Государственное предприятие НИИсантехники Научно-производственная фирма ТОО"Витатерм"

РЕКОМЕНДАЦИИ по применению термостатов фирмы "Herz Armaturen AG"

Уважаемые коллеги!

НИИсантехники и ТОО "Витатерм" предлагают Вашему вниманию рекомендации по применению в российском строительстве термостатов фирмы "Herz Armaturen AG", затрагивающие в основном проблемы использования их в однотрубных системах отопления, по-прежнему наиболее распространенных в отечественной строительной практике.

Гидравлические характеристики термостатов и различных отопительных приборов, у которых они монтируются, определены при российских нормативных условиях, и на их основе найдены коэффициент затекания, определяющие теплогидравлические показатели приборов в однотрубных системах отопления.

Авторы рекомендаций: канд. техн. наук Сасин В.И., инж. Прокопенко Т.Н. и Кушнир В.Д. (под редакцией канд. техн. наук Сасин В.И.).

Замечания и предложения по совершенствованию настоящих рекомендаций авторы просят направлять по адресу: Россия, 111558, Москва, Зеленый проспект, 87-1-23, директору ТОО "Витатерм" Сасину Виталию Ивановичу или по тел./факс. (095) 482-38-79 и (095) 918-58-95

С ТОО "Витатерм" 1996

СОДЕРЖАНИЕ

1.Основные предпосылки использования	
термостатов в России	5
2.Термостаты для однотрубных систем	
отопления	6
3.Гидравлические испытания термостатов	
фирмы ГЕРЦ"	7
4.Коэффициенты затекания в радиаторных	
узлах с термостатами серии Е фирмы "ГЕРЦ"	12
5. Термостаты для двухтрубных систем отопления	19
6.Список использованной литературы	22

1.ОСНОВНЫЕ ПРЕДПОСЫЛКИ ИСПОЛЬЗОВАНИЯ ТЕРМОСТАТОВ В РОССИИ

Исследования, проведённые в России и за рубежом, показали, что оснащение отопительных приборов индивидуальными автоматическими регуляторами теплового потока (термостатами) позволяет в зависимости от типа регуляторов и условий их эксплуатации уменьшить расход тепловой энергии на отопление на 10-20% в основном за счёт снижения непроизводительных затрат теплоты (перетоп и т.п.). Это заметно превышает уровень экономии тепловой энергии с помощью ручного регулирования кранами или вентилями (обычно 4-9% при нормально работающем ручном регуляторе).

Больший эффект экономии теплоты на отопление (до 25-35%) достигается комплексным оборудованием системы отопления не только индивидуальными термостатами, но и регуляторами у источника тепловой энергии или в ИТП (для пофасадного регулирования, для программирования режимов отпуска теплоты в отопительный период и т.п.).

С 01.07.94 г. в России введены в действие изменения СНиП 2.04.07-85 и СНиП 2.04.05-91, в соответствии с которыми проектным и строительным организациям при проектировании и строительстве новых и реконструкции существующих зданий и сооружений необходимо, в частности, предусматривать оснащение отопительных приборов систем водяного отопления жилых и общественных зданий (за исключением расположенных на лестничных клетках, в вестибюлях зданий, переходах и т.п.), как правило, автоматическими терморегуляторами (термостатами) (Постановление Госстроя России N EE-19-25/13 от 28.12.93, подписанное председателем Госстроя Е. В. Васиным).

Большая работа по внедрению в российскую практику термостатов проведена московскими организациями (МНИИТЭП, Моспроект, ТОО "Вита-терм", НИИсантехники), а также рядом других российских институтов и объединений, которые ориентировались в значительной мере на поставки соответствующей зарубежной регулирующей арматуры. Основная потребность в термостатах на первых этапах их массового внедрения покрывалась экспортом арматуры, производимой фирмой "Данфосс", которая организовала и сборку термостатов непосредственно в России. В последние годы используются термостаты и других фирм как отечест-

венных (Казанское ПО "Теплоконтроль"), так и чаще зарубежных (HERZArmatureii AG, Honeyewll, Oventrop, TOUR and ANDERSSON, Buderus, Armaturenwerk Rosswein, Giacomini, Gampper Armaturen и др.), причём, с учётом их гидравлических характеристик, как правило, для насосных двухтрубных систем отопления.

2. ТЕРМОСТАТЫ ДЛЯ ОДНОТРУБНЫХ СИСТЕМ ОТОПЛЕНИЯ

Известно, что в России и странах СНГ наиболее широко применяются и ещё долго будут доминировать однотрубные системы отопления. Использование в этих системах традиционных термостатов снижает коэффициент затекания теплоносителя в отопительный прибор, что, в свою очередь, вынуждает завышать площадь его теплоотдающей поверхности и, соответственно, стоимость, а также эксплуатационные расходы. Напомним, что коэффициент затекания \hat{a}_{np} представляет собой отношение количества теплоносителя, поступающего в отопительный прибор M_{np} , к общему расходу воды в стояке M_{cr} , (при одностороннем присоединении прибора) или ветви системы отопления, т.е. определяется по формуле

$$\acute{a}_{np} = M_{np} / M_{cr}$$
 (1)

С учётом изложенного для однотрубных систем отопления ряд зарубежных фирм, в первую очередь австрийская "Herz Armaturen AG" (в дальнейшем "ГЕРЦ") и датская "Данфосс", разработали модификации термостатов с пониженным гидравлическим сопротивлением соответственно серии Е ("Восток") и RTD-G.

