

Г

СОТРУДНИЧЕСТВО «ПАЙПЛАЙФ РУС» И «TERRENDIS»

Pipelife является одним из ведущих мировых производителей систем пластиковых труб. Компания присутствует в 27 странах Европы и США.

Pipelife входит в группу компаний **Wienerberger** и играет важную роль в её инфраструктуре.

Начиная с обеспечения электричеством вашего дома, канализации и ирригации, пластиковые трубы **Pipelife** гарантируют подачу воды и энергии миллионам людей. Продукты и решения безопасны и долговечны. Они оказались успешными в жилых домах, а также в офисных или административных зданиях. Даже сельскохозяйственный и промышленный секторы полагаются на наш опыт.

Представительство компании **«Пайплайф»** в России было открыто в г. Москве в 2000 году.

С момента основания Российского представительства, компания зарекомендовала себя как надежный поставщик качественных трубных систем и партнер по выбору надежных решений по проектированию инженерных систем.

«Пайплайф Рус» сотрудничает с большинством крупнейших российских компаний от проектных институтов и водоканалов до строительно-монтажных организаций и специализированных оптовиков.

Все усилия по развитию компании «Пайплайф Рус» направлены на перспективные разработки, упрощающие работу наших

клиентов. Главным принципом, которым мы руководствуемся в работе, является: «СТАРЫЕ ПРОБЛЕМЫ — НОВЫЕ НАДЁЖ-НЫЕ РЕШЕНИЯ».

В 2007 году концерн «PIPELIFE» запустил работу завода по производству пластиковых трубных систем на территории России, в городе Жуков Калужской области. В ассортименте выпускаемой продукции завода:

- Системы для наружной безнапорной канализации со структурированной стенкой из полипропилена типа Pragma®,
- Трубы для напорного водоснабжения из ПЭ,
- Системы пластиковых колодцев Pragma®,
- Полипропиленовые и полиэтиленовые трубы внутренних инженерных систем отопления и водоснабжения.

Мы можем гарантировать немедленную реакцию на запросы конкретных клиентов, которые нуждаются в более внимательном решении сложных проблем.

Мы работаем с нашими постоянными клиентами в тесном сотрудничестве, принимая ответственность в совместных проектах.

Поэтому строительный бизнес становится сильнее и успешней при нашем участии.

С 2019 года «Пайплайф Рус» начинает активное сотрудничество с «Terrendis». Бельгийская компания «Terrendis» (входит в структуру компаний RYB, Франция) полностью сосредоточена на разработке, производстве и маркетинге самого полного ассортимента предварительно изолированных систем подземных трубопроводов из полимеров.

Подземные трубопроводы **«Terrendis»** интегрированы в систему «ELIOT» инновационную систему обнаружения и идентификации RFID на основе 3D-локации. Это уникальная особенность продукции на международном рынке.

Через сотрудничество с компанией **«Terrendis»**, которая кардинально отличается от компаний с большой корпоративной структурой, не ограничена какой-либо бюрократической инерцией, мы можем реагировать на конкретные потребности наших клиентов более быстро и легко, и с максимальной компетентностью. Мы можем работать более тесно с нашими потребителями, принимая на себя больше ответственности и способствуя их успеху, поэтому сильны и успешны наши взаимные связи.

Главный приоритет нашего нового направления — инновационная продукция, которая вместе с нашей стратегией обеспечения складских запасов, гарантирует гибкость подходов к каждому потенциальному клиенту для решения поставленных перед ним задач.

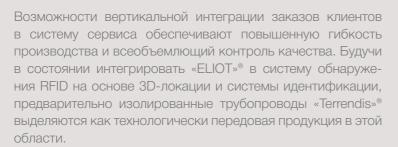
Так как мы в полной мере можем оценить значение человеческих качеств при деловых отношениях, работая с продукцией «Terrendis», мы рады поделиться нашим опытом и помочь Вам разработать проект применения системы теплоизолированных трубопроводов для решения Ваших задач.

Весь ассортимент продукции «Terrendis»®, включая трубопроводы и все необходимые аксессуары к ним, поставляется компанией «Пайплайф Рус» в Российскую Федерацию на эксклюзивных правах и распространяется как напрямую, так и через дистрибьюторскую сеть оптово-розничных компаний и монтажно-строительных организаций.

Вы всегда можете рассчитывать на полную, быструю и компетентную помощь с нашей стороны, как в виде консультаций по особенностям и характеристикам продукции «Terrendis»®, так и в профессиональном составлении калькуляции необходимых продуктов для любого конкретного случая, начиная от объектов частного домостроения и коммерческой застройки, заканчивая муниципальными сетями тепло- и водоснабжения.

PIPES FOR LIFE

PIPELIFE наши основы и ценности


наши основы и ценности

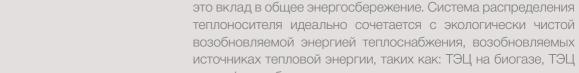
ПОЛИМЕРЫ

Опытный специалист по полимерам

В составе группы RYB «Terrendis» является признанным экспертом с долгосрочным опытом в проектировании и производстве полимерных трубных систем и инновационных решений, связанных с этим сегментом рынка.

индивидуальный подход Партнер индивидуальных решений

Мы предоставляем экспертную поддержку, предлагая расчеты и оптимизацию расходов, всегда сосредоточены на конкретных ситуациях наших клиентов и их требованиях. Широкий ассортимент продукции предназначен для решения большинства применений предварительно изолированных трубопроводов. При этом, гибкий производственный процесс в «Terrendis»® позволяет с максимальной степенью удовлетворить многие нестандартные требования клиента. Такие как: нестандартные комбинации напорных трубопроводов, цвет кожуха, применение разных типов напорных труб.


СОТРУДНИКИ

Ценить человеческие отношения

Мы в полной мере ценим и придаем огромное значение человеческим аспектам наших бизнес-отношений. Работая с продукцией «Terrendis» мы рады поделиться нашим опытом и помочь нашим клиентам подобрать необходимые трубы и детали, разработать и поддержать их проекты по использованию предизолированных трубопроводов.

Наши компетентные специалисты сделают работу успешной в тесном контакте с нашими клиентами и создадут условия для долговременного сотрудничества. Наша стратегия на близость к клиенту опирается на централизованность контактов и разветвленную сеть местных специализированных дистрибьюторов.

СТАБИЛЬНОСТЬ

теплоносителя идеально сочетается с экологически чистой возобновляемой энергией теплоснабжения, возобновляемых источниках тепловой энергии, таких как: ТЭЦ на биогазе, ТЭЦ на торфе или биомассе, тепловые насосы, котлы на деревянных пеллетах, отходах сельскохозяйственных культур, рекуперации тепла и т.д. Тщательно подобранные напорные трубы из «сшитого» полиэтилена РЕ-Ха и РЕ-Х теплоизоляция дают материальные гарантии для устойчивых и постоянных характеристик теплосбережения в течение всего срока службы системы. Ответственный выбор материала с экологической точки зрения, производственный процесс CFC-Free (без использования фреонов), производство продукции с низкой энергией технологических процессов и т.д., дополнительно добавляют привлекательности к нашей продукции.

Предварительно изолированные трубопроводы «Terrendis»® —

Стабильная продукция и решения

_

TERRENDIS® & ELIOT®

«Terrendis» + «ELIOT»: «умная» предварительно изолированная трубопроводная система может оснащаться RFID метками, от которых можно получать информацию о местоположении трубы до глубины 2,5 метров с точностью +-1 см.

«Terrendis» предлагает уникальную возможность для интеграции с «ELIOT» — это фирменная RFID (англ. Radio Frequency IDentification, радиочастотная идентификация) система обнаружения, 3D-локация и система идентификации подземных труб, проложенных с использованием элементов ELIOT.

RFID-метки, заключенные в водонепроницаемых массивных пластиковых корпусах (маркеры), могут быть установлены на критических элементах сети, таких как подземные изоляционные коллекторы, смотровые колодцы, и т.д., или с регулярными интервалами вдоль трубопровода.

Портативный локатор с уровня земли точно обнаруживает засыпанные метки.

Применяется стандартный протокол связи NFC (Near Field Communication) совместимый, что позволяет чтение/запись тегов перед установкой, с помощью приложения для Android «ELIOT» на вашем смартфоне.

Встроенная в локатор система GPS позволяет все сохраненные данные в теге интегрировать в ГИС (Географическая информационная система). Для повышения точности, географические координаты могут быть импортированы с помощью Bluetooth® от внешнего дифференциала GPS.

Теrrendis® предлагает уникальнную возможность применить ELIOT®, использующую запатентованную систему RFID-обнаружения 3D-локации и определяющую все виды подземных коммуникаций около Ваших изолированных трубопроводов.

Система «ELIOT» добавляет 3 следующие функции:

Расположение

- Привязка меченых трубопроводов после подземной установки
- Высокая точность 3D расположения (3-оси: X + глубина) подземных тегов
- Обнаружение, местоположение и двунаправленная связь до глубины 2,5 м
- Одновременное обнаружение всех типов сетей, оснащенных соответствующими метками Eliot
- Независимость от почвенных условий (насыщенной глины, грунтовых вод и т.д.) или около магнитного поля

Идентификация

- Одновременное отображение всех соседних сетей
- Точная идентификация с уникальным идентификационным номером
- Чтение и запись информации на бирке (2 х 90 символов защищен паролем)

Интеграция

- Передача GPS координат и тег-информация хранится в любой ГИС
- Улучшенная прослеживаемость и управления сетью
- Расширенное управление активами

PIPES FOR LIFE

PIPELIFE

ВЫБОР ПРОДУКЦИИ

Г

СОДЕРЖАНИЕ

Сотрудничество «Пайплайф Рус»	
и «Terrendis»	2
Наши основы и ценности	4
Terrendis® & Eliot®	6
Содержание	8
Выбор продукции	9
01 Отопление	11
Однотрубная система отопления	12
Двухтрубная система отопления	14
02 Горячее водоснабжение	17
Однотрубная система горячего	
водоснабжения	18
Двухтрубная система горячего	
водоснабжения	20
DNV·GL	
OVSTEM	
MANAGEMENT SYSTEM MANAGEMENT SYSTEM	
MANAGEIVIE CERTIFICATE CERTIFICATE (1980) (1	

Отопление + Горячее водоснабжение 23Четырехтрубная система отопления и горячего водоснабжения 24

 04
 Холодная вода + системы охлаждения
 27

 Однотрубная система для хладагентов
 28

 Однотрубная система – незамерзающий
 30

 Комплект подключения для
 32

 05 Комплектующие детали
 33

 Соединения для РЕ-Х труб и фитинги
 34

 Соединения для РЕ труб и фитинги
 38

 Изоляционные комплекты
 40

 Дополнительное оборудование
 42

 06
 Техническая информация
 45

 Потери тепла (таблица)
 46

 Потери давления
 48

 Испытания на герметичность давлением
 50

 Монтаж
 51

Производство предизолированных трубопроводов Terrendis n.v. сертифицировано по ISO 9001:2015

ВЫБОР ПРОДУКЦИИ

ПРОДУКЦИЯ	ОДНОТРУБНАЯ СИСТЕМА	ОДНОТРУБНАЯ СИСТЕМА С ГРЕЮ- ЩИМ КАБЕЛЕМ	ДВУХТРУБНАЯ СИСТЕМА	ЧЕТЫРЁХТРУБНАЯ СИСТЕМА
Отопление и/или Горячее водоснабжение (питьевая) вода				
(PE-Xa / SDR 11 / PN 6 / 95°C)	Н		HD	
Горячее водоснабжение (питьевая) вода (PE-Xa/SDR 7.4/PN 10/95°C)	s		SD	
Холодное водоснабжение (питьевая) вода и системы охлаждения (подача хладоагента) (ПЭВП-ПЭ100 / PN 16 / 25°C)	Без греющего кабеля	С греющим кабелем 10вт/м		
Дополнительно	√	√	√	√
Аксессуары				

Г

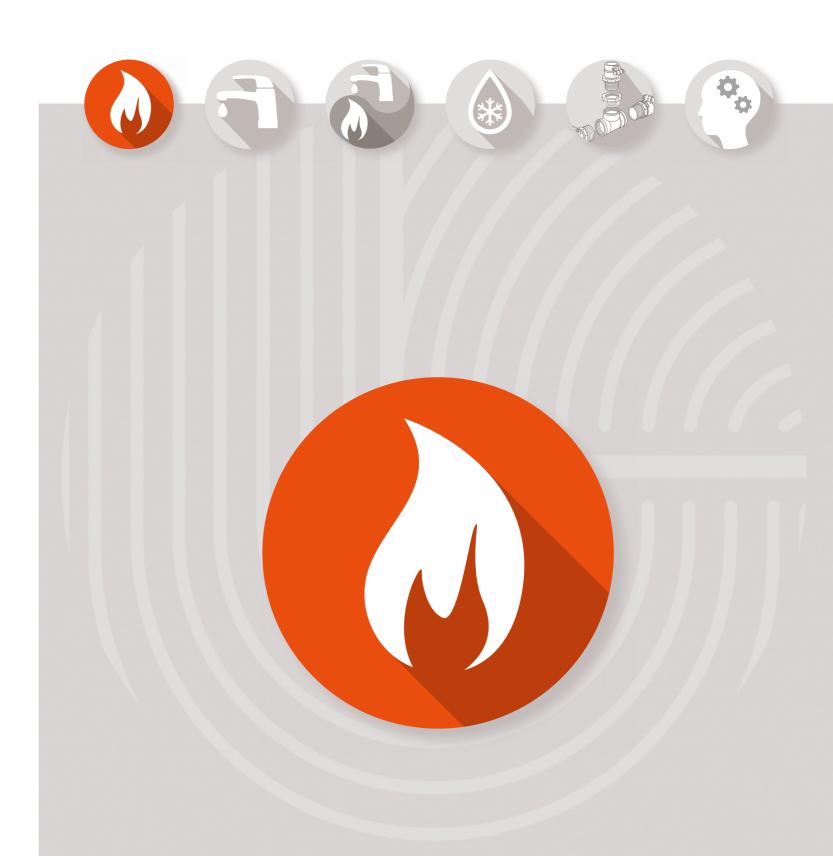
Свяжитесь с нами для профессиональной консультации с учетом ваших потребностей

Наша команда опытных специалистов всегда готова ответить на любые вопросы, вы можете ожидать поддержку профессионалов при углублённом уровне детализации.

