостат бойлера не может управлять электрическим нагревательным элементом.

Напряжение [B]	Сила тока [A]	Мощность [кВт]	Артикул
1 x 220 B	13	3 кВт	10800081
3 x 380 B + N	4.4	3 кВт	10800082
1 x 220 B	26	6 кВт	10800083
3 x 380 B + N	8.8	6 кВт	10800084

- 1. Ручной воздухоотводчик
- 2. Вход холодной воды (контур ГВС)
- 3. Присоединение подающей линии от системы отопления
- 4. Плунжер PVCC
- 5. Гильза с измерительными приборами
- 6. Вход греющей жидкости (только SLE 210 240 300)
- 7. Электрический нагревательный элемент (опция)
- 8. Выход греющей жидкости
- 9. Кожух из полипопилена
- 10. Патрубок рециркуляции ГВС
- 11. Выход горячей воды (контур ГВС)
- 12. Верхняя полипропиленовая крышка
- 13. Теплоизоляция
- 14. Бак из нержавеющей стали
- 15. Бак из углеродистой стали
- 16. Вход системы отопления (только SLE 210 240 300)
- 17. Выход системы отопления (только SLE 210 240 300)
- 8. Нижняя полипропиленовая крышка

ОПИСАНИЕ ПРИНЦИПОВ РАБОТЫ

Операционный цикл

После срабатывания термостат включает циркуляционный насос, который подает теплоноситель в бойлер. Теплоноситель циркулирует вокруг нутреннего бака и нагревает санитарную воду. Когда заданная на термостате температура достигнута, то термостат останавливает насос.

Холодная вода

Контур ГВС

Греющий контур

Потери тепла в режиме хранения горячей воды,

Модель		Потери тепла [BT]
SLE 130	$\Delta T = 50^{\circ}C$	79,8
SLE 160	$\Delta T = 50^{\circ}C$	82,2
SLE 210	$\Delta T = 50^{\circ}C$	85,6
SLE 240	ΔT = 50°C	88,8
SLE 300	ΔT = 50°C	93,2

Температура воздуха в помещении: 20°C

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Максимальное рабочее давление [емкости заполнены водой] - Греющий контур: 0,3 МПа (3 бар)

- Контур ГВС: 1 МПа (10 бар)

Максимальное рабочее давление [емкости заполнены водой]

 Греющий контур: 0,45 МПа (4,5 бар) 1,30МПа (13,0 бар) - Контур ГВС:

Рабочая температура

- Максимальная рабочая температура: 90°C

Качество воды

• Хлориды: < 150 мг/л [сталь 304l]

• 6 ≤ ph ≤ 8

Характеристика		SLE 130	SLE 160	SLE 210	SLE 240	SLE 300
Общий объем	л	130	161	203	242	293
Объем греющего контура	Л	55	62	77	78	93
Расход греющей жидкости	л/ч	2100	2600	3500	4200	5500
Потеря напора в греющем контуре	кПа	17	22	37	45	51
Площадь поверхности нагрева	_M 2	1,03	1,26	1,54	1,94	2,29

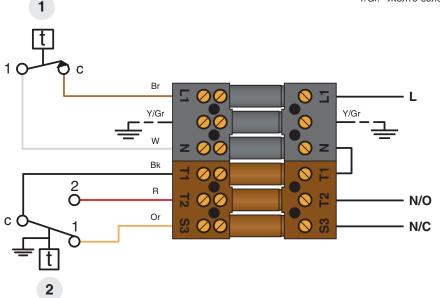
Производительность по нагреву горячей воды		SLE 130	SLE 160	SLE 210	SLE 240	SLE 300
Производительность при 40°C	л/10 мин	236	321	406	547	800
Производительность при 60°C	л/10 мин	117	161	209	272	370
Производительность при 40°C	л/60 мин	784	1063	1349	1820	2360
Производительность при 60°C	л/60 мин	384	549	689	913	1100
Производительность при 40°C	л/ч	658	890	1132	1527	2100
Производительность при 60°C	л/ч	320	465	576	769	970
Время предварительного нагрева	МИН	22	22	20	20	22
Подводимая мощность	кВт	23	31	39	53	68