Однако, если для термостатов фирмы "Данфосс", соответствующие рекомендации по их применению разработанные усилиями МНИИТЭП, АО "Данфосс" и ТОО "Витатерм" - дают невысокие значения пропускной способности, то для термостатов фирмы "ГЕРЦ", в полной мере представившей свою продукцию в России в 1995 г., систематизированные данные для расчёта однотрубных систем отопления со специальными термостатами типа Е ("Восток") дают превосходные данные для проектирования однотрубных систем отопления.

Учитывая, что продукция австрийской фирмы "ГЕРЦ" характеризуется высоким дизайном (рис. 2.1), широкой номенклатурой, сравнительно низкими ценами и находит устойчивый спрос в России, ТОО "Витатерм" разработало настоящие рекомендации по применению термостатов серии Е для однотрубных систем отопления. Для российских потребителей важно также, что термостатические жидкостные датчики термостатов фирмы "ГЕРЦ" отвечают последним европейским нормам EN 215 и предназначены для работы в системах отопления с максимальным рабочим избыточным давлением теплоносителя 1 МПа (10 атм.), в том числе с избыточным давлением 0,4 МПа (4 атм.) в режиме запирания. Это позволяет использовать термостаты фирмы "ГЕРЦ" в системах отопления многоэтажных зданий без опасности их разрегулировки под действием гидростатических сил. Тем не менее, при необходимости демонтажа радиатора со стороны термостата (при замене, ремонте и т.п.) предварительно надо снять термостатическую головку и вместо неё плотно до упора завинтить защитный металлический колпачок. При использовании вместо металлического пластмассового колпачка необходимо открытую сторону термостата сразу же после снятия радиатора закрыть специальной металлической заглушкой. В разделе 5 для сведения приведены дополнительно данные по традиционным термостатам фирмы "ГЕРЦ" для двухтрубных систем отопления.

Очевидно, что настоящие рекомендации не заменяют, а лишь дополняют проспекты и каталоги фирмы "ГЕРЦ", которые содержат основные сведения по подбору, монтажу, настройке и эксплуатации термостатов и арматуры этой фирмы.

3. ГИДРАВЛИЧЕСКИЕ ИСПЫТАНИЯ ТЕРМОСТАТОВ ФИРМЫ "ГЕРЦ"

При составлении настоящих рекомендаций исходили из результатов гидравлических испытаний термостатов фирмы "ГЕРЦ" серии Е, проведённых в лаборатории отопительных приборов НИИсантехники при полностью открытом кране, а также при настройке на так называемый режим 2К. В последнем случае клапан термостата частично прикрыт, и в случае превышения заданной температуры воздуха в помещении на 2К на 2°C) он перекрывает движение воды в подводящем теплопроводе Это общепринятое в европейской практике условие позволяет потребителю не только снижать температуру воздуха в помещении, но и по его желанию её повышать.

Очевидно, при таком методе определения коэффициента сопротивления термостата коэффициент затекания будет несколько ниже, чем при расчёте, исходя из гидравлических характеристик полностью открытого клапана, что характерно для отечественной практики проектирования систем отопления с обычными кранами и вентилями ручного регулирования.

Значение хода штока термостата, соответствующее настройке на 2К, определяется на специальных стендах, обеспечивающих чёткое термостатирование головок регуляторов. Такие исследования были проведены по нашей просьбе в центральном отделении фирмы «ГЕРЦ Арматурен АГ" в г. Вене инженером Ф. Маршнером, согласно которым при настройке на режим 2К шток от полного закрытия открывался на 0,44 мм.

При наших гидравлических испытаниях настройка на режим 2К (на 2° C) осуществлялась с помощью струбцины с регулирующим винтом, которым обеспечивался подъём штока на 0,44 мм.

Гидравлические испытания отопительных приборов и арматуры проводятся согласно методике НИИсантехники /1/, /2/, позволяющей определять значения приведённых коэффициентов местного сопротивления $\zeta_{\text{ну}}$ и характеристик сопротивления $S_{\text{ну}}$ при нормальных условиях, т.е. при расходе воды через прибор или регулирующую арматуру 0,1 кг/с или 360 кг/ч /3/, после периода эксплуатации, в течение которого коэффициенты трения мерных участков из стальных гладких (новых) труб на подводках к испытываемым приборам или арматуре достигают значений, соответствующих эквивалентной шероховатости 0,2 мм, принятой в качестве расчётной для стальных теплопроводов отечественных систем отопления.

Для ускорения проведения таких испытаний стенд обеспечивает разрыв струи и обогащение воды кислородом и, как следствие, более быстрое увеличение абсолютной шероховатости труб. Образующиеся при этом продукты коррозии осаждаются на каналах для прохода теплоносителя в отопительных приборах и внутренней части регулирующей арматуры. Очевидно, что такая методика даёт несколько большие значения

Рис. 2.1. Общий вид термостата фирмы "ГЕРЦ"

 ζ_{Hy} и S_{Hy} , чем при испытании чистых приборов и арматуры, однако эти характеристики ближе к их реальным гидравлическим показателям в период эксплуатации систем отопления.

Гидравлические испытания ведутся при температуре воды $20\pm3\,^{\circ}$ С в квазиизотермическом режиме, хотя стенд лаборатории отопительных приборов позволяет проводить отдельные исследования и при других температурах воды. Отмечено, что увеличение температуры воды приводит при том же массном её расходе M_{np} через отопительный прибор или термостат (вентиль) к некоторому снижению перепада давления на испытуемом объекте, однако в меньшей мере, чем к снижению сопротивления прямых участков труб при том же изменении температуры воды. Это связано с тем, что зависимость гидравлического сопротивления отопительных приборов и особенно корпусов термостатов от расхода воды ближе к квадратичному закону, чем аналогичная зависимость для прямых участков труб.