Вы можете связаться с нами:

+7 495 50-55-100

info@terrendis.ru


ООО «Пайплайф Рус» 249191, Россия, Калужская область, г. Жуков, ул. Первомайская, д. 9/16

www.terrendis.ru www.pipelife.ru

01 ОТОПЛЕНИЕ

ОДНОТРУБНАЯ СИСТЕМА ОТОПЛЕНИЯ (МОЖЕТ ТАКЖЕ ПРИМЕНЯТЬСЯ ДЛЯ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ)

PIPELIFE

Особо гибкая система предварительно изолированных трубопроводов с одной напорной трубой, в первую очередь предназначенная для транспортировки теплоносителя в виде воды или других жидкостей через подземные распределительные сети.

Напорная труба изготовлена из «сшитого» РЕ-Ха с антидиффузионным кислородным барьером оранжевого цвета.

Многослойная теплоизоляция изготовлена из сшитой микропористой PE-X пены с водоотталкивающей, закрытой ячеистой структурой, которая характеризуется прочностью, изоляционными характеристиками без эффекта старения, а её постоянная эластичность сохраняет максимальную толщину изоляционного слоя даже после многократных сгибаний.

Гофрированный наружный кожух высокого качества из ПНД с двойными стенками эффективно защищает предизолированную систему трубы от механических воздействий и влаги, сохраняя максимальная гибкость.

- Напорная труба: PE-Xa / SDR 11 / PN 6
- Антикислородный барьер: EVOH в соответствии с DIN 4726
- Максимальная температура теплоносителя: +95°C
- PE-X пены изоляции: <1% поглощения воды в соответствии с ISO 2896
- Максимальная длина бухты для всех диаметров: 100 м
- Конструкция разработанна в соответствии с европейским стандартом EN 15632-1&3
- Свободный от применения фреонов процесс производства

Трубы

Однотрубная система

	Наружный кожух	Напорная тр	руба	Минимальный радиус изгиба	Объём воды в напорной трубе	Тепловая мощность	Потери тепловой энергии
артикул	dнар [мм]	dнар x s [мм]	авн [мм]	[M] ⁽¹⁾	[л/м] ⁽²⁾	в ср. кВт ⁽³⁾	$[\mathrm{BT/(M\cdot K)}]^{(4)}$
H7525	75	25 x 2.3	20.4	0.20	0.327	30	0.227
H9032	90	32 x 2.9	26.2	0.25	0.539	60	0.245
H11025	110	25 x 2.3	20.4	0.30	0.327	30	0.171
H11032	110	32 x 2.9	26.2	0.30	0.539	60	0.206
H11040	110	40 x 3.7	32.6	0.30	0.835	90	0.252
H14040	140	40 x 3.7	32.6	0.35	0.835	90	0.206
H14050	140	50 x 4.6	40.8	0.40	1.307	140	0.252
H14063	140	63 x 5.8	51.4	0.50	2.075	220	0.328
H16050	160	50 x 4.6	40.8	0.45	1.307	140	0.216
H16063	160	63 x 5.8	51.4	0.55	2.075	220	0.269
H16075	160	75 x 6.8	61.4	0.75	2.961	330	0.331
H16090	160	90 x 8.2	73.6	1.00	4.254	480	0.436
H20075	200	75 x 6.8	61.4	0.80	2.961	330	0.265
H20090	200	90 x 8.2	73.6	1.10	4.254	480	0.328
H200110	200	110 x 10.0	90.0	1.20	6.362	700	0.445
H200125	200	125 x 11.4	102.2	1,40	8.203	900	0.534
H22590	225	90 x 8.2	73.6	1.10	4.254	480	0.269
H225110	225	110 x 10.0	90.0	1.20	6.362	700	0.342
H225125	225	125 x 11.4	102.2	1.40	8.203	900	0.414

⁽¹⁾ Указанный минимальный радиус изгиба может быть применен постоянно без потери качества или производительности системы

⁽³⁾ Средняя теплопередача в кВт для напорной трубы (при Тводы 80°С при ∆Т 20°С)

СОЕДИНЕНИЯ И ДЕТАЛИ

Концевые фитинги для РЕ-X труб		Пылевой концевой колпачок	Термоусадочный концевой колпачок	Анкерные муфты	
	Резьба				Р езьба М + F
артикул	[дюйм]	артикул	артикул	артикул	[дюйм]
HC25/0.75M	3/4" M	DEC75/25	SEC/10	FP0.75	3/4"
HC32/1M	1" M	DEC90/32	SEC/20	FP1	1"
HC25/0.75M	3/4" M	DEC110/25	SEC/30	FP0.75	3/4"
HC32/1M	1" M	DEC110/32	SEC/30	FP1	1"
HC40/1.25M	1 1/4" M	DEC110/40	SEC/30	FP1.25	1 1/4"
HC40/1.25M	1 1/4" M	DEC140/40	SEC/40	FP1.25	1 1/4"
HC50/1.5M	1 1/2" M	DEC140/50	SEC/40	FP1.5	1 1/2"
HC63/2M	2" M	DEC140/63	SEC/50	FP2	2"
HC50/1.5M	1 1/2" M	DEC160/50	SEC/60	FP1.5	1 1/2"
HC63/2M	2" M	DEC160/63	SEC/70	FP2	2"
HC75/2.5M	2 1/2" M	DEC160/75	SEC/70	FP2.5	2 1/2"
HC90/3M	3" M	DEC160/90	SEC/70	FP3	3"
HC75/2.5M	2 1/2" M	DEC200/75	SEC/80	FP2.5	2 1/2"
HC90/3M	3" M	DEC200/90	SEC/80	FP3	3"
HC110/4M	4" M	DEC200/110	SEC/80	FP4	4"
HC125/4M	4" M	DEC200/125	SEC/80	FP4	4"
HC90/3M	3" M	DEC225/90	SEC/90	FP3	3"
HC110/4M	4" M	DEC225/110	SEC/90	FP4	4"
HC125/4M	4" M	DEC225/125	SEC/90	FP4	4"

Для предотвращения попадания грунтовой воды стандарт EN 15632-3 предписывает использование термоусадочного концевого колпачка, который надёжно герметизирует систему под землёй. Несоблюдение этого правила приводит к повреждению свойств изоляции и автоматически аннулирует гарантию на систему.

Возможно производство других размерных комбинаций по вашему заказу.

⁽²⁾ Содержание воды выражается в литрах на метр длины напорной трубы

⁽⁴⁾ Коэффициент U-value легко позволяет рассчитать потери тепла, в зависимости от разности температур (метод расчёта: см. стр. 46)

ДВУХТРУБНАЯ СИСТЕМА ОТОПЛЕНИЯ

PIPELIFE

Особо гибкий предварительно изолированный двойной трубопровод, сочетающий оба потока, как подачу, так и возврат, в одной и той же изоляции и защитном кожухе. Эта конструкция в первую очередь предназначена для транспортировки теплоносителя в виде воды или других жидкостей через подземные распределительные сети.

Напорные трубы изготовлены из сшитого РЕ-Ха с антидиффузионным кислородным барьером оранжевого цвета — для подачи, синего цвета для возврата. Раздельный цвет труб позволяет легко идентифицировать подачу и возврат при монтаже, даже с установленными термоусадочными колпачками.

Многослойная теплоизоляция изготовлена из сшитой микропористой РЕ-Х пены с водоотталкивающей, закрытой ячеистой структурой, которая характеризуется прочностью, изоляционными характеристиками без эффекта старения, а ее постоянная эластичность сохраняет максимальную толщину изоляционного слоя даже после многократных сгибаний.

Гофрированный наружный кожух высокого качества из ПНД с двойными стенками эффективно защищает предизолированную систему трубы от механических воздействий и влаги, сохраняя максимальную гибкость.

ТРУБЫ

ДВУХТРУБНАЯ СИСТЕМА ОТОПЛЕНИЯ

	Наружный кожух	Напорная т	руба	Минималь- ный радиус изгиба	Объём воды в напорной трубе	Тепловая мощность	Потери тепловой энергии
артикул	d _{нар} [мм]	$d_{\text{Hap}} \times s \text{ [MM]}$	$d_{BH}\left[MM\right]$	$[M]^{(1)}$	$[\Pi/M]^{(2)}$	в ср. кВт ⁽³⁾	$[BT/(M \cdot K)]^{(4)}$
HD14025	140	25 x 2.3	20.4	0.35	0.654	30	0.243
HD14032	140	32 x 2.9	26.2	0.40	1.078	60	0.306
HD16025	160	25 x 2.3	20.4	0.50	0.654	30	0.210
HD16032	160	32 x 2.9	26.2	0.50	1.078	60	0.253
HD16040	160	40 x 3.7	32.6	0.60	1.670	90	0.316
HD16050	160	50 x 4.6	40.8	0.60	2.614	140	0.442
HD20050	200	50 x 4.6	40.8	0.80	2.614	140	0.320
HD20063	200	63 x 5.8	51.4	1.20	4.150	220	0.481
HD22563	225	63 x 5.8	51.4	1.20	4.150	220	0.420

⁽¹⁾ Указанный минимальный радиус изгиба может быть применен постоянно без потери качества или производительности системы

- Напорные трубы: PE-Xa / SDR 11 / PN 6
- Антикислородный барьер: EVOH в соответствии с DIN 4726
- Максимальная температура теплоносителя: +95°C
- РЕ-Х пены изоляции: <1% поглощения воды в соответствии c ISO 2896
- Максимальная длина бухты для всех диаметров: 100 м
- Конструкция разработана в соответствии с европейским стандартом EN 15632-1&3
- Свободный от применения фреонов процесс производства

СОЕДИНЕНИЯ И ДЕТАЛИ

Концевые фитинги для РЕ-Х	(
труб	

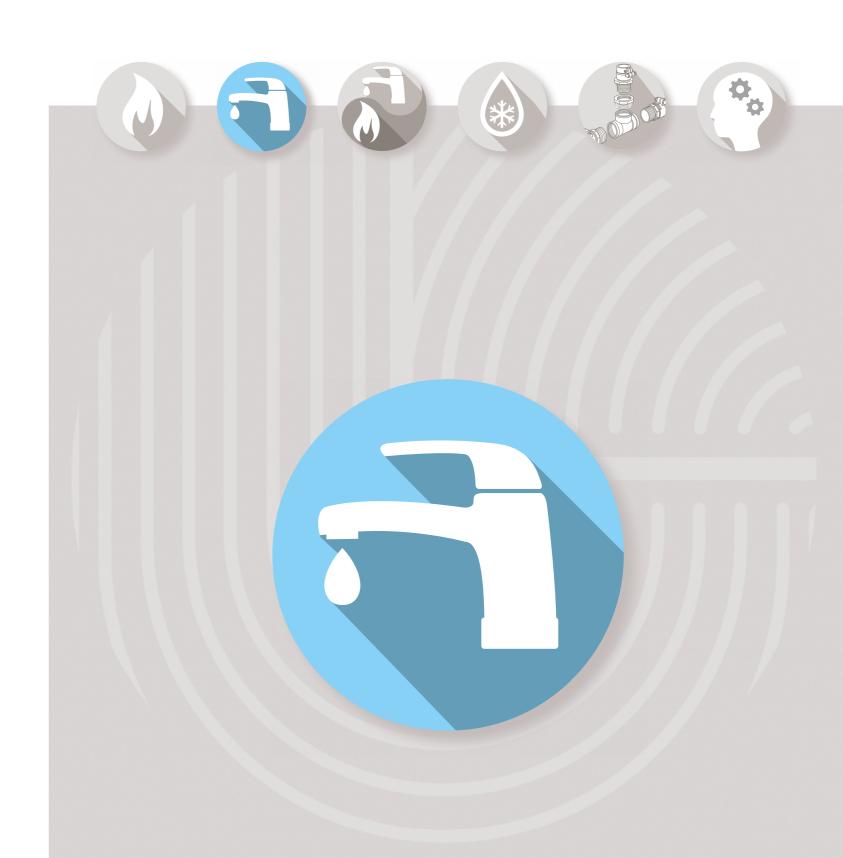
	Резьба
артикул	[дюйм]
HC25/0.75M	3/4" M
HC32/1M	1" M
HC25/0.75M	3/4" M
HC32/1M	1" M
HC40/1.25M	1 1/4" M
HC50/1.5M	1 1/2" M
HC50/1.5M	1 1/2" M
HC63/2M	2" M
HC63/2M	2" M

Пылевой концевой колпачок

Термоусадочный
концевой колпачок

15

			Р езьба М +F
артикул	артикул	артикул	[дюйм]
DECD140/25	SECD/20	FP0.75	3/4"
DECD140/32	SECD/10	FP1	1"
DECD160/25	SECD/30	FP0.75	3/4"
DECD160/32	SECD/40	FP1	1"
DECD160/40	SECD/40	FP1.25	1 1/4"
DECD160/50	SECD/50	FP1.5	1 1/2"
DECD200/50	SECD/50	FP1.5	1 1/2"
DECD200/63	SECD/60	FP2	2"
DECD225/63	SECD/60	FP2	2"


Обязательным условием монтажа является анкерное крепление концов трубы. Жесткая фиксация обеспечивает компенсацию от воздействия продольной расширительной силы при тепловом расширении напорной трубы. Несоблюдение этого правила приводит к повреждению системы, и автоматически аннулирует гарантию на систему.