Температура греющей жидкости: 85°C

Холодная вода при температуре: 10°C

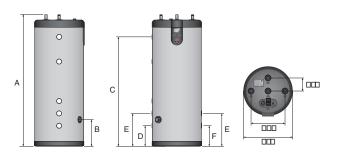
ЭЛЕКТРИЧЕСКАЯ СХЕМА

- Защитный термостат с ручным перезапуском [103°C] Регулировочный термостат [60-90°C]


Bk. Черный

Br. Коричневый

Оранжевый R. красно


W. Белый

Y/Gr. Желто-зеленый

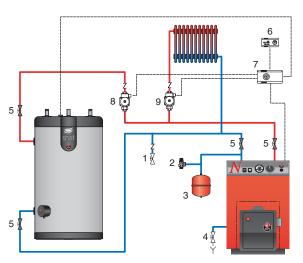
УСТАНОВКА

ГАБАРИТЫ	SLE 130	SLE 160	SLE 210	SLE 240	SLE 300
А мм	1024	1222	1494	1742	2043
В мм	234	234	363	338	405
С мм	759	959	1230	1478	1780
D мм	234	234	234	234	230
Е мм	_	_	374	374	405
F мм	_	_	234	234	230
Масса пустого [кг]	45	54	66	76	87

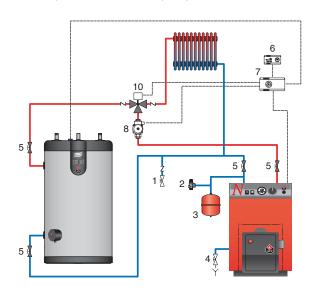
УСТАНОВКА

Данный бойлер не должен устанавливаться в местах, где он будет подвергаться воздействию атмосферных агентов. Выберете подходящее место для установки бойлера, в соответствии с расположением котла и трубопроводов системы холодного и горячего водоснабжения, для снижения потерь тепла и уменьшения потерь давления.

Только напольная установка.


ПРИСОЕДИНЕНИЕ ТЕПЛОСНАБЖЕНИЯ

РАЗМЕР ПАТРУБКОВ


Модель	Присоединение отопления	Присоединение ТЭНа (опция)
SLE 130	Ø 1" [внутр.]	Ø 1"1/2 [внутр.]
SLE 160	Ø 1" [внутр.]	Ø 1"1/2 [внутр.]
SLE 210	Ø 1" [внутр.]	Ø 1"1/2 [внутр.]
SLE 240	Ø 1" [внутр.]	Ø 1"1/2 [внутр.]
SLE 300	Ø 1" [внутр.]	Ø 1"1/2 [внутр.]

- 1. Кран заполнения сисстемы
- 2. Предохранительный клапан Збар
- 3. Расширительный бак
- 4. Сливной кран
- 5. Отсечной кран системы отопления
- 6. Комнатный термостат
- 7. Дополнительная автоматика управления [ВС 03]
- 8. Циркуляционный насос бойлера
- 9. Циркуляционный насос системы отопления
- 10. Зх-ходовой моторизированный клапан

Бойлер с питающим насосом.

Бойлер с 3х-ходовым моторизированным клапаном.

Бойлер **SLE**, используемый как электрический нагреватель санитарной воды

Не включайте электрический нагревательный элемент если греющий контур не заполнен.