В таблице 3.1 приведены значения коэффициентов местного сопротивления ζ , характеристик сопротивления S и перепадов давлений ΔP в зависимости от расхода воды M_{np} для термостатов фирмы «ГЕРЦ» серии E при стандартном режиме их настройки (для номинального хода шпинделя клапана на 2K) и при полностью открытом шпинделе клапана. На рис. 3.1 представлены гидравлические характеристики этих же термостатов, полученные при испытаниях в центральном отделении фирмы «ГЕРЦ" в Γ . Вене на специальном стенде для исследований термостатов при температуре воды 50° C. Отметим, что, согласно графикам рис. 3.1, имеет место квадратичная зависимость перепада давления от расхода воды, поэтому гидравлические характеристики термостатов можно принять неизменными для всего измеренного диапазона расхода воды.

Наши испытания при температуре воды 20°С в режиме настройки 2К и при полностью открытом клапане дали значения в среднем на 10% более высокие, чем представленные на рис. 3.1. При постановочных испытаниях при повышении температуры воды до 50°С наши данные несколько снизились, но оставались тем не менее на 2-3% более высокими, чем австрийские. Это объясняется влиянием загрязнений, имеющих место при испытаниях по отечественной методике.

Термостаты для однотрубных систем отопления «ГЕРЦ-ТS-Е" выпускаются с унифицированным корпусом и с тремя вариантами диаметров присоединительных штуцеров условными диаметрами 15, 20 и 25 (1/2", 3/4" и 1"). Гидравлические характеристики практически не зависят от диаметров штуцеров, т. к. основная доля гидравлического сопротивления приходится на корпус термостата.

Таблица 3.1

Гидравлические характеристики термостатов фирмы "ГЕРЦ" серии Е

<u> ABMCHMOSTB</u>	RSH	andry	HE MSH	YHS, SE YM	∆Р, Па
	and the second	20		Па/(кг/с) ²	B TDYO,
	1	1	1	на 2К (на 2	(C) = (S)
0,025 90	41	1136	352	56· 10 ⁴	350
0,05 180	41	1136	352	56· 10 ⁴ × 9	1400
0,1 360		136		56· 10 ⁴	5600
			1	ытом клапане	акинаки
0,025 90	1 3,7	112,4	32,1	5, 1·10 ⁴	32
0,05 180	1 3,7	112,4	32, 1	5, 1·10 ⁴	128
10,1 1360	1 3,7	112,4	32, 1	5, 1·10 ⁴	510

Таким образом, наши испытания подтвердили данные фирмы "Герц Арматурен АГ", и они были приняты за основу при определении коэффициентов затекания. При этом отмечающееся дальнейшее снижение гидравлического сопротивления арматуры при том же расходе воды и увеличении ее температуры до 70-80°С, характерной для средних температур горячего теплоносителя в системах отопления, не учитывали, принимали его в запас с учётом более серьёзного загрязнения арматуры и приборов при реальных условиях их эксплуатации.