 ⁽²⁾ Содержание воды выражается в литрах на метр длины напорной трубы
 (3) Средняя теплопередача в кВт для напорной трубы (при Т_{воды} 80°С при ΔТ 20°С)
 (4) Коэффициент U-value легко позволяет рассчитать потери тепла, в зависимости от разности температур (метод расчёта: см. стр. 46)

02

ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ

ОДНОТРУБНАЯ СИСТЕМА ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Особо гибкая предварительно изолированная система трубопроводов, с одной напорной трубой, предназначена для транспортировки горячей бытовой (питьевой) воды, сточных вод или других жидкостей в подземных распределительных сетях.

Напорная труба изготовлена из сшитого РЕ-Ха, цвет от бесцветного до беловатого

Многослойная теплоизоляция изготовлена из сшитой микропористой PE-X пены с водоотталкивающей, закрытой ячеистой структурой, которая характеризуется прочностью, изоляционными характеристиками без эффекта старения, а её постоянная эластичность сохраняет максимальную толщину изоляционного слоя даже после многократных сгибаний.

Гофрированный наружный кожух высокого качества из ПНД с двойными стенками эффективно защищает предизолированную систему трубы от механических воздействий и влаги, сохраняя максимальную гибкость.

- Напорная труба: PE-Xa / SDR 7.4 / PN 10
- Максимальная температура жидкости: +95°C
- PE-X пены изоляции: <1% поглощения воды в соответствии с ISO 2896
- Максимальная длина бухты для всех диаметров: 100 м
- Свободный от применения фреонов процесс производства

ТРУБЫ

Однотрубная система горячего водоснабжения

PIPELIFE

	Наружный кожух	Напорная тр	уба	Минимальный радиус изгиба	Объём воды в напорной трубе
артикул	днар [мм]	днар x s [мм]	авн [мм]	[M] ⁽¹⁾	$[\Pi/M]^{(2)}$
S7525	75	25 x 3.5	18.0	0.20	0.254
S9032	90	32 x 4.4	23.2	0.25	0.423
S9040	90	40 x 5.5	29.0	0.30	0.660
S14032	140	32 x 4.4	23.2	0.40	0.423
S14040	140	40 x 5.5	29.0	0.40	0.660
S14050	140	50 x 6.9	36.2	0.50	1.029
S14063	140	63 x 8.6	45.6	0.60	1.633
S16032	160	32 x 4.4	23.2	0.40	0.423
S16040	160	40 x 5.5	29.0	0.40	0.660
S16050	160	50 x 6.9	36.2	0.50	1.029
S16063	160	63 x 8.6	45.6	0.60	1.633

¹⁾ Указанный минимальный радиус изгиба может быть применен постоянно без потери качества или производительности системы

СОЕДИНЕНИЯ И ДЕТАЛИ

Концевые фитинги , труб	Концевые фитинги для РЕ-Х труб				Термоусадочный концевой колпачок	Анкерные муфты	
	Резьба				Резьба М + F		
артикул	[дюйм]	артикул	артикул	артикул	[дюйм]		
SC25/0.75M	3/4" M	DEC75/25	SEC/10	FP0.75	3/4"		
SC32/1M	1" M	DEC90/32	SEC/20	FP1	1"		
SC40/1.25M	1 1/4" M	DEC90/40	SEC/20	FP1.25	1 1/4"		
SC32/1M	1" M	DEC140/32	SEC/40	FP1	1"		
SC40/1.25M	1 1/4" M	DEC140/40	SEC/40	FP1.25	1 1/4"		
SC50/1.5M	1 1/2" M	DEC140/50	SEC/40	FP1.5	1 1/2"		
SC63/2M	2" M	DEC140/63	SEC/50	FP2	2"		
SC32/1M	1" M	DEC160/32	SEC/60	FP1	1"		
SC40/1.25M	1 1/4" M	DEC160/40	SEC/60	FP1.25	1 1/4"		
SC50/1.5M	1 1/2" M	DEC160/50	SEC/60	FP1.5	1 1/2"		
SC63/2M	2" M	DEC160/63	SEC/70	FP2	2"		

Обязательным условием монтажа является анкерное крепление концов напорной трубы. Жесткая фиксация обеспечивает компенсацию от воздействия продольной расширительной силы при тепловом расширении напорной трубы. Несоблюдение этого правила приводит к повреждению системы, и автоматически аннулирует гарантию на систему.

⁽²⁾ Содержание воды выражается в литрах на метр длины напорной трубы

Г

ДВУХТРУБНАЯ СИСТЕМА ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Особо гибкая предварительно изолированная система трубопроводов, с двумя напорными трубами в одном защитном кожухе, предназначена для транспортировки горячей бытовой (питьевой) воды, сточных вод или других жидкостей в подземных распределительных сетях.

Напорные трубы трубы изготовлены из сшитого PE-Xa, цвет от бесцветного до беловатого.

Многослойная теплоизоляция изготовлена из сшитой микропористой PE-X пены с водоотталкивающей, закрытой ячеистой структурой, которая характеризуется прочностью, изоляционными характеристиками без эффекта старения, а её постоянная эластичность сохраняет максимальную толщину изоляционного слоя даже после многократных сгибаний.

Гофрированный наружный кожух высокого качества из ПНД с двойными стенками эффективно защищает предизолированную систему трубы от механических воздействий и влаги, сохраняя максимальную гибкость.

- Напорные трубы: PE-Xa / SDR 7.4 / PN 10
- Максимальная температура жидкости: +95°C
- PE-X пены изоляции: <1% поглощения воды в соответствии с ISO 2896
- Максимальная длина бухты для всех размеров: 100 м
- Свободный от применения фреонов процесс производства

Пылевой концевой

Термоусадочный

ТРУБЫ

Двухтрубная система горячего водоснабжения

PIPELIFE

	Наружный кожух	Напорные тру	бы	Минимальный радиус изгиба	Объём воды в напорных трубах
артикул	dнар [мм]	dнар x s [мм]	авн [мм]	[M] ⁽¹⁾	[л/м] ⁽²⁾
SD1402520	140	25 x 3.5 20 x 2.8	18.0 14.4	0.35	0.417
SD1403225	140	32 x 4.4 25 x 3.5	23.2 18.0	0.40	0.677
SD16025	160	25 x 3.5 25 x 3.5	18.0 18.0	0.50	0.508
SD1603225	160	32 x 4.4 25 x 3.5	23.2 18.0	0.50	0.677
SD1604025	160	40 x 5.5 25 x 3.5	29.0 18.0	0.60	0.914
SD1605025	160	50 x 6.9 25 x 3.5	36.2 18.0	0.60	1.283
SD1605032	160	50 x 6.9 32 x 4.4	36.2 23.2	0.60	1.452

⁽¹⁾ указанный минимальный радиус изгиба может быть применен постоянно без потери качества или производительности системы (2) содержание воды выражается в литрах на метр длины предварительно изолированных труб, в том числе прямого потока+объема возврата

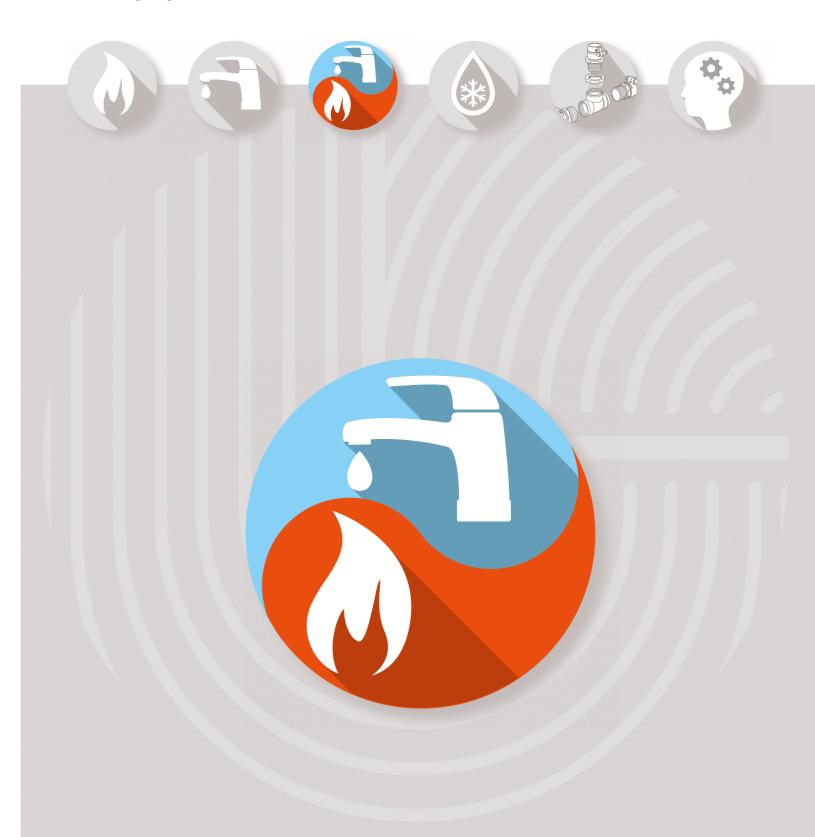
СОЕДИНЕНИЯ И ДЕТАЛИ

Концевые фитинги для РЕ-Х

труб		ROJI
	Резьба	
артикул	[дюйм]	
SC25/0.75M SC20/0.75M	3/4" M 3/4" M	
SC32/1M SC25/0.75M	1" M 3/4" M	
SC25/0.75M SC25/0.75M	3/4" M 3/4" M	
SC32/1M SC25/0.75M	1" M 3/4" M	
SC40/1.25M SC25/0.75M	1 1/4" M 3/4" M	
SC50/1.5M SC25/0.75M	1 1/2" M 3/4" M	
SC50/1.5M SC32/1M	1 1/2" M 1" M	

колпачок	концевой колпачок
артикул	артикул
DECD140/2520	SECD/20
DECD140/3225	SECD/20
DECD160/25	SECD/30
DECD160/3225	SECD/20
DECD160/4025	SECD/40
DECD160/5025	SECD/70
DECD160/5032	SECD/50

Анкерные муфты


	Р езьба М + F
артикул	[дюйм]
FP0.75 FP0.75	3/4" 3/4"
FP1 FP0.75	1" 3/4"
FP0.75	3/4"
FP1 FP0.75	1" 3/4"
FP1.25 FP0.75	1 1/4" 3/4"
FP1.5 FP0.75	1 1/2" 3/4"
FP1.5 FP1	1 1/2" 1"

Обязательным условием монтажа является анкерное крепление концов трубы. Жесткая фиксация обеспечивает компенсацию от воздействия продольной расширительной силы при тепловом расширении напорной трубы. Несоблюдение этого правила приводит к повреждению системы, и автоматически аннулирует гарантию на систему.

03

ОТОПЛЕНИЕ + ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ

ЧЕТЫРЁХТРУБНАЯ СИСТЕМА

PIPELIFE

Особо гибкая предварительно изолированная система трубопроводов, объединяющая две трубы отопления и две трубы горячего водоснабжения в одном кожухе, предназначена для транспортировки отопления и горячей воды в подземной циркуляционной системе, соединяющей источник тепла с точками потребления.

Напорные трубы, изготовленые из сшитого полиэтилена РЕ-Ха, с кислородно-диффузионным барьером оранжевого цвета — для подачи отопления и синего цвета для обратки, трубы для ГВС (горячего водоснабжения) — от бесцветного до беловатого цвета.

Многослойная теплоизоляция изготовлена из сшитой микропористой РЕ-Х пены с водоотталкивающей, закрытой ячеистой структурой, которая характеризуется прочностью, изоляционными характеристиками без эффекта старения, а ее постоянная эластичность сохраняет максимальную толщину изоляционного слоя даже после многократных сгибаний.

Гофрированный наружный кожух высокого качества из ПНД с двойными стенками эффективно защищает предизолированную систему трубы от механических воздействий и влаги, сохраняя максимальную гибкость.