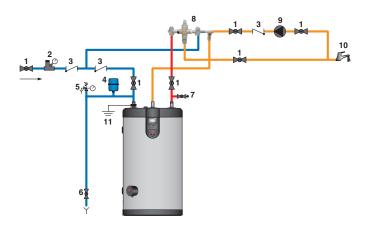
УСТАНОВКА

ПРИСОЕДИНЕНИЕ КОНТУРА ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

РАЗМЕРЫ ПАТРУБКОВ

Модели	Подключеине холодной / горячей воды	Подключение рецирку- ляции контура ГВС
SLE 130	Ø 3/4" [нар.]	Ø 3/4" [внутр.]
SLE 160	Ø 3/4" [нар.]	Ø 3/4" [внутр.]
SLE 210	Ø 3/4" [нар.]	Ø 3/4" [внутр.]
SLE 240	Ø 3/4" [нар.]	Ø 3/4" [внутр.]
SLE 300	Ø 3/4" [нар.]	Ø 3/4" [внутр.]

Установка предохранительных устройств на контур нагрева санитарной воды обязательна.


Для предотвращения попадания воды на корпус бойлера группа безопастности не должна устанавливаться непосредственно над бойлером.

Третий патрубок подключения к системе горячего водоснабжения может исползоваться для подключения к нему контура рециркуляции ГВС.

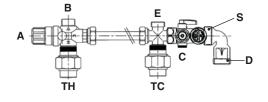
Гидравлические устройства должны быть разрешены к применению в соответствии с местными нормами и правилами.

Бак с санитарной водой необходимо заземлить во избежание коррозии.

- 1. Отсекающий кран
- 2. Регулятор давления
- 3. Обратный клапан
- 4. Расширительный бак
- 5. Предохраительный клапан
- 6. Сливной кран
- 7. Воздухоотводчик
- 8. Термостатический смесительный клапан
- 9. Циркуляционный насос
- 10. Точка водоразбора
- 11. Заземление

Рекомендации

- Трубопровод подачи холодной санитарной воды в бойлер должен присоединяться через группу безопастности, содержащую следующие устройства:
 - Отсекающий кран [1]
 - Обратный клапан [3]
 - Предохранительный клапан [4]: (настроеный на P < 1 МПа)
 - Расширительный бак системы ГВС, необходимого оъема.
- Если давление в системе водоснабжения более 0,6 МПа (6 бар), то необходимо установить редуктор давления [2] перед группрой безопастности бойлера.
- Рекомендуется использовать разъемные соединения для легкого демонтажа устройств. Предпочтение лучшое отдать диэлектрическим версиям для предотвращения электрохимической коррозии в следствии использования разнородных металов, таких как медь и гальванизированная сталь.
- Установка расширительного бака предотвращает срабатывание предохранительного клапана (и вследствии, потерю воды).
- Объем расшиительного бака ГВС:

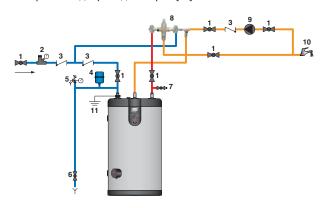

8 литров: для следующих моделей: 130 / 160 12 литров: для следующих моделей: 210 / 240 / 300

Для получения дополнительной информации обратитесь к инструкции производителя расширительного бака.

Гидравлические комплекты (опция)

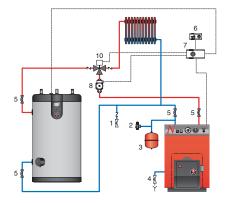
- А. Термостатический смесительный клапан
- в. Патрубок выхода горячей воды
- С. Патрубок входа холодной воды
- D. К сливу в канализацию
- Е. Подключение расширительного бака
- S. Группа безопастности
- ТН. Подключение к патрубку горячей воды бойлера
- ТС. Подключение к патрубку холодной воды бойлера

ОБСЛУЖИВАНИЕ



Перед заполнением внешнего бака (первичного) и установления внем рабочего давления вы должны заполнить водой внутенний бак (вторичный). Перед использованием бойлера первичный и вторичный баки должны быть заполнены!