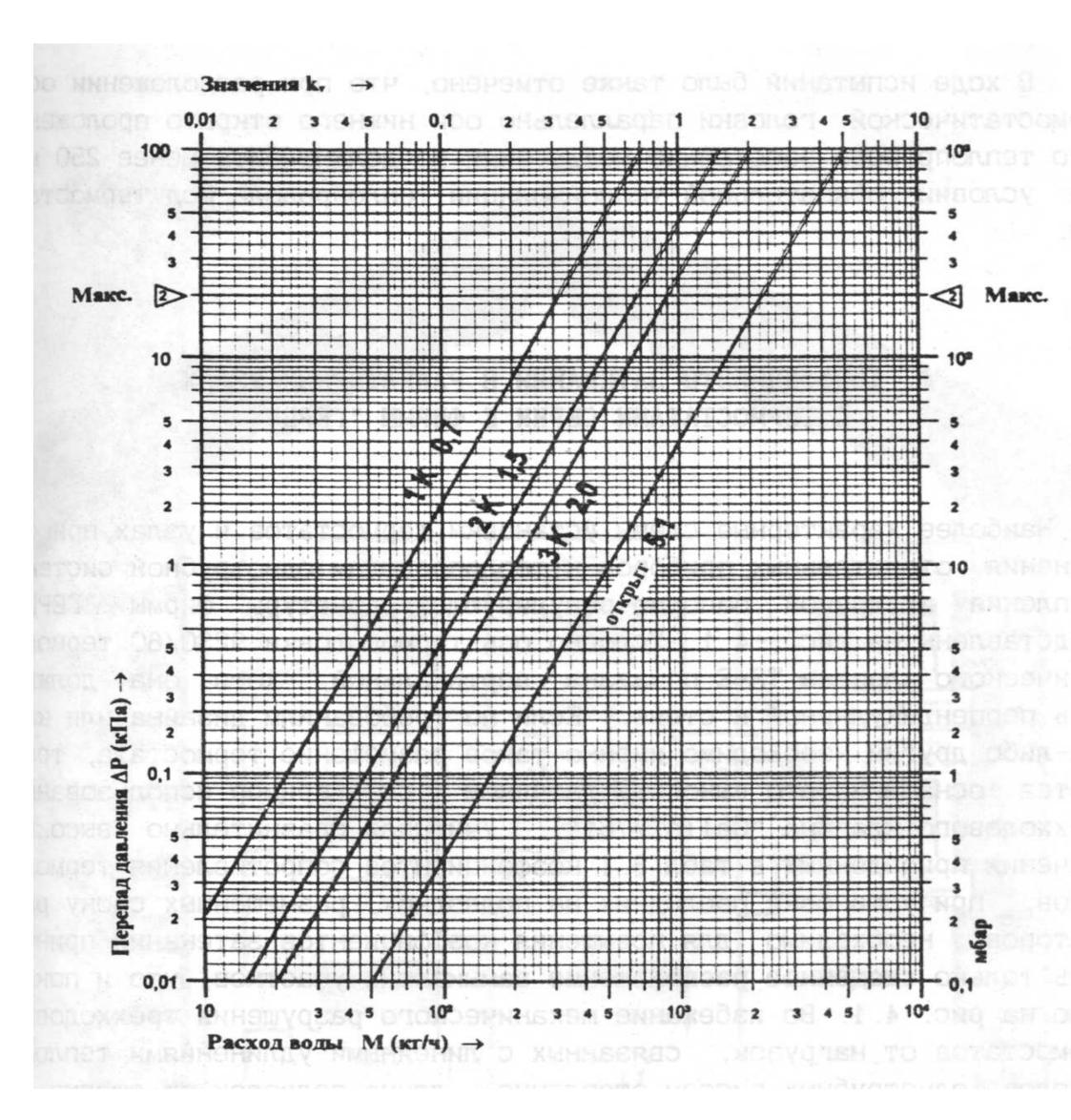


Рис. **3.1.** Гидравлические характеристики термостатов "ГЕРЦ-TS-E" при различных режимах настройки

В ходе испытаний было также отмечено, что при расположении оси термостатической головки параллельно оси нижнего открыто проложенного теплопровода расстояние между ними не должно быть менее 250 мм при условии обязательной теплоизоляции теплопровода под термостатом.

4. КОЭФФИЦИЕНТЫ ЗАТЕКАНИЯ В РАДИАТОРНЫХ УЗЛАХ С ТЕРМОСТАТАМИ СЕРИИ Е ФИРМЫ «ГЕРЦ»

Наиболее характерные схемы установки термостатов в узлах присоединения отопительных приборов к теплопроводам однотрубной системы отопления и другой запорно-регулирующей арматуры фирмы "ГЕРЦ" представлены на рис. 4.1. Условно ось термоголовки 9230/60 термостатического клапана TS-E показана вертикальной, хотя она должна быть перпендикулярной к стене. Если по требованиям дизайна или каким-либо другим необходимо именно такое размещение термостата, требуется оснащение его выносным датчиком (см. пример использования трёхходового клапана "Calis 7761"). Учитывая сравнительно высокие значения приведённых в табл. 3.1 коэффициентов сопротивления термостатов, при установке последних на подводках, размещённых сбоку радиаторов, необходимо для повышения коэффициентов затекания принимать только смещённое расположение замыкающих участков, что и показано на рис. 4.1. Во избежание механического разрушения трёхходовых термостатов от нагрузок, связанных с линейными удлинениями теплопроводов однотрубных систем отопления, длина подводок от стояка до термостата должна быть не менее 400 мм при расчётной температуре горячего теплоносителя 90°C.

Согласно требованиям отечественной практики проектирования вертикальных однотрубных систем отопления термостаты серии E, устанавливаемые непосредственно перед прибором, размещаются обычно на горячей подводке, т.е. на нижней или верхней в зависимости от схемы движения теплоносителя в стояке.