ТРУБЫ

Четырёхтрубная система

	Наружный кожух	Напорные	трубы	Минималь- ный радиус изгиба	Объём вод	ы в напорных трубах	Тепловая мощность
артикул	dнар [мм]	dнар x s [мм]	dвн [мм]	[M] ⁽¹⁾	ОТОПЛЕНИЕ [Л/М] ⁽²⁾	ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ [л/м] ⁽²⁾	в ср. кВт
Q160H25S2520	160	(2x) 25 x 2.3 25 x 3.5 20 x 2.8	2 x 20.4 18.0 14.4	0.60	0.654	0.417	30
Q160H32S2520	160	(2x) 32 x 2.9 25 x 3.5 20 x 2.8	2 x 26.2 18.0 14.4	0.60	1.078	0.417	60
Q160H32S3225	160	(2x) 32 x 2.9 32 x 4.4 25 x 3.5	2 x 26.2 23.2 18.0	0.60	1.078	0.677	60
Q200H40S4032	200	(2x) 40 x 3.7 40 x 5.5 32 x 4.4	2 x 32.6 29.0 23.2	0.80	1.670	1.083	90

- (1) Указанный минимальный радиус изгиба может быть применен постоянно без потери качества или производительности системы
 (2) Содержание воды выражается в литрах на метр длины предварительно изолированной труб, в том числе прямого потока + объема возврата (суммарно для отопления

24

и горячего водоснабжения) $^{(3)}$ Средняя теплопередача в кВт для напорной трубы (при Тводы 80°С при ΔT 20°С)

- Напорные трубы для отопления: PE-Xa / SDR 11 / PN 6
- Напорные трубы для горячего водоснабжения: РЕ-Ха / SDR7.4 / PN10
- Максимальная температура жидкости: +95°C
- РЕ-Х пены изоляции: <1% поглощения воды в соответствии с ISO 2896
- Максимальная длина бухты для всех размеров: 100 м
- Свободный от применения фреонов процесс производства

FP1.25

FP1

1 1/4"

СОЕДИНЕНИЯ И ДЕТАЛИ

SC40/1.25M

SC32/1M

Концевые фитинги для РЕ-Х труб		Пылевой концевой колпачок	Анкерные і	муфты
	Резьба			Резьба М + F
артикул	[дюйм]	артикул	артикул	[дюйм]
HC25/0.75M	3/4" M		FP0.75	3/4"
SC25/0.75M SC20/0.75M	3/4" M 3/4" M	DECQ160/H25S2520	FP0.75 FP0.75	3/4" 3/4"
3020/0.73WI				
HC32/1M	1" M		FP1	1"
SC25/0.75M	3/4" M	DECQ160/H32S2520	FP0.75	3/4"
SC20/0.75M	3/4" M		FP0.75	3/4"
HC32/1M	1" M		FP1	1"
SC32/1M	1" M	DECQ160/H32S3225	FP1	1"
SC25/0.75M	3/4" M		FP0.75	3/4"
HC40/1.25M	1 1/4" M		FP1.25	1 1/4"

DECQ200/H40S4032


1 1/4" M

1" M

04

ХОЛОДНОЕ ВОДОСНАБЖЕНИЕ И ЦЕНТРАЛИЗОВАННОЕ ОХЛАЖДЕНИЕ

ОДНОТРУБНАЯ СИСТЕМА

PIPELIFE

Особо гибкая система трубопроводов, предварительно изолированная, с одной напорной трубой, предназначена для транспортировки холодной питьевой воды, охлаждающей воды, сточных вод или других жидкостей в подземных распределительных сетях.

Напорная труба изготовлена из полиэтилена высокой плотности (HDPE, полиэтилен низкого давления) с классификацией прочности РЕ100 в соответствии с EN 12201-2, что позволяет работать при давлении до 16 бар.

Многослойная теплоизоляция изготовлена из сшитой микропористой РЕ-Х пены с водоотталкивающей, закрытой ячеистой структурой, которая характеризуется прочностью, изоляционными характеристиками без эффекта старения, а её постоянная эластичность сохраняет максимальную толщину изоляционного слоя даже после многократных сгибаний.

Гофрированный наружный кожух высокого качества из ПНД с двойными стенками эффективно защищает предизолированную систему трубы от механических воздействий и влаги, сохраняя максимальную гибкость.

ТРУБЫ

28

Однотрубная система

	Наружный кожух	Напорная тру	/ ба	Минимальный радиус изгиба	Объём воды в напорной трубе
артикул	днар [мм]	dнар x s [мм]	dвн [мм]	[M] ⁽¹⁾	$[\Pi/M]^{(2)}$
C7525	75	25 x 2.3	20.4	0.20	0.327
C9032	90	32 x 2.9	26.2	0.25	0.539
C9040	90	40 x 3.7	32.6	0.30	0.835
C14050	140	50 x 4.6	40.8	0.40	1.307
C14063	140	63 x 5.8	51.4	0.50	2.075
C16075	160	75 x 6.8	61.4	0.75	2.961
C16090	160	90 x 8.2	73.6	1.00	4.254
C200110	200	110 x 10.0	90.0	1.20	6.362
C200125	200	125 x 11.4	102.2	1.40	8.203

⁽¹⁾ Указанный минимальный радиус изгиба может быть применен постоянно без потери качества или производительности системы

- Напорная труба: HDPE (ПЭ100) / SDR 11 / PN 16
- Диапазон рабочих температур жидкости: от -10°C до +20°C
- ПЭ-Х пены изоляции: <1% поглощения воды в соответствии с
- Максимальная длина бухты, для всех размеров: 100 м
- Свободный от применения фреонов процесс производства

СОЕДИНЕНИЯ И ДЕТАЛИ

Концевые фитинги для РЕ-X труб		Пылевой концевой колпачок	Термоусадочный концевой колпачок
	Резьба		
артикул	[дюйм]	артикул	артикул
HC25/0.75M	3/4" M	DEC75/25	SEC/10
HC32/1M	1" M	DEC90/32	SEC/20
HC40/1.25M	1 1/4" M	DEC90/40	SEC/20
HC50/1.5M	1 1/2" M	DEC140/50	SEC/40
HC63/2M	2" M	DEC140/63	SEC/50
HC75/2.5M	2 1/2" M	DEC160/75	SEC/70
HC90/3M	3" M	DEC160/90	SEC/70
HC110/4M	4" M	DEC200/110	SEC/80
HC125/4M	4" M	DEC200/125	SEC/80

В качестве альтернативы концевым металлическим фитингам для РЕ-Х труб, трубы холодного водоснабжения могут соединяться предлагаемым полным набором полипропиленовых соединителей и муфт (стр 38-39). Такие соединители в первую очередь рекомендуются для применения с хлорированной водой, например, в плавательных бассейнах.

⁽²⁾ Содержание воды выражается в литрах на метр длины предварительно изолированной трубы

однотрубный водопровод С АНТИЗАМЕРЗАЮЩЕЙ ЗАЩИТОЙ

PIPELIFE

Особо гибкая система трубопроводов, предварительно изолированная, с одной напорной трубой, предназначена для транспортировки холодной питьевой воды, охлаждающей воды, сточных вод или других жидкостей в подземных распределительных сетях.

Напорная труба изготовлена из полиэтилена высокой плотности (HDPE, полиэтилен низкого давления) с классификацией прочности PE100 в соответствии с EN 12201-2, что позволяет работать при давлении до 16 бар. Интегрированный в систему саморегулирующийся нагревательный кабель номинальной мощностью 10 Вт/м предотвращает замерзание застойной воды (для районов Крайнего Севера возможна поставка трубы с кабелем 20 Вт/м).

Многослойная теплоизоляция изготовлена из сшитой микропористой РЕ-Х пены с водоотталкивающей, закрытой ячеистой структурой, которая характеризуется прочностью, изоляционными характеристиками без эффекта старения, а её постоянная эластичность сохраняет максимальную толщину изоляционного слоя даже после многократных сгибаний.

Гофрированный наружный кожух высокого качества из ПНД с двойными стенками эффективно защищает предизолированную систему трубы от механических воздействий и влаги, сохраняя максимальную гибкость.

ТРУБЫ

30

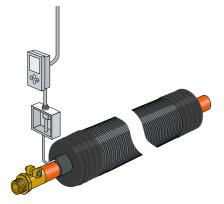
Однотрубный водопровод с антизамерзающей защитой

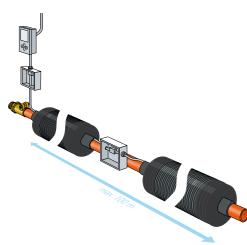
	Наружный кожух	Напорная тр	руба	Минимальный радиус изгиба	Объём воды в напорной трубе	Минимальная рабочая температура
артикул	dнар [мм]	dнар x s [мм]	авн [мм]	[M] ⁽¹⁾	$[\Pi/M]^{(2)}$	[°C](3)
C7532W10	75	32 x 2.9	26.2	0.20	0.539	-30
C9040W10	90	40 x 3.7	32.6	0.30	0.835	-36
C14050W10	140	50 x 4.6	40.8	0.40	1.307	-33
C14063W10	140	63 x 5.8	51.4	0.50	2.075	-24
C16075W10	160	75 x 6.8	61.4	0.75	2.961	-23
C16090W10	160	90 x 8.2	73.6	1.00	4.254	-16
C200110W10	200	110 x 10.0	90.0	1.20	6.362	-19
C200125W10	200	125 x 11.4	102.2	1.40	8.203	-16

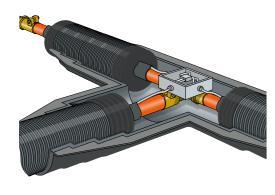
⁽¹⁾ Указанный минимальный радиус изгиба может быть использован постоянно без потери качества или производительности системы

- Напорная труба: HDPE (ПЭ100) / SDR 11 / PN 16
- Диапазон рабочих температур жидкости: от -10°C до +20°C
- РЕ-Х пены изоляции: <1% поглощения воды в соответствии
- Максимальная длина бухты для всех все размеров: 100 м
- Свободный от применения фреонов процесс производства

СОЕДИНЕНИЯ И ДЕТАЛИ


Концевые фитинги для РЕ-X труб		Пылевой концевой колпачок	Термоусадочный концевой колпачок
	Резьба		
артикул	[дюйм]	артикул	артикул
HC32/1M	1" M	DEC75/32	SEC/20
HC40/1.25M	1 1/4" M	DEC90/40	SEC/20
HC50/1.5M	1 1/2" M	DEC140/50	SEC/40
HC63/2M	2" M	DEC140/63	SEC/50
HC75/2.5M	2 1/2" M	DEC160/75	SEC/70
HC90/3M	3" M	DEC160/90	SEC/70
HC110/4M	4" M	DEC200/110	SEC/80
HC125/4M	4" M	DEC200/125	SEC/80


В качестве альтернативы концевым латунным фитингам для РЕ-Х труб для соединения трубопроводов холодного водоснабжения могут использоваться полипропиленовые соединители и муфты (стр. 38-39). Такие соединители в первую очередь рекомендуются для применения с хлорированной водой, например, в плавательных бассейнах.


⁽²⁾ Содержание воды выражается в литрах на метр длины напорной трубы (3) Минимальная (самая отрицательная) температура, допустимая вокруг наружного кожуха трубопровода (заглубленного), чтобы избежать замерзания воды внутри напорной трубы

НАБОР ДЛЯ ПОДКЛЮЧЕНИЯ ЗАЩИТЫ ОТ ЗАМЕРЗАНИЯ

Однотрубная система для холодной воды с защитой от замерзания оснащена саморегулирующимся нагревательный кабелем номинальной мощностью 10 Вт/м (для районов Крайнего Севера возможна поставка системы с кабелем номинальной мощностью 20 Вт/м).

Нагревательный кабель подключается к сети переменного тока 220 В, 50-60 Гц. Для линии требуется защита от перегрузок через УЗО (Устройство защитного отключения) по току-16А утечка-30мА.

Саморегулируемый кабель способен изменять степень подогрева в каждой точке системы, реагируя на изменения окружающей температуры. Чтобы предотвратить напрасную работу нагревательного кабеля, рекомендуется использование термостата, который можно запрограммировать на включение / отключение системы подогрева трубопровода при определенной наружной температуре воздуха (термостат наружной установки, рекомендуется автоматически отключать питание для установленной температуры воздуха, например, +2 °C). Или по температуре возле самой холодной точки системы (термостат внутренней установки с выносным датчиком).

Общая длина нагревательного кабеля, запитанного с одной точки, не должна превышать 100 м. Если требуется большая длина трубопровода, то электропитание должно быть подведено отдельно на каждые 100 м соединенного трубопровода с кабелем. Трубопровод может быть разрезан вместе с кабелем на любые длины до 100 метров.

Для обеспечения надлежащего функционирования кабеля, а также для предотвращения коротких замыканий, концы двух внутренних проводящих медных проводов должны быть надёжно электрически изолированы друг от друга.

термостат окружающей среды

HCTHERM

Наружный термостат окружающей среды

Класс защиты: ІР54 Диапазон регулирования:

-10°C +40°C

Защита: 16А Напряжение: 230В переменного тока

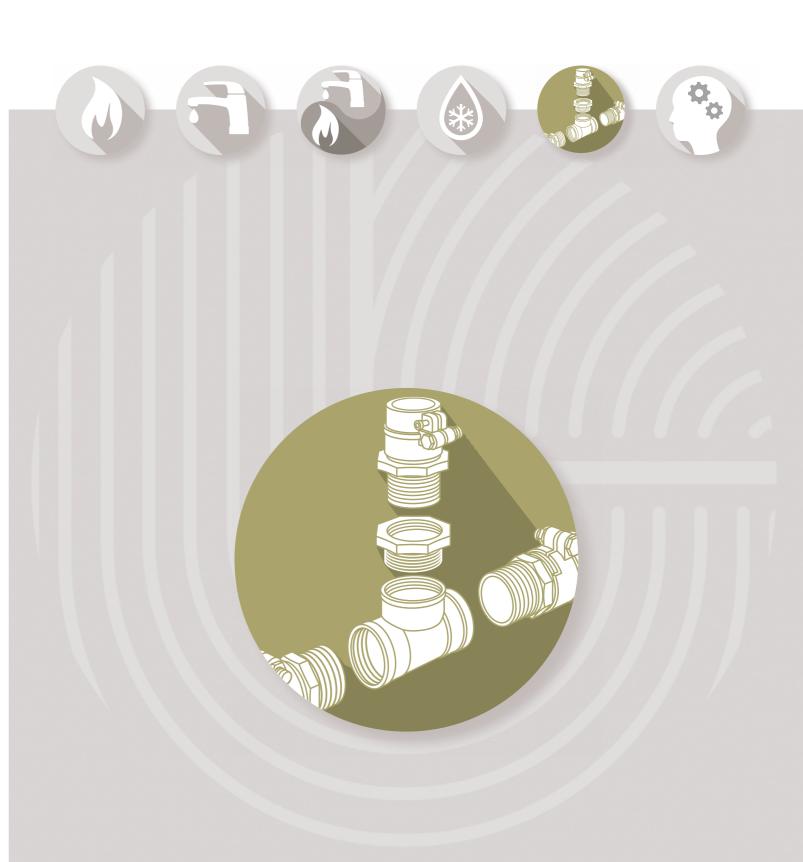
электрическая коробка

артикул **HCBOX**

Распределительная коробка из ПВХ используется для подключения нагревательного кабеля к линии питания (к силовому кабелю)

Класс защиты: IP55

HCSL электрическое подключение и набор изоляции



HCSL

Набор для подключения нагревательного кабеля к источнику питания, и электрической изоляции концов токонесущих проводов.