ЗАПОЛНЕНИЕ БОЙЛЕРА


Заполнение внутреннего бака ГВС

- Закройте сливной кран [6] контура горячего вдоснабжения.
- Откройте отсекающий клапан [1] контура подачи холодной воды в бойлер для заполнения.
- Выпустите при этом оставшийся в трубах воздух, открыв водопроводный кран [10]. Производите заполнение до тех пор покак поток воды не стабилизируется.
- Закройте водопроводный кран [10].

Заполнение внешнего бака с теплоносителем

- Закройте сливной кран [4] системы отопления.
- Откройте отсечной кран [5] на патрубке подачи теплоносителя в бойлер.
- Выпустите воздух, оставшийся в греющем контуре, открыв воздушный клапан в верхней части бойлера.
- Следуйте инструкциям по заполнению контура отопления и котпа.
- Когда греющий контур бойлера заполнится темлоносителем, то воздшный клапан необходимо закрыть.

Убедитесь, что воздушный клапан герметично

6. Если для греющего контура используется теплоноситель с добавлением антифриза, то он должен удовлетворять санитарным правилам и быть не токсичным.

Рекомендуется использовать антифриз на основе пищевого пропилен гиликолья.

Удостоверьтесь, что выбранный антифриз совместим с конструкционными материалами бойлера.

или антифриз неизвесного назначения. Это может нанести серьезный вред, повреждения или смерть.

Никогда не используйте автомобильный антифриз

ПРОВЕРКА ПРАВИЛЬНОСТИ МОНТАЖА ПЕРЕД ЗАПУСКОМ

- Предохранительные клапаны (системы ГВС) и (системы отопления) установлены правильно, а дренажные выходы подключены к сливу в канализацию.
- Внутренний бак заполнен саитарной водой, а внешний бак заполнен теплоносителем.
- Воздух удален из обеих систем.
- Воздушные клапаны закрыты.
- Трубы холодгой и горячей воды правильно присоеденены к патрубкам горячего водоснабжения бойлера.
- Патрубки подачи теплоносителя в бойлер и его возврата в котел праавильно присоеденены к греющему контуру бойле-
- Электрические соединения выполнены правильно.
- Регулировочный термостат бойлера настроен в соответствии с инструкциями, приведенными в параграфе "Настройка термостата".
- Все соединения проверены на отсутствие утечек.

НАСТРОЙКА ТЕРМОСТАТА

Заводская настройка

Регулировочный термостат бойлера настроен на минимальное значение, рекомендованное стандартами в диапазоне от 60 до

Для увеличения температуры воды: вращайте ручку по часовой стрелке.

Для уменьшения температуры воды: вращайте ручку против часовой стрелки.

При настройке термостата бойлера, убедитесь, что термостат котла установлен на не менее 10°С выше чем термостат бой-

РЕКОМЕНДАЦИИ

Существует риск развития болезнетворных бактерий, в случае если температура санитарной воды в баке и трубопроводах системы горячего водоснабжения ниже 60°C.

Опастность получения ожога! Компания ACV рекомендует использовать термостатический смесительный клапан для обеспечения температуры на выходе из бойлера

Вода, нагреваемая для стирки, мойки посуды и других процессов может обжечь и причинить серьезные повреждения.

60°С или ниже.

- Дети, пожилые люди, инвалиды и болные подвергаются риску получения эжогов горячей водой. Никогда не оставляйте их одних в ванной или под душем. Никогда не позволяйте маленьким детям самостоятельно открывать кран с горячей водой или наполнять ванну.
- Установите температуру воды в соответствии требуемой для повседневного использования.

Когда часто из бойлера забирается небольшое количество горячей воды, то в бойлере может появится эффект стратификации.

В этом случае, верхний слой горячей воды может достигать очень больших температур. Термостатический смесительный клапан предотвращает подачу горячей воды с высокой температурой в систему горячего водоснабжения.