В тех случаях, когда термостат установлен на верхней подводке,

Однотрубная система отопления

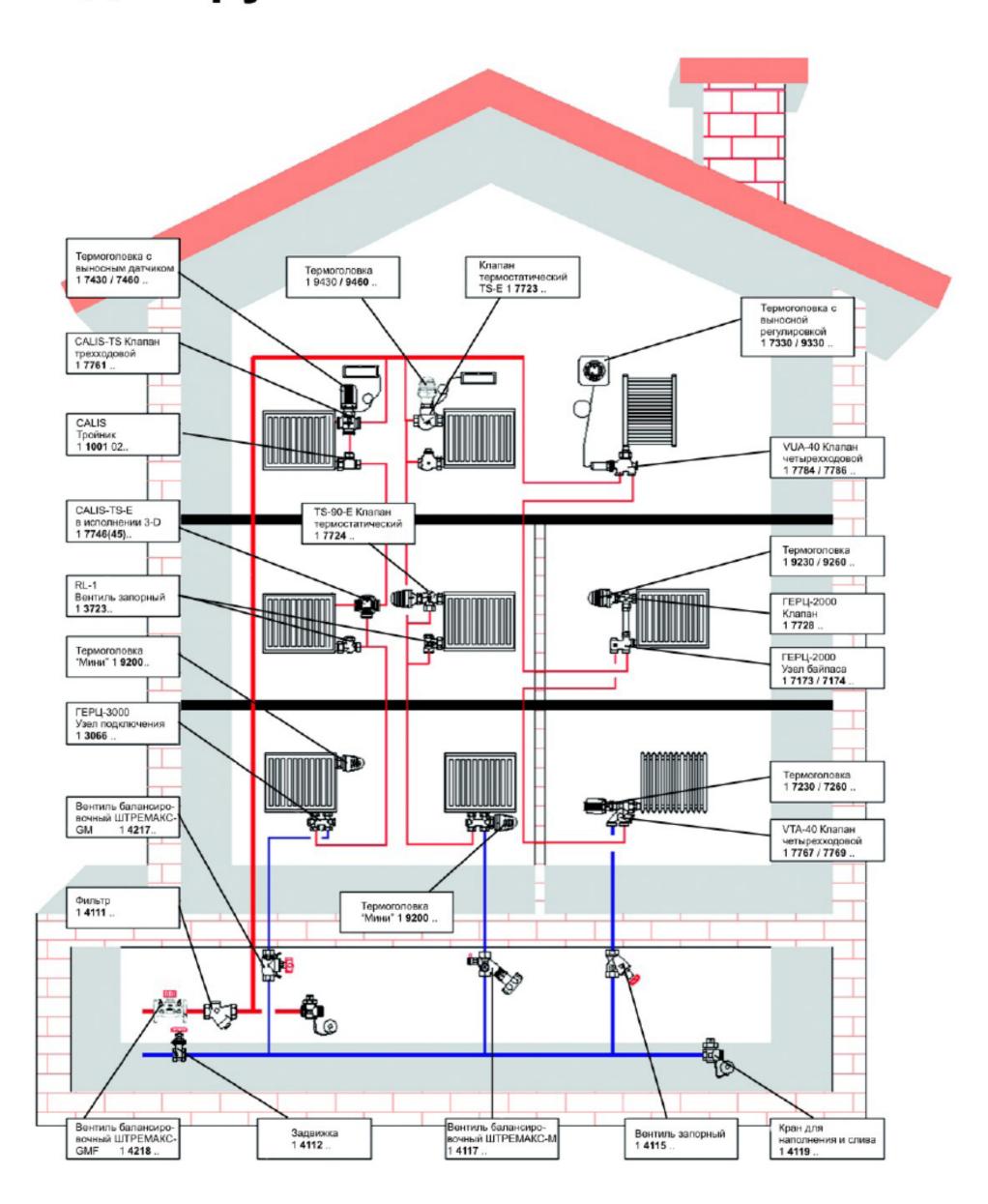


Рис. 4.1. Схема установки запорно-регулирующей арматуры фирмы «ГЕРЦ» в однотрубной системе водяного отопления.

при его полном закрытии через нижние подводки dy =15 мм или dy =20 мм, согласно исследованиям ТОО "Витатерм", имеет место струйное течение теплоносителя - по верхней части трубы горячая вода попадает в отопительный прибор, а по нижней её части с температурой близкой к температуре воздуха в отапливаемом помещении возвращается в стояк. И хотя объём подтекающей таким образом воды небольшой, однако из-за значительного снижения её температуры в приборе его остаточная теплоотдача при традиционных для наших систем длинах подводок составляет 15-35%. Это, очевидно, заметно снижает эффективность регулирования теплоотдачи отопительного прибора.

Для устранения этого недостатка при наличии термостата на верхней боковой подводке и движении теплоносителя по схеме "сверху-вниз" рекомендуется на нижней подводке устанавливать специальные краны или циркуляционные тормоза, препятствующие струйному течению воды.

Как известно, в зарубежной практике при боковом подсоединении приборов запорно-регулирующая арматура устанавливается обычно на обеих подводках. Аналогичная тенденция намечается и в отечественной практике, хотя мы вынуждены отметить, что при установке пользующихся у нас хорошей репутацией шаровых кранов последние выполняют роль лишь запорной (а не регулирующей) арматуры и практически не нарушают струйного течения воды в подводках к прибору.

Коэффициент затекания \acute{a}_{np} зависит от многих факторов и определяет долю расхода теплоносителя непосредственно через отопительный прибор \emph{M}_{np} от расхода в подводках к радиаторному узлу, равного при одностороннем подключении прибора расходу теплоносителя по стояку \emph{Mc}_{T}

Таким образом
$$M_{np} = \acute{a}_{np} \cdot Mc_T$$
 . (1)

Зная M_{np} , мы можем определить тепловые характеристики используемых в системе отопления радиаторов по зависимостям, приведённым в специальной литературе /3/, /4/.

ТОО "Витатерм" и НИИсантехники разработали ряд рекомендаций по применению наиболее распространённых в России отечественных и зарубежных отопительных приборов. Эти рекомендации можно заказать в ТОО "Витатерм" (Россия, 111558, Москва, Зелёный проспект, 87-1-23, тел./факс (095) 482-38-79, тел.

(095) 918-58-95).

Коэффициент затекания находили исходя из определённых нами характеристик гидравлического сопротивления отопительных приборов различных конструкций и термостатов «ГЕРЦ-ТS-Е» при разных соотношениях условных внутренних диаметров труб стояков d_{ct} , замыкающих участков d_{3y} и подводящих к прибору теплопроводов d_n .

Значения $\acute{a}_{пp}$ вычислялись по проводимости параллельных участков (в нашем случае прибора с термостатом и смещённого замыкающего участка) по традиционной методике /3/, /4/.

При подводках условным диаметром dy =15 мм используются термостаты типа «ГЕРЦ-ТS-Е» проходного исполнения 1 7723 11, а при dy =20 мм «ГЕРЦ-ТS-Е» 1 7723 02 (рис.4.2), отличающиеся, как указывалось, только диаметром присоединительных муфт (1/2" и 3/4" соответственно) . При необходимости можно также использовать и термостаты проходного исполнения с условным диаметром муфт 1" (1 7723 03). Номенклатура термостатов кроме проходных включает модификации углового исполнения (1 7724) с муфтами 3/4" и 1" и углового специального исполнения (1 7728) с муфтами 1/2", 3/4" и 1". Однако, как указывалось, с учётом специфики конструкции термостата «ГЕРЦ-ТS-Е» независимо от его исполнения (проходного, углового или углового специального) и размеров муфт коэффициенты затекания принимаются одинаковыми для всех модификаций.

В общем случае коэффициент затекания зависит и от схемы движения теплоносителя, однако при обычных для термостатов характеристиках гидравлического сопротивления значения \acute{a}_{np} при движении теплоносителя по схемам "сверхувниз" и "снизу-вверх" практически совпадают. Очевидно, что при использовании кранов низкого сопротивления за счёт дополнительного гидравлического напора непосредственно в радиаторном узле при схеме "сверху-вниз" значение \acute{a}_{np} выше, чем при движении воды по схеме "снизу-вверх".