- установочная муфта 1 шт.
- термоусадочные трубки для изоляции проводов питания и кабеля
- длинная термоусадочная трубка для изоляции нагревательного кабеля и питающей линии – 1 шт.
- короткие термоусадочные трубки для изоляции конца нагревательного кабеля – 2 шт.

КОМПЛЕКТУЮЩИЕ ДЕТАЛИ

Г

СОЕДИНЕНИЯ ДЛЯ РЕ-Х ТРУБ И ФИТИНГИ ИЗ СПЛАВОВ МЕДИ

- Соединители для РЕ-Х трубы в соответствии с ISO 15875-3
- Трубы PE-X (ПЭ) SDR 11 или PE-X SDR 7.4
- Номинальное давление: SDR 11 / PN 6 (PN 16) или SDR 7.4 / PN 10
- Зажимной болт и гайка: AISI 316
- Резьба: трубная, коническая ISO 7-1
- Устойчивость материала к потере цинка: EN ISO 6509
- Устойчивость к стресс-коррозии: ISO 6957
- Уплотнительное кольцо: оригинальная конструкция

Предлагается полный диапазон размеров, надежных и простых в использовании концевых соединителей для PE-X труб и муфты от 25 мм до 125 мм с SDR 11 (отопление, холодное водоснабжение) и от 20 мм до 63 мм для труб с SDR 7.4 (горячее водоснабжение).

Конструкция концевых разъемов обеспечивает превосходное соединение с напорной трубой и дает усилие на отрыв больше, чем сама напорная труба. Разъемы выполнены со стандартной наружной трубной резьбой для простого перехода и подключения к стальной трубе или любой другой.

Все металлические детали имеют безопасный контакт с водой в соответствии с Европейской директивой по питьевой воде (DWD), Директива Совета 98/83 / FC.

Зажимные муфты с устойчивостью к обесцинкиванию (DZR) латуни, предотвращают выщелачивание и коррозию в агрессивных средах.

Простота установки типа «болт-гайка» без использования специальных инструментов или гидравлического оборудования. Превосходное качество болтов и гаек из нержавеющей стали.

Специальная конструкция соединителей для материала РЕ-Х труб обеспечивает прочное и герметичное подключение без использования уплотнительного кольца.

Конечные разъемы со стальными патрубками под сварку для подключения PE-Xa трубы к стальным трубопроводам или для использования фланцевого соединения на сварке.

SDR 11

Концевые фитинги для РЕ-Х труб

	Размер напорной трубы	Резьба	Bec
артикул	dнар/s/dвн [мм]	[дюйм]	[KГ]
HC25/0.75M	25/2.3/20.4	3/4" M	0.20
HC32/1M	32/2.9/26.2	1" M	0.30
HC40/1.25M	40/3.7/32.6	1 1/4" M	0.55
HC50/1.5M	50/4.6/40.8	1 1/2" M	0.65
HC63/2M	63/5.8/51.4	2" M	1.10
HC75/2.5M	75/6.8/61.4	2 1/2" M	1.60
HC90/3M	90/8.2/73.6	3" M	2.50
HC110/4M	110/10.0/90.0	4" M	4.00
HC125/4M	125/11.4/102.2	4" M	4.95

	Размер напорной трубы	Bec
артикул	dнар/s/dвн [мм]	[KL]
HC25x25	25/2.3/20.4	0.30
HC32x32	32/2.9/26.2	0.40
HC40x40	40/3.7/32.6	0.80
HC50x50	50/4.6/40.8	1.00
HC63x63	63/5.8/51.4	1.65
HC75x75	75/6.8/61.4	2.65
HC90x90	90/8.2/73.6	4.10
HC110x110	110/10.0/90.0	6.40
HC125x125	125/11.4/102.2	8.10

Угловое соединение 2-х концов PE-X труб SDR 11

Размер напор- ной трубы		
артикул	dнар/s/dвн [мм]	
HLC25x25	25/2.3/20.4	
HLC32x32	32/2.9/26.2	
HLC40x40	40/3.7/32.6	
HLC50x50	50/4.6/40.8	Поставля-
HLC63x63	63/5.8/51.4	ЮТСЯ
HLC75x75	75/6.8/61.4	как свобод-
HLC90x90	90/8.2/73.6	ные компоненты *
HLC110x110	110/10.0/90.0	KUMHUHEHIBI
HLC125x125	125/11.4/102.2	

Концевой фитинг под сварку со стальной трубой SDR 11

	Размер на- порной трубы	Диаметр опатрубка п		Bec
артикул	dнар/s/dвн [мм]	днар [мм]	dвн [мм]	[KL]
HC25/27W	25/2.3/20.4	26.9	20.0	0.20
HC32/33W	32/2.9/26.2	33.7	27.0	0.30
HC40/42W	40/3.7/32.6	42.4	35.0	0.50
HC50/48W	50/4.6/40.8	48.3	40.0	0.65
HC63/60W	63/5.8/51.4	60.3	52.0	1.00
HC75/76W	75/6.8/61.4	76.1	66.0	1.50
HC90/89W	90/8.2/73.6	88.9	79.0	2.20
HC110/114W	110/10.0/90.0	114.3	104.0	3.40
HC125/114W	125/11.4/102.2	114.3	104.0	4.40

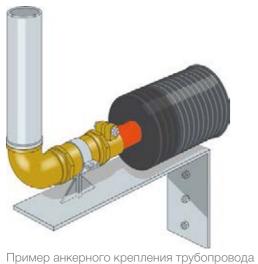
Концевые фитинги для PE-X труб SDR 7.4

	Размер на- порной трубы	Резьба	Bec
артикул	dнар/s/dвн [мм]	[дюйм]	[KL]
SC20/0.75M	20/2.8/14.4	3/4" M	0.25
SC25/0.75M	25/3.5/18.0	3/4" M	0.20
SC32/1M	32/4.4/23.2	1" M	0.30
SC40/1.25M	40/5.5/29.0	1 1/4" M	0.60
SC50/1.5M	50/6.9/36.2	1 1/2" M	0.60
SC63/2M	63/8.7/45.6	2" M	1.00

Безопасно при использовании для питьевой воды

Т-отводы РЕ-Х х РЕ-Х х РЕ-Х

Для отвода от основного магистрального трубопровода трубы меньшего диаметра требуется использование тройников. Тройниковое соединение должно быть подобрано и собрано в зависимости от используемых диаметров труб.


Пример использования тройникового соединения: Отвод трубы теплотрассы 32 мм от основной трубы 63 мм. Типы и количество деталей должны быть выбраны и смонтированы, как показано на рисунке:

- Концевой фитинг для трубы 63 мм (SDR11) 2 шт. артикул HC63 / 2M
- Концевой фитинг для трубы 32 мм (SDR11) 1 шт. артикул HC32 / 1M
- Тройник 2 " **1 шт**. артикул **ТР2**
- Переходник (2 "М х 1" F) **1 шт**. артикул **RB2 / 1**

35

Для правильного монтажа, пожалуйста, обратитесь к соответствующей Инструкции.

после прохода сквозь стену.

- Номинальное давление: PN 16
- Материалы: соответствуют DWD 98/83/EC
- Детали: Анкерная муфта коническая, соответствует EN 10226 (ISO7-1)
- Другие детали из латуни: сертификат ISO 228-1
- Сопротивление к коррозии соответствует ISO 6957

Анкерные муфты

	Резьба М + F
артикул	[дюйм]
FP0.75	3/4"
FP1	1"
FP1.25	1 1/4"
FP1.5	1 1/2"
FP2	2"
FP2.5	2 1/2"
FP3	3"
FP4	4"

Прямые муфты

Набор латунных фитингов, таких как: муфты, угольники, тройники и т.д. может легко сочетаться с разъёмами концевых деталей для

Все аксессуары из латуни соответствуют Европейской директиве по

Обязательным условием монтажа является анкерное крепление концов трубы. Жесткая фиксация обеспечивает компенсацию от воздействия продольной расширительной силы при тепловом расширении напорной трубы. Несоблюдение этого правила приводит к повреждению системы, и

РЕ-Х труб в любой желаемой конфигурации.

питьевой воде (DWD), Директива Совета 98/83 / EC.

автоматически аннулирует гарантию на систему.

	Р езьба F + F
артикул	[дюйм]
SL0.75	3/4"
SL1	1"
SL1.25	1 1/4"
SL1.5	1 1/2"
SL2	2"
SL2.5	2 1/2"
SL3	3"
SL4	4"

Отводы на 90 град.

	Резьба F + F
артикул	[дюйм]
EL0.75	3/4"
EL1	1"
EL1.25	1 1/4"
EL1.5	1 1/2"
EL2	2"
EL2.5	2 1/2"
EL3	3"
EL4	4"

Тройники

	Резьба F + F + F
артикул	[дюйм]
TP0.75	3/4"
TP1	1"
TP1.25	1 1/4"
TP1.5	1 1/2"
TP2	2"
TP2.5	2 1/2"
TP3	3"
TP4	4"

Переходники резьбовые МхF

артикул RB1/0.75 RB1.25/0.75 1 1/4" M x 3/4" F RB1.25/1 RB1.5/0.75 1 1/4" M x 1" F RB1.5/0.75 1 1/2" M x 3/4" F RB1.5/1.25 1 1/2" M x 1" F RB1.5/1.25 1 1/2" M x 1 1/4" F RB2/0.75 2" M x 3/4" F RB2/1.75 2" M x 1 1/4" F RB2/1.5 2 1/2" M x 1 1/4" F RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/1.5 2 1/2" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 RB3/2 RB3/2 RB4/2 RB4/2 RB4/3 4" M x 2" F RB4/3		Резьба M + F
RB1.25/0.75 RB1.25/1 RB1.5/0.75 1 1/4" M x 3/4" F RB1.5/0.75 1 1/2" M x 3/4" F RB1.5/1 RB1.5/1 1 1/2" M x 1" F RB1.5/1.25 1 1/2" M x 1 1/4" F RB2/0.75 2" M x 3/4" F RB2/1 2" M x 1 1/4" F RB2/1.25 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/2" F RB2.5/1.5 2 1/2" M x 1 1/4" F RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1 1/2" F RB3/1.5 3" M x 1 1/2" F RB3/1.5 3" M x 1 1/2" F RB3/2 RB3/2.5 3" M x 2 1/2" F RB4/2 RB4/2.5 4" M x 2" F	артикул	[дюйм]
RB1.25/1 1 1/4" M x 1" F RB1.5/0.75 1 1/2" M x 3/4" F RB1.5/1 1 1/2" M x 1" F RB1.5/1.25 1 1/2" M x 1 1/4" F RB2/0.75 2" M x 3/4" F RB2/1 2" M x 1" F RB2/1.25 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/4" F RB2.5/1.5 2 1/2" M x 1 1/4" F RB2.5/1.5 2 1/2" M x 1 1/4" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1 1/4" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/4" F RB3/2 3" M x 2 1 7 F RB3/2 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2 4" M x 2 1/2" F	RB1/0.75	1" M x 3/4" F
RB1.5/0.75 RB1.5/1 RB1.5/1 RB1.5/1 RB1.5/1.25 1 1/2" M x 1" F RB2/0.75 2" M x 3/4" F RB2/1.25 2" M x 1 1/4" F RB2/1.25 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/2" F RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/1.5 2 1/2" M x 2" F RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.25 3" M x 1 1/4" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/1.5 3" M x 1 1/2" F RB3/2 RB3/2 RB3/2 RB3/2 RB3/2 RB3/2 RB4/2 RB4/2 RB4/2.5	RB1.25/0.75	1 1/4" M x 3/4" F
RB1.5/1 1 1/2" M x 1" F RB1.5/1.25 1 1/2" M x 1 1/4" F RB2/0.75 2" M x 3/4" F RB2/1 2" M x 1 1/4" F RB2/1.25 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/2" F RB2.5/1.25 2 1/2" M x 1 1/4" F RB2.5/1.25 2 1/2" M x 1 1/4" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1 1/4" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/4" F RB3/2 3" M x 1 1/2" F RB3/2 3" M x 2 1/2" F RB3/2 4" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2 4" M x 2 1/2" F	RB1.25/1	1 1/4" M x 1" F
RB1.5/1.25	RB1.5/0.75	1 1/2" M x 3/4" F
RB2/0.75 RB2/1 RB2/1.25 RB2/1.5 RB2/1.5 RB2/1.5 RB2.5/1.25 RB2.5/1.25 RB2.5/1.25 RB2.5/1.5 RB2.5/2 RB3/1 RB3/1.25 RB3/1.5 RB3/1.5 RB3/1.5 RB3/2 RB3/2 RB3/2.5 RB3/2 RB4/2 RB4/2.5 RB4/2.5 RB2/1	RB1.5/1	1 1/2" M x 1" F
RB2/1 2" M x 1" F RB2/1.25 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/2" F RB2.5/1.25 2 1/2" M x 1 1/2" F RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2 1/2" F RB3/2 4" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2 4" M x 2 1/2" F	RB1.5/1.25	1 1/2" M x 1 1/4" F
RB2/1.25 2" M x 1 1/4" F RB2/1.5 2" M x 1 1/2" F RB2.5/1.25 2 1/2" M x 1 1/4" F RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2 1/2" F RB3/2 4" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2 4" M x 2 1/2" F	RB2/0.75	2" M x 3/4" F
RB2/1.5 2" M x 1 1/2" F RB2.5/1.25 2 1/2" M x 1 1/4" F RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2 1/2" F RB3/2 3" M x 2 1/2" F RB3/2.5 4" M x 2" F RB4/2 4" M x 2" F	RB2/1	2" M x 1" F
RB2.5/1.25 2 1/2" M x 1 1/4" F RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2" F RB3/2 3" M x 2" F RB3/2.5 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2.5 4" M x 2 1/2" F	RB2/1.25	2" M x 1 1/4" F
RB2.5/1.5 2 1/2" M x 1 1/2" F RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2" F RB3/2.5 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2.5 4" M x 2 1/2" F	RB2/1.5	2" M x 1 1/2" F
RB2.5/2 2 1/2" M x 2" F RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2" F RB3/2.5 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2.5 4" M x 2 1/2" F	RB2.5/1.25	2 1/2" M x 1 1/4" F
RB3/1 3" M x 1" F RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2" F RB3/2.5 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2.5 4" M x 2 1/2" F	RB2.5/1.5	2 1/2" M x 1 1/2" F
RB3/1.25 3" M x 1 1/4" F RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2" F RB3/2.5 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2.5 4" M x 2 1/2" F	RB2.5/2	2 1/2" M x 2" F
RB3/1.5 3" M x 1 1/2" F RB3/2 3" M x 2" F RB3/2.5 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2.5 4" M x 2 1/2" F	RB3/1	3" M x 1" F
RB3/2 3" M × 2" F RB3/2.5 3" M × 2 1/2" F RB4/2 4" M × 2" F RB4/2.5 4" M × 2 1/2" F	RB3/1.25	3" M x 1 1/4" F
RB3/2.5 3" M x 2 1/2" F RB4/2 4" M x 2" F RB4/2.5 4" M x 2 1/2" F	RB3/1.5	3" M x 1 1/2" F
RB4/2 4" M × 2" F RB4/2.5 4" M × 2 1/2" F	RB3/2	3" M x 2" F
RB4/2.5 4" M x 2 1/2" F	RB3/2.5	3" M x 2 1/2" F
110 1/210	RB4/2	4" M x 2" F
RB4/3 4" M x 3" F	RB4/2.5	4" M x 2 1/2" F
	RB4/3	4" M x 3" F