Результаты испытаний и вычислений значений \acute{a}_{np} представлены в табл. 4.1.

Коэффициенты сопротивления приняты исходя из средних значений Mc_T =360 кг/ч и соответствующих расходов через отопительный прибор M_{np} =70...110 кг/ч, температуры теплоносителя 60. ..90°C и с учётом влияния на гидравлическое сопротивление термостатов отложений шлама и других загрязнений, возникающих в период эксплуатации системы отопления.

HERZ-TS-E Нормаль **HERZ-TS-E** Термостатический клапан с высокой пропускной способностью Издание 0809 Для любых однотрубных систем, а также коттеджных двухтрубных гравитационных систем. Область применения Особенно рекомендуется для вертикальных однотрубных систем с байпасной перемычкой. Габаритные размеры α 7723 E 7724 E - R -7728 E 7728 21 E Номер заказа Обозначение DN R Н L h 1 7723 11 15 1/2 43 95 1 **7723** 02 Проходной 20 3/4 109 43 1 7723 03 25 1 126 43 1/2 29 1 7724 11 15 62 43 1 7724 02 Угловой 20 3/4 66 35 29 1 7724 03 25 1 75 35 34 1 7728 11 15 1/2 74 55 35 Угловой 1 7728 02 20 3/4 80 55 35 специальный 1 7728 03 25 82 56 59 1 1 **7728** 21 15 1/2 74 35 с воздухоотводчиком Стандартные модели с резьбовой муфтой, никелированы, с белым защитным колпачком. Исполнения ГЕРЦ-TS-E Другие исполнения ГЕРЦ-ТS-90-Е Универсальные модели со специальной муфтой для резьбовой трубы и фитингов. 1 7723 01 1/2 Проходной Угловой 1 7724 01 1/2 1 7728 01 1/2 Угловой специальный 3-осевой клапан "AB", клапан слева от радиатора 3-осевой клапан "CD", клапан справа от радиатора 1 **7758** 01 1/2 1 **7759** 01 1/2 Для этих клапанов существует отдельная нормаль. Макс. рабочая температура 120 °C Технические данные Макс. рабочее давление 10 бар

0,2 бар, при запирании ручным Макс. допустимый перепад приводом ГЕРЦ-TS до 10 бар. давления во время эксплуатации

Качество горячей воды должно соответствовать требованиям "Правил технической эксплуатации электрических станций и сетей" Министерства энергетики и электрификации РФ.

Соединитель для резьбовых труб 6210 с уплотнением "сфера-конус

смонтирован. Рекомендуется применение монтажного ключа 6680. Соединитель для резьбовых труб 6209 с уплотнением "сфера-конус"

смонтирован.

Соединитель для подключения к радиатору

Изменения вносятся по мере технического совершенствования.

HERZ Armaturen

R 1:

Richard-Strauss-Straße 22 . A-1230 Wien

e-mail: office@herz-armaturen.com • www.herz-armaturen.com

Значения коэффициентов затекания a_{np} в однотрубных узлах с различными отопительными приборами, со смещёнными замыкающими участками и термостатами "ГЕРЦ TS-E"

NN ⊓/⊓	현대는 여러 반으라는 그 씨는 이번 보는 보고 하는 것을 다른 일을	Значения α_{np} при сочетаниях условных диаметров труб радиаторного узла $d_{c\tau}xd_{sy}xd_n$, мм					
		15x15x15	15x15x20	20x15x15	20x15x20	25x15x20	
1	Чугунные секционные радиаторы типа МС-140-500 и МС-140-300	0,24	0, 275	0,19	0, 22	0,21	
2	Колончатые радиаторы из алюми- ниевого сплава типа РС (г. Ступино МО)				0, 204		
3	Колончатые радиаторы из алюми- ниевого сплава типа "Урал" (г. Верхняя Салда)	Lindson Linds	John Chirt		0, 205		
4	Секционные радиаторы из алюми- ниевого сплава типа "Calidor" ("Fondital")	0, 24	0, 275	0, 19	0, 22	0, 21	

Продолжение таблицы 4.1

NN п/п	Тип радиатора	Значения $\alpha_{\rm II p}$ при сочетаниях условных диаметров труб радиаторного узла $d_{\rm C T} x d_{\rm 3 y} x d_{\rm II}$, мм						
is :	SINGTAUNISCKKS KORBEKTOPA	15x15x15	15x15x20	20x15x15	20x15x20	25x15x20		
5	Секционные радиаторы из алюми- ниевого сплава типа "Bimetal" ("Sira")	0, 24		0,202	0, 205	0522		
	Секционные радиаторы из алюми- ниевого сплава типа IPS/90 ("Pasotti")	0, 25			0, 252	0,231		
7	Стальные панельные радиаторы "Мосварт" типа 10, 11К 21К 22К	0, 22 0, 222 0, 227		0,18 0,186 0,19	0, 181 0, 187 0, 192			
8	Стальные панельные радиаторы "Korad P 90" типа 11К 21К, 22К 33К	0, 215 0, 225 0, 232	SWETOPHOTO	0,171 0,179 0,184	0,172 0,18 0,185	SEXTEXSO		