Ниппели резьбовые МхМ

	Резьба М + М
артикул	[дюйм]
NI0.75	3/4"
NI1	1"
NI1.25	1 1/4"
NI1.5	1 1/2"
NI2	2"
NI2.5	2 1/2"
NI3	3"
NI4	4"

Заглушки

	Резьба М
артикул	[дюйм]
PL0.75	3/4"
PL1	1"
PL1.25	1 1/4"
PL1.5	1 1/2"
PL2	2"
PL2.5	2 1/2"
PL3	3"
PL4	4"

Шаровые краны

	Р езьба М + F
артикул	[дюйм]
BV0.75	3/4"
BV1	1"
BV1.25	1 1/4"
BV1.5	1 1/2"
BV2	2"
BV2.5	2 1/2"
BV3	3"
BV4	4"

Шаровые запорные краны для питьевой воды до 2" доступны по запросу.

Фланцы резьбовые

	Р езьба F
артикул	[дюйм]
FL0.75	3/4"
FL1	1"
FL1.25	1 1/4"
FL1.5	1 1/2"
FL2	2"
FL2.5	2 1/2"
FL3	3"
FI 4	411

Г

СОЕДИНЕНИЯ ДЛЯ РЕ ТРУБ И ФИТИНГИ ИЗ ПОЛИПРОПИЛЕНА

PIPELIFE

- Разъемы ПЭ трубы: SDR 11
- Номинальное давление: макс. 10 бар при температуре 20°C
- Материал: полипропилен (ПП)

Предлагается полный спектр разъемов и муфт для полиэтиленовых труб (РЕ) из полипропилена (ПП) от 25 мм до 110 мм (SDR 11).

Применяются для холодной питьевой воды и хладоагентов. Особенно подходят для хлорированной воды, используемой в плавательных бассейнах и т.п.

Концевой фитинг для труб из РЕ

	Размер напорной трубы	Резьба
артикул	dнap/s/dвн [мм]	[дюйм]
PPC25/0.75M	25/2.3/20.4	3/4" M
PPC32/1M	32/2.9/26.2	1" M
PPC40/1.25M	40/3.7/32.6	1 1/4" M
PPC50/1.5M	50/4.6/40.8	1 1/2" M
PPC63/2M	63/5.8/51.4	2" M
PPC75/2.5M	75/6.8/61.4	2 1/2" M
PPC90/3M	90/8.2/73.6	3" M
PPC110/4M	110/10.0/90.0	4" M

Угловое соединение 2-х концов РЕ труб

	Размер напорной трубы
артикул	dнар/s/dвн [мм]
PPEC25x25	25/2.3/20.4
PPEC32x32	32/2.9/26.2
PPEC40x40	40/3.7/32.6
PPEC50x50	50/4.6/40.8
PPEC63x63	63/5.8/51.4
PPEC75x75	75/6.8/61.4
PPEC90x90	90/8.2/73.6
PPEC110x110	110/10.0/90.0

Концевой фитинг для прямого соединения концов труб из РЕ

	Размер напорной трубы
артикул	dнар/s/dвн [мм]
PPC25x25	25/2.3/20.4
PPC32x32	32/2.9/26.2
PPC40x40	40/3.7/32.6
PPC50x50	50/4.6/40.8
PPC63x63	63/5.8/51.4
PPC75x75	75/6.8/61.4
PPC90x90	90/8.2/73.6
PPC110x110	110/10.0/90.0

Тройниковое соединение труб из РЕ

	Размер напорной трубы
артикул	dнар/s/dвн [мм]
PPTC/3x25	25/2.3/20.4
PPTC/3x32	32/2.9/26.2
PPTC/3x40	40/3.7/32.6
PPTC/3x50	50/4.6/40.8
PPTC/3x63	63/5.8/51.4
PPTC/3x75	75/6.8/61.4
PPTC/3x90	90/8.2/73.6
PPTC/3x110	110/10.0/90.0

ИЗОЛЯЦИОННЫЕ КОМПЛЕКТЫ

PIPELIFE

Для предотвращения попадания грунтовой воды стандарт EN 15632-3 предписывает использование термоусадочного концевого колпачка, который надёжно герметизирует систему под землёй. Несоблюдение этого правила приводит к повреждению свойств изоляции и автоматически аннулирует гарантию на систему.

Изоляционный комлект для прямого соединения

	Диаметр на- ружного кожуха	Размеры изоляционных комплектов		Bec
артикул	днар [мм]	днар [мм]	Длина [мм]	[KF]
SIS90/75	90/75	110	600	1,8
SIS110	110	125	600	1,9
SIS140	140	160	850	5,5
SIS160	160	180	1000	4,0
SIS200	200	225	1000	6,0
SIS225	225	250	1000	7,3

Водонепроницаемый герметичный HDPE комплект для подземной изоляции прямого соединения (удлинения) одинарных, двойных или четырехтрубных теплоизолированных систем.

Поставляется в комплекте: гильза с минеральной теплоизоляцией в виде сегментов, термоусадочные рукава и инструкция по монтажу.

ТРЕБОВАНИЯ ГАРАНТИИ: Необходимо подбирать под соответствующий наружный размер кожуха трубопровода. Термоусадочные концевые колпачки для труб заказываются отдельно!

Изоляционный комплект для тройникового отвода

7		Диаметр наружного кожуха	Длина	Ширина	Высота	Bec	
	артикул	dнар [мм]	[MM]	[MM]	[MM]	[KT]	
	TIK140/90	140/110/90	1250	755	206	5,5	
	TIK225/140	225/200/160/140	1640	990	290	9.0	

Водонепроницаемый герметичный НDPE комплект для подземной изоляции Т-образного соединения одинарных, двойных или четырехтрубных теплоизолированных систем. Поставляется в комплекте: корпус из двух частей, минеральная теплоизоляция в виде сегментов, герметик, болты из нержавеющей стали и инструкция по монтажу.

ТРЕБОВАНИЯ ГАРАНТИИ: Необходимо подбирать под соответствующий наружный размер кожуха трубопровода. Термоусадочные концевые колпачки для труб заказываются отдельно!

Изоляционный комплект для Н-образного отвода

1	Диаметр наружного кожуха	Длина	Ширина	Высота	Bec
артикул	dнар [мм]	[MM]	[MM]	[MM]	[KL]
HIK225/140	225/200/160/140	1640	1250	476	15

Для 2-х основных труб 225/200/160/140 Для одной трубы-отвода

Водонепроницаемый герметичный НDPE комплект для подземной изоляции Н-образного (двойного Т-образного) соединения одинарных, двойных или четырехтрубных теплоизолированных систем. Поставляется в комплекте: корпус из двух частей, минеральная теплоизоляция в виде сегментов, герметик, болты из нержавеющей стали и инструкция по монтажу.

ТРЕБОВАНИЯ ГАРАНТИИ: Необходимо подбирать под соответствующий наружный размер кожуха трубопровода. Термоусадочные концевые колпачки для труб заказываются отдельно!

Изоляционный комплект для L-образного отвода

	Диаметр наружного кожуха	Длина	Ширина	Высота	Bec
артикул	dнар [мм]	[MM]	[MM]	[MM]	[KF]
LIK225/140	225/200/160/140	990	990	290	7,5

Водонепроницаемый герметичный HDPE комплект для подземной изоляции L-образного соединения одинарных, двойных или четырехтрубных теплоизолированных систем. Поставляется в комплекте: корпус из двух частей, минеральная теплоизоляция в виде сегментов, герметик, болты из нержавеющей стали и инструкция по монтажу.

ТРЕБОВАНИЯ ГАРАНТИИ: Необходимо подбирать под соответствующий наружный размер кожуха трубопровода. Термоусадочные концевые колпачки для труб заказываются отдельно!

Переходной адаптер для изоляционных комплектов

	Диаметр наружного кожуха	Bec
артикул	днар [мм]	[KL]
RAS200/75	от 200 до 75 уменьшение	2,0
RAS200/90	от 200 до 90 уменьшение	2,5
RAS200/110	от 200 до 110 уменьшение	3,0

Переходные адаптеры используются для входа трубопроводов с меньшим диаметром наружного кожуха в изоляционный комплект с большим диаметром входа.

Переходник вкладывается в место входа в изоляционный комплект, затем трубопровод вставляется в переходник. Соединение надежно изолируется термоусадочным рукавом, который входит в комплект переходника.

Переходной адаптер 200 мм для 125 мм (RAS200/125) предоставляется по специальному запросу.

Подземный смотровой колодец

		Диаметр наружного кожуха	Длина	Ширина	Высота	Bec
)	артикул	днар [мм]	[MM]	[MM]	[MM]	[KL]
	UIC225/140	225/200/160/140	1570	1360	700	59

Подземный смотровой колодец с 6 возможными входами для подключения одинарных, двойных или четырехтрубных систем, что позволяет интегрировать запорную арматуру при необходимости.

Поставляется в комплекте с крышкой, герметиком, болтами из нержавеющей стали и инструкцией по монтажу.

Отверстия для входа необходимо подбирать под соответствующие наружные размеры кожухов трубопроводов. Термоусадочные концевые колпачки для труб заказываются отдельно!

Термоусадочные рукава для подземного смотрового колодца

	Диаметр наружного кожуха	Длина
артикул	днар [мм]	[MM]
SSL110/125	110	225
SSL160/180	140	225
SSL160/180	160	225
SSL225/250	200	225
SSL225/250	225	225

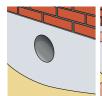
Для обеспечения надежного и герметичного сопряжения между патрубком смотрового колодца и наружным гофрированным кожухом трубопровода должны быть использованы термоусадочные рукава соответствующих диаметров. Рукава к колодцу должны быть заказаны отдельно.

Во всех подземных комплектах изоляции предусмотрены специальные места для для размещения маркеров ELIOT®

Г

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

PIPELIFE



Цепные уплотнения (для воды без давления) для прохода сквозь фундамент

	Для разме- ров наружно- го кожуха	Диаметр отверстия в стене
артикул	днар [мм]	Ø [MM]
SCHA9/200	75	100
SCHA7/300	75	120
SCHA6/360	75	150
SCHA8/300	90	130
SCHA9/340	90	150
SCHA10/300	110	150
SCHA13/340	140	200
SCHA13/300	160	200
SCHA9/475	160	250
SCHA9/325	200	250
SCHA12/410	225	300

Модульная конструкция эластомерных звеньев, расширяющихся при затягивании болтов, для гидростатического уплотнения предварительно изолированных трубопроводов в стенах, полу и потолках. Цепные уплотнения могут быть установлены непосредственно в просверленных отверстиях или внутри стеновых гильз, которые заливаются в бетонную конструкцию.

Другие размеры по запросу

Уплотнительное кольцо для прохода сквозь фундамент

	Для размеров наружного кожуха	Диаметр отверстия в стене
артикул	dнар [мм]	Ø [MM]
RS75/150	75	150
RS90/150	90	150
RS110/150	110	150
RS140/200	140	200
RS160/250	160	250
RS200/250	200	250
RS225/300	225	300

Уплотнительное кольцо необходимо для обеспечения водонепроницаемости при прохождении предизолированных трубопроводов сквозь стену, полили потолок.

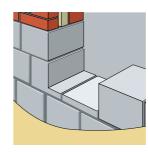
Оно герметизирует пространство между наружным кожухом трубопровода и стенкой проходного отверстия.

Уплотнительное кольцо может быть установлено в гладких (высверленных) стенных отверстиях или в гильзах (патрубках из фиброцемента), устанавливаемых на этапе заливки.

Максимальное гидростатическое давление, выдерживаемое кольцом, равно 0,5 бар.

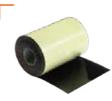
Стеновой патрубок из фиброцемента

	Для разме- ров наружно- го кожуха	Стеновой патрубок				
артикул	днар [мм]	\varnothing [MM]	Длина [мм]			
WSFI150	75 or 90 or 110	150	400			
WSFI200	140 or 160	200	400			
WSFI250	160 or 200	250	400			
WSFI300	225	300	400			


Стеновой патрубок, изготовленный из фиброцемента для прохода предизолированных трубопроводов, с цепным уплотнением или уплотнительный кольцом. Материал патрубка из фиброцемента имеет свойства расширения, подобные материалу бетона основной стены.

Комплекты для прохода сквозь сухие стены без подпора воды

Для размеров наружного кожуха	
dнар [мм]	Длина [мм]
75 - 90	500
110	500
140 -160	500
200	500
225	500
	наружного кожуха dнар [мм] 75 - 90 110 140 -160 200


Комплекты для прохода сквозь сухие стены (выше уровня грунтовых вод, без подпора воды), включающие гофрированную гильзу из полиэтилена высокой плотности и термоусадочный рукав для уплотнения пространства между гильзой и кожухом трубопровода. Гильза должна выступать наружу на ± 10 см от поверхности стены, чтобы обеспечить возможность установки термоусадочного рукава.

Ремонтная лента

	Размеры ленты							
артикул	Ширина [мм]	Длина [m]						
RETAP-H	200	10						
RETAP-C	150	10						

Ремонтная лента используется для устранения сквозных отверстий или других повреждений наружного кожуха трубопровода. Возможны как горячий способ, при использовании термоусадочной ленты (RETAP-H), так и холодный способ, при использовании

клейкой ленты (RETAP-C).

Сигнальная лента

Размеры ленты									
артикул	Ширина [мм]	Длина [m]	Цвет						
TA80/250WB	80	250	blue						
TA80/250WR	80	250	red						

Лента для предупреждения располагается над проложенным трубопроводом, чтобы избежать его повреждения при проведении дальнейших земляных работ.

Термоусадочный рукав

	Для размеров на- ружного кожуха	Длина
артикул	dнар [мм]	[MM]
SSL75	75	225
SSL90/110	90	225
SSL90/110	110	225
SSL140/160	140	225
SSL140/160	160	225
SSL200/225	200	225
SSL200/225	225	225

Термоусадочный рукав для оперативного ремонта наружного кожуха при сквозных отверстиях или других повреждениях.

 \sim 43

06

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

PIPES FOR LIFE

ПОТЕРИ ТЕПЛА

- х теплозоляции: 0,036 Вт/мК
- λ РЕ-Ха трубы: 0,35 Вт/мК
- λ грунта: 1 Вт/мК
- Глубина укладки труб: 0,80 м

Потери тепла в предварительно изолированной трубопроводной системе определяются разностью температур (Δt) между рабочей температурой теплоносителя внутри трубы (труб) и температурой грунта в непосредственной близости от заглубленного трубопровода.

В зависимости от выбранной конфигурации трубы, Δt можно рассчитать следующим образом:

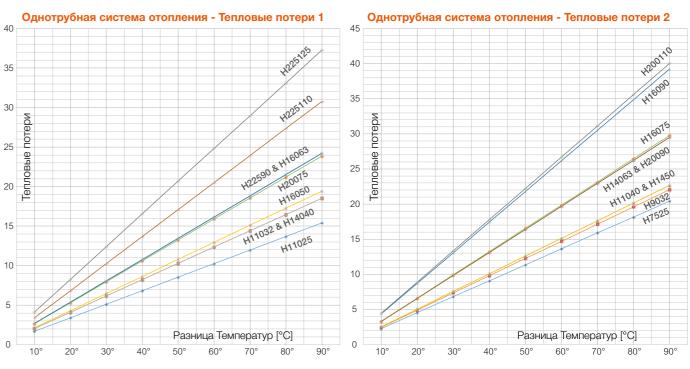
для однотрубных систем $\Delta t = t_{\text{подачи}} - t_{\text{грунта}}$ для двухтрубных систем $\Delta t = [(t_{\text{подачи}} + t_{\text{возврата}}) / 2] - t_{\text{грунта}}$

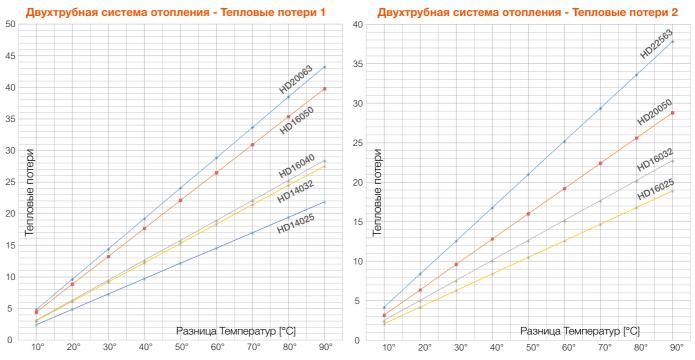
U-значение (потери тепла) для каждого вида изолированных трубопроводов легко определяется в зависимости от разности температур ΔТ. Умножая U-значение предварительно изолированной системы труб с действующим ΔТ, легко рассчитать соответствующие потери тепла на единицу длины системы конкретного трубопровода [Вт/м]. Приведенные ниже таблицы позволяют сразу определить потери тепла для ряда стандартных температурных перепадов.

Внимание: для проектов теплоснабжения с прямым и обратным потоками, каждый отдельно в своей предварительно изолированной системе, потери тепла должны быть рассчитаны для каждого из предварительно изолированных трубопроводов. После этого значения потерь суммируются, чтобы определить общие потери тепла в теплотрассе. В то же время как для двойного трубопровода отопления потери указаны в таблице. Чтобы определить общую потерю тепла в траншее, значение потерь умножается на длину предварительно изолированной системы двойного трубопровода.

Однотрубная система отопления

Коэффициент теплопотерь U-value	Труба	Труба Тепловые потери (Вт/м) для различных ∆t на метр изолированной однотрубной системы теплоснабжения									
$[BT/(M \cdot K)]$	артикул	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	
0.227	H7525	2.27	4.54	6.81	9.08	11.35	13.62	15.89	18.16	20.43	
0.245	H9032	2.45	4.90	7.35	9.80	12.25	14.70	17.15	19.60	22.05	
0.171	H11025	1.71	3.42	5.13	6.84	8.55	10.26	11.97	13.68	15.39	
0.206	H11032	2.06	4.12	6.18	8.24	10.30	12.36	14.42	16.48	18.54	
0.252	H11040	2.52	5.04	7.56	10.08	12.60	15.12	17.64	20.16	22.68	
0.206	H14040	2.06	4.12	6.18	8.24	10.30	12.36	14.42	16.48	18.54	
0.252	H14050	2.52	5.04	7.56	10.08	12.60	15.12	17.64	20.16	22.68	
0.328	H14063	3.28	6.56	9.84	13.12	16.40	19.68	22.96	26.24	29.52	
0.216	H16050	2.16	4.32	6.48	8.64	10.80	12.96	15.12	17.28	19.44	
0.269	H16063	2.69	5.38	8.07	10.76	13.45	16.14	18.83	21.52	24.21	
0.331	H16075	3.31	6.62	9.93	13.24	16.55	19.86	23.17	26.48	29.79	
0.436	H16090	4.36	8.72	13.08	17.44	21.80	26.16	30.52	34.88	39.24	
0.265	H20075	2.65	5.30	7.95	10.60	13.25	15.90	18.55	21.20	23.85	
0.328	H20090	3.28	6.56	9.84	13.12	16.40	19.68	22.96	26.24	29.52	
0.445	H200110	4.45	8.90	13.35	17.80	22.25	26.70	31.15	35.60	40.05	
0.269	H22590	2.69	5.38	8.07	10.76	13.45	16.14	18.83	21.52	24.21	
0.342	H225110	3.42	6.84	10.26	13.68	17.10	20.52	23.94	27.36	30.78	
0.414	H225125	4.14	8.28	12.42	16.56	20.70	24.84	28.98	33.12	37.26	


Двухтрубная система отопления


Коэффициент теплопотерь U-value	Труба	Тепловые потери (Вт/м) для различных ∆t на метр изолированной двухтрубной системы теплоснабжения								
[BT/(M·K)]	артикул	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C
0.243	HD14025	2.43	4.86	7.29	9.72	12.15	14.58	17.01	19.44	21.87
0.306	HD14032	3.06	6.12	9.18	12.24	15.30	18.36	21.42	24.48	27.54
0.210	HD16025	2.10	4.20	6.30	8.40	10.50	12.60	14.70	16.80	18.90
0.253	HD16032	2.53	5.06	7.59	10.12	12.65	15.18	17.71	20.24	22.77
0.316	HD16040	3.16	6.32	9.48	12.64	15.80	18.96	22.12	25.28	28.44
0.442	HD16050	4.42	8,84	13.26	17.68	22.10	26.52	30.94	35.36	39.78
0.320	HD20050	3.20	6.40	9.60	12.80	16.00	19.20	22.40	25.60	28.80
0.481	HD20063	4.81	9.62	14.43	19.24	24.05	28.86	33.67	38.48	43.29
0.420	HD22563	4.20	8.40	12.60	16.80	21.00	25.20	29.40	33.60	37.80

Для трубопроводных систем потери тепла выражаются в ваттах на единицу длины трубы. Для предварительно изолированных трубопроводных систем это тепло, переходящее от более горячих внутренних труб РЕ-Ха, к более холодной земле, окружающей внешнюю защитную оболочку из полиэтилена высокой плотности, и это со скоростью, определяемой разностью температур (Δt). Тепловые характеристики предварительно изолированной системы труб для эквивалентных материалов и при сопоставимых условиях эксплуатации в основном зависят от толщины изоляции:

Работая при мощности 110 кBт в классическом температурном режиме 80°C (60°C (поток / возврат), на глубине размещения 1 м, на 100 м трубопровода HD20050 приблизительная потеря тепла составляет 1,92 кBT и среднее падение температуры нагрева $0,18^{\circ}\text{C}$. При точно таких же обстоятельствах трубопровод HD16050 имеет приблизительную потерю тепла 2,65 кBT и среднее падение температуры нагрева на $0,25^{\circ}\text{C}$.

Кроме того, потери тепла на метр предварительно изолированнго трубопровода могут быть определены при помощи значения ∆Т по соответствующей линии на графиках. Метод расчета разности температур ∆Т: (см предыдущую страницу)

PIPES FOR LIFE PIPELIFE

Γ

ПОТЕРИ ДАВЛЕНИЯ

Тепловая мощность [кВт] для для разности соответствующих температур $\Delta T[K]$. (ΔT = разница температур между подачей и возвратным потоком), например: t подачи 80°C и t возврата 60°C => поэтому ΔT = 80-60 = 20 K).

Потери давления

	пловая ости со						Поток	Потери давления	Напо	рные	трубы	PE-Xa	SDR	11/ PN	6: d н	ap. x s	[мм]
5 K	10 K	15 K	20 K	25 K	30 K	40 K	[л/сек]	Скорость потока	25 x 2.3	32 x 2.9	40 x 3.7	50 x 4.6	63 x 5.8	75 x 6.8	90 x 8.2	110 x 10.0	125 x 11.4
1	3	4	5	6	8	10	0.06	[Па/м] [м/сек]	27 0.18	9 0.11							
3	5	8	10	13	15	20	0.12	[Па/м] [м/сек]	91 0.37	27 0.22	9 0.14						
4	8	11	15	19	23	30	0.18	[Па/м] [м/сек]	185 0.55	56 0.33	19 0.21						
5	10	15	20	25	30	40	0.24	[Па/м] [м/сек]	306 0.73	93 0.44	33 0.29						
6	13	19	25	31	38	50	0.30	[Па/м] [м/сек]	452 0.91	138 0.55	48 0.36						
8	15	23	30	38	45	60	0.36	[Па/м] [м/сек]	622 1.10	190 0.66	67 0.43	23 0.27					
9	18	26	35	44	53	70	0.42	[Па/м] [м/сек]	815 1.28	248 0.78	88 0.50	30 0.32					
10	20	30	40	50	60	80	0.48	[Па/м] [м/сек]	1030 1.46	314 0.89	111 0.57	38 0.37	12 0.23				
11	23	34	45	56	68	90	0.54	[Па/м] [м/сек]	1266 1.64	386 1.00	136 0.64	47 0.41	15 0.26				
13	25	38	50	63	75	100	0.60	[Па/м] [м/сек]	1522 1.83	464 1.11	164 0.72	56 0.46	18 0.29				
14	28	41	55	69	83	110	0.66	[Па/м] [м/сек]	1799 2.01	548 1.22	194 0.79	66 0.50	21 0.32				
15	30	45	60	75	90	120	0.72	[Па/м] [м/сек]	2095 2.19	639 1.33	226 0.86	77 0.55	25 0.34				
16	33	49	65	81	98	130	0.78	[Па/м] [м/сек]	2410 2.37	735 1.44	260 0.93	89 0.59	29 0.37				
18	35	53	70	88	105	140	0.84	[Па/м] [м/сек]		837 1.55	296 1.00	102 0.64	33 0.40				
19	38	56	75	94	113	150	0.90	[Па/м] [м/сек]		944 1.66	334 1.07	115 0.69	37 0.43				
20	40	60	80	100	120	160	0.96	[Па/м] [м/сек]		1057 1.77	374 1.14	128 0.73	42 0.46	18 0.32			
21	43	64	85	106	128	170	1.02	[Па/м] [м/сек]		1175 1.88	415 1.22	143 0.78	46 0.49	20 0.34			
23	45	68	90	113	135	180	1.07	[Па/м] [м/сек]		1299 1.99	459 1.29	158 0.82	51 0.51	23 0.36			
25	50	75	100	125	150	200	1.19	[Па/м] [м/сек]		1562 2.22	552 1.43	190 0.91	62 0.57	27 0.40			
28	55	83	110	138	165	220	1.31	[Па/м] [м/сек]		1846 2.44	653 1.57	225 1.01	73 0.63	32 0.44			
30	60	90	120	150	180	240	1.43	[Па/м] [м/сек]		2149 2.66	760 1.72	262 1.10	85 0.69	37 0.48			
33	65	98	130	163	195	260	1.55	[Па/м] [м/сек]		2472 2.88	874 1.86	301 1.19	98 0.74	43 0.52			
35	70	105	140	175	210	280	1.67	[Па/м] [м/сек]			995 2.00	343 1.28	112 0.80	49 0.56			
38	75	113	150	188	225	300	1.79	[Па/м] [м/сек]			1123 2.15	387 1.37	126 0.86	55 0.60			
40	80	120	160	200	240	320	1.91	[Па/м] [м/сек]			1258 2.29	433 1.46	142 0.91	62 0.65	26 0.45		
43	85	128	170	213	255	340	2.03	[Па/м] [м/сек]			1398 2.43	482 1.55	158 0.97	69 0.69	29 0.48		
45	90	135	180	225	270	360	2.15	[Па/м] [м/сек]			1546 2.57	533 1.64	174 1.03	76 0.73	32 0.51		
50	100	150	200	250	300	400	2.39	[Па/м] [м/сек]			1859 2.86	641 1.83	210 1.14	91 0.81	38 0.56		
56	113	169	225	281	338	450	2.69	[Па/м] [м/сек]				788 2.06	258 1.29	0.91	48 0.63		
63	125	188	250	313	375	500	2.99	[Па/м] [м/сек]				947 2.28	310 1.43	135	57 0.70		
69	138	206	275	344	413	550	3.28	[Па/м] [м/сек]				1120 2.52	367 1.57	161	68 0.77	60	
75	150	225	300	375	450	600	3.58	[Па/м] [м/сек]					427 1.71	186	79 0.84	30 0.56	
81	163	244	325	406	488	650	3.88	[Па/м] [м/сек]					497 1.85	217 1.31	92 0.91	35 0.61	000
88	175	263	350	438	525	700	4.18	[Па/м] [м/сек]					567 2.00	248 1.41	105 0.98	40 0.66	0.51
94	188	281	375	469	563	750	4.48	[Па/м] [м/сек]					636 2.14	278 1.51	117 1.05	45 0.70	25 0.55

Потери давления

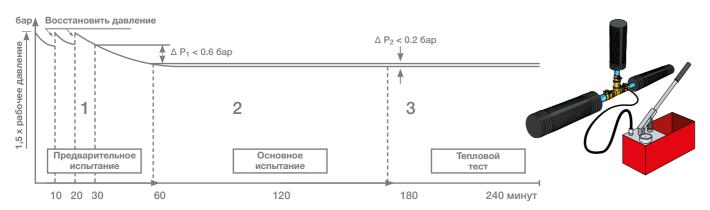
	Тепловая мощность [кВт] для ∆Т[К] для разности соответствующих температур [К]					Поток	Потери давления	Теп			ость [н					сти	
5 K	10 K	15 K	20 K	25 K	30 K	40 K	[л/сек]	Скорость потока	25 x 2.3	32 x 2.9	40 x 3.7	50 x 4.6	63 x 5.8	75 x 6.8	90 x 8.2	110 x 10.0	125 x 11.4
100	200	300	400	500	600	800	4.78	[Па/м] [м/сек]					706 2.28	309 1.61	130 1.12	50 0.75	28 0.58
106	213	319	425	531	638	850	5.08	[Па/м] [м/сек]					791 2.43	346 1.71	146 1.19	56 0.80	32 0.62
113	225	338	450	563	675	900	5.37	[Па/м] [м/сек]					875 2.57	383 1.82	162 1.26	62 0.85	35 0.66
119	238	356	475	594	713	950	5.67	[Па/м] [м/сек]					960 2.72	420 1.92	177 1.33	68 0.89	38 0.69
125	250	375	500	625	750	1000	5.97	[Па/м] [м/сек]					1044 2.86	457 2.02	193 1.40	74 0.94	42 0.73
131	263	394	525	656	788	1050	6.27	[Па/м] [м/сек]						500 2.12	211 1.47	81 0.99	46 0.76
138	275	413	550	688	825	1100	6.57	[Па/м] [м/сек]						543 2.22	229 1.54	88 1.04	49 0.80
144	288	431	575	719	863	1150	6.87	[Па/м] [м/сек]						585 2.32	247 1.61	95 1.09	53 0.84
150	300	450	600	750	900	1200	7.17	[Па/м] [м/сек]						628 2.42	265 1.68	102 1.13	58 0.87
156	313	469	625	781	938	1250	7.46	[Па/м] [м/сек]						677 2.52	286 1.75	110 1.18	62 0.91
163	325	488	650	813	975	1300	7.76	[Па/м] [м/сек]						726 2.62	307 1.83	117 1.22	66 0.95
169	338	506	675	844	1013	1350	8.06	[Па/м] [м/сек]						774 2.72	327 1.90	125 1.27	71 0.98
175	350	525	700	875	1050	1400	8.36	[Па/м] [м/сек]						823 2.82	348 1.97	133 1.31	75 1.02
181	363	544	725	906	1088	1450	8.66	[Па/м] [м/сек]						877 2.92	371 2.04	142 1.36	80 1.06
188	375	563	750	938	1125	1500	8.96	[Па/м] [м/сек]						932 3.03	394 2.11	151 1.41	85 1.09
194	388	581	775	969	1163	1550	9.25	[Па/м] [м/сек]						986 3.13	416 2.18	160 1.46	90 1.13
200	400	600	800	1000	1200	1600	9.55	[Па/м] [м/сек]						1040 3.23	439 2.25	169 1.50	95 1.16
213	425	638	850	1063	1275	1700	10.15	[Па/м] [м/сек]							490 2.39	188 1.60	106 1.24
225	450	675	900	1125	1350	1800	10.75	[Па/м] [м/сек]							540 2.53	207 1.69	117 1.31
238	475	713	950	1188	1425	1900	11.34	[Па/м] [м/сек]							595 2.67	228 1.79	129 1.38
250	500	750	1000	1250	1500	2000	11.94	[Па/м] [м/сек]							650 2.81	249 1.88	141 1.46
263	525	788	1050	1313	1575	2100	12.54	[Па/м] [м/сек]								272 1.97	153 1.53
275	550	825	1100	1375	1650	2200	13.14	[Па/м] [м/сек]								295 2.06	166 1.60
288	575	863	1150	1438	1725	2300	13.73	[Па/м] [м/сек]								319 2.16	180 1.67
300	600	900	1200	1500	1800	2400	14.33	[Па/м] [м/сек]								343 2.25	194 1.75
313	625	938	1250	1563	1875	2500	14.93	[Па/м] [м/сек]								369 2.35	208 1.82
325	650	975	1300	1625	1950	2600	15.52	[Па/м] [м/сек]								395 2.44	223 1.89
338	675	1013	1350	1688	2025	2700	16.12	[Па/м] [м/сек]									238 1.97
350	700	1050	1400	1750	2100	2800	16.72	[Па/м] [м/сек]									254 2.04
363	725	1088	1450	1813	2175	2900	17.32	[Па/м] [м/сек]									270 2.11
375	750	1125	1500	1875	2250	3000	17.91	[Па/м] [м/сек]									286 2.18
388	775	1163	1550	1938	2325	3100	18.51	[Па/м] [м/сек]									
400	800	1200	1600	2000	2400	3200	19.11	[Па/м] [м/сек]									
413	825	1238	1650	2063	2475	3300	19.70	[Па/м] [м/сек]									
425	850	1275	1700	2125	2550	3400	20.30	[Па/м] [м/сек]									

51

ИСПЫТАНИЕ ПОД ДАВЛЕНИЕМ (ОПРЕССОВКА) НА ГЕРМЕТИЧНОСТЬ В СООТВЕТСТВИИ С DIN 1988-2

Процедура испытания под давлением является обязательной для любых видов труб до засыпки траншеи.

Перед засыпкой траншеи залейте смонтированный трубопровод холодной водой, избегая образования воздушных пробок. Испытание под давлением должно проводиться в два этапа, начиная с предварительного испытания, после чего следует основное испытание.


1. Предварительное испытание

Предварительное испытание включает в себя применение испытательного давления, превышающего в 1,5 раза допустимое рабочее давление. Это давление должно быть восстановлено дважды в течение 30 минут с интервалом в 10 минут. По прошествии еще 30 минут после испытательное давление не должно падать более чем на 0,6 бар. Утечки не должны происходить ни в одной точке тестируемой системы.

2. Основное испытание

Основное испытание должно быть проведено сразу после предварительного испытания. Тест занимает 2 часа. В конце этого периода испытательное давление, зарегистрированное после предварительного испытания, не должно упасть более чем на 0,2 бар. Утечки не должны возникать ни в одной точке тестируемой системы.

Проверка давлением на герметичность по DIN 1988-2

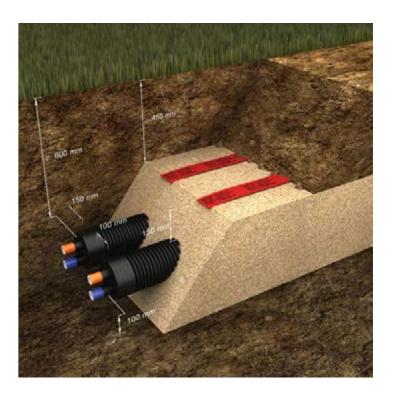
1	Предварительное испытание	Бар / рѕі	2	Основное испытание	Бар / psi
1.1	Рабочее давление x 1.5		2.1.1	Начало (чч:мм)	:
1.2	Через 10 мин. (восстановить 1.1)		2.1.2	Конец (чч:мм)	:
1.3	Через 20 мин. (восстановить 1.1)		2.2	Испытательное давление	
1.4	Через 30 мин.		2.3	Через 120 мин.	
1.5	Через 60 мин допустимое падение давления <0,6 бар		2.4	Допустимый перепад давления <0,2 бар	

ВНИМАНИЕ: Всегда проверяйте смонтированные трубопроводы под давлением перед их засыпкой! Добросовестное выполнение и документирование стандартизированного испытания под давлением для всей системы трубопроводов является условием гарантии! Невыполнение этого требования влечет за собой реальный риск повреждения системы и автоматически аннулирует гарантию на систему.

МОНТАЖ

Для облегчения подключения концевых фитингов к напорным трубам, желательно укладывать трубопровод с вертикальной ориентацией напорных РЕ-Ха труб (как показано на рисунке).

Всегда учитывайте местные значения глубин промерзания грунтов, чтобы определить минимальную глубину траншеи.


Чтобы избежать повреждения наружного защитного HDPE кожуха, система трубопроводов укладывается на песчаное основание и полностью запесочивается после укладки.

Засыпка траншеи грунтом производится только после полного покрытия трубопроводов песком, с соблюдением минимальных размеров толщины слоя (как показано на рисунке).

Предупреждающие ленты или предупреждающая сетка должны расположены над уложенными трубопроводами. Следует избегать повреждения этих труб при проведении земляных работ на последующих стадиях.

Чтобы избежать возможного загрязнения во время транспортировки, предварительно изолированные трубопроводы всегда поставляются с напорными трубами, закрытыми пластиковыми заглушками (для полных бухт 100 м).

Внутренние объёмы напорных труб для всех систем трубопроводов, предназначенных для бытовых нужд (питьевая вода, холодное и горячее бытовое водоснабжение и т.п.) должны быть тщательно промыты перед вводом в эксплуатацию.

Все государственные нормативы и правила в стране использования должны безусловно соблюдаться. Несоблюдение приводит к повреждениям и автоматически аннулирует гарантию на систему.

- Обязательным условием монтажа трубопроводов является анкерное крепление концов напорной трубы. Жесткая фиксация обеспечивает компенсацию от воздействия продольной расширительной силы при тепловом расширении напорной трубы. Несоблюдение этого правила приводит к повреждению системы, и автоматически аннулирует гарантию на систему.
- Все подземные соединения должны быть выполнены с использованием фитингов и соединений, специально предназначеных для монтажа РЕ-Х труб.
- Для предотвращения попадания грунтовой воды стандарт EN 15632-1&3 предписывает использование термоусадочных концевых колпачков, которые надёжно герметизируют систему под землёй. Несоблюдение этого правила может привести к повреждению изоляции и автоматически аннулирует гарантию на систему.
- Перед засыпкой траншеи обязательно выполнение испытаний на герметичность строго по методическим правилам, и составление Акта испытаний для всей системы.

ДЛЯ ЗАМЕТОК

000 «Пайплайф Рус»

249191, Россия, Калужская область, г. Жуков, ул. Первомайская, д. 9/16 Тел. +7 (495) 50-55-100 Тел./факс +7 (48432) 5-50-95 E-mail: info@terrendis.ru

www.terrendis.ru www.pipelife.ru