Окончание таблицы 4.1

NN π/π	Тип радиатора	Значения $\alpha_{\Pi p}$ при сочетаниях условных диаметров труб радиаторного узла $d_{\text{ст}} x d_{\text{зу}} x d_{\Pi}$, мм						
	"Korad P 90" TWII 11K	15x15x15	15x15x20	20x15x15	20x15x20	25x15x20		
9	Стальные панельные радиаторы	- Name of the last				The State		
	"Radik Klasik" типа 10, 11	0,215	Justin, puncto	0,171	0,172	1		
	21	0, 221	1	0,183	0, 184			
	MOCESPT THES 10, 55	0,23	15815830	0,187	0,188	- KD X SD KIETS		
	CASHERING LITHGUEHEG D33 NO LODE	0,22	0.276	0,18	0, 181			
10	Стальные панельные радиаторы							
	"DeLonghi" типа 10, 11, 11К	0,22			9,252	0, 231		
	21, 22	0,228						
	33	0,229						
11	Биметаллические конвекторы ЛАК завода "Румо"	9'51		0, 202	0, 227	0, 22		
12	Биметаллические конвекторы	15215215	18815320	SEXTEXIE	Soxtexao.	25×15×20		
	"Изотерм" типа 113	0,238						
	210		инаторнито		Jan X dy . M			
	310	0, 228	CDW CON	TELEVIN YOUR	BHILL DESM'S	phos CLDNg		
	410	0,227						

На российском рынке предлагаются также универсальные модели термостатов "ГЕРЦ-ТS-90-Е" со специальной муфтой для резьбовых соединений труб и зажимного соединителя, характеризующиеся несколько большим гидравлическим сопротивлением по сравнению с термостатами «ГЕРЦ-ТS-Е». Они могут использоваться как в однотрубных, так и в двухтрубных насосных системах. Для того, чтобы значения коэффициента затекания в узлах однотрубных систем отопления в первом приближении не уменьшались по сравнению со значениями, приведёнными в табл. 4.1, условный диаметр замыкающих участков следует уменьшить с 15 до 10 мм.

С учётом изложенного мы рекомендуем в однотрубных системах отопления отдавать предпочтение термостатам "ГЕРЦ-ТS-Е".

Помимо традиционных вариантов размещения термостатов фирма «ГЕРЦ» предлагает для однотрубных систем отопления четырёхходовые клапаны «ГЕРЦ-VTA» и «ГЕРЦ-VUA» для термостатического управления радиаторами при нижнебоковом их присоединении, т.е. при присоединении с подводом и отводом теплоносителя через одну нижнюю пробку. В случае применения донной подводки удобно использовать присоединительные гарнитуры "ГЕРЦ-2000", обеспечивающие наиболее целесообразное движение теплоносителя в отопительном приборе по схеме "сверху-вниз". При использовании указанной арматуры необходимо чётко выполнять условия подсоединения термостатов к отопительным приборам различных типов во избежание резкого снижения теплоотдачи по сравнению с номинальным тепловым потоком, определённым при стандартной схеме установки приборов. По данным ТОО "Витатерм" использование четырёхходовых термостатов уменьшает номинальный тепловой поток отопительных приборов на 10-40%, что следует учитывать при их подборе.

5. ТЕРМОСТАТЫ ДЛЯ ДВУХТРУБНЫХ СИСТЕМ ОТОПЛЕНИЯ

В последние годы доля двухтрубных систем отопления в отечественной строительной практике заметно выросла и имеет тенденцию к дальнейшему увеличению. Для двухтрубных систем фирма "ГЕРЦ" предлагает использо-

вать термостаты с жидкостными датчиками тип "ГЕРЦ-ТS-90" различных исполнений (проходного, углового) с присоединением теплопроводов из различных материалов (стали, меди, полимеров) с муфтами 3/8", 1/2", 3/4" и 1".

Характеристики этих термостатов приведены в проспектах фирмы наряду с характеристиками термостатических клапанов «ГЕРЦ-ТS-9О-V», позволяющих осуществлять дополнительно плавную предварительную настройку клапанов по гидравлическому сопротивлению.

Заметим, что в последнем случае гидравлические показатели, характеризующиеся отметками монтажной настройки 1, 2,..., 7, также, как и у термостатов для однотрубных систем, соответствуют настройке на режим 2К. Таким образом, зона регулирования при монтажной настройке клапана «ГЕРЦ-ТS-9О-V» на отметку "2" заметно отличается от] зоны регулирования при монтажной настройке на отметку "6".

Характерные варианты установки термостатов и запорно-регулирующей арматуры фирмы "ГЕРЦ" в двухтрубных системах отопления* показаны на рис. 5.1.

Укажем также, что при использовании термостатов для двухтрубных систем рекомендуется устанавливать на каждом подающем стояке в начале ветви (в горизонтальных системах) дополнительные постояковые фильтры (при использовании чугунных радиаторов эта рекомендация является обязательной). Целесообразно также применять регулятор перепада давления у каждой пары подающего и обратного стояков.

В общем случае термостаты рекомендуется использовать только закрытых системах отопления с теплоносителем, отвечающем требованиям РД 34.20.501-95 /5/, оборудованных закрытыми расширительными сосудами, грязевиками, постояковыми фильтрами в необходимом количестве и надёжными насосами, точно соответствующими гидравлическим характеристикам системы отопления (во избежание, в частности, превышения допустимых значений звуковой мощности "работающими" термостатами). Для того, чтобы эквивалентный уровень шума от термостата не превышал 30 дБ, обычно достаточно не допускать скорость воды в под водках свыше 0,6-0,8 м/с.

Существенное улучшение условий работы термостатов достигаете при замене металлических теплопроводов металлополимерными.

Во всех случаях рекомендуется термостатические головки располагать

Двухтрубная система отопления

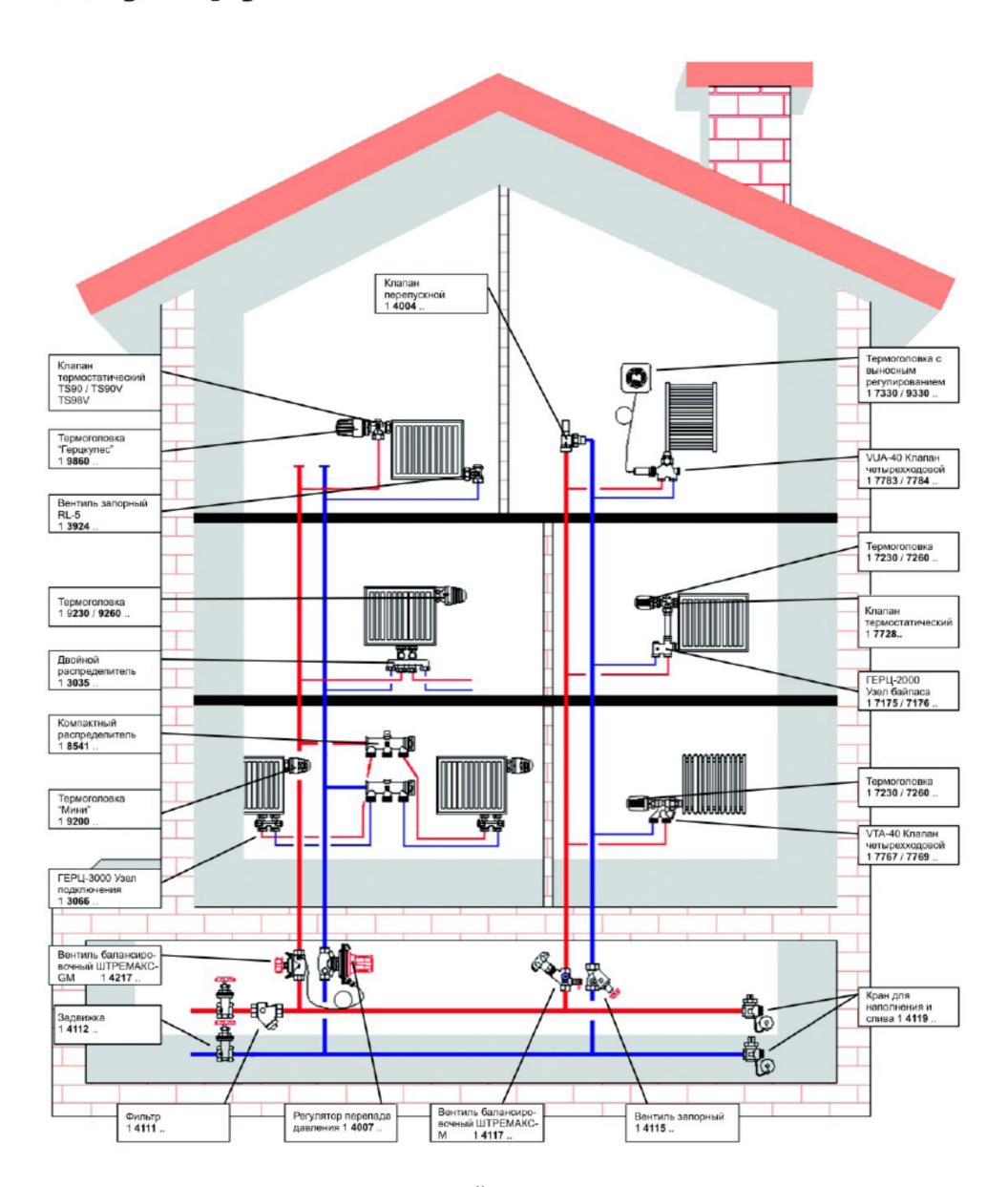


Рис. 5.1. Схема установки запорно-регулирующей арматуры фирмы «ГЕРЦ» в двухтрубной системе водяного отопления.

таким образом, чтобы теплопроводы, декоративные решётки или шторы не искажали работу термостатов. Если этого не удаётся добиться с помощью автономных термостатических головок, необходимо использовать выносные датчики.

Отметим, что термостатические головки термостатов фирмы "ГЕРЦ" сохраняют свою работоспособность при температурах окружающей среды (воздуха) в пределах от

 -40° С до $+60^{\circ}$ С.

За более подробными сведениями по подбору, установке и наладке термостатов фирмы ТЕРЦ" мы рекомендуем обращаться в представительства фирмы, в частности, в Москве по телефонам (095) 482-39-18 и (095) 488-63-79 и в С.-Петербурге по тел./факс. (812) 394-13-46.

6. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Кушнир В. Д., Сасин В. И. Гидравлические испытания отопительных приборов в условиях, близких к эксплуатационным//Сб.тр. НИИсантехники.- 1991.- вып. 65, с. 35 - 46.

Методика определения номинального теплового потока отопительных приборов при теплоносителе воде / Г. А. Бершидский, В. И. Сасин, В. А. Сотченко. - М.: НИИсантехники, 1984.

Богословский В. Н., Сканави А. Н. Отопление: Учебн. пособ. для ВУЗов. - М.: Стройиздат, 1991.

Справочник проектировщика. Внутренние санитарно-технические устройства. 4.1. Отопление / Под редакцией И.Г.Староверова. - М.: Стройиздат, 1990.

Правила технической эксплуатации электрических станций сетей Российской Федерации/ М-во топлива и энергетики РФ, РАО "ЕЭС России": РД 34.20.501-95.- 15-е изд., перераб. и доп. - М.: СПО ОРГ-РЗС, 1996